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Preface

Books which try to digest, coordinate, get rid of the duplication, get rid of the less fruitful methods
and present the underlying ideas clearly of what we know now, will be the things the future
generations will value. Richard Hamming (1915-1998)

Topics These lecture notes are intended for �rst-year graduate students interested in network systems,

distributed algorithms, and cooperative control. The objective is to answer basic questions such as: What

are fundamental dynamical models of interconnected systems? What are the essential dynamical properties

of these models and how are they related to network properties? What are basic estimation, control, design,

and optimization problems for these dynamical models?

The book is organized in three parts: Linear Systems, Topics in Averaging Systems, and Nonlinear

Systems. The Linear Systems part, together with part on the Topics in Averaging Systems, includes

(i) several key motivating examples systems drawn from social, sensor, and compartmental networks,

as well as additional ones from robotics,

(ii) basic concepts and results in matrix and graph theory, with an emphasis on Perron–Frobenius theory,

algebraic graph theory and linear dynamical systems,

(iii) averaging systems in discrete and continuous time, described by static, time-varying and random

matrices, and

(iv) positive and compartmental systems, described by Metzler matrices, with examples from ecology,

epidemiology and chemical kinetics.

The Nonlinear Systems part includes

(v) formation control and coordination problems for relative sensing networks,

(vi) networks of phase oscillator systems with an emphasis on the Kuramoto model and models of power

networks, and

(vii) virus propagation models, including lumped and network models as well as stochastic and determin-

istic models, and

ix



x Contents

(viii) population dynamic models, describing mutualism, competition and cooperation in multi-species

systems.

Teaching instructions These lecture notes are meant to be taught over a quarter-long course with a

total 35 to 40 hours of contact time. On average, each chapter should require approximately 2 hours of

lecture time. Indeed, these lecture notes are an outgrowth of an introductory graduate course that I taught

at UC Santa Barbara over the last several years.

The intended audience is 1st year graduate students in Engineering, Sciences, and Applied Mathematics

programs. For the �rst part on Linear Systems, the required background includes competency in linear

algebra and only very basic notions of dynamical systems. For the second part on Nonlinear Systems

(including coupled oscillators and virus propagation), the required background includes a calculus course.

The treatment is self-contained and does not require a nonlinear systems course.

For the bene�t of instructors, these lecture notes are supplemented by three documents:

• a solution manual, available upon request by instructors at accredited institutions;

• an abbreviated version of these notes in slides/landscape format, especially suited for displaying on a

projector for classroom teaching, and

• an abbreviated version of these notes in classnotes format (with large sans-serif fonts, small margins),

especially suited as markup copy for classroom teaching.

The book, in its three formats, are available for download at: http://motion.me.ucsb.edu/book-lns.
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Part I

Linear Systems

1





Chapter1

Motivating Problems and Systems

In this chapter, we introduce some example problems and systems from multiple disciplines to motivate

our treatment of linear network systems in the following chapters. We look at the following examples:

(i) In the context of social in�uence networks, we discuss a classic model on how opinions evolve and

possibly reach a consensus opinion in groups of individuals.

(ii) In the context of wireless sensor networks, we discuss a simple distributed averaging algorithms and,

in the appendix, two advanced design problems for parameter estimation and hypothesis testing.

(iii) In the context of compartmental networks, we discuss dynamical �ows among compartments with a

classic example for water in desert ecosystems.

(iv) Finally, we discuss simple robotic behaviors for cyclic pursuit and balancing.

In all cases we are interested in presenting the basic models and motivating interest in understanding their

dynamic behaviors, such as the existence and attractivity of equilibria.

1.1 Social in�uence networks: opinion dynamics

Figure 1.1: Interactions in a social in�u-

ence network

We consider a group of n individuals who must act together as a

team. Each individual has his own subjective probability density

function (pdf) pi for the unknown value of some parameter (or

more simply an estimate of the parameter). We assume now that

individual i is appraised of the pdf pj of each other member j 6= i of

the group. Then the model by (French, 1956; Harary, 1959), see also

the later (DeGroot, 1974), predicts that the individual will revise its

pdf to be:

p+
i =

n∑

j=1

aijpj ,

where aij denotes the weight that individual i assigns to the pdf of

individual j when carrying out this revision. More precisely, the coe�cient aii describes the attachment of

3



4 Chapter 1. Motivating Problems and Systems

individual i to its own opinion and aij , j 6= i, is an interpersonal in�uence weight that individual i accords

to individual j.
In this model, the coe�cients aij satisfy the following constraints: they are non-negative, that is, aij ≥ 0,

and, for each individual, the sum of self-weight and accorded weights equals 1, that is,

∑m
j=1 aij = 1 for all

i. In mathematical terms, the matrix

A =



a11 . . . a1n

...
. . .

...
an1 . . . ann




has non-negative entries and each of its rows has unit sum. Such matrices are said to be row-stochastic.
Scienti�c questions of interest include:

(i) Is this model of human opinion dynamics believable? Is there empirical evidence in its support?

(ii) How does one measure the coe�cients aij?

(iii) Under what conditions do the pdfs converge to consensus? What is this value?

(iv) What are more realistic, empirically-motivated models, possibly including stubborn individuals or

antagonistic interactions?

1.2 Wireless sensor networks: averaging algorithms

gateway node

sensor node

Figure 1.2: A wireless sensor network composed of a collection of spatially-distributed sensors in a �eld and a

gateway node to carry information to an operator. The nodes are meant to measure environmental variables, such as

temperature, sound, pressure, and cooperatively �lter and transmit the information to an operator.

A wireless sensor network is a collection of spatially-distributed devices capable of measuring physical and

environmental variables (e.g., temperature, vibrations, sound, light, etc), performing local computations,

and transmitting information to neighboring devices and, in turn, throughout the network (including,

possibly, an external operator).

Suppose that each node in a wireless sensor network has measured a scalar environmental quantity, say

xi. Consider the following simple distributed algorithm, based on the concepts of linear averaging: each

node repeatedly executes

x+
i := average

(
xi, {xj , for all neighbor nodes j}

)
, (1.1)

where x+
i denotes the new value of xi. For example, for the graph in Figure 1.3, one
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1.3. Compartmental systems: dynamical �ows among compartments 5

1 2

43

Figure 1.3: Example graph

can easily write x+
1 := (x1 + x2)/2, x+

2 := (x1 + x2 + x3 + x4)/4, and

so forth. In summary, the algorithm’s behavior is described by

x+ =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


x = Awsnx,

where the matrix Awsn in equation is again row-stochastic.

Motivated by these examples from social in�uence networks and wireless sensor networks, we de�ne

the averaging model to be the dynamical system

x(k + 1) = Ax(k), (1.2)

where A has non-negative entries and unit row sums. Here, k is the discrete-time variable. We will discuss

the continuous-time analogue of this discrete-time model later the book.

Scienti�c questions of interest for the averaging model include:

(i) Does each node converge to a value? Is this value the same for all nodes?

(ii) Is this value equal to the average of the initial conditions?

(iii) What properties do the graph and the corresponding matrix need to have in order for the algorithm

to converge?

(iv) How quick is the convergence?

1.3 Compartmental systems: dynamical �ows among compartments

Compartmental systems model dynamical processes characterized by conservation laws (e.g., mass, �uid,

energy) and by the �ow of material between units known as compartments. For example, the �ow of energy

and nutrients (water, nitrates, phosphates, etc) in ecosystems is typically studied using compartmental

modelling; Figure 1.4 illustrates a widely-cited water �ow model for a desert ecosystem (Noy-Meir, 1973).

herbivory

uptake

drinking

precipitation

evaporation

soil

animals

plants

evaporation, drainage, runo↵

transpiration

Figure 1.4: Noy-Meir water �ow model for a desert ecosystem. The blue line denotes an in�ow from the outside

environment. The red lines denote out�ows into the outside environment.
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6 Chapter 1. Motivating Problems and Systems

Given a collection of interconnected compartments, we let qi denote the amount of material in com-

partment i, for i ∈ {1, . . . , n}, and write the mass balance equation for the ith compartment as:

q̇i =

n∑

j=1,j 6=i
(Fj→i − Fi→j)− Fi→0 + ui, (1.3)

where ui is the in�ow from the environment and Fi→0 is the out�ow into the environment. We refer to

equation (1.3) as a compartmental system. We next assume linear �ows, that is, we assume that the �ow

Fi→j from node i to node j (as well as to the environment) is proportional to the mass quantity at i, that

is, Fi→j = fijqi for a positive �ow rate constant fij . Therefore we can write the dynamics of a linear
compartmental system as

q̇i(t) =

n∑

j=1,j 6=i
(fjiqj(t)− fijqi(t))− fi0qi(t) + ui. (1.4)

Here, t is the continuous-time variable. Equivalently, in vector notation, for an appropriate compartmental
matrix C ,

q̇(t) = Cq(t) + u. (1.5)

For example, let us write down the compartmental matrix C for the water �ow model in �gure. We

let q1, q2, q3 denote the water mass in soil, plants and animals, respectively. Moreover, as in �gure, we

let fe-d-r, ftrnsp, fevap, fdrnk, fuptk, fherb, denote respectively the evaporation-drainage-runo�, transpiration,

evaporation, drinking, uptake, and herbivory rate. With these notations, we can write

C =



−fe-d-r − fuptk − fdrnk 0 0

fuptk −ftrnsp − fherb 0
fdrnk fherb −fevap


 .

Scienti�c questions of interest include:

(i) for constant in�ows u, does the total mass in the system remain bounded?

(ii) is there an equilibrium solution? do all evolutions converge to it?

(iii) which compartments become empty asymptotically?

1.4 Appendix: Robotic networks in cyclic pursuit and balancing

In this section we consider two simple examples of coordination motion in robotic networks. The standing

assumption is that n robots, amicably referred to as “bugs,” are placed and restricted to move on a circle of

unit radius. Because of this bio-inspiration and because this language is common in the literature (Klamkin

and Newman, 1971; Bruckstein et al., 1991), we refer to the following two problems as n-bugs problems.
On this unit circle the bugs’ positions are angles measured counterclockwise from the positive horizontal

axis. We let angles take value in [0, 2π), that is, an arbitrary position θ satis�es 0 ≤ θ < 2π. The bugs are

numbered counterclockwise with identities i ∈ {1, . . . , n} and are at positions θ1, . . . , θn. It is convenient
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1.4. Appendix: Robotic networks in cyclic pursuit and balancing 7

to identify n+ 1 with 1. We assume the bugs move in discrete times k in a counterclockwise direction by a

controllable amount ui (i.e., a control signal), that is:

θi(k + 1) = mod(θi(k) + ui(k), 2π).

where mod(ϑ, 2π) is the remainder of the division of ϑ by 2π and its introduction is required to ensure

that θi(k + 1) remains inside [0, 2π).

Objective: optimal patrolling of a perimeter. Approach: Cyclic pursuit

We now suppose that each bug feels an attraction and moves towards the closest counterclockwise

neighbor, as illustrated in Figure 1.5. Recall that the counterclockwise distance from θi and θi+1 is the length

of the counterclockwise arc from θi and θi+1 and satis�es:

distcc(θi, θi+1) = mod(θi+1 − θi, 2π),

In short, given a control gain κ ∈ [0, 1], we assume that the ith bug sets its control signal to

upursuit,i(k) = κdistcc(θi(k), θi+1(k)).

✓i

✓i+1

 distcc(✓i, ✓i+1)

(a) Cyclic pursuit control law

✓i

✓i+1
✓i�1

 distcc(✓i, ✓i+1) �  distc(✓i, ✓i�1)

(b) Cyclic balancing control law

Figure 1.5: Cyclic pursuit and balancing are prototypical n-bug problems.

Scienti�c questions of interest include:

(i) Does this system have any equilibrium?

(ii) Is a rotating equally-spaced con�guration a solution? An equally-spaced angle con�guration is one

for which mod(θi+1 − θi, 2π) = mod(θi − θi−1, 2π) for all i ∈ {1, . . . , n}. Such con�gurations are

sometimes called splay states.

(iii) For which values of κ do the bugs converge to an equally-spaced con�guration and with what

pairwise distance?

Objective: optimal sensor placement. Approach: Cyclic balancing

Next, we suppose that each bug feels an attraction towards both the closest counterclockwise and the

closest clockwise neighbor, as illustrated in Figure 1.5. Given a “control gain” κ ∈ [0, 1/2] and the natural

notion of clockwise distance, the ith bug sets its control signal to

ubalancing,i(k) = κdistcc(θi(k), θi+1(k))− κdistc(θi(k), θi−1(k)),
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8 Chapter 1. Motivating Problems and Systems

where distc(θi(k), θi−1(k)) = distcc(θi−1(k), θi(k)).

Questions of interest are:

(i) Is a static equally-spaced con�guration a solution?

(ii) For which values of κ do the bugs converge to a static equally-spaced con�guration?

(iii) Is it true that the bugs will approach an equally-spaced con�guration and that each of them will

converge to a stationary position on the circle?

A preliminary analysis

It is unrealistic (among other aspects of this setup) to assume that the bugs know the absolute position

of themselves and of their neighbors. Therefore, it is interesting to rewrite the dynamical system in terms

of pairwise distances between nearby bugs.

For i ∈ {1, . . . , n}, we de�ne the relative angular distances (the lengths of the counterclockwise arcs)

di = distcc(θi, θi+1) ≥ 0. (We also adopt the usual convention that dn+1 = d1 and that d0 = dn). The

change of coordinates from (θ1, . . . , θn) to (d1, . . . , dn) leads us to rewrite the cyclic pursuit and the cyclic

balancing laws as:

upursuit,i(k) = κdi,

ubalancing,i(k) = κdi − κdi−1.

In this new set of coordinates, one can show that the cyclic pursuit and cyclic balancing systems are,

respectively,

di(k + 1) = (1− κ)di(k) + κdi+1(k), (1.6)

di(k + 1) = κdi+1(k) + (1− 2κ)di(k) + κdi−1(k). (1.7)

These are two linear time-invariant dynamical systems with state d = (d1, . . . , dn) and governing equation

described by the two n× n matrices:

Apursuit =




1− κ κ · · · 0 0

0 1− κ . . .
. . . 0

...
. . .

. . .
. . . 0

0
. . .

. . . 1− κ κ
κ 0 · · · 0 1− κ



, Abalancing =




1− 2κ κ · · · 0 κ

κ 1− 2κ
. . .

. . . 0
...

. . .
. . .

. . . 0

0
. . .

. . . 1− 2κ κ
κ 0 · · · κ 1− 2κ



.

We conclude with the following remarks.

(i) Equations (1.6) and (1.7) are correct if the counterclockwise order of the bugs is never violated. One

can show that this is true for κ < 1 in the pursuit case and κ < 1/2 in the balancing case; we leave

this proof to the reader in Exercise E1.4.

(ii) The matrices Apursuit and Abalancing, for varying n and κ, are called Toeplitz and circulant based on

the nonzero/zero patterns of their entries; we study the properties of such matrices in later chapters.

Moreover, they have non-negative entries for the stated ranges of κ and are row-stochastic.
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1.5. Appendix: Design problems in wireless sensor networks 9

(iii) If one de�nes the agreement space, i.e., {(α, α, . . . , α) ∈ Rn | α ∈ R}, then each point in this set is

an equilibrium for both systems.

(iv) It must be true for all times that (d1, . . . , dn) ∈ {x ∈ Rn | xi ≥ 0,
∑n

i=1 xi = 2π}. This property is

indeed the consequence of the non-negative matrices Apursuit and Abalancing being doubly-stochastic,
i.e., each row-sum and each column-sum is equal to 1.

(v) We will later study for which values of κ the system converges to the agreement space.

1.5 Appendix: Design problems in wireless sensor networks

In this appendix we show how averaging algorithms are relevant in wireless sensor network problems and

can be used to tackle more sophisticated than what shown in Section 1.2.

1.5.1 Wireless sensor networks: distributed parameter estimation

The next two examples are also drawn from the �eld of wireless sensor network, but they feature a more

advanced setup and require a basic background in estimation and detection theory, respectively. The key

lessons to be learnt from these examples is that it is useful to have algorithms that compute the average of

distributed quantities.

Following ideas from (Xiao et al., 2005; Garin and Schenato, 2010), we aim to estimate an unknown

parameter θ ∈ Rm via the measurements taken by a sensor network. Each node i ∈ {1, . . . , n} measures

yi = Biθ + vi,

where yi ∈ Rmi , Bi is a known matrix and vi is random measurement noise. We assume that

(A1) the noise vectors v1, . . . , vn are independent jointly-Gaussian variables with zero-mean E[vi] = 0mi
and positive-de�nite covariance E[viv

T
i ] = Σi = ΣT

i , for i ∈ {1, . . . , n}; and

(A2) the measurement parameters satisfy the following two properties:

∑
imi ≥ m and



B1

...
Bn


 is full

rank.

Given the measurements y1, . . . , yn, it is of interest to compute a least-square estimate of θ, that is, an

estimate of θ that minimizes a least-square error. Speci�cally, we aim to minimize the following weighted
least-square error :

min
θ̂

n∑

i=1

∥∥yi −Biθ̂
∥∥2

Σ−1
i

=
n∑

i=1

(
yi −Biθ̂

)T
Σ−1
i

(
yi −Biθ̂

)
.

In this weighted least-square error, individual errors are weighted by their corresponding inverse covariance

matrices so that an accurate (respectively, inaccurate) measurement corresponds to a high (respectively,

low) error weight. With this particular choice of weights, the least-square estimate coincides with the
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10 Chapter 1. Motivating Problems and Systems

so-called maximum-likelihood estimate; see (Poor, 1998) for more details. Under assumptions (A1) and (A2),

the optimal solution is

θ̂∗ =
( n∑

i=1

BT
i Σ−1

i Bi

)−1
n∑

i=1

BT
i Σ−1

i yi.

This formula is easy to implement by a single processor with all the information about the problem, i.e., the

parameters and the measurements.

To compute θ̂∗ in the sensor (and processor) network, we perform two steps:

[Step 1:] we run two distributed algorithms in parallel to compute the average of the quantities BT
i Σ−1

i Bi
and BT

i Σ−1
i yi.

[Step 2:] we compute the optimal estimate via

θ̂∗ = average
(
BT

1 Σ−1
1 B1, . . . , B

T
nΣ−1

n Bn

)−1
average

(
BT

1 Σ−1
1 y1, . . . , B

T
nΣ−1

n yn

)
.

Questions of interest are:

(i) How do we design algorithms to compute the average of distributed quantities?

(ii) What properties does the graph need to have in order for such an algorithm to exist?

(iii) How do we design an algorithm with fastest convergence?

1.5.2 Wireless sensor networks: distributed hypothesis testing

We consider a distributed hypothesis testing problem; these ideas appeared in (Rao and Durrant-Whyte,

1993; Olfati-Saber et al., 2006). Let hγ , for γ ∈ Γ in a �nite set Γ, be a set of two or more hypotheses about

an uncertain event. For example, given a certain area of interest, we could have h0 = “no target is present”,

h1 = “one target is present” and h2 = “two or more targets are present”.

Suppose that we know the a priori probabilities p(hγ) of the hypotheses and that n nodes of a sensor

network take measurements yi, for i ∈ {1, . . . , n}, related to the event. Independently of the type of

measurements, assume you can compute

p(yi|hγ) = probability of measuring yi given that hγ is the true hypothesis.

Also, assume that each observation is conditionally independent of all other observations, given any

hypothesis.

(i) We wish to compute the maximum a posteriori estimate, that is, we want to identify which one is the

most likely hypothesis, given the measurements. Note that, under the independence assumption,

Bayes’ Theorem implies that the a posteriori probabilities satisfy

p(hγ |y1, . . . , yn) =
p(hγ)

p(y1, . . . , yn)

n∏

i=1

p(yi|hγ).
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(ii) Observe that p(hγ) is known, and p(y1, . . . , yn) is a constant normalization factor scaling all posteriori

probabilities equally. Therefore, for each hypothesis γ ∈ Γ, we need to compute

n∏

i=1

p(yi|hγ),

or equivalently, we aim to exchange data among the sensors in order to compute:

exp

(
n∑

i=1

log(p(yi|hγ))

)
= exp

(
n average

(
log p(y1|hγ), . . . , log p(yn|hγ)

)
.
)

(iii) In summary, even in this hypothesis testing problem, we need algorithms to compute the average of

the n numbers log p(y1|hγ), . . . , log p(yn|hγ), for each hypothesis γ.

Questions of interest here are the same as in the previous section.

1.6 Historical notes and further reading

Numerous other examples of multi-agent systems and applications can be found in the recent texts (Ren and

Beard, 2008; Bullo et al., 2009; Mesbahi and Egerstedt, 2010; Bai et al., 2011; Cristiani et al., 2014; Fuhrmann

and Helmke, 2015; Francis and Maggiore, 2016; Arcak et al., 2016; Porter and Gleeson, 2016). Other, related,

and instructive examples are presented in recent surveys such as (Martínez et al., 2007; Ren et al., 2007;

Garin and Schenato, 2010; Cao et al., 2013; Oh et al., 2015). Textbooks, monographs and surveys on the

broader and di�erent theme of network science include (Newman, 2003; Boccaletti et al., 2006; Castellano

et al., 2009; Easley and Kleinberg, 2010; Jackson, 2010; Newman, 2010; Spielman, 2017).

The opinion dynamics example in Section 1.1 is an illustration of the rich literature on social in�uence

networks, starting with the early works by French (1956), Harary (1959), Abelson (1964), and DeGroot

(1974). While the linear averaging model is by now known as the DeGroot model, the key ideas were already

present in French (1956) and the main results (e.g., average consensus for doubly stochastic matrices) were

already obtained by (Harary, 1959). Empirical evidence in support of the averaging model (including its

variations) is described in (Friedkin and Johnsen, 2011; Chandrasekhar et al., 2015; Friedkin et al., 2016).

An outstanding tutorial and survey on dynamic social networks is (Proskurnikov and Tempo, 2017). We

postpone to Chapter 9 the literature review on compartmental systems.

The n-bugs problem is related to the study of pursuit curves and inquires about what the paths of n
bugs are when they chase one another. We refer to (Klamkin and Newman, 1971; Watton and Kydon, 1969;

Bruckstein et al., 1991; Marshall et al., 2004; Smith et al., 2005) for some classic works, surveys, and recent

results.
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12 Chapter 1. Motivating Problems and Systems

1.7 Exercises

E1.1 Bounded evolution for averaging systems. Given a matrix A ∈ Rn×n with non-negative entries and unit

row sums, consider the averaging model (1.2)

x(k + 1) = Ax(k).

Show that, for all initial conditions x(0) and times k,

min
i
xi(0) ≤ min

i
xi(k) ≤ min

i
xi(k + 1) ≤ max

i
xi(k + 1) ≤ max

i
xi(k) ≤ max

i
xi(0),

where i takes values in {1, . . . , n}.
E1.2 Conservation of mass for compartmental systems. Given n compartments and �ows among them,

consider the compartmental system (1.3)

q̇i =
∑n

j=1,j 6=i
(Fj→i − Fi→j)− Fi→0 + ui,

and its linear version in equation (1.5): q̇ = Cq + u. Do the following tasks:

(i) show that, if there are no in�ows, i.e., if ui = 0 for all i, then the total mass in the compartmental system

does not increase with time,

(ii) write a formula for the diagonal and o�-diagonal entries of the compartmental matrix C as a function

of the �ow rate constants, and

(iii) show that the column sums of C are non-positive.

E1.3 Simulating the averaging dynamics. Simulate in your favorite programming language and software pack-

age the linear averaging algorithm in equation (1.1). Set n = 5, select the initial state equal to (1,−1, 1,−1, 1),

and use the following undirected unweighted graphs (depicted in �gure):

(i) the complete graph,

(ii) the cycle graph, and

(iii) the star graph with node 1 as center.

Which value do all nodes converge to? Is it equal to the average of the initial values? Turn in your code, a few

printouts (as few as possible), and your written responses.

Complete graph Cycle graph Star graph

E1.4 Computing the bugs’ dynamics. Consider the cyclic pursuit and balancing dynamics described in Section 1.4.

Verify

(i) the cyclic pursuit closed-loop equation (1.6),

(ii) the cyclic balancing closed-loop equation (1.7), and

(iii) the counterclockwise order of the bugs is never violated.

Hint: Recall the distributive property of modular addition: mod(a± b, n) = mod(mod(a, n)±mod(b, n), n).

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



Exercises for Chapter 1 13

E1.5 Continuous-time cyclic pursuit on the plane. Consider four mobile robots on a plane with positions

pi ∈ C, i ∈ {1, . . . , 4}, and moving according to ṗi = ui, where ui ∈ C are the velocity commands. The

task of the robots is rendezvous at a common point (while using only onboard sensors). A simple strategy

to achieve rendezvous is cyclic pursuit: each robot i picks another robot, say i + 1, and pursues it. (Here

4 + 1 = 1.) In other words, we set ui = pi+1 − pi and obtain the closed-loop system (see also corresponding

simulation below): 


ṗ1
ṗ2
ṗ3
ṗ4


 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1







p1
p2
p3
p4


 .

x

y

1

2

3

4

Prove that:

(i) the average robot position average(p(t)) =
4∑
i=1

pi(t)/4 remains constant for all t ≥ 0;

(ii) the robots asymptotically rendezvous at the initial average robot position mass, that is,

lim
t→∞

pi(t) = average(p(0)) for i ∈ {1, . . . , 4} ;

(iii) if the robots are initially arranged in a square formation, then they remain in a square formation.

Hint: Given a matrix A with semisimple eigenvalues, the solution to ẋ = Ax is given by the modal expansion
x(t) =

∑n
i=1 e

λitviw
T
i x(0), where vi and wi are the right and left eigenvectors associated to the eigenvalue λi

and normalized to wT
i vi = 1. The modal decomposition will be reviewed in Sections 2.1 and 10.1.
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Chapter2

Elements of Matrix Theory

In this chapter we review basic concepts from matrix theory with a special emphasis on the so-called

Perron-Frobenius theory. These concepts will be useful when analyzing the convergence of the linear

dynamical systems discussed in Chapter 1, graphs and averaging algorithms de�ned over graphs.

Notation

It is useful to start with some basic notations from matrix theory and linear algebra. We let f : X → Y
denote a function from set X to set Y . We let R, N and Z denote respectively the set of real, natural and

integer numbers; also R≥0 and Z≥0 are the set of non-negative real numbers and non-negative integer

numbers. For real numbers a < b, we let

[a, b] = {x ∈ R | a ≤ x ≤ b}, ]a, b] = {x ∈ R | a < x ≤ b},
[a, b[ = {x ∈ R | a ≤ x < b}, ]a, b[ = {x ∈ R | a < x < b}.

Given a complex number z ∈ C, its norm (sometimes referred to as complex modulus) is denoted by |z|, its

real part by <(z) and its imaginary part by =(z). We let i denote the imaginary unit

√
−1.

We let 1n ∈ Rn (respectively 0n ∈ Rn) be the column vector with all entries equal to +1 (respectively

0). Let e1, . . . , en be the standard basis vectors of Rn, that is, ei has all entries equal to zero except for the

ith entry equal to 1. The 1-norm, 2-norm, and∞-norm of a vector x ∈ Rn are de�ned by, respectively,

‖x‖1 = |x1|+ · · ·+ |xn|, ‖x‖2 =
√
x2

1 + · · ·+ x2
n, ‖x‖∞ = max{|x1|, . . . , |xn|}.

We let In denote the n-dimensional identity matrix and A ∈ Rn×n denote a square n× n matrix with

real entries {aij}, i, j ∈ {1, . . . , n}. The matrix A is symmetric if AT = A.

For a matrix A, λ ∈ C is an eigenvalue and v ∈ Cn is a right eigenvector, or simply an eigenvector, if

they together satisfy the eigenvalue equation Av = λv. Sometimes it will be convenient to refer to (λ, v)
as an eigenpair. A left eigenvector of the eigenvalue λ is a vector w ∈ Cn satisfying wTA = λwT

.

A symmetric matrix is positive de�nite (resp. positive semide�nite) if all its eigenvalues are positive

(resp. non-negative). The kernel of A is the subspace kernel(A) = {x ∈ Rn | Ax = 0n}, the image of A is

image(A) = {y ∈ Rn | Ax = y, for some x ∈ Rn}, and the rank ofA is the dimension of its image. Given

vectors v1, . . . , vj ∈ Rn, their span is span(v1, . . . , vj) = {a1v1 + · · ·+ ajvj | a1, . . . , aj ∈ R} ⊂ Rn.

15
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2.1 Linear systems and the Jordan normal form

In this section we introduce a prototypical model for dynamical systems and study its stabilities properties

via the so-called Jordan normal form, that is a key tool from matrix theory. We will later apply these results

to the averaging model (1.2).

2.1.1 Discrete-time linear systems

We start with a basic de�nition.

De�nition 2.1 (Discrete-time linear system). A square matrix A de�nes a discrete-time linear system

by
x(k + 1) = Ax(k), x(0) = x0, (2.1)

or, equivalently by x(k) = Akx0, where the sequence {x(k)}k∈Z≥0
is called the solution, trajectory or

evolution of the system.

Sometimes it is convenient to adopt the shorthand x+ = f(x) to denote the system x(k+1) = f(x(k)).

We are interested in understanding when a solution from an arbitrary initial condition has an asymptotic

limit as time diverges and to what value the solution converges. We formally de�ne this property as follows.

De�nition 2.2 (Semi-convergent and convergent matrices). A matrix A ∈ Rn×n is

(i) semi-convergent if limk→+∞A
k exists, and

(ii) convergent if it is semi-convergent and limk→+∞A
k = 0n×n.

It is immediate to see that, if A is semi-convergent with limiting matrix A∞ = limk→+∞A
k
, then

lim
k→+∞

x(k) = A∞x0.

In what follows we characterize the sets of semi-convergent and convergent matrices.

Remark 2.3 (Modal decomposition for symmetric matrices). Before treating the general analysis
method, we present the self-contained and instructive case of symmetric matrices. Recall that a symmetric
matrix A has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding orthonormal (i.e., orthogonal and
unit-length) eigenvectors v1, . . . , vn. Because the eigenvectors are an orthonormal basis for Rn, we can write
the modal decomposition

x(k) = y1(k)v1 + · · ·+ yn(k)vn,

where the ith normal mode is de�ned by yi(k) = vTi x(k). We then left-multiply the two equalities (2.1) by vTi
and exploit Avi = λivi to obtain

yi(k + 1) = λiyi(k), yi(0) = vTi x0, =⇒ yi(k) = λki (v
T
i x0).

In short, the evolution of the linear system (2.1) is

x(k) = λk1(vT1 x0)v1 + · · ·+ λkn(vTnx0)vn.

Therefore, each evolution starting from an arbitrary initial condition satis�es
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2.1. Linear systems and the Jordan normal form 17

(i) limk→∞ x(k) = 0n if and only if |λi| < 1 for all i ∈ {1, . . . , n}, and
(ii) limk→∞ x(k) = (vT1 x0)v1 + · · ·+ (vTmx0)vm if and only if λ1 = · · · = λm = 1 and |λi| < 1 for all

i ∈ {m+ 1, . . . , n}.
•

2.1.2 The Jordan normal form

In this section we review a very useful canonical decomposition of a square matrix. Recall that two n× n
matrices A and B are similar if B = TAT−1

for some invertible matrix T . Also recall that a similarity

transform does not change the eigenvalues of a matrix.

Theorem 2.4 (Jordan normal form). Each matrix A ∈ Cn×n is similar to a block diagonal matrix
J ∈ Cn×n, called the Jordan normal form of A, given by

J =




J1 0 · · · 0

0 J2
. . . 0

...
. . .

. . . 0
0 · · · 0 Jm



∈ Cn×n,

where each block Ji, called a Jordan block, is a square matrix of size ji and of the form

Ji =




λi 1 · · · 0

0 λi
. . . 0

...
. . .

. . . 1
0 · · · 0 λi



∈ Cji×ji . (2.2)

Clearly,m ≤ n and j1 + · · ·+ jm = n.

We refer to (Horn and Johnson, 1985) for a standard proof of this theorem. Note that the matrix J is

unique, modulo a re-ordering of the Jordan blocks.

Regarding the eigenvalues of A, we note the following. The eigenvalues of J , and therefore also of A,

are the (not necessarily distinct) numbers λ1, . . . , λm. Given an eigenvalue λ,

(i) the algebraic multiplicity of λ is the sum of the sizes of all Jordan blocks with eigenvalue λ (or,

equivalently, the multiplicity of λ as a root of the characteristic polynomial of A), and

(ii) the geometric multiplicity of λ is the number of Jordan blocks with eigenvalue λ (or, equivalently, the

number of linearly-independent eigenvectors associated to λ).

An eigenvalue is

(i) simple if it has algebraic and geometric multiplicity equal precisely to 1, that is, a single Jordan block

of size 1, and

(ii) semisimple if all its Jordan blocks have size 1, so that its algebraic and geometric multiplicity are

equal.
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18 Chapter 2. Elements of Matrix Theory

Regarding the eigenvectors of A, Theorem 2.4 implies there exists an invertible matrix T such that

A = TJT−1
(2.3)

⇐⇒ AT = TJ (2.4)

⇐⇒ T−1A = JT−1. (2.5)

Let t1, . . . , tn and r1, . . . , rn denote the columns and rows of T and T−1
respectively. If all eigenvalues of

A are semisimple, then the equations (2.4) and (2.5) imply, for all i ∈ {1, . . . , n},

Ati = λiti and riA = λiri.

In other words, the ith column of T is the right eigenvector (or simply eigenvector) of A corresponding to

the eigenvalue λi, and the ith row of T−1
is the corresponding left eigenvector of A.

If an eigenvalue is not semisimple, then it has larger algebraic than geometric multiplicity. For such

eigenvalues, the columns of the matrix T are the right eigenvectors and the generalized right eigenvectors
of A, whereas the rows of T−1

are the left eigenvectors and the generalized left eigenvector of A. For more

details about generalized eigenvectors, we refer to reader to (Horn and Johnson, 1985).

Example 2.5 (Revisiting the wireless sensor network example). As a numerical example, let us

reconsider the wireless sensor network discussed in Section 1.2 and the 4-dimensional row-stochastic

matrix Awsn, which we report here for convenience:

Awsn =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


 .

With the aid of a symbolic mathematics program, we compute Awsn = TJT−1
where

J =




1 0 0 0
0 0 0 0

0 0 1
24(5−

√
73) 0

0 0 0 1
24(5 +

√
73)


 , T =




1 0 −2 + 2
√

73 −2− 2
√

73

1 0 −11−
√

73 −11 +
√

73
1 −1 8 8
1 1 8 8


 , and

T−1 =




1
6

1
3

1
4

1
4

0 0 −1
2

1
2

− 1
96 + 19

96
√

73
− 1

48 − 5
48
√

73
1
64 − 3

64
√

73
1
64 − 3

64
√

73

− 1
96 − 19

96
√

73
− 1

48 + 5
48
√

73
1
64 + 3

64
√

73
1
64 + 3

64
√

73


 .

Therefore, the eigenvalues of A are 1, 0,
1
24(5−

√
73) ≈ −0.14, and

1
24(5 +

√
73) ≈ 0.56. Corresponding

to the eigenvalue 1, the right and left eigenvector equations are:

Awsn




1
1
1
1


 =




1
1
1
1


 and




1/6
1/3
1/4
1/4




T

Awsn =




1/6
1/3
1/4
1/4




T

. •
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2.1. Linear systems and the Jordan normal form 19

2.1.3 Semi-convergence and convergence for discrete-time linear systems

We can now use the Jordan normal form to study the powers of the matrix A. We start by computing

Ak = TJT−1 · TJT−1 · · · · · TJT−1
︸ ︷︷ ︸

k times

= TJkT−1 = T




Jk1 0 · · · 0

0 Jk2
. . . 0

...
. . .

. . . 0
0 · · · 0 Jkm



T−1,

so that, for a square matrixAwith Jordan blocks Ji, i ∈ {1, . . . ,m}, the following statements are equivalent:

(i) A is semi-convergent (resp. convergent),

(ii) J is semi-convergent (resp. convergent), and

(iii) each block Ji is semi-convergent (resp. convergent).

Next, we compute the kth power of the generic Jordan block Ji with eigenvalue λi as a function of

block size 1, 2, 3, . . . , ji; they are, respectively,

[
λki
]
,

[
λki kλk−1

i

0 λki

]
,




λki kλk−1
i

(
k
2

)
λk−2
i

0 λki kλk−1
i

0 0 λki


 , . . . ,




λki
(
k
1

)
λk−1
i

(
k
2

)
λk−2
i · · ·

(
k

ji−1

)
λk−ji+1
i

0 λki
(
k
1

)
λk−1
i

. . .
...

...
. . .

. . .
. . .

(
k
2

)
λk−2
i

0 · · · 0 λki
(
k
1

)
λk−1
i

0 · · · · · · 0 λki




,

(2.6)

where the binomial coe�cient

(
k
m

)
= k!/(m!(k −m)!) satis�es

(
k
m

)
≤ km/m!. Note that, independently

of the size of Ji, each entry of the kth power of Ji is upper bounded by a constant times khλki for some

non-negative integer h.

To study the limit as k →∞ of the generic block Jki , we study the limit as k →∞ of each term of the

form khλki . Because exponentially-decaying factors dominate polynomially-growing terms, we know

lim
k→∞

khλk =





0, if |λ| < 1,

1, if λ = 1 and h = 0,

non-existent or unbounded, if (|λ| = 1 with λ 6= 1) or (|λ| > 1) or (λ = 1 and h = 1, 2, . . . ).
(2.7)

In summary, for each block Ji with eigenvalues λi, we can infer that:

(i) a block Ji of size 1 is convergent if and only if |λi| < 1,

(ii) a block Ji of size 1 is semi-convergent if and only if λi ≤ 1, and

(iii) a block Ji of size larger than 1 is semi-convergent and convergent if and only if |λi| < 1.
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20 Chapter 2. Elements of Matrix Theory

1

(a) The spectrum of a convergent matrix

1

(b) The spectrum of a semi-convergent matrix,

provided the eigenvalue 1 is semisimple.

1

(c) The spectrum of a matrix that is not

semi-convergent.

Figure 2.1: Eigenvalues and convergence properties of discrete-time linear systems

Based on this discussion, we are now ready to present necessary and su�cient conditions for semi-

convergence and convergence of an arbitrary square matrix. We state these conditions using two two useful

de�nitions.

De�nition 2.6 (Spectrum and spectral radius of a matrix). Given a square matrix A,

(i) the spectrum of A, denoted spec(A), is the set of eigenvalues of A; and

(ii) the spectral radius of A is the maximum norm of the eigenvalues of A, that is,

ρ(A) = max{|λ| | λ ∈ spec(A)},

or, equivalently, the radius of the smallest disk in C centered at the origin and containing the spectrum
of A.

Theorem 2.7 (Convergence and spectral radius). For a square matrix A, the following statements hold:

(i) A is convergent if and only if ρ(A) < 1,

(ii) A is semi-convergent if and only if ρ(A) ≤ 1, no eigenvalue has unit norm other than possibly the
number 1, and if 1 is an eigenvalue, then it is semisimple.

2.2 Row-stochastic matrices and their spectral radius

Motivated by the averaging model introduced in Chapter 1, we are now interested in discrete-time linear

systems de�ned by matrices with special properties. Speci�cally, we are interested in matrices with

non-negative entries and whose row-sums are all equal to 1.

The square matrix A ∈ Rn×n is

(i) non-negative (respectively positive) if aij ≥ 0 (respectively aij > 0) for all i and j in {1, . . . , n};
(ii) row-stochastic if non-negative and A1n = 1n;
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2.2. Row-stochastic matrices and their spectral radius 21

(iii) column-stochastic if non-negative and AT1n = 1n; and

(iv) doubly-stochastic if it is row- and column-stochastic.

In the following, we write A > 0 and v > 0 (respectively A ≥ 0 and v ≥ 0) for a positive (respectively

non-negative) matrix A and vector v.

Given a �nite number of points p1, p2, . . . , pn in Rn, a convex combination of p1, p2, . . . , pn is a point

of the form

η1p1 + η2p2 + · · ·+ ηnpn,

where the real numbers η1, . . . , ηn satisfy η1 + · · ·+ηn = 1 and ηi ≥ 0 for all i ∈ {1, . . . , n}. (For example,

on the plane R2
, the set of convex combinations of two distinct points is the segment connecting them and

the set of convex combinations of three distinct points is the triangle (including its interior) de�ned by

them.) The numbers η1, . . . , ηn are called convex combination coe�cients and each row of a row-stochastic

matrix consists of convex combination coe�cients.

2.2.1 The spectral radius for row-stochastic matrices

To characterize the spectral radius of a row-stochastic matrix, we introduce a useful general method to

localize the spectrum of a matrix.

Theorem 2.8 (Geršgorin Disks Theorem). For any square matrix A ∈ Rn×n,

spec(A) ⊂
⋃

i∈{1,...,n}

{
z ∈ C

∣∣ |z − aii| ≤
∑n

j=1,j 6=i
|aij |

}

︸ ︷︷ ︸
disk in the complex plane centered at aii with radius

∑n
j=1,j 6=i |aij |

.

Proof. Consider the eigenvalue equation Ax = λx for the eigenpair (λ, x), where λ and x 6= 0n are

in general complex. Choose the index i ∈ {1, . . . , n} so that |xi| = maxj∈{1,...,n} |xj | > 0. The ith
component of the eigenvalue equation can be rewritten as λ − aii =

∑n
j=1,j 6=i aijxj/xi. Now, take the

complex magnitude of this equality and upper-bound its right-hand side:

|λ− aii| =
∣∣∣∣∣

n∑

j=1,j 6=i
aij

xj
xi

∣∣∣∣∣ ≤
n∑

j=1,j 6=i
|aij |

|xj |
|xi|
≤

n∑

j=1,j 6=i
|aij | .

This inequality de�nes a set of the possible locations for the arbitrary eigenvalue λ of A. The statement

follows by taking the union of such sets for each eigenvalue of A. �

Each disk in the theorem statement is referred to as a Geršgorin disks, or more accurately, as a Geršgorin
row disks; an analogous disk theorem can be stated for Geršgorin column disks. Exercise E2.17 showcases an

instructive application to distributed computing of numerous topics covered so far, including convergence

notions and the Geršgorin Disks Theorem.

Lemma 2.9 (Spectral properties of a row-stochastic matrix). For a row-stochastic matrix A,

(i) 1 is an eigenvalue, and

(ii) spec(A) is a subset of the unit disk and ρ(A) = 1.
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Proof. First, recall that A being row-stochastic is equivalent to two facts: aij ≥ 0, i, j ∈ {1, . . . , n},
and A1n = 1n. The second fact implies that 1n is an eigenvector with eigenvalue 1. Therefore, by

de�nition of spectral radius, ρ(A) ≥ 1. Next, we prove that ρ(A) ≤ 1 by invoking the Geršgorin Disks

Theorem 2.8 to show that spec(A) is contained in the unit disk centered at the origin. The Geršgorin disks

of a row-stochastic matrix as illustrated in Figure 2.2.

aii

X

j 6=i

aij

1

Figure 2.2: All Geršgorin disks of a row-stochastic matrix are contained in the unit disk.

Note that A being row-stochastic implies aii ∈ [0, 1] and aii +
∑

j 6=i aij = 1. Hence, the center of the

ith Geršgorin disk belongs to the positive real axis between 0 and 1, and the right-most point in the disk is

at 1. �

Note: because 1 is an eigenvalue of each row-stochastic matrix A, clearly A is not convergent. But it is

possible for A to be semi-convergent.

2.3 Perron–Frobenius theory

We have seen how row-stochastic matrices are not convergent; we now focus on characterizing those that

are semi-convergent. To establish whether a row-stochastic matrix is semi-convergent, we introduce the

widely-established Perron–Frobenius theory for non-negative matrices.

2.3.1 Classi�cation of non-negative matrices

In the previous section we already de�ned non-negative and positive matrices. In this section we are

interested in classifying non-negative matrices in terms of their zero/nonzero pattern and of the asymptotic

behavior of their powers.
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2.3. Perron–Frobenius theory 23

We start by introducing simple example non-negative matrices and related comments:

A1 =

[
1 0
0 1

]
, spec(A1) = {1, 1}, the zero/nonzero pattern in Ak1 is constant, and lim

k→∞
Ak1 = I2,

A2 =

[
0 1
1 0

]
, spec(A2) = {1,−1}, the zero/nonzero pattern in Ak2 is periodic, and lim

k→∞
Ak2 does not exist,

A3 =

[
0 1
0 0

]
, spec(A3) = {0, 0}, Ak3 = 0 for all k ≥ 2, and lim

k→∞
Ak3 = 0,

A4 =
1

2

[
1 1
2 0

]
, spec(A4) = {1,−1/2}, Ak4 > 0 for all k ≥ 2, and lim

k→∞
Ak4 =

1

3

[
2 1
2 1

]
, and

A5 =

[
1 1
0 1

]
, spec(A5) = {1, 1}, the zero/nonzero pattern in Ak5 is constant and lim

k→∞
Ak5 is unbounded.

Based on these preliminary examples, we now introduce two sets of non-negative matrices with certain

characteristic properties.

De�nition 2.10 (Irreducible and primitive matrices). For n ≥ 2, an n× n non-negative matrix A is

(i) irreducible if
∑n−1

k=0 A
k is positive,

(ii) primitive if there exists k ∈ N such that Ak positive.

A matrix that is not irreducible is said to be reducible.

Note that A1, A3 and A5 are reducible whereas A2 and A4 are irreducible. Moreover, note that A2 is

not primitive whereas A4 is. Additionally, note that a positive matrix is clearly primitive. Finally, if there

is k ∈ N such that Ak is positive, then (one can show that) all subsequent powers Ak+1
, Ak+2

, . . . are

necessarily positive as well; see Exercise E2.5.

Note: In other words, A is irreducible if, for any (i, j) ∈ {1, . . . , n}2 there is a k = k(i, j) ≤ (n− 1)
such that (Ak)ij > 0. There are multiple equivalent ways to de�ne irreducible matrices. We discuss four

equivalent characterizations later in Theorem 4.3.

We now state a useful result and postpone its proof to Exercise E4.5.

Lemma 2.11 (A primitive matrix is irreducible). If a non-negative matrix is primitive, then it is also
irreducible.

As a consequence of this lemma we can draw the set diagram in Figure 2.3 describing the set of non-

negative square matrices and its subsets of irreducible, primitive and positive matrices. Note that the

inclusions in the diagram are strict in the sense that:

(i) A3 is non-negative but not irreducible;

(ii) A2 is irreducible but not primitive; and

(iii) A4 is primitive but not positive.
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non-negative
(A � 0)

primitive
(there exists k

such that Ak > 0)

positive
(A > 0)

irreducible
(
Pn�1

k=0 Ak > 0)

Figure 2.3: The set of non-negative square matrices and its subsets of irreducible, primitive and positive matrices.

2.3.2 Main results

We are now ready to state the main results in Perron-Frobenius theory and characterize the properties of

the spectral radius of a non-negative matrix as a function of the matrix properties.

Theorem 2.12 (Perron-Frobenius Theorem). Let A ∈ Rn×n, n ≥ 2. If A is non-negative, then

(i) there exists a real eigenvalue λ ≥ |µ| ≥ 0 for all other eigenvalues µ,

(ii) the right and left eigenvectors v and w of λ can be selected non-negative.

If additionally A is irreducible, then

(iii) the eigenvalue λ is strictly positive and simple,

(iv) the right and left eigenvectors v and w of λ are unique and positive, up to rescaling.

If additionally A is primitive, then

(v) the eigenvalue λ satis�es λ > |µ| for all other eigenvalues µ.

Some remarks and some additional statements are in order. For non-negative matrices, the real non-

negative eigenvalue λ is the spectral radius ρ(A) of A. We refer to λ as the dominant eigenvalue of A; it is

also referred to as the Perron root. The dominant eigenvalue is equivalently de�ned by

ρ(A) = inf{λ ∈ R | Au ≤ λu for all u > 0}.

For irreducible matrices, the right and left eigenvectors v and w (unique up to rescaling and selected

non-negative) of the dominant eigenvalue λ are called the right and left dominant eigenvector, respectively.

One can show that, up to rescaling, the right dominant eigenvector is the only positive right eigenvector of

a primitive matrix A (a similar statement holds for the left dominant eigenvector); see also Exercise E2.4.

We refer to Theorem 4.9 and Exercise E4.9 in Section 4.5 for some useful bounds on the dominant

eigenvalue and to Theorem 5.1 in Section 5.1 for a version of the Perron–Frobenius Theorem for reducible

matrices.

Remark 2.13 (Examples and counterexamples). The characterizations in the theorem are sharp in the
following sense:

(i) the matrix A3 =

[
0 1
0 0

]
is non-negative and reducible, and, indeed, its dominant eigenvalue is 0;
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(ii) the matrix A2 =

[
0 1
1 0

]
is irreducible but not primitive and, indeed, its dominant eigenvalues +1 is not

stricly larger, in magnitude, than the other eigenvalues −1.

2.3.3 Applications to dynamical systems

Given a primitive non-negative matrix A, the Perron–Frobenius Theorem for primitive matrices has

immediate consequences for the behavior of Ak as k →∞. We start with a semiconvergence result that

applies to primitive matrices. We postponed the proof to Section 2.3.4.

Theorem 2.14 (Powers of nonnegative matrices with a simple and strictly dominant eigenvalue).
Consider a nonnegative matrix A whose dominant eigenvalue λ is simple and strictly larger, in magnitude,
than all other eigenvalues (e.g., assumeA is primitive). Let v and w denote right and left dominant eigenvectors
normalized so that v ≥ 0 and vTw = 1. Then A/λ is semi-convergent and

lim
k→∞

Ak

λk
= vwT.

The matrix vwT
is a rank-one projection matrix with numerous properties, which we discuss in

Exercise E2.13.

We now apply this result to primitive row-stochastic matrices and to the averaging model x(k + 1) =
Ax(k). For a row-stochastic A, the right eigenvector of the eigenvalue 1 is selected as 1n.

Corollary 2.15 (Consensus for primitive row-stochastic). For a primitive row-stochastic matrix A,

(i) the simple eigenvalue ρ(A) = 1 is strictly larger than the magnitude of all other eigenvalues, hence A is
semi-convergent;

(ii) limk→∞A
k = 1nwT, where w is the left dominant eigenvector of A with eigenvalue 1 satisfying

w1 + · · ·+ wn = 1;

(iii) the solution to the averaging model x(k + 1) = Ax(k) satis�es

lim
k→∞

x(k) =
(
wTx(0)

)
1n.

In this case we say that the dynamical system achieves consensus,

(iv) if additionally A is doubly-stochastic, then w = 1
n1n (because AT1n = 1n and 1

n1T
n1n = 1) so that

lim
k→∞

x(k) =
1T
nx(0)

n
1n = average

(
x(0)

)
1n.

In this case we say that the dynamical system achieves average consensus.

Note: 1nwT =



wT

...
wT


 =



w1 w2 · · · wn
...

...
...

...
w1 w2 · · · wn


, and (1nwT)x(0) = (wTx(0))1n =



wTx(0)

...
wTx(0)


.

Note: the limiting vector is therefore a weighted average of the initial conditions. The relative weights

of the initial conditions are the convex combination coe�cients w1, . . . , wn. In a social in�uence network,

the coe�cient wi is regarded as the “social in�uence” of agent i.
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Example 2.16 (Revisiting the wireless sensor network example). Finally, as a numerical example, let

us reconsider the wireless sensor network discussed in Section 1.2 and the 4-dimensional row-stochastic

matrix Awsn. First, note that Awsn is primitive because A2
wsn

is positive:

Awsn =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


 =⇒ A2

wsn
=




3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36


 .

Therefore, the Perron–Frobenius Theorem 2.12 for primitive matrices applies to Awsn. The four pairs of

eigenvalues and right eigenvectors of Awsn (as computed in Example 2.5) are:

(1,14),




1

24
(5 +

√
73),




−2− 2
√

73

−11 +
√

73
8
8





 ,




1

24
(5−

√
73),




2(−1 +
√

73)

−11−
√

73
8
8





 ,


0,




0
0
1
−1





 .

Moreover, we know thatAwsn is semi-convergent. To apply the convergence results in Corollary 2.15, we nu-

merically compute its left dominant eigenvector, normalized to have unit sum, to bew = [1/6, 1/3, 1/4, 1/4]T

so that we have:

lim
k→∞

Ak
wsn

= 14w
T =




1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4


 .

Therefore, each solution to the averaging system x(k + 1) = Awsnx(k) converges to a consensus vec-

tor (wTx(0))14, that is, the value at each node of the wireless sensor network converges to wTx(0) =
(1/6)x1(0)+(1/3)x2(0)+(1/4)x3(0)+(1/4)x4(0). Note thatAwsn is not doubly-stochastic and, therefore,

the averaging algorithm does not achieve average consensus and that node 2 has more in�uence than the

other nodes. •

Note: If A is reducible, then clearly it is not primitive. Yet, it is possible for an averaging algorithm

described by a reducible matrix to converge to consensus. In other words, Corollary 2.15 provides only

a su�cient condition for consensus. Here is a simple example of an averaging algorithm described by a

reducible matrix that converges to consensus:

x1(k + 1) = x1(k),

x2(k + 1) = x1(k).

To fully understand what all phenomena are possible and what properties of A are necessary and su�cient

for convergence to consensus, we will study graph theory in the next two chapters.

2.3.4 Selected proofs

We conclude this section with the proof of some selected statements.
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2.3. Perron–Frobenius theory 27

Proof of Theorem 2.12. We start by establishing that a primitive A matrix satis�es ρ(A) > 0. By contradic-

tion, if spec(A) = {0}, then the Jordan normal form J of A is nilpotent, that is, there is a k∗ ∈ N so that

Jk = Ak = 0 for all k ≥ k∗. But this is a contradiction because A being primitive implies that there is

k∗ ∈ N so that Ak > 0 for all k ≥ k∗.
Next, we prove that ρ(A) is a real positive eigenvalue with a positive right eigenvector v > 0. We �rst

focus on the case that A is a positive matrix, and later show how to generalize the proof to the case of

primitive matrices. Without loss of generality, assume ρ(A) = 1. If (λ, x) is an eigenpair for A such that

|λ| = ρ(A) = 1, then

|x| = |λ||x| = |λx| = |Ax| ≤ |A||x| = A|x| =⇒ |x| ≤ A|x|. (2.8)

Here, we use the notation |x| = (|xi|)i∈{1,...,n}, |A| = {|aij |}i,j∈{1,...,n}, and vector inequalities are

understood component-wise. In what follows, we show |x| = A|x|. With the shorthands z = A|x| and

y = z − |x|, equation (2.8) reads y ≥ 0 and we aim to show y = 0. By contradiction, assume y has a

non-zero component. Therefore, Ay > 0. Independently, we also know z = A|x| > 0. Thus, there must

exist ε > 0 such that Ay > εz. Eliminating the variable y in the latter equation, we obtain Aεz > z, where

we de�ne Aε = A/(1 + ε). The inequality Aεz > z implies Akεz > z for all k > 0. Now, observe that

ρ(Aε) < 1 so that limk→∞A
k
ε = 0n×n and therefore 0 > z. Since we also knew z > 0, we now have a

contradiction. Therefore, we know y = 0.

So far, we have established that |x| = A|x|, so that (1, |x|) is an eigenpair for A. Also note that A > 0
and x 6= 0 together imply A|x| > 0. Therefore we have established that 1 is an eigenvalue of A with

eigenvector |x| > 0. Next, observe that the above reasoning is correct also for primitive matrices if one

replaces the �rst equality (2.8) by |x| = |λk||x| and carries the exponent k throughout the proof.

In summary, we have established that there exists a real eigenvalue λ > 0 such that λ ≥ |µ| for all

other eigenvalues µ, and that each right (and therefore also left) eigenvector of λ can be selected positive

up to rescaling. It remains to prove that λ is simple and is strictly greater than the magnitude of all other

eigenvalues. For the proof of these two points, we refer to (Meyer, 2001, Chapter 8). �

Proof of Theorem 2.14. Because λ is simple, we write the Jordan normal form of A as

A = T

[
λ 01×(n−1)

0(n−1)×1 B

]
T−1, (2.9)

where the block-diagonal matrix B ∈ R(n−1)×(n−1)
contains the Jordan blocks of all eigenvalues of A

except for λ. Because λ is strictly dominant, we know that ρ(B/λ) < 1, which in turn implies

lim
k→+∞

Bk/λk = 0(n−1)×(n−1).

Recall Ak = T

[
λ 0
0 B

]k
T−1

so that

lim
k→+∞

(A
λ

)k
= T

(
lim

k→+∞

[
1k 0
0 (B/λ)k

])
T−1 = T

[
1 0
0 0

]
T−1.
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Next, we let v1, . . . , vn (respectively, w1, . . . , wn) denote the columns of T (respectively the rows of T−1
),

that is, T =
[
v1 · · · vn

]
, and (T−1)T =

[
w1 · · · wn

]
. Equation (2.9) is equivalently written as

A
[
v1 · · · vn

]
︸ ︷︷ ︸

=T

=
[
v1 · · · vn

]
︸ ︷︷ ︸

=T

[
λ 0
0 B

]
.

The �rst column of the above matrix equation is Av1 = λv1, that is, v1 is the right dominant eigenvector of

A, up to rescaling. Recall that λ is simple and right eigenvalue is unique up to rescaling. By analogous

arguments, we �nd that w1 is the left dominant eigenvector of A, up to rescaling. With this notation, some

bookkeeping leads to:

lim
k→+∞

(A
λ

)k
=
[
v1 v2 · · · vn

]




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0







wT
1

wT
2
...
wT
n


 = v1w

T
1 .

Finally, the (1, 1) entry of the matrix equality TT−1 = In gives precisely the normalization vT1 w1 = 1. In

summary, v1 and w1 are the right and left dominant eigenvectors, up to rescaling, and they are known to

satisfy vT1 w1 = 1. Hence, vwT = v1w
T
1 . This concludes the proof of Theorem 2.14. �

2.4 Historical notes and further reading

For comprehensive treatments on matrix theory we refer to the classic texts by Gantmacher (1959), Horn

and Johnson (1985), and Meyer (2001).

Regarding the main Perron–Frobenius Theorem 2.12, historically, Perron (1907) established the original

result fo the case of positive matrices. Frobenius (1912) provided the substantial extension to the settings of

primitive and irreducible matrices. More historical information is given in (Meyer, 2001, Chapter 8).

Theorem 2.14 is generalized as follows: an irreducible row-stochastic matrix A with left-dominant

eigenvector w satis�es limk→∞
1
k (In +A+ · · ·+Ak−1) = 1nwT

. We refer to (Meyer, 2001, Section 8.4)

for more details on this result and to (Breiman, 1992, Chapter 6) for the more general Ergodic Theorem.
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2.5 Exercises

E2.1 Simple properties of stochastic matrices. Let A1, A2, . . . , Ak be n× n matrices, let A1A2 · · ·Ak be their

product and let η1A1+ · · ·+ηkAk be their convex combination with arbitrary convex combination coe�cients.

Show that

(i) if A1, A2, . . . , Ak are non-negative, then their product and all their convex combinations are non-

negative,

(ii) if A1, A2, . . . , Ak are row-stochastic, then their product and all their convex combinations are row-

stochastic, and

(iii) if A1, A2, . . . , Ak are doubly-stochastic, then their product and all their convex combinations are

doubly-stochastic.

E2.2 Semi-convergence and Jordan block decomposition. Consider a matrix A ∈ Cn×n, n ≥ 2, with ρ(A) =
1. Show that the following statements are equivalent:

(i) A is semi-convergent,

(ii) either A = In or there exists a nonsingular matrix T ∈ Cn×n and a number m ∈ {1, . . . , n− 1} such

that

A = T

[
Im 0m×(n−m)

0(n−m)×m B

]
T−1,

where B ∈ C(n−m)×(n−m)
is convergent, that is, ρ(B) < 1.

Note: If A is real, then it is possible to �nd real-valued matrices T and B in statement (ii) by using the notion of
real Jordan normal form (Hogben, 2013).

E2.3 Row-stochastic matrices after pairwise-di�erence similarity transform. For n ≥ 2, let A ∈ Rn×n be

row stochastic. De�ne T ∈ Rn×n by

T =




−1 1
. . .

. . .

−1 1
1/n 1/n . . . 1/n


 .

Perform the following tasks:

(i) for x = [x1, . . . , xn]T, write Tx in components and show T is invertible,

(ii) show TAT−1 =

[
Astable 0n−1
cT 1

]
for some Astable ∈ R(n−1)×(n−1)

and c ∈ Rn−1,

(iii) if A is doubly-stochastic, then c = 0,

(iv) show that A primitive implies ρ(Astable) < 1, and

(v) compute TAT−1 for A =

[
0 1
1 0

]
.

E2.4 Uniqueness of the non-negative eigenvector in irreducible non-negative matrices. Given a square

matrix A ∈ Rn×n, show that:

(i) if v1 is a right eigenvector of A corresponding to the eigenvalue λ1, w2 is a left eigenvector of A relative

to λ2, and λ1 6= λ2, then v1 ⊥ w2; and

(ii) if A is non-negative and irreducible and u ∈ Rn≥0 is a right non-negative eigenvector of A, then u is an

eigenvector corresponding to the eigenvalue ρ(A).
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E2.5 Powers of primitive matrices. Let A ∈ Rn×n be non-negative. Show that Ak > 0, for some k ∈ N, implies

Am > 0 for all m ≥ k.

E2.6 Su�cient condition for primitivity. Consider a non-negative matrix A ∈ Rn×n. If there exists r ∈
{1, . . . , n} such that Arj > 0 and Air > 0 for all i, j ∈ {1, . . . , n}, that is, if A has the sparsity pattern

A =




?
?
?
?

? ? ? ? ? ? ?
?
?




,

then the matrix A is primitive. (Here the symbol ? denotes a strictly positive entry. The absence of a symbol

denotes a positive or zero entry.)

E2.7 Reducibility fallacy. Consider the following statement:

Any non-negative square matrix A ∈ Rn×n with a zero entry is reducible, because the zero entry
can be moved in position An,1 via a permutation similarity transformation.

Is the statement true? If yes, explain why; if not, provide a counterexample.

E2.8 Symmetric doubly-stochastic matrix. Let A ∈ Rn×n be doubly-stochastic. Show that:

(i) the matrix ATA is doubly-stochastic and symmetric,

(ii) spec(ATA) ⊂ [0, 1],

(iii) the eigenvalue 1 of ATA is not necessarily simple even if A is irreducible.

E2.9 On some non-negative matrices. How many 2×2 matrices exist that are simultaneously doubly stochastic,

irreducible and not primitive? Justify your claim.

E2.10 Discrete-time a�ne systems. Given A ∈ Rn×n and b ∈ Rn, consider the discrete-time a�ne system

x(k + 1) = Ax(k) + b.

Assume A is convergent and show that

(i) the matrix (In −A) is invertible,

(ii) the only equilibrium point of the system is (In −A)−1b, and

(iii) limk→∞ x(k) = (In −A)−1b for all initial conditions x(0) ∈ Rn.

Hint: De�ne a new sequence y(k), k ∈ Z≥0, by y(k) = x(k)− x∗ for an appropriate x∗.

E2.11 An a�ne averaging system. Given a primitive doubly-stochastic matrixA and a vector b satisfying 1T
nb = 0,

consider the dynamical system

x(k + 1) = Ax(k) + b.

Show that

(i) the quantity k 7→ 1T
nx(k) is constant,

(ii) for eachα ∈ R, there exists a unique equilibrium point x∗α satisfying 1T
nx
∗
α = α and satisfying generically

x∗α 6∈ span{1n}, and

(iii) all solutions with initial condition x(0) satisfying 1T
nx(0) = α converge to x∗α.
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Hint: First, use Exercise E2.2 and study the properties of the similarity transformation matrix T and its inverse
T−1. Second, de�ne y(k) = T−1x(k), show the evolution of y1(k) is decoupled from that of the other entries and
apply E2.10.

E2.12 The Neumann series. For A ∈ Cn×n, show that the following statements are equivalent:

(i) ρ(A) < 1,

(ii) limk→∞Ak = 0n×n, and

(iii) the Neumann series
∑∞
k=0A

k
converges.

Additionally show that, if any and hence all of these conditions hold, then

(iv) the matrix (In −A) is invertible, and

(v)

∞∑

k=0

Ak = (In −A)−1.

Hint: This statement, written in the style of (Meyer, 2001, Section 7.10), is an extension of Theorem 2.7 and a
generalization of the classic geometric series 1

1−x =
∑∞
k=0 x

k , convergent for all |x| < 1. For the proof, the hint
is to use the Jordan normal form.

E2.13 The rank-one projection matrix de�ned by a primitive matrix. This exercise requires the following

notions from linear algebra: a square matrix B is a projection matrix if B2 = B, a vector space V is the direct
sum of two subspaces U and W , written V = U ⊕W , if each v ∈ V de�nes unique u ∈ U and w ∈W such

that v = u+ w, and a subspace U is invariant under a linear map B if u ∈ U implies Bu ∈ U .

Let A be an n-dimensional primitive matrix with dominant eigenvalue λ, right dominant eigenvector v > 0
and left dominant eigenvector w with the normalization vTw = 1. De�ne the rank-one matrix JA := vwT

.

Show that:

(i) JA = J2
A is a projection matrix whose image is span{v},

(ii) In − JA = (In − JA)2 is a projection matrix whose image is kernel(JA) = {q ∈ Rn | wTq = 0} =
span{w}⊥,

(iii) AJA = JAA = λJA,

(iv) Rn = span{v} ⊕ span{w}⊥ and both subspaces span{v} and span{w}⊥ are invariant under A,

(v) if A is symmetric, then JA is an orthogonal projection,

(vi) the restriction of A to span{w}⊥ has all its eigenvalues strictly less than λ in magnitude, and the

restriction of A to the span{v} is multiplication by λ, and

(vii) ρ(A− λJA) < λ.

E2.14 Permutation and orthogonal matrices. A set G with a binary operation mapping two elements of G into

another element of G, denoted by (a, b) 7→ a ? b, is a group if:

(G1) a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ G (associativity property);

(G2) there exists e ∈ G such that a ? e = e ? a = a for all a ∈ G (existence of an identity element); and

(G3) there exists a−1 ∈ G such that a ? a−1 = a−1 ? a = e for all a ∈ G (existence of inverse elements).

Recall that: a permutation matrix is an n× n binary (i.e., entries equal to 0 and 1) matrix with precisely one

entry equal to 1 in every row and every column; a permutation matrix acts on a vector by permuting its

entries. Also recall that an orthogonal matrix R is an n× n matrix whose columns and rows are orthonormal

vectors, i.e., RRT = In; an orthogonal matrix acts on a vector like a rotation and/or re�ection. Prove that

(i) the set of n× n permutation matrices with the operation of matrix multiplication is a group;

(ii) the set of n× n orthogonal matrices with the operation of matrix multiplication is a group;

(iii) each permutation matrix is orthogonal.
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E2.15 On doubly-stochastic and permutation matrices. The following result is known as the Birkho� – Von

Neumann Theorem. For a matrix A ∈ Rn×n, the following statements are equivalent:

(i) A is doubly-stochastic; and

(ii) A is a convex combination of permutation matrices.

Do the following:

• show that the set of doubly-stochastic matrices is convex (i.e., given any two doubly-stochastic matrices

A1 and A2, any matrix of the form λA1 + (1− λ)A2, for λ ∈ [0, 1], is again doubly-stochastic);

• show that (ii) =⇒ (i);

• �nd in the literature a proof of (i) =⇒ (ii) and sketch it in one or two paragraphs.

E2.16 Determinants of block matrices (Silvester, 2000). Given square matrices A,B,C,D ∈ Rn×n, n ≥ 1,

useful identities are

det

[
A B
C D

]
=





det(D) det(A−BD−1C), if D is invertible, (E2.1a)

det(AD −BC), if CD = DC , (E2.1b)

det(DA−BC), if BD = DB. (E2.1c)

(i) Prove equality (E2.1a).

(ii) Prove equality (E2.1b) and (E2.1c) assuming D is invertible.

Hint: Show
[
A B
C D

] [
In 0n×n

−D−1C In

]
=

[
A−BD−1C B

0n×n D

]
. We refer to (Silvester, 2000) for the complete

proofs and for the additional identities

det

[
A B
C D

]
=

{
det(AD − CB), if AC = CA, (E2.2a)

det(DA− CB), if AB = BA. (E2.2b)

E2.17 The Jacobi relaxation in parallel computation. Consider n distributed processors that aim to collectively

solve the linear equation Ax = b, where b ∈ Rn and A ∈ Rn×n is invertible and its diagonal elements aii
are nonzero. Each processor stores a variable xi(k) as the discrete-time variable k evolves and applies the

following iterative strategy termed Jacobi relaxation. At time step k ∈ N each processor performs the local

computation

xi(k + 1) =
1

aii

(
bi −

n∑

j=1,j 6=i
aijxj(k)

)
, i ∈ {1, . . . , n}.

Next, each processor i ∈ {1, . . . , n} sends its value xi(k + 1) to all other processors j ∈ {1, . . . , n} with

aji 6= 0, and they iteratively repeat the previous computation. The initial values of the processors are arbitrary.

(i) Assume the Jacobi relaxation converges, i.e., assume limk→∞ x(k) = x∗. Show that Ax∗ = b.

(ii) Give a necessary and su�cient condition for the Jacobi relaxation to converge.

(iii) Use Geršgorin Disks Theorem 2.8 to show that the Jacobi relaxation converges if A is strictly row
diagonally dominant, that is, if |aii| >

∑n
j=1,j 6=i |aij | for all i ∈ {1, . . . , n}.

E2.18 The Jacobi over-relaxation in parallel computation. We now consider a more sophisticated version of the

Jacobi relaxation presented in Exercise E2.17. Consider again n distributed processors that aim to collectively

solve the linear equation Ax = b, where b ∈ Rn and A ∈ Rn×n is invertible and its diagonal elements aii
are nonzero. Each processor stores a variable xi(k) as the discrete-time variable k evolves and applies the
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following iterative strategy termed Jacobi over-relaxation. At time step k ∈ N each processor performs the

local computation

xi(k + 1) = (1− ω)xi(k) +
ω

aii

(
bi −

n∑

j=1,j 6=i
aijxj(k)

)
, i ∈ {1, . . . , n},

where ω ∈ R is an adjustable parameter. Next, each processor i ∈ {1, . . . , n} sends its value xi(k + 1) to all

other processors j 6= i with aji 6= 0, and they iteratively repeat the previous computation. The initial values

of the processors are arbitrary.

(i) Assume the Jacobi over-relaxation converges to x? and show that Ax? = b if ω 6= 0.

(ii) Find the expression governing the dynamics of the error variable e(k) := x(k)− x?.

(iii) Suppose that A is strictly row diagonally dominant, that is |aii| >
∑
j 6=i |aij |. Use the Geršgorin Disks

Theorem 2.8 to discuss the convergence properties of the algorithm for all possible values of ω ∈ R.

Hint: Consider di�erent thresholds for ω.

E2.19 Simulation (cont’d). This is a followup to Exercise E1.3. Consider the linear averaging algorithm in equa-

tion (1.1): set n = 5, select the initial state equal to (1,−1, 1,−1, 1), and use (a) the complete graph (b) a cycle

graph, and (c) a star graph with node 1 as center.

(i) To which value do all nodes converge to?

(ii) Compute the dominant left eigenvector of the averaging matrix associated to each of the three graphs

and verify that the result in Corollary 2.15(iii) is correct.

E2.20 Continuous- and discrete-time control control of mobile robots. Consider n robots moving on the line

with positions z1, z2, . . . zn ∈ R. In order to gather at a common location (i.e., reach rendezvous), each robot

heads for the centroid of its neighbors, that is,

żi =
1

n− 1

( n∑

j=1,j 6=i
zj

)
− zi.

(i) Will the robots asymptotically rendezvous at a common location?

(ii) Consider the Euler discretization of the above closed-loop dynamics with sampling rate T > 0:

zi(k + 1) = zi(k) + T
( 1

n− 1

( n∑

j=1,j 6=i
zj(k)

)
− zi(k)

)
.

For which values of the sampling period T will the robots rendezvous?

Hint: Use the modal decomposition in Remark 2.3 (and its extension to ordinary di�erential equations for part (i)).
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Chapter3

Elements of Graph Theory

Graph theory provides key concepts to model, analyze and design network systems and distributed algo-

rithms; the language of graphs pervades modern science and technology and is therefore essential.

3.1 Graphs and digraphs

[Graphs] An undirected graph (in short, a graph) consists of a set V of elements called vertices and of a set

E of unordered pairs of vertices, called edges. For u, v ∈ V and u 6= v, the set {u, v} denotes an unordered

edge. We de�ne and visualize some basic examples graphs in Figure 3.1.

[Neighbors and degrees in graphs] Two vertices u and v of a given graph are neighbors if {u, v} is an

undirected edge. Given a graph G, we let NG(v) denote the set of neighbors of v.

The degree of v is the number of neighbors of v. A graph is regular if all the nodes have the same degree;

e.g., in Figure 3.1, the cycle graph is regular with degree 2 whereas the complete bipartite graph K(3, 3)
and the Petersen graph are regular with degree 3.

[Digraphs and self-loops] A directed graph (in short, a digraph) of order n is a pair G = (V,E), where V is a

set with n elements called vertices (or nodes) and E is a set of ordered pairs of vertices called edges. In other

words, E ⊆ V × V . As for graphs, V and E are the vertex set and edge set, respectively. For u, v ∈ V , the

ordered pair (u, v) denotes an edge from u to v. A digraph is undirected if (v, u) ∈ E anytime (u, v) ∈ E. In

a digraph, a self-loop is an edge from a node to itself. Consistently with a customary convention, self-loops

are not allowed in graphs. We de�ne and visualize some basic examples digraphs in Figure 3.2.
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(a) Path graph with 6
nodes, denoted by P6

(b) Cycle (ring) graph with 6
nodes, denoted by C6

(c) Star graph with 6 nodes, de-

noted by S6

(d) Complete graph with 6
nodes, denoted by K6

(e) Complete bipartite graph with 3+3
nodes, denoted by K3,3

(f) A Cartesian grid graph (g) Petersen graph

Figure 3.1: Example graphs. Path graph: nodes are ordered in a sequence and edges connect subsequent nodes in the

sequence. Cycle (or ring) graph: all nodes and edges can be arranged as the vertices and edges of a regular polygon.

Star graph: edges connect a speci�c node, called the center, to all other nodes. Complete graph: every pair of nodes is

connected by an edge. Complete bipartite graph: nodes are divided into two sets and every node of the �rst set is

connected with every node of the second set.

(a) Cycle digraph with 6 nodes (b) Complete digraph with 6 nodes (c) A digraph with no directed cycles

Figure 3.2: Example digraphs

[Subgraphs] A digraph (V ′, E′) is a subgraph of a digraph (V,E) if V ′ ⊆ V andE′ ⊆ E. A digraph (V ′, E′)
is a spanning subgraph of (V,E) if it is a subgraph and V ′ = V . The subgraph of (V,E) induced by V ′ ⊆ V
is the digraph (V ′, E′), where E′ contains all edges in E between two vertices in V ′.

[In- and out-neighbors] In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor of v, and v is

called an out-neighbor of u. We let N in(v) (resp., N out(v)) denote the set of in-neighbors, (resp. the set of

out-neighbors) of v. Given a digraph G = (V,E), an in-neighbor of a nonempty set of nodes U is a node

v ∈ V \ U for which there exists an edge (v, u) ∈ E for some u ∈ U .
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3.2. Paths and connectivity in undirected graphs 37

[In- and out-degree] The in-degree din(v) and out-degree dout(v) of v are the number of in-neighbors and

out-neighbors of v, respectively. Note that a self-loop at a node v makes v both an in-neighbor as well as an

out-neighbor of itself. A digraph is topologically balanced if each vertex has the same in- and out-degrees

(even if distinct vertices have distinct degrees).

3.2 Paths and connectivity in undirected graphs

[Paths] A path in a graph is an ordered sequence of vertices such that any pair of consecutive vertices in

the sequence is an edge of the graph. A path is simple if no vertex appears more than once in it, except

possibly for the case in which the initial vertex is the same as the �nal vertex. (Note: some authors adopt

the term “walk” to refer to what we call here path.)

[Connectivity and connected components] A graph is connected if there exists a path between any two vertices.

If a graph is not connected, then it is composed of multiple connected components, that is, multiple connected

subgraphs.

[Cycles] A cycle is a simple path that starts and ends at the same vertex and has at least three distinct

vertices. A graph is acyclic if it contains no cycles. A connected acyclic graph is a tree.

Figure 3.3: This graph has two connected components. The leftmost connected component is a tree, while the

rightmost connected component is a cycle.

3.3 Paths and connectivity in digraphs

[Directed paths] A directed path in a digraph is an ordered sequence of vertices such that any pair of

consecutive vertices in the sequence is a directed edge of the digraph. A directed path is simple if no vertex

appears more than once in it, except possibly for the initial and �nal vertex.

[Cycles in digraphs] A cycle in a digraph is a simple directed path that starts and ends at the same vertex. It

is customary to accept, as feasible cycles in digraphs, also cycles of length 1 (that is, a self-loop) and cycles

of length 2 (that is, composed of just 2 nodes). The set of cycles of a directed graph is �nite. A digraph is

acyclic if it contains no cycles.
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38 Chapter 3. Elements of Graph Theory

[Sources and sinks] In a digraph, every vertex with in-degree 0 is called a source, and every vertex with

out-degree 0 is called a sink. Every acyclic digraph has at least one source and at least one sink; see Figure 3.4

and Exercise E3.1.

(a) An acyclic digraph with one sink and two sources (b) A directed cycle

Figure 3.4: Examples of sources and sinks

[Directed trees] A directed tree (sometimes called a rooted tree) is an acyclic digraph with the following

property: there exists a vertex, called the root, such that any other vertex of the digraph can be reached

by one and only one directed path starting at the root. A directed spanning tree of a digraph is a spanning

subgraph that is a directed tree.

3.3.1 Connectivity properties of digraphs

Next, we present four useful connectivity notions for a digraph G:

(i) G is strongly connected if there exists a directed path from any node to any other node;

(ii) G is weakly connected if the undirected version of the digraph is connected;

(iii) G possesses a globally reachable node if one of its nodes can be reached from any other node by

traversing a directed path; and

(iv) G possesses a directed spanning tree if one of its nodes is the root of directed paths to every other

node.

These notions are illustrated in Figure 3.5.

2

3

5

1 6

4

(a) A strongly connected digraph

2

3

1 6

4

5

(b) A weakly connected digraph with a globally reachable node

Figure 3.5: Connectivity examples for digraphs
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3.3. Paths and connectivity in digraphs 39

For a digraph G = (V,E), the reverse digraph G(rev) has vertex set V and edge set E(rev) composed

of all edges in E with reversed direction. Clearly, a digraph contains a directed spanning tree if and only if

the reverse digraph contains a globally reachable node.

3.3.2 Periodicity of strongly-connected digraphs

[Periodic and aperiodic digraphs] A strongly-connected directed graph is periodic if there exists a k > 1,

called the period, that divides the length of every cycle of the graph. In other words, a digraph is periodic if

the greatest common divisor of the lengths of all its cycles is larger than one. A digraph is aperiodic if it is

not periodic.

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of

length 1 and 2.

(c) An aperiodic digraph with cycles of

length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

Note: the de�nition of periodic digraph is well-posed because a digraph has only a �nite number of

cycles (because of the assumptions that nodes are not repeated in simple paths). The notions of periodicity

and aperiodicity only apply to digraphs and not to undirected graphs (where the notion of a cycle is de�ned

di�erently). Any strongly-connected digraph with a self-loop is aperiodic.

3.3.3 Condensation digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if H is strongly

connected and any other subgraph of G strictly containing H is not strongly connected.

[Condensation digraph] The condensation digraph of a digraph G, denoted by C(G), is de�ned as follows:

the nodes of C(G) are the strongly connected components of G, and there exists a directed edge in C(G)
from node H1 to node H2 if and only if there exists a directed edge in G from a node of H1 to a node of

H2. The condensation digraph has no self-loops.
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40 Chapter 3. Elements of Graph Theory

(a) An example digraph G (b) The strongly connected components of G (c) The condensation C(G)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.1 (Properties of the condensation digraph). For a digraph G and its condensation digraph
C(G),

(i) C(G) is acyclic,

(ii) G is weakly connected if and only if C(G) is weakly connected, and

(iii) the following statement are equivalent:

a) G contains a globally reachable node,

b) C(G) contains a globally reachable node, and

c) C(G) contains a unique sink.

Proof. We prove statement (i) by contradiction. If there exists a cycle (H1, H2, . . . ,Hm, H1) in C(G), then

the set of vertices H1, . . . ,Hm are strongly connected in C(G). But this implies that also the subgraph

of G containing all node of H1, . . . ,Hm is strongly connected in G. But this is a contradiction with the

fact that any subgraph of G strictly containing any of the H1, . . . ,Hm must be not strongly connected.

Statement (ii) is intuitive and simple to prove; we leave this task to the reader.

Regarding statement (iii), we start by proving that (iii)a =⇒ (iii)b. Let v be a a globally reachable node

in G and let H denote the node in C(G) containing v. Pick an arbitrary node H̄ of C(G) and let v̄ be a

node of G in H̄ . Since v is globally reachable, there exists a directed path from v̄ to v in G. This directed

path induces naturally a directed path in C(G) from H̄ to H . This shows that H is a globally reachable

node in C(G).

Regarding (iii)b =⇒ (iii)a, let H be a globally reachable node of C(G) and pick a node v in H . We

claim v is globally reachable in G. Indeed, pick any node v̄ in G belonging to a strongly connected

component Ū of G. Because H is globally reachable in C(G), there exists a directed path of the form

H̄ = H0, H1, . . . ,Hk, Hk+1 = H in C(G). One can now piece together a directed path in G from v̄ to v,

by walking inside each of the strongly connected components Hi and moving to the subsequent strongly

connected components Hi+1, for i ∈ {0, . . . , k}.
The �nal equivalence between statement (iii)b and statement (iii)c is an immediate consequence of

C(G) being acyclic. �
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3.4. Weighted digraphs 41

3.4 Weighted digraphs

A weighted digraph is a triplet G = (V,E, {ae}e∈E), where the pair (V,E) is a digraph with nodes

V = {v1, . . . , vn}, and where {ae}e∈E is a collection of strictly positive weights for the edges E.

Note: for simplicity we let V = {1, . . . , n}. It is therefore equivalent to write {ae}e∈E or {aij}(i,j)∈E .
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The set of weights for this weighted digraph is

a12 = 3.7, a13 = 3.7, a21 = 8.9,

a24 = 1.2, a34 = 3.7, a35 = 2.3,

a51 = 4.4, a54 = 2.3, a55 = 4.4.

A digraph G = (V = {v1, . . . , vn}, E) can be regarded as a weighted digraph by de�ning its set of

weights to be all equal to 1, that is, setting ae = 1 for all e ∈ E. A weighted digraph is undirected if

aij = aji for all i, j ∈ {1, . . . , n}.
The notions of connectivity and de�nitions of in- and out-neighbors, introduced for digraphs, remain

equally valid for weighted digraphs. The notions of in- and out-degree are generalized to weighted digraphs

as follows. In a weighted digraph with V = {v1, . . . , vn}, the weighted out-degree and the weighted in-degree
of vertex vi are de�ned by, respectively,

dout(vi) =
n∑

j=1

aij , (i.e., dout(vi) is the sum of the weights of all the out-edges of vi) ,

din(vi) =

n∑

j=1

aji, (i.e., din(vi) is the sum of the weights of all the in-edges of vi) .

The weighted digraph G is weight-balanced if dout(vi) = din(vi) for all vi ∈ V .

3.5 Appendix: Database collections and software libraries

Useful collections of example networks are freely available online; here are some examples:

(i) The Koblenz Network Collection, available at http://konect.uni-koblenz.de and described

in (Kunegis, 2013), contains model graphs in easily accessible Matlab format (as well as a Matlab

toolbox for network analysis and a compact overview the various computed statistics and plots for

the networks in the collection).

(ii) A broad range of example networks is available online at the Stanford Large Network Dataset

Collection, see http://snap.stanford.edu/data.

(iii) The The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix

Collection), available at http://suitesparse.com and described in (Davis and Hu, 2011), contains

a large and growing set of sparse matrices and complex graphs arising in a broad range of applications;

e.g., see Figure 3.8.
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(iv) The UCI Network Data Repository, available at http://networkdata.ics.uci.edu, is an e�ort to

facilitate the scienti�c study of networks; see also (DuBois, 2008).

(a) IEEE 118 bus system (b) Klavzar bibliography

(c) Pajek network GD99c

Figure 3.8: Example networks from distinct domains: Figure 3.8a shows the standard IEEE 118 power grid testbed (118

nodes); Figure 3.8b shows the Klavzar bibliography network (86 nodes); Figure 3.8c shows the GD99c Pajek network

(105 nodes). Networks parameters are available at http://suitesparse.com.

Useful software libraries for network analysis and visualization are freely available online; here are

some examples:

(i) NetworkX, available at http://networkx.github.io, is a Python library for network analysis. For

example, one feature is the ability to compute condensation digraphs.

(ii) Gephi, available at https://gephi.org, is an interactive visualization and exploration platform for

all kinds of networks and complex systems, dynamic and hierarchical graphs.

(iii) Cytoscape, available at http://www.cytoscape.org, is an open-source software platform for visu-

alizing complex networks and integrating them with attribute data.

(iv) Mathematica provides functionality for modeling, analyzing, synthesizing, and visualizing graphs

and networks – beside the ability to simulate dynamical systems; see description at http://www.
wolfram.com/language/elementary-introduction/21-graphs-and-networks.html.

(v) Graphviz, available at http://www.graphviz.org/, is an open source graph visualization software

which is also compatible with Matlab:

http://www.mathworks.com/matlabcentral/fileexchange/4518-matlab-graphviz-interface.
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3.6 Historical notes and further reading

Paraphrasing from Chapter 1 “Discovery!” in the classic work by Harary (1969),

(Euler, 1741) became the father of graph theory as well as topology when he settled a famous

unsolved problem of his day called the Königsberg Bridge Problem.

Subsequent rediscoveries of graph theory by Kirchho� (1847) and Cayley (1857) also had

their roots in the physical world. Kirchho�’s investigations of electric networks led to his

development of the basic concepts and theorems concerning trees in graphs, while Cayley

considered trees arising from the enumeration of organic chemical isomers.

For modern comprehensive treatments we refer the reader to standard books in graph theory such

as (Diestel, 2000; Bollobás, 1998).

A classic reference in graph drawing is (Fruchterman et al., 1991), the layout of the three graphs in

Figure 3.8 is obtained via the algorithm proposed by Hu (2005).
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3.7 Exercises

E3.1 Acyclic digraphs. LetG be an acyclic digraph with nodes {1, . . . , n}. A topological sort ofG is a re-numbering

of the vertices of G with the property that, if (u, v) is an edge of G, then u > v.

(i) Show that G contains at least one sink, i.e., a vertex without out-neighbors and at least one source, i.e.,

a vertex without in-neighbors.

(ii) Provide an algorithm to perform a topological sort of G. Is the topological sort unique?

Hint: Use high-level pseudo-code instructions such as “select a node satisfying property A” or “remove all
edges satisfying property B.”

(iii) Show that, after topologically sorting the vertices of G, the adjacency matrix of G is lower-triangular,

i.e., all its entries above the main diagonal are equal to zero.

E3.2 Condensation digraphs. Draw the condensation for each of the following digraphs.

E3.3 Directed spanning trees in the condensation digraph. For a digraph G and its condensation digraph

C(G), show that the following statements are equivalent:

(i) G contains a directed spanning tree, and

(ii) C(G) contains a directed spanning tree.

E3.4 Properties of trees. Consider an undirected graph G with n nodes and m edges (and without self-loops).

Show that the following statements are equivalent:

(i) G is a tree;

(ii) G is connected and m = n− 1; and

(iii) G is acyclic and m = n− 1.

E3.5 Connectivity in topologically balanced digraphs. Prove the following statement: If a digraph G is

topologically balanced and contains either a globally reachable vertex or a directed spanning tree, then G is

strongly connected.

E3.6 Globally reachable nodes and disjoint closed subsets (Lin et al., 2005; Moreau, 2005). Consider a

digraph G = (V,E) with at least two nodes. Prove that the following statements are equivalent:

(i) G has a globally reachable node, and

(ii) for every pair S1, S2 of non-empty disjoint subsets of V , there exists a node that is an out-neighbor of

S1 or S2.

E3.7 Swiss railroads. Consider the �ctitious railroad map of Switzerland given in Figure E3.1.

(i) Can a passenger go from any station to any other?

(ii) Is the graph acyclic? Is it aperiodic? If not, what is its period?
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Figure E3.1: Fictitious railroad map connections in Switzerland
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Chapter4

The Adjacency Matrix

In this chapter we present results on the adjacency matrices as part of the broader �eld of algebraic graph

theory. The key results in this area relate, through necessary and su�cient conditions, matrix properties

with graphical properties. For example, we will show how a matrix is primitive if and only if its associated

digraph is strongly connected and aperiodic.

4.1 The adjacency matrix

Given a weighted digraph G = (V,E, {ae}e∈E), with V = {1, . . . , n}, the weighted adjacency matrix of G
is the n×n non-negative matrixA de�ned as follows: for each edge (i, j) ∈ E, the entry (i, j) ofA is equal

to the weight a(i,j) of the edge (i, j), and all other entries of A are equal to zero. In other words, aij > 0 if

and only if (i, j) is an edge of G, and aij = 0 otherwise. Figure 4.1 shows a example of a weighted digraph.

1.2

2.33.7

4.4

8.9
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3.7

3.7

4.4
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A =




0 3.7 3.7 0 0
8.9 0 0 1.2 0
0 0 0 3.7 2.3
0 0 0 0 0

4.4 0 0 2.3 4.4



.

Figure 4.1: A weighted digraph and its adjacency matrix

The binary adjacency matrix A ∈ {0, 1}n×n of a digraph G = (V = {1, . . . , n}, E) or of a weighted

digraph is de�ned by

aij =

{
1, if (i, j) ∈ E,
0, otherwise.

(4.1)

Here, a binary matrix is any matrix with entries taking values in 0, 1.
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Finally, the weighted out-degree matrix Dout and the weighted in-degree matrix Din of a weighted digraph

are the diagonal matrices de�ned by

Dout = diag(A1n) =



dout(1) 0 0

0
. . . 0

0 0 dout(n)


 , and Din = diag(AT1n),

where diag(z1, . . . , zn) is the diagonal matrix with diagonal entries equal to z1, . . . , zn.

We conclude this section with some basic examples.

Example 4.1 (Basic graphs and their adjacency matrices). Recall the de�nitions of path, cycle, star,

complete and complete bipartite graph from Figure 3.1. Figure 4.2 illustrates their adjacency matrices.

P6 C6 S6 K6 K3,3

Figure 4.2: Path, cycle, star, complete and complete bipartite graph (from Figure 3.1) and their binary adjacency

matrices

Note that the adjacency matrices of path and cycle graphs have a particular structure. An n×nmatrix T
is Toeplitz (also called diagonal-constant) if there exist scalar numbers a−(n−1), . . . , a−1, a0, a1, . . . , a(n−1)
such that

T =




a0 a1 . . . . . . an−1

a−1 a0 a1 . . .
...

...
. . .

. . .
. . .

...
... . . . a−1 a0 a1

a−(n−1) . . . . . . a−1 a0



.

Two special cases are of interest, namely, those of tridiagonal Toeplitz and circulant matrices. For these

two cases it is possible to compute eigenvalues and eigenvectors; we refer to Exercises E4.16 and E4.17

for more information. For here instead, we conclude with a table containing the adjacency spectrum of the

basic graphs, i.e., the spectrum of their binary adjacency matrices.
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Graph Adjacency Matrix Adjacency Spectrum

path graph Pn Toeplitz tridiagonal {2 cos(πi/(n+ 1)) | i ∈ {1, . . . , n}}
cycle graph Cn circulant {2 cos(2πi/n)) | i ∈ {1, . . . , n}}
star graph Sn e1e−1 + e−1e1, where e−i = 1n − ei {

√
n− 1, 0, . . . , 0,−

√
n− 1}

path graph Kn 1n1T
n − In {(n− 1),−1, . . . ,−1}

complete bipartite Kn,m

[
0n×n 1n×m
1m×n 0m×m

]
{√nm, 0, . . . , 0,−√nm}

Table 4.1: Adjacency spectrum for basic graphs

We ask the reader to prove the statements in the table in Exercise E4.18. •

4.2 Algebraic graph theory: basic and prototypical results

In this section we review some basic and prototypical results that involve correspondences between graphs

and adjacency matrices.

In what follows we letG denote a weighted digraph andA its weighted adjacency matrix or, equivalently,

we let A be a non-negative matrix and G be its associated weighted digraph (i.e., the digraph with nodes

{1, . . . , n} and with weighted adjacency matrix A). We start with some straightforward statements:

(i) G is undirected if and only if A is symmetric and its diagonal entries are equal to 0;

(ii) G is weight-balanced if and only if A1n = AT1n, i.e., Dout = Din;

(iii) in a digraph G without self-loops, the node i is a sink in G if and only if ith row-sum of A is zero;

(iv) in a digraph G without self-loops, the node i is a source in G if and only if ith column-sum of A is

zero;

(v) A is row-stochastic if and only if each node of G has weighted out-degree equal to 1 (so that

Dout = In); and

(vi) A is doubly-stochastic if and only if each node of G has weighted out-degree and weighted in-degree

equal to 1 (so that Dout = Din = In and, in particular, G is weight-balanced).

Next, we relate the powers of the adjacency matrix with the existence of directed paths in the digraph.

We start with some simple observation. First, pick two nodes i and j and note that there exists a directed

path from i to j of length 1 (i.e., an edge) if and only if (A)ij > 0. Next, consider the formula for the matrix

power:

(A2)ij = (ith row of A) · (jth column of A) =

n∑

h=1

AihAhj .

A directed path from i to j of length 2 exists if and only if there exists a node k such that (i, k) and (k, j)
are edges of G. In turn, (i, k) and (k, j) are edges if and only if Aik > 0 and Akj > 0 and therefore

(A2)ij > 0. In short, we know that a directed path from i to j of length 2 exists if and only if (A2)ij > 0.

These observations lead to the following result, whose proof we leave as Exercise E4.1.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



50 Chapter 4. The Adjacency Matrix

Lemma 4.2 (Directed paths and powers of the adjacency matrix). LetG be a weighted digraph with n
nodes, with weighted adjacency matrix A, with unweighted adjacency matrix A0,1 ∈ {0, 1}n×n, and possibly
with self-loops. For all i, j ∈ {1, . . . , n} and k ∈ N

(i) the (i, j) entry of Ak0,1 equals the number of directed paths of length k (including paths with self-loops)
from node i to node j; and

(ii) the (i, j) entry of Ak is positive if and only if there exists a directed path of length k (including paths
with self-loops) from node i to node j.

4.3 Graph theoretical characterization of irreducible matrices

In this section we provide three equivalent characterizations of the notion of irreducibility an we can now

characterize certain connectivity properties of digraphs based on the powers of the adjacency matrix.

Before proceeding, we introduce a few useful concepts. First, {I,J } is a partition of the index set

{1, . . . , n} if I ∪J = {1, . . . , n}, I 6= ∅, J 6= ∅, and I ∩J = ∅. Second, a permutation matrix is a square

binary matrix with precisely one entry equal to 1 in every row and every columns. (In other words, the

columns of a permutation matrix are a reordering of the basis vectors e1, . . . , en; a permutation matrix

acts on a vector by permuting its entries.) Finally, an n × n matrix A is block triangular if there exists

r ∈ {1, . . . , n− 1} such that

A =

[
B C

0(n−r)×r D

]
,

where B ∈ Rr×r , C ∈ Rr×(n−r)
and D ∈ R(n−r)×(n−r)

are arbitrary.

We are now ready to state the main result of this section.

Theorem 4.3 (Connectivity properties of the digraph and positive powers of the adjacency ma-
trix). Let G be a weighted digraph with n ≥ 2 nodes and with weighted adjacency matrix A. The following
statements are equivalent:

(i) A is irreducible, that is,
∑n−1

k=0 A
k > 0;

(ii) there exists no permutation matrix P such that PTAP is block triangular;

(iii) G is strongly connected;

(iv) for all partitions {I,J } of the index set {1, . . . , n}, there exists i ∈ I and j ∈ J such that (i, j) is a
directed edge in G.

Note: as the theorem establishes, there are four equivalent characterizations of irreducibility. In the

literature, it is common to de�ne irreducibility through property (ii) or (iv). We next see two simple

examples.
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3

1

2

This digraph is strongly connected and, accordingly, its

adjacency matrix is irreducible:




0 1 0
0 0 1
1 1 0


 .

3

1

2

This digraph is not strongly connected (vertices 2 and 3
are globally reachable, but 1 is not) and, accordingly, its

adjacency matrix is reducible:




0 1 1
0 0 1
0 1 0


 .

Proof of Theorem 4.3. Regarding (iii) =⇒ (iv), pick a partition {I,J } of the index set {1, . . . , n} and two

nodes i0 ∈ I and j0 ∈ J . By assumptions there exists a directed path from i0 to j0. Hence there must exist

an edge from a node in I to a node in J .

Regarding (iv) =⇒ (iii), pick a node i ∈ {1, . . . , n} and let Ri ⊂ {1, . . . , n} be the set of nodes

reachable from i, i.e., the set of nodes that belong to directed paths originating from node i. Denote the

unreachable nodes by Ui = {1, . . . , n} \ Ri. Second, by contradiction, assume Ui is not empty. Then

Ri ∪Ui is a partition of the index set {1, . . . , n} and irreduciblity implies the existence of a non-zero entry

ajh with j ∈ Ri and h ∈ Ui. But then the node h is reachable. Therefore, Ui = ∅, and all nodes are

reachable from i.
Regarding (iii) =⇒ (i), because G is strongly connected, there exists a directed path of length k′

connecting node i to node j, for all i and j. By removing any cycle from such a path (so that no intermediate

node is repeated), one can compute a path from i to j of length k < n. Hence, by Lemma 4.2(ii), the entry

(Ak)ij is strictly positive and, in turn, so is the entire matrix sum

∑n−1
k=0 A

k
.

Regarding (i) =⇒ (iii), pick two nodes i and j. Because

∑n−1
k=0 A

k > 0, there must exists k such that

(Ak)ij > 0. Lemma 4.2(ii) implies the existence of a path of length k from i to j. Hence, G is strongly

connected.

Regarding (ii) =⇒ (iv), by contradiction, assume there exists a partition (I,J ) of {1, . . . , n} such that

aij = 0 for all (i, j) ∈ I × J . Let π : {1, . . . , n} → {1, . . . , n} be the permutation that maps all entries of

I into the �rst |I| entries of {1, . . . , n}. Here we let |I| denote the number of elements of I . Let P be the

corresponding permutation matrix. We now compute PAPT
and block partition it as:

PAPT =

[
AII AIJ
AJI AJJ

]
,

where AII ∈ R|I|×|I|, AIJ ∈ R|I|×|J |, AJI ∈ R|J |×|I|, and AJJ ∈ R|J |×|J |. By construction, AJI =
0|J |×|I| so that PAPT

is block triangular, which is in contradiction with the assumed statement (ii).

Regarding (iv) =⇒ (ii), by contradiction, assume there exists a permutation matrix P and a number

r < n such that

PAPT =

[
B C

0(n−r)×r D

]
,
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where the matrices B ∈ Rr×r, C ∈ Rr×(n−r)
, and D ∈ R(n−r)×(n−r)

are arbitrary. The permutation

matrix P de�nes a unique permutation π : {1, . . . , n} → {1, . . . , n} with the property that the columns of

P are eπ(1), . . . , eπ(n). Let J = {π(1), . . . , π(r)} and I = {1, . . . , n} \ J . Then, by construction, for any

pair (i, j) ∈ I × J , we know aij = 0, which is in contradiction with the assumed statement (iv). �

Next we present two results, whose proof are analogous to those of the previous theorem and left to

the reader as an exercise.

Lemma 4.4 (Global reachability and powers of the adjacency matrix). Let G be a weighted digraph
with n ≥ 2 nodes and weighted adjacency matrix A. For any j ∈ {1, . . . , n}, the following statements are
equivalent:

(i) the jth node of G is globally reachable, and

(ii) the jth column of
∑n−1

k=0 A
k is positive.

Next, we notice that if node j is reachable from node i via a path of length k and at least one node

along that path has a self-loop, then node j is reachable from node i via paths of length k, k+ 1, k+ 2, and

so on. This observation and the last lemma lead to the following corollary.

Corollary 4.5 (Connectivity properties of the digraph and positive powers of the adjacency ma-
trix: cont’d). Let G be a weighted digraph with n nodes, weighted adjacency matrix A and a self-loop at
each node. The following statements are equivalent:

(i) G is strongly connected; and

(ii) An−1 is positive, so that A is primitive.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:

(iii) the jth node of G is globally reachable; and

(iv) the jth column of An−1 has positive entries.

Finally, we conclude this section with a clari�cation.

Remark 4.6 (Similarity transformations de�ned by permutation matrices). Note that PTAP is the
similarity transformation of A de�ned by P because the permutation matrix P satis�es P−1 = PT; see
Exercise E2.14. Moreover, note that PTAP is simply a reordering of rows and columns. For example, consider

P =




0 0 1
1 0 0
0 1 0


 with PT =




0 1 0
0 0 1
1 0 0


. Note P




1
2
3


 =




3
1
2


 as well as PT




1
2
3


 =




2
3
1


 and compute

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 =⇒ PTAP =



a22 a23 a21

a32 a33 a31

a12 a13 a11


 ,

so that the entries of the 1st, 2nd and 3rd rows of A are mapped respectively to the 3rd, 1st and 2nd rows of
PTAP — and, at the same time, — the entries of the 1st, 2nd and 3rd columns of A are mapped respectively to
the 3rd, 1st and 2nd columns of PTAP . •
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4.4 Graph theoretical characterization of primitive matrices

In this section we present the main result of this chapter, an immediate corollary and its proof; see also

Figure 4.3.

Theorem 4.7 (Strongly connected and aperiodic digraph and primitive adjacency matrix). Let G
be a weighted digraph with n ≥ 2 nodes and with weighted adjacency matrix A. The following two statements
are equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, that is, there exists k ∈ N such that Ak is positive.

A A2 A3 A4 A5

Figure 4.3: Increasing powers of a non-negative matrixA ∈ R25×25
. The digraph associated toA is strongly connected

and has self-loops at each node; as predicted by Theorem 4.7, there exists k = 5 such that Ak > 0.

Before proving Theorem 4.7, we introduce a useful fact from number theory, whose proof we leave

as Exercise E4.13. First, we recall a useful notion: a set of integers are coprime if its elements share no

common positive factor except 1, that is, their greatest common divisor is 1. Loosely, the following lemma

states that coprime numbers generate, via linear combinations with non-negative integer coe�cients, all

numbers larger than a given threshold.

Lemma 4.8 (Frobenius number). Given a �nite set A = {a1, a2, . . . , an} of positive coprime integers, an
integerM is said to be representable by A if there exist non-negative integers {α1, α2, . . . , αn} such that
M = α1a1 + · · ·+ αNaN . The following statements are equivalent:

(i) there exists a �nite largest unrepresentable integer, called the Frobenius number of A, and

(ii) the greatest common divisor of A is 1.

Proof of Theorem 4.7. Regarding (i) =⇒ (ii), pick any ordered pair (i, j). We claim that there exists a

number k(i, j) with the property that, for all m > k(i, j), we have (Am)ij > 0, that is, there exists a

directed path from i to j of length m for all m ≥ k(i, j). If this claim is correct, then the statement (ii) is

proved with k = max{k(i, j) | i, j ∈ {1, . . . , n}}. To show this claim, let {c1, . . . , cN} be the set of the

cycles of G and let {k1, . . . , kN} be their lengths. Because G is aperiodic, the lengths {k1, . . . , kN} are

coprime and Lemma 4.8 implies the existence of a number h(k1, . . . , kN ) such that any number larger than

h(k1, . . . , kN ) is a linear combination of k1, . . . , kN with non-negative integer as coe�cients. Because G is

strongly connected, there exists a path γ of arbitrary length Γ(i, j) that starts at i, contains a vertex of each
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of the cycles c1, . . . , cN , and terminates at j. Now, we claim that k(i, j) = Γ(i, j) + h(k1, . . . , kN ) has the

desired property. Indeed, pick any numberm > k(i, j) and write it asm = Γ(i, j)+β1k1 + · · ·+βNkN for

appropriate numbers β1, . . . , βN ∈ N. A directed path from i to j of length m is constructed by attaching

to the path γ the following cycles: β1 times the cycle c1, β2 times the cycle c2, . . . , βN times the cycle cN .

Regarding (ii) =⇒ (i), from Lemma 4.2 we know that Ak > 0 means that there are paths of length

k from every node to every other node. Hence, the digraph G is strongly connected. Next, we prove

aperiodicity. Because G is strongly connected, each node of G has at least one outgoing edge, that is, for

all i, there exists at least one index j such that aij > 0. This fact implies that the matrix Ak+1 = AAk is

positive via the following simple calculation: (Ak+1)il =
∑n

h=1 aih(Ak)hl ≥ aij(Ak)jl > 0. In summary, if

Ak is positive for some k, then Am is positive for all subsequent m > k (see also Exercise E2.5). Therefore,

there are closed paths in G of any su�ciently large length. This fact implies that G is aperiodic; indeed,

by contradiction, if the cycle lengths were not coprimes, then G would not possess such closed paths of

arbitrary su�ciently large length. �

4.5 Elements of spectral graph theory

In this section we provide some elementary results on the spectral radius of a non-negative matrix A. (We

provide bounds on the eigenvalues of the Laplacian matrix in Section 6.1.2 and Exercise E6.3.) Recall that

ith entry of the vector A1n contains the ith row-sum of the matrix A and the out-degree of the ith node of

the digraph associated to A. In other words, dout(i) = eTi A1n.

Theorem 4.9 (Bounds on the spectral radius of a non-negative matrix). For a non-negative n × n
matrix A with associated digraph G, the following statements hold:

(i) min(A1n) ≤ ρ(A) ≤ max(A1n);

(ii) if min(A1n) = max(A1n), then ρ(A) = max(A1n); and

(iii) if min(A1n) < max(A1n), then the following two statements are equivalent:

a) for each node i with eTi A1n = max(A1n), there exists a directed path inG from node i to a node j
with eTj A1n < max(A1n); and

b) ρ(A) < max(A1n).

An illustration of this result is given in Figure 4.4. Before providing the proof, we introduce a useful

notion and establish a corollary.

De�nition 4.10 (Row-substochastic matrix). A non-negative n× n matrix A is row-substochastic if its
row-sums are at most 1 and at least one row-sum is strictly less than 1, that is,

A1n ≤ 1n, and there exists i ∈ {1, . . . , n} such that eTi A1n < 1.

Note that a row-substochastic matrix with at least one row-sum equal to 1 satis�es min(A1n) <
max(A1n) and that any irreducible row-substochastic matrix satis�es condition (iii)a because the associated

digraph is strongly connected. These two observations lead immediately to the following rewriting of the

previous theorem.
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(a) Complete bipartite graph K(3, 3) with bi-

nary adjacency matrix AK(3,3)

(b) Cartesian grid graph with binary ad-

jacency matrix Agrid

Figure 4.4: Illustration of Theorem 4.9: by counting the number of neighbors of each node (i.e., by computing the row

sums ofA) and observing that the grid graph is connected, we can establish that ρ(AK(3,3)) = 3 and 2 < ρ(Agrid) < 4.

Corollary 4.11 (Convergent row-substochastic matrices). A row-substochastic matrix is convergent if
and only if its associated digraph contains directed paths from each node with out-degree 1 to a node with
out-degree less than 1. Speci�cally, an irreducible row-substochastic matrix is convergent.

We now present the proof of the main theorem in this section.

Proof of Theorem 4.9. Regarding statement (i), the Perron–Frobenius Theorem 2.12 applied to the non-

negative matrix A implies the existence of a vector x ≥ 0n, x 6= 0n, such that

Ax = ρ(A)x =⇒ ρ(A)xi =

n∑

j=1

aijxj for all i ∈ {1, . . . , n}.

Let ` ∈ argmaxi∈{1,...,n}{xi} be the index (or one of the indices) satisfying x` = max{x1, . . . , xn} > 0
and compute

ρ(A) =
n∑

j=1

a`j
xj
x`
≤

n∑

j=1

a`j ≤ max(A1n) .

We leave the proof of the lower bound to the reader in Exercise E4.9.

Regarding statement (ii), note that 1n is an eigenvector with eigenvalue max(A1n) so that we know

ρ(A) ≥ max(A1n). But we also know from statement (i) that ρ(A) ≤ max(A1n).

Next, we establish that the condition (iii)a implies the bound (iii)b. It su�ces to focus on row-

substochastic matrices (if max(A1n) 6= 1, we consider the row-substochastic matrix A/ρ(A)). We now

claim that:

(1) if eTi A1n < 1, then eTi A
21n < 1,

(2) if i has an outneighbor j (that is, Aij > 0) with eTj A1n < 1, then eTi A
21n < 1,

(3) there exists k such that Ak1n < 1n, and

(4) ρ(A) < 1.

Regarding statement (1), for a node i satisfying eTi A1n < 1, we compute

eTi A1n < 1 =⇒ eTi A
21n = eTi A(A1n) ≤ eTi A1n < 1,
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where we used the implication: if 0n ≤ v ≤ 1n and w ≥ 0n, then wTv ≤ wT1n. This proves statement (1).
Next, note that 0 ≤ eTj A1n < 1 and A1n ≤ 1n together imply the useful inequality

A1n ≤ 1n −
(
1− eTj A1n

)
ej , because 1− eTj A1n > 0.

Therefore, we compute

eTi A
21n = (eTi A)(A1n)

≤ (eTi A)
(

1n −
(
1− eTj A1n

)
ej
)

= eTi A1n −
(
1− eTj A1n

)
eTi Aej ≤ 1−

(
1− eTj A1n

)
Aij < 1.

This concludes the proof of statement (2).
Regarding statement (3), note that, if A is row-substochastic, then Ak is row-substochastic for any

natural k ≥ 1. Let Sk be the set of indices i such that the ith row-sum of Ak is strictly less than 1.

Statement (1) implies Sk ⊆ Sk+1. Moreover, because of the existence of directed paths from every node

to nodes with row-sum less than 1, we know that there exists k∗ such that S∗k = {1, . . . , n}. This proves

statement (3).
Next, de�ne the maximum row-sum at time k∗ by

γ = max
i∈{1,...,n}

n∑

j=1

(Ak
∗
)ij < 1.

Given any natural number k, we can write k = ak∗ + b with a positive integer and b ∈ {0, . . . , k∗ − 1}.
Note that

Ak1n ≤ Aak
∗
1n ≤ γa1n.

The last inequality implies that, as k →∞ and therefore a→∞, the sequence Ak converges to 0. This

fact proves statement (4) and, in turn, that the condition (iii)a implies the bound (iii)b.

Finally, we sketch the proof that the bound (iii)b implies the condition (iii)a. By contradiction, if

condition (iii)a does not hold, then the condensation of G contains a sink whose corresponding row-sums

in A are all equal to max(A1n). But to that sink corresponds an eigenvector of A whose eigenvalue is

therefore max(A1n). We refer to Theorem 5.2 for a brief review of the properties of reducible non-negative

matrix and leave to the reader the details of the proof. �

4.6 Historical notes and further reading

Standard books on algebraic graph theory are (Biggs, 1994; Godsil and Royle, 2001).

The proof for Theorem 4.7 is taken from (Bullo et al., 2009). For more information on the Frobenius

number we refer to (Owens, 2003) and Wikipedia:Coin_Problem.

More results on spectral graph theory and, speci�cally, a review and recent results on bounding the

spectral radius of an adjacency matrix are given, for example, by Nikiforov (2002) and Das and Kumar

(2004).
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4.7 Exercises

E4.1 Directed paths and powers of the adjacency matrix. Prove Lemma 4.2.

E4.2 Edges and triangles in an undirected graph. LetA be the binary adjacency matrix for an undirected graph

G without self-loops. Recall that the trace of A is trace(A) =
∑n
i=1 aii.

(i) Show trace(A) = 0.

(ii) Show trace(A2) = 2|E|, where |E| is the number of edges of G.

(iii) Show trace(A3) = 6|T |, where |T | is the number of triangles of G. (A triangle is a complete subgraph

with three vertices.)

(iv) Verify results (i)–(iii) on the matrix A =




0 1 1
1 0 1
1 1 0


.

E4.3 A su�cient condition for primitivity. Assume the square matrix A is non-negative and irreducible. Show

that

(i) if A has a positive diagonal element, then A is primitive,

(ii) if A is primitive, then it is false that A must have a positive diagonal element.

E4.4 Example row-stochastic matrices and associated digraph. Consider the row-stochastic matrices

A1 =
1

2




0 0 1 1
1 0 1 0
0 1 0 1
1 1 0 0


 , A2 =

1

2




1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1


 , and A3 =

1

2




1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1


 .

(i) Draw the digraphs G1, G2 and G3 associated with these three matrices.

Using only the original de�nitions and without relying on the characterizations in Theorems 4.3 and 4.7, show

that:

(ii) the matrices A1, A2 and A3 are irreducible and primitive,

(iii) the digraphs G1, G2 and G3 are strongly connected and aperiodic, and

(iv) the averaging algorithm de�ned by A2 converges in a �nite number of steps.

E4.5 Primitive matrices are irreducible. Prove Lemma 2.11, that is, show that a primitive matrix is irreducible.

Hint: You are allowed to use Theorem 4.3.

E4.6 Yet another equivalent de�nition of irreducibility. Consider a non-negative matrix A of dimension n.

From Theorem 4.3, we know that A is irreducible if and only if

(i) there does not exist a permutation P ∈ {0, 1}n×n and 1 ≤ r ≤ n− 1 such that

PAPT =

[
Br×r Cr×(n−r)

0(n−r)×r D(n−r)×(n−r)

]
.

Consider now the following property of A:

(ii) for any non-negative vector y ∈ Rn≥0 with 0 < k < n strictly positive components, the vector (In+A)y
has at least k + 1 strictly positive components.

Prove that statement (i) implies statement (ii).
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E4.7 An example reducible or irreducible matrix. Consider the binary matrix:

A =




0 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 0 0 0 1
1 0 0 1 0



.

Prove that A is irreducible or prove that A is reducible by providing a permutation matrix P that transforms

A into an upper block-triangular matrix, i.e., PTAP =

[
? ?
0 ?

]
.

E4.8 The exponent of a primitive matrix.

(i) Let G be the digraph with nodes {1, . . . , 3} and edges {(1, 2), (2, 1), (2, 3), (3, 1)}. Explain if and why

G is strongly connected and aperiodic.

(ii) Recall a non-negative matrix A is primitive if there exists a number k such that Ak > 0; the smallest

such number k is called the exponent of the primitive matrix A. Do one of the following:

a) prove that the exponent of a primitive matrix A ∈ Rn×n is less than or equal to n, or

b) provide a counterexample.

E4.9 Bounds on the spectral radius of irreducible non-negative matrices. For a non-negative matrix A,

complete the proof of Theorem 4.9(i), that is, show that

(i) min(A1n) ≤ ρ(A) and, therefore,

min(A1n) ≤ ρ(A) ≤ max(A1n).

Next, show that

(ii) if A is irreducible and min(A1n) < max(A1n), then

min(A1n) < ρ(A) < max(A1n).

E4.10 Eigenvalue shifting for stochastic matrices. Let A ∈ Rn×n be an irreducible row-stochastic matrix. Let

E be a diagonal matrix with diagonal elements Eii ∈ {0, 1}, with at least one diagonal element equal to zero.

Show that AE and EA are convergent.

E4.11 Normalization of non-negative irreducible matrices. Consider a strongly connected weighted digraph

G with n nodes and with an irreducible adjacency matrix A ∈ Rn×n. The matrix A is not necessarily

row-stochastic. Find a positive vector v ∈ Rn so that the normalized matrix

P =
1

ρ(A)
(diag(v))−1Adiag(v)

is non-negative, irreducible, and row-stochastic.

E4.12 Characterization of indecomposablematrices. Following (Wolfowitz, 1963), we say a non-negative matrix

A is indecomposable if its associated digraph contains a globally reachable node. Generalizing the proof of

Theorem 4.7, show that the following statements are equivalent:

(i) A is indecomposable and the subgraph of globally reachable nodes is aperiodic, and

(ii) there exists an index h ∈ N such that Ah has a positive column.

E4.13 The Frobenius number. Prove Lemma 4.8.

Hint: Read up on the Frobenius number in (Owens, 2003).
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E4.14 Leslie population model. The Leslie model is used in population ecology to model the changes in a

population of organisms over a period of time; see the original reference (Leslie, 1945) and a comprehensive

text (Caswell, 2006). In this model, the population is divided into n groups based on age classes; the indices

i are ordered increasingly with the age, so that i = 1 is the class of the newborns. The variable xi(k),

i ∈ {1, . . . , n}, denotes the number of individuals in the age class i at time k; at every time step k the xi(k)
individuals

• produce a number αixi(k) of o�springs (i.e., individuals belonging to the �rst age class), where αi ≥ 0
is a fecundity rate, and

• progress to the next age class with a survival rate βi ∈ [0, 1].

If x(k) denotes the vector of individuals at time k, the Leslie population model reads

x(k + 1) = Ax(k) =




α1 α2 . . . αn−1 αn
β1 0 . . . 0 0

0 β2
. . .

. . . 0
...

. . .
. . .

. . .
...

0 0 . . . βn−1 0



x(k), (E4.1)

where A is referred to as the Leslie matrix. Consider the following two independent sets of questions. First,

assume αi > 0 for all i ∈ {1, . . . , n} and 0 < βi ≤ 1 for all i ∈ {1, . . . , n− 1}.

(i) Prove that the matrix A is primitive.

(ii) Let pi(k) = xi(k)∑n
i=1 xi(k)

denote the percentage of the total population in class i at time k. Call p(k) the

population distribution at time k. Compute limk→+∞ p(k) as a function of the spectral radius ρ(A) and

the parameters (αi, βi), i ∈ {1, . . . , n}.
Hint: Obtain a recursive expression for the components of the right dominant eigenvector of A

(iii) Assume βi = β > 0 and αi = β
n for i ∈ {1, . . . , n}. What percentage of the total population belongs to

the eldest class asymptotically, that is, what is limk→∞ pn(k)?

(iv) Find a su�cient condition on the parameters (αi, βi), i ∈ {1, . . . , n}, so that the population will

eventually become extinct.

Second, assume αi ≥ 0 for i ∈ {1, . . . , n} and 0 ≤ βi ≤ 1 for all i ∈ {1, . . . , n− 1}.

(v) Find a necessary and su�cient condition on the parameters α1, . . . , αn, and β1, . . . , βn−1, so that the

Leslie matrix A is irreducible.

(vi) For an irreducible Leslie matrix (as in the previous point (v)), �nd a su�cient condition on the parameters

(αi, βi), i ∈ {1, . . . , n}, that ensures that the population will not go extinct.

E4.15 Swiss railroads: continued. From Exercise E3.7, consider the �ctitious railroad map of Switzerland given in

Figure E3.1. Write the unweighted adjacency matrix A of this transportation network and, relying upon A
and its powers, answer the following questions:

(i) what is the number of links of the shortest path connecting St. Gallen to Zermatt?

(ii) is it possible to go from Bern to Chur using 4 links? And 5?

(iii) how many di�erent routes, with strictly less then 9 links and possibly visiting the same station more

than once, start from Zürich and end in Lausanne?
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E4.16 Tridiagonal Toeplitz matrices. An n× n matrix A is tridiagonal Toeplitz if there exist scalar numbers a, b,
and c, with a 6= 0 and c 6= 0 such that

A =




b a 0 . . . 0
c b a . . . 0
...

. . .
. . .

. . .
...

0 . . . c b a
0 . . . 0 c b



.

Show that the eigenvalues and right eigenvectors of a tridiagonal Toeplitz A are, for j ∈ {1, . . . , n},

λj = b+ 2a
√
c/a cos

( jπ

n+ 1

)
, and vj =




(c/a)1/2 sin(1jπ/(n+ 1))
(c/a)2/2 sin(2jπ/(n+ 1))

...
(c/a)n/2 sin(njπ/(n+ 1))


 .

E4.17 Circulant matrices. A matrix C ∈ Cn×n is circulant if there exists scalar numbers c0, . . . , cn−1 such that

C =




c0 c1 . . . cn−1
cn−1 c0 . . . cn−2
...

. . .
. . .

...
c1 c2 . . . c0


 .

In other words, a circulant matrix is fully speci�ed by its �rst row; the remaining row of C are cyclic

permutations of the �rst row. A circulant matrix is Toeplitz. Show that

(i) the eigenvalues and eigenvectors C are, for j ∈ {0, . . . , n− 1},

λj = c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j , and vj =




1
ωj
...

ωn−1j


 ,

where ωj = exp
(2jπi

n

)
, j ∈ {0, . . . , n− 1}, are the nth complex roots of the number 1, and i =

√
−1.

(ii) for n even, κ ∈ R, and (c0, c1, . . . , cn−1) = (1 − 2κ, κ, 0, . . . , 0, κ), the eigenvalues are, for j ∈
{1, . . . , n},

λj = 2κ cos
2π(j − 1)

n
+ (1− 2κ).

Note: Circulant matrices enjoy numerous properties; e.g., if C1 and C2 are circulant, so are CT
1 , C1 + C2 and

C1C2. Additional properties are discussed for example by Davis (1979).

E4.18 Adjacency spectrumof basic graphs. Given the basic graphs in Example 4.1 and the properties of tridiagonal

Toeplitz and circulant matrices in Exercises E4.16 and E4.17, prove the statements in Table 4.1. In other words,

show that, for n ≥ 2,

(i) for the path graph Pn, the adjacency matrix is Toeplitz tridiagonal and the adjacency spectrum is

{2 cos(πi/(n+ 1)) | i ∈ {1, . . . , n}};
(ii) for the cycle graphCn, the adjacency matrix is circulant and the adjacency spectrum is {2 cos(2πi/n)) | i ∈
{1, . . . , n}};
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(iii) for the star graph Sn, the adjacency matrix is e1e−1 + e−1e1, where e−i = 1n − ei, and the adjacency

spectrum is {
√
n− 1, 0, . . . , 0,−

√
n− 1};

(iv) for the complete graph Kn, the adjacency matrix is 1n1T
n − In, and the adjacency spectrum is {(n−

1),−1, . . . ,−1}; and

(v) for the complete bipartite graph Kn,m, the adjacency matrix is

[
0n×n 1n×m
1m×n 0m×m

]
and the adjacency

spectrum {√nm, 0, . . . , 0,−√nm}.
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Chapter5

Discrete-time Averaging Systems

After discussing matrix and graph theory, we are ready to go back to the averaging model

Figure 5.1: Opinion averaging is believed

to be a key mechanism in social in�uence

network.

introduced in Chapter 1. Recall that the discrete-time averaging

systems, as given in equation (1.2), is

x(k + 1) = Ax(k), (5.1)

where the matrix A = [aij ] is row-stochastic. Also recall from

Chapter 1 the study of (i) opinion dynamics in social in�uence net-

works (given an arbitrary stochastic matrix, what do its powers

converge to?) and (ii) averaging algorithms in wireless sensor net-

works (design an algorithm to compute the average of a collection

numbers located at distinct nodes). Other related examples from the

appendices of Chapter 1 include the study of robotic networks in

cyclic pursuit and balancing and of more general design problems

in wireless sensor networks.

This chapter presents some convergence results for the averaging model 5.1 de�ned by stochastic

matrices; we discuss primitive matrices and reducible matrices with a single or multiple sinks. We then the

equal-neighbor and the Metropolis–Hastings models of row-stochastic matrices. Finally, we present some

centrality notions from network science.

5.1 Averaging systems achieving consensus

We now bring together Perron-Frobenius theory with algebraic graph theory to provide necessary and

su�cient conditions for an averaging system to achieve consensus.

Recall that a su�cient condition for convergence of the averaging model (5.1) is given in Corollary 2.15:

if A is primitive, then each solution converges to consensus asymptotically. The following result is

more general and also amounts to an extension to a class of reducible matrices of the Perron-Frobenius

Theorem 2.12.
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64 Chapter 5. Discrete-time Averaging Systems

Theorem 5.1 (Consensus for row-stochastic matrices with a globally-reachable aperiodic strong-
ly-connected component). Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1,

(A2) A is semi-convergent and limk→∞A
k = 1nwT, for some w ∈ Rn, w ≥ 0, and 1T

nw = 1,

(A3) G contains a globally reachable node and the subgraph of globally reachable nodes is aperiodic.

If any, and therefore all, of the previous conditions are satis�ed, then the matrix A is said to be indecomposable

and the following properties hold:

(i) w ≥ 0 is the left dominant eigenvector of A and wi > 0 if and only if node i is globally reachable;

(ii) the solution to the averaging model (5.1) x(k + 1) = Ax(k) satis�es

lim
k→∞

x(k) =
(
wTx(0)

)
1n;

(iii) if additionally A is doubly-stochastic, then w = 1
n1n (because AT1n = 1n and 1

n1T
n1n = 1) so that

lim
k→∞

x(k) =
1T
nx(0)

n
1n = average

(
x(0)

)
1n.

An example indecomposable row-stochastic matrix with its associated digraph and spectrum is illus-

trated in Figure 5.2.

(a) A row-stochastic matrix; each row

contains equal entries summing to 1.

(b) The corresponding digraph has an

aperiodic subgraph of globally reachable

nodes.

1

(c) The spectrum of the adjacency matrix

includes a dominant eigenvalue.

Figure 5.2: An example indecomposable row-stochastic matrix, its associated digraph consistent with Theorem 5.1(A2),

and its spectrum consistent with Theorem 5.1(A1)

Note: The implication (A3) =⇒ (ii) amounts to a result in which the structure of the network determines

its function, i.e., the asymptotic behavior of the averaging system.
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5.1. Averaging systems achieving consensus 65

Note: as discussed in Section 2.3, statement (ii) implies that the limiting value is a weighted average

of the initial conditions with relative weights given by the convex combination coe�cients w1, . . . , wn.

Note that w > 0 if and only if the digraph associated to A is strongly connected. In digraphs that are not

strongly connected, the initial values xi(0) of all nodes i which are not globally reachable have no e�ect

on the �nal convergence value. In a social in�uence network, the coe�cient wi is regarded as the “social

in�uence” of agent i. We illustrate this concept for the famous Krackhardt’s advice network (Krackhardt,

1987); see Figure 5.3.

Figure 5.3: Krackhardt’s advice network (Krackhardt, 1987) describing the interactions among 21 individuals. The

social in�uence of each node is illustrated by its gray level. the adjacency matrix of this digraph is indecomposable,

i.e., the digraph contains a subgraph of globally reachable nodes that is aperiodic.

Note: to clarify statement (A3) it is useful to review some properties of globally reachable nodes. We

�rst recall a useful property from Lemma 3.1: G has a globally reachable node if and only if its condensation

digraph has a globally reachable node (i.e., the condensation of G has a single sink). Second, it is easy to

see that the set of globally reachable nodes induces a strongly connected component of G.

Proof of Theorem 5.1. The statement (A1) =⇒ (A2) is precisely Theorem 2.14 with λ = 1 (whose proof is

given in Section 2.3.4).

Next, we prove that (A2) =⇒ (A3). The assumption 1T
nw = 1 implies that at least one element, say the

jth element, of w is positive. Because limk→∞A
k = 1nwT

, we know that the jth column of limk→∞A
k

has all-positive elements. Thus, for su�ciently large K , the jth column of AK has all-positive elements, so

there is a path of length K from every node to the jth node. Thus, the jth node is globally reachable.

Now, we prove by contradiction that the strongly-connected component of globally reachable nodes is

aperiodic: suppose this component is periodic with period p > 1. Pick j andK as in the previous paragraph

so that there is a path of length K from the jth node to itself (a cycle of length K). Similarly, there must

also be a path of length K + 1 from the jth node to itself (a cycle of length K + 1). Both cycles belong to

the sub-graph of globally reachable nodes, since all the nodes on the cycles are globally reachable via the

jth node. From the de�nition of period, both K and K + 1 must be divisible by p. This is not possible if

p > 1, and is a contradiction. Hence, (A2) =⇒ (A3).

Finally, we prove the implications (A3) =⇒ (A1) and (A2). By assumption the condensation digraph

of A contains a sink that is globally reachable, hence it is unique. Assuming 0 < n1 < n nodes are

globally reachable, a permutation of rows and columns (see Exercise E3.1), brings the matrix A into the
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66 Chapter 5. Discrete-time Averaging Systems

lower-triangular form

A =

[
A11 0n1×n2

A21 A22

]
, (5.2)

where A11 ∈ Rn1×n1
, A22 ∈ Rn2×n2

, with n1 + n2 = n. The state vector x is correspondingly partitioned

into x1 ∈ Rn1
and x2 ∈ Rn2

so that

x1(k + 1) = A11x1(k), (5.3)

x2(k + 1) = A21x1(k) +A22x2(k). (5.4)

In other words, x1 and A11 are the variables and the matrix corresponding to the sink. Because the sink,

as a subgraph of G, is strongly connected and aperiodic, A11 is primitive and row-stochastic and, by

Corollary 2.15,

lim
k→∞

Ak11 = 1n1w
T
1 ,

where w1 > 0 is the left eigenvector with eigenvalue 1 for A11 normalized so that 1T
n1
w1 = 1.

We next analyze the matrix A22 as follows. Recall from Corollary 4.11 that an irreducible row-

substochastic matrix has spectral radius less than 1. Now, because A21 cannot be zero (otherwise the

sink would not be globally reachable), the matrix A22 is row-substochastic. Moreover, (after appropriately

permuting rows and columns of A22) it can be observed that A22 is a lower-triangular matrix such that

each diagonal block is row-substochastic and irreducible (corresponding to each node in the condensation

digraph). Therefore, we know ρ(A22) < 1 and, in turn, In2−A22 is invertible. BecauseA11 is primitive and

ρ(A22) < 1, A is semi-convergent and limk→∞ x2(k) exists. This establishes that (A3) =⇒ (A1). Taking

the limit as k →∞ in equation (5.4), some straightforward algebra shows that

lim
k→∞

x2(k) = (In2 −A22)−1A21

(
lim
k→∞

x1(k)
)

= (In2 −A22)−1A21 (1n1w
T
1 ) x1(0).

From the row-stochasticity ofA, we knowA211n1 +A221n2 = 1n2 and hence (In2−A22)−1A211n1 = 1n2 .

Collecting these results, we write

lim
k→∞

[
A11 0n1×n2

A21 A22

]k
=

[
1n1w

T
1 0n1×n2

1n2w
T
1 0n2×n2

]
= 1n

[
w1

0n2

]T
.

This establishes that (A3) =⇒ (A2) and (A1) =⇒ (i). The implications (A2) =⇒ (ii) and (A2) =⇒ (iii) are

straightforward. �

5.2 Averaging with reducible matrices with multiple sinks

In this section we now consider the general case of digraphs that do not contain globally reachable nodes,

that is, digraphs whose condensation digraph has multiple sinks. Such an example digraph is the famous

Sampson Monastery network (Sampson, 1969); see Figure 5.4.

In the following statement we say that a node is connected with a sink of a digraph if there exists a

directed path from the node to any node in the sink.
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Figure 5.4: This image illustrates the Sampson Monastery dataset (Sampson, 1969). This dataset describes the of social

relations among a set of 18 monk-novitiates in an isolated contemporary American monastery. This digraph contains

two sinks in its condensation.

Theorem 5.2 (Convergence for row-stochastic matrices withmultiple aperiodic sinks). LetA be a
row-stochastic matrix, letG be its associated digraph, and letM ≥ 2 be the number of sinks in the condensation
digraph C(G). If each of theM sinks is aperiodic, then

(i) the semi-simple eigenvalue ρ(A) = 1 has multiplicity equalM and is strictly larger than the magnitude
of all other eigenvalues, hence A is semi-convergent,

(ii) there existM left eigenvectors of A, denoted by wm ∈ Rn, for m ∈ {1, . . . ,M}, with the properties
that: wm ≥ 0, wm1 + · · ·+ wmn = 1 and wmi is positive if and only if node i belongs to them-th sink,

(iii) the solution to the averaging model x(k + 1) = Ax(k) with initial condition x(0) satis�es

lim
k→∞

xi(k) =





(wm)Tx(0), if node i belongs to them-th sink,
(wm)Tx(0), if node i is connected with them-th sink and no other sink,
M∑

m=1

zi,m
(
(wm)Tx(0)

)
, if node i is connected to more than one sink,

where, for each node i connected to more than one sink, the coe�cients zi,m,m ∈ {1, . . . , S}, are convex
combination coe�cients and are strictly positive if and only if there exists a directed path from node i to
the sinkm.

Proof. Rather than treating the general case with heavy notation, we work out a signi�cant example with

the key ideas of the general proof, and refer the reader to (DeMarzo et al., 2003, Theorem 10) for the details.

Assume the condensation digraph of A is composed of three nodes, two of which are sinks, as in the side

�gure.

x2x1

x3
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Therefore, after a permutation of rows and columns (see Exercise E3.1), A can be written as

A =



A11 0 0
0 A22 0
A31 A32 A33




and the state vector x is correspondingly partitioned into the vectors x1, x2 and x3. The state equations are:

x1(k + 1) = A11x1(k), (5.5)

x2(k + 1) = A22x2(k), (5.6)

x3(k + 1) = A31x1(k) +A32x2(k) +A33x3(k). (5.7)

By the properties of the condensation digraph and the assumption of aperiodicity of the sinks, the

digraphs associated to the row-stochastic matrices A11 and A22 are strongly connected and aperiodic.

Therefore, we immediately conclude that

lim
k→∞

x1(k) =
(
wT

1 x1(0)
)
1n1 and lim

k→∞
x2(k) =

(
wT

2 x2(0)
)
1n2 ,

where w1 (resp. w2) is the left eigenvector of the eigenvalue 1 for matrix A11 (resp. A22) with the usual

normalization 1T
n1
w1 = 1T

n2
w2 = 1.

Regarding the matrix A33, the same discussion as in the previous proof leads to ρ(A33) < 1 and, in

turn, to the statement that In3 −A33 is nonsingular. By taking the limit as k →∞ in equation (5.7), some

straightforward algebra shows that

lim
k→∞

x3(k) = (In3 −A33)−1
(
A31 lim

k→∞
x1(k) +A32 lim

k→∞
x2(k)

)

= (wT
1 x1(0))

(
(In3 −A33)−1A311n1

)
+ (wT

2 x2(0))
(
(In3 −A33)−1A321n2

)
.

Moreover, because A is row-stochastic, we know

A311n1 +A321n2 +A331n3 = 1n3 ,

and, using again the fact that In3 −A33 is nonsingular,

1n3 = (In3 −A33)−1A311n1 + (In3 −A33)−1A321n2 .

This concludes our proof of Theorem 5.2 for the simpli�ed caseC(G) having three nodes and two sinks. �

Note that: convergence does not occur to consensus (not all components of the state are equal) and

the �nal value of all nodes is independent of the initial values at nodes which are not in the sinks of the

condensation digraph.

We conclude this section with a �gure providing a summary of the asymptotic behavior of discrete-time

averaging systems and its relationships with properties of matrices and graphs; see Figure 5.5.

5.3 Appendix: Design of graphs weights

In this section we describe two widely-adopted algorithms to design weights for unweighted graphs.
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Properties of row-stochastic matrix A Properties of associated digraph

Converges to consensus
on the average

Properties of x(k + 1) = Ax(k)

Does not converge

Converges to consensus
depending on all nodes

Converges to consensus
that does not depend
on all the nodes

Converges
not to consensus

Primitive

Irreducible
but not primitive

Strongly connected
and periodic

Strongly connected
and aperiodic

Strongly connected,
aperiodic and
weight-balanced

One aperiodic
sink component

Multiple aperiodic
sink components

Doubly stochastic

and primitive

Indecomposable

Figure 5.5: Corresponding properties for the discrete-time averaging dynamical system x(k + 1) = Ax(k), the

row-stochastic matrix A and the associated weighted digraph.

5.3.1 The equal-neighbor model

LetG be a connected undirected graph, binary adjacency matrixA, and degree matrixD = diag(d1, . . . , dn),

where d1, . . . , dn are the node degrees. De�ne the equal-neighbor matrix

Aequal-neighbor = D−1A. (5.8)

For example, consider the graph in Figure 5.6, for which we have:

A =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


 , D =




1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


 =⇒ Aequal-neighbor =




0 1 0 0
1/3 0 1/3 1/3
0 1/2 0 1/2
0 1/2 1/2 0


 . (5.9)

3

1 2

4

1

1/3
1/3

1/3

1/2

1/2

1/2
1/2

3

1 2

4

Figure 5.6: The equal-neighbor matrix

The following result is for the more general setting of weighted undirected graphs.

Lemma 5.3 (The equal-neighbor row-stochastic matrix). Let G be a connected weighted graph with
weighted adjacency matrix A and weighted degrees d1, . . . , dn. For the equal-neighbor matrix Aequal-neighbor

de�ned as in (5.8),
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(i) Aequal-neighbor is well-de�ned, row-stochastic, and irreducible;

(ii) the left dominant eigenvector of Aequal-neighbor, normalized to have unit sum, is

wequal-neighbor =
1∑n
i=1 di



d1

...
dn


 ,

so that, assuming G is aperiodic, the solution to the averaging model (5.1) x(k + 1) = Ax(k) satis�es

lim
k→∞

xi(k) =
1∑n
i=1 di

n∑

i=1

dixi(0); (5.10)

(iii) Aequal-neighbor is doubly-stochastic if and only if G is regular (i.e., all nodes have the same degree).

For example, for the equal-neighbor matrix in equation (5.9) and Figure 5.6, one can easily verify that

the dominant eigenvector is

[
1 3 2 2

]T
/8.

Proof of Lemma 5.3. Because G is connected, each node degree is strictly positive, the degree matrix is

invertible, and Aequal-neighbor is well-de�ned. Because G is connected and because the zero/positive pattern

of Aequal-neighbor is the same as that of A, we know Aequal-neighbor is irreducible. Next, we note a simple fact:

any v ∈ Rn with non-zero entries satis�es diag(v)−1v = 1n. Let d = A1n denote the vector of node

degrees so that D = diag(d). Statement (i) follows from

Aequal-neighbor1n = diag(d)−1(A1n) = diag(d)−1d = 1n.

Statement (ii) follows from

AT
equal-neighbor

wequal-neighbor = Adiag(d)−1
( 1

1T
nd
d
)

=
1

1T
nd
A1n =

1

1T
nd
d = wequal-neighbor,

where we used the fact that A is symmetric. Statement (iii) is an immediate consequence of (ii). �

We conclude this section by reviewing the distributed averaging algorithm introduced in Section 1.2.

Example 5.4 (Averaging in wireless sensor networks). As in equation (1.1), assume each node of a

wireless sensor network contains a value xi and repeatedly executes:

xi(k + 1) := average
(
xi(k), {xj(k), for all neighbor nodes j}

)
, (5.11)

or, more explicitely, xi(k + 1) = 1
1+di

(xi(k) +
∑

j∈N (i) xj(k)). Algorithm (5.11) can be written as:

x(k + 1) =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


x(k) =: Awsnx(k),
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where the matrix Awsn is de�ned as in Section 1.2 and where it is easy to verify that

Awsn = (D + I4)−1(A+ I4).

Clearly, A + I4 is the adjacency matrix of a graph that is equal to the graph in �gure with the addition

of a self-loop at each node; this new graph has degree matrix D + I4. Therefore, the matrix Awsn is an

equal-neighbor matrix for the graph with added self-loops. We illustrate this observation in Figure 5.7.

From Lemma 5.3 we know that the left dominant eigenvector of Awsn is

3

1 2

4

1/2

1/3

1/41/2

1/41/4

1/4

1/3

1/3

1/3 1/3

1/3

3

1 2

4

Figure 5.7: The equal-neighbor matrix for an undirected graph with added self-loops

wequal-neighbor+sel�oops =
1

n+
∑

i di



d1 + 1
...

dn + 1


 =




1/6
1/3
1/4
1/4


 ,

because (d1, d2, d3, d4) = (1, 3, 2, 2) and n = 4. This result is consistent with the numerically-computed

eigenvector in Example 2.5. •

5.3.2 The Metropolis–Hastings model

Next, we suggest a second way of assigning weights to a graph for the purpose of designing an averaging

algorithm (that achieves average consensus). Given an undirected unweighted graph G with with edge set

E and degrees d1, . . . , dn, de�ne the weighted adjacency matrix AMetropolis-Hastings, called the Metropolis–
Hastings matrix, by

(AMetropolis-Hastings)ij =





1

1 + max{di, dj}
, if {i, j} ∈ E and i 6= j,

1−
∑

{i,h}∈E

(AMetropolis-Hastings)ih, if i = j,

0, otherwise.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



72 Chapter 5. Discrete-time Averaging Systems

In our example,

A =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


 , D =




1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


 =⇒ AMetropolis-Hastings =




3/4 1/4 0 0
1/4 1/4 1/4 1/4
0 1/4 5/12 1/3
0 1/4 1/3 5/12


 .

3

1 2

4

3/4

1/4

1/4

1/3

1/4 1/4

5/12

5/12

1 2

3 4

Figure 5.8: The Metropolis–Hastings model

One can verify that the Metropolis–Hastings weights have the following properties:

(i) (AMetropolis-Hastings)ij > 0 if {i, j} ∈ E, (AMetropolis-Hastings)ii > 0 for all i ∈ {1, . . . , n}, and

(AMetropolis-Hastings)ij = 0 else;

(ii) AMetropolis-Hastings is symmetric and doubly-stochastic;

(iii) AMetropolis-Hastings is primitive if and only if G is connected; and

(iv) the averaging model (5.1) x(k + 1) = Ax(k) achieves average consensus.

5.4 Appendix: Design and computation of centrality measures

In network science it is of interest to determine the relative importance of a node in a network. There

are many ways to do so and they are referred to as centrality measures or centrality scores. This section

presents six centrality notions based on the adjacency matrix. We treat the general case of a weighted

digraph G with weighted adjacency matrix A (warning: many articles in the literature deal with undirected

graphs only.) The matrix A is non-negative, but not necessarily row stochastic. From the Perron-Frobenius

theory, recall the following facts:

(i) if G is strongly connected, then the spectral radius ρ(A) is an eigenvalue of maximum magnitude

and its corresponding left eigenvector can be selected to be strictly positive and with unit sum (see

Theorem 2.12); and

(ii) if G contains a globally reachable node, then the spectral radius ρ(A) is an eigenvalue of maxi-

mum magnitude and its corresponding left eigenvector is non-negative and has positive entries

corresponding to each globally reachable node (see Theorem 5.1).
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Degree centrality For an arbitrary weighted digraph G, the degree centrality cdegree(i) of node i is its

in-degree:

cdegree(i) = din(i) =
n∑

j=1

aji, (5.12)

that is, the number of in-neighbors (if G is unweighted) or the sum of the weights of the incoming edges.

Degree centrality is relevant, for example, in (typically unweighted) citation networks whereby articles are

ranked on the basis of their citation records. (Warning: the notion that a high citation count is an indicator

of quality is clearly a fallacy.)

Eigenvector centrality One problem with degree centrality is that each in-edge has unit count, even

if the in-neighbor has negligible importance. To remedy this potential drawback, one could de�ne the

importance of a node to be proportional to the weighted sum of the importance of its in-neighbors

(see (Bonacich, 1972b) for an early reference). This line of reasoning leads to the following de�nition.

For a weighted digraph G with globally reachable nodes (or for an undirected graph that is connected),

de�ne the eigenvector centrality vector, denoted by cev, to be the left dominant eigenvector of the adjacency

matrix A associated with the dominant eigenvalue and normalized to satisfy 1T
ncev = 1.

Note that the eigenvector centrality satis�es

ATcev =
1

α
cev ⇐⇒ cev(i) = α

n∑

j=1

ajicev(j). (5.13)

where α = 1
ρ(A) is the only possible choice of scalar coe�cient in equation (5.13) ensuring that there exists

a unique solution and that the solution, denoted cev, is strictly positive in a strongly connected digraph

and non-negative in a digraph with globally reachable nodes. Note that this connectivity property may be

restrictive in some cases.

Figure 5.9: Comparing degree centrality versus eigenvector centrality: the node with maximum in-degree has zero

eigenvector centrality in this graph

Katz centrality For a weighted digraph G, pick an attenuation factor α < 1/ρ(A) and de�ne the Katz
centrality vector (see (Katz, 1953)), denoted by cK, by the following equivalent formulations:

cK(i) = α

n∑

j=1

aji(cK(j) + 1), (5.14)

or

cK(i) =
∞∑

k=1

n∑

j=1

αk(Ak)ji. (5.15)
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Katz centrality has therefore two interpretations:

(i) the importance of a node is an attenuated sum of the importance and of the number of the in-neighbors

– note indeed how equation (5.14) is a combination of equations (5.12) and (5.13), and

(ii) the importance of a node is α times number of length-1 paths into i (i.e., the in-degree) plus α2
times

the number of length-2 paths into i, etc. (From Lemma 4.2, recall that, for an unweighted digraph,

(Ak)ji is equal to the number of directed paths of length k from j to i.)

Note how, for α < 1/ρ(A), equation (5.14) is well-posed and equivalent to

cK = αAT(cK + 1n)

⇐⇒ cK + 1n = αAT(cK + 1n) + 1n

⇐⇒ (In − αAT)(cK + 1n) = 1n

⇐⇒ cK = (In − αAT)−11n − 1n (5.16)

⇐⇒ cK =

∞∑

k=1

αk(AT)k1n,

where we used the identity (In − A)−1 =
∑∞

k=0Ak valid for any matrix A with ρ(A) < 1; see Exer-

cise E2.12.

There are two simple ways to compute the Katz centrality. According to equation (5.16), for limited size

problems, one can invert the matrix (In − αAT). Alternatively, one can show that the following iteration

converges to the correct value: c+
K

:= αAT(cK + 1n).

Figure 5.10: The pattern in �gure displays the so-called

hyperlink matrix, i.e., the transpose of the adjacency ma-

trix, for a collection of websites at the Lincoln University

in New Zealand from the year 2006. Light blue points are

nonzero entries of the adjacency matrix; dark blue points

are outgoing links toward dangling nodes. Each empty

column corresponds to a webpage without any outgoing

link, that is, to a so-called dangling node. This network

has 3756 nodes with 31,718 links. A fairly large portion

of the nodes are dangling nodes: in this example, there

are 3255 dangling nodes, which is over 85% of the total.

Image courtesy of Roberto Tempo from data described

in (Ishii and Tempo, 2014).

PageRank centrality For a weighted digraph G with row-stochastic adjacency matrix (i.e., unit out-

degree for each node), pick a convex combination coe�cient α ∈ ]0, 1[ and de�ne the PageRank centrality
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vector, denoted by cpr, as the unique positive solution to

cpr(i) = α
n∑

j=1

ajicpr(j) +
1− α
n

, (5.17)

or, equivalently, to

cpr = Mcpr, 1T
ncpr = 1, where M = αAT +

1− α
n

1n1T
n . (5.18)

(To establish the equivalence between these two de�nitions, the only non-trivial step is to notice that if cpr

solves equation (5.17), then it must satisfy 1T
ncpr = 1.)

Note that, for arbitrary unweighted digraphs and binary adjacency matricesA0,1, it is natural to compute

the PageRank vector withA = D−1
out
A0,1. We refer to (Ishii and Tempo, 2014; Gleich, 2015) for the important

interpretation of the PageRank score as the stationary distribution of the so-called random surfer of an

hyperlinked document network — it is under this disguise that the PageRank score was conceived by the

Google co-founders and a corresponding algorithm led to the establishment of the Google search engine. In

the Google problem it is customary to set α ≈ .85.

Closeness and betweenness centrality (based on shortest paths) Degree, eigenvector, Katz and

PageRank centrality are presented using the adjacency matrix. Next we present two centrality measures

based on the notions of shortest path and geodesic distance; these two notions belong to the class of radial
and medial centrality measures (Borgatti and Everett, 2006).

We start by introducing some additional graph theory. For a weighted digraph with n nodes, the length
of a directed path is the sum of the weights of edges in the directed path. For i, j ∈ {1, . . . , n}, a shortest
path from a node i to a node j is a directed path of smallest length. Note: it is easy to construct examples

with multiple shortest paths, so that the shortest path is not unique. The geodesic distance di→j from node i
to node j is the length of a shortest path from node i to node j; we also stipulate that the geodesic distance

di→j takes the value zero if i = j and is in�nite if there is no path from i to j. Note: in general di→j 6= dj→i.
Finally, for i, j, k ∈ {1, . . . , n}, we let gi→k→j denote the number of shortest paths from a node i to a node

j that pass through node k.

For a strongly-connected weighted digraph, the closeness of node i ∈ {1, . . . , n} is the inverse sum

over the geodesic distances di→j from node i to all other nodes j ∈ {1, . . . , n}, that is:

ccloseness(i) =
1∑n

j=1 di→j
. (5.19)

For a strongly-connected weighted digraph, the betweenness of node i ∈ {1, . . . , n} is the fraction of

all shortest paths gk→i→j from any node k to any other node j passing through node i, that is:

cbetweenness(i) =

∑n
j,k=1 gk→i→j∑n

h=1

∑n
j,k=1 gk→h→j

. (5.20)
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Summary To conclude this section, in Table 5.1, we summarize the various centrality de�nitions for a

weighted directed graph.

Measure De�nition Assumptions

degree centrality cdegree = AT1n

eigenvector centrality cev = αATcev α =
1

ρ(A)
, G has a

globally reachable node

PageRank centrality cpr = αATcpr +
1− α
n

1n α < 1, A1n = 1n

Katz centrality cK = αAT(cK + 1n) α <
1

ρ(A)

closeness centrality ccloseness(i) =
1∑n

j=1 di→j
G strongly connected

betweenness centrality cbetweenness(i) =

∑n
j,k=1 gk→i→j∑n

h=1

∑n
j,k=1 gk→h→j

G strongly connected

Table 5.1: De�nitions of centrality measures for a weighted digraph G with adjacency matrix A

Figure 5.11 illustrates some centrality notions on a small instructive example due to Brandes (2006).

Note that a di�erent node is the most central one in each metric; this variability is naturally expected and

highlights the need to select a centrality notion relevant to the speci�c application of interest.

(a) degree centrality (b) eigenvector centrality

(c) closeness centrality (d) betweenness centrality

Figure 5.11: Degree, eigenvector, closeness, and betweenness centrality for an undirected unweighted graph. The

dark node is the most central node in the respective metric; a di�erent node is the most central one in each metric.

5.5 Historical notes and further reading

For references on social in�uence networks and opinion dynamics we refer to Chapter 1. An early reference

for Theorem 5.2 is (DeMarzo et al., 2003, Appendix C and, speci�cally, Theorem 10). An early reference to

the study of indecomposable stochastic matrices is (Wolfowitz, 1963).
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On the topic of computing row-stochastic matrices, we postpone to Chapter 10 the study of related

optimization problems.

A standard modern treatment of centrality notions is (Newman, 2010, Chapter 7); see also (Easley

and Kleinberg, 2010, Chapter 14) for an introductory discussion. We also refer to (Brandes and Erlebach,

2005) for a comprehensive review of network analysis metrics and related computational algorithms,

beyond centrality measures. Historically, centrality measures were originally studied in sociology, An

incomplete list of early references and historical reviews in sociology includes (Bavelas, 1950) on closeness

centrality, (Katz, 1953) on Katz centrality, (Freeman, 1977) on betweeness centrality, and (Bonacich, 1972a,b)

on eigenvector centrality. Kleinberg (1999) generalizes centrality notions to networks with hubs and

authorities; see Exercise E5.15.

PageRank is a centrality measure that has received tremendous recent attention due to the success of

the Google search engines; this notion was popularized by (Brin and Page, 1998; Page, 2001), but see also

the previous work (Friedkin, 1991) on total e�ective centrality and its relationship with PageRank (Friedkin

and Johnsen, 2014). We refer to (Ishii and Tempo, 2014; Gleich, 2015; Nesterov, 2012) for recent works on

PageRank and its multiple extentions and applications; we refer to (Ishii and Tempo, 2010; Zhao et al., 2013)

for randomized distributed algorithms for PageRank computation.
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5.6 Exercises

E5.1 A sample DeGroot panel. A conversation between 5 panelists is modeled according to the DeGroot model

by an averaging system x+ = Apanelx, where

Apanel =




0.15 0.15 0.1 0.2 0.4
0 0.55 0 0 0.45

0.3 0.05 0.05 0 0.6
0 0.4 0.1 0.5 0
0 0.3 0 0 0.7



.

Assuming that the panel has su�ciently long deliberations, answer the following:

(i) Draw the condensation of the associated digraph.

(ii) Do the panelists �nally agree on a common decision?

(iii) In the event of agreement, does the initial opinion of any panelists get rejected? If so, which ones?

(iv) Assume the panelists’ initial opinions are their self-appraisals (i.e., the self-weights a11, . . . , a55) and

compute the �nal opinion via elementary calculations.

E5.2 Three DeGroot panels. Recall the DeGroot model introduced in Chapter 1. Denote by xi(0) the initial

opinion of each individual, and xi(k) its updated opinion after k communications with its neighbors. Then

the vector of opinions evolves over time according to x(k + 1) = Ax(k) where the coe�cient aij ∈ [0, 1] is

the in�uence of the opinion of individual j on the update of the opinion of agent i, subject to the constraint∑
j aij = 1. Consider the following three scenarios:

(i) Everybody gives the same weight to the opinion of everybody else.

(ii) There is a distinct agent (suppose the agent with index i = 1) that weights equally the opinion of all the

others, and the remaining agents compute the mean between their opinion and the one of �rst agent.

(iii) All the agents compute the mean between their opinion and the one of the �rst agent. Agent 1 does not

change her opinion.

In each case, derive the averaging matrix A, show that the opinions converge asymptotically to a �nal opinion

vector, and characterize this �nal opinion vector.

E5.3 The equal-neighbor row-stochastic matrix for weighted directed graphs. LetG be a weighted digraph

with n nodes, weighted adjacency matrix A and weighted out-degree matrix Dout. De�ne the equal-neighbor
matrix

Aequal-neighbor = (In +Dout)
−1(In +A).

Show that

(i) Aequal-neighbor is row-stochastic;

(ii) Aequal-neighbor is primitive if and only if G is strongly connected; and

(iii) Aequal-neighbor is doubly-stochastic if G is weight-balanced and the weighted degree is constant for all

nodes (i.e., Dout = Din = dIn for some d ∈ R>0).

E5.4 Reversible primitive row-stochastic matrices. Let A be a primitive row-stochastic n× n matrix and w
be its left dominant eigenvector. The matrix A is reversible if

wiAij = Ajiwj , for all i, j ∈ {1, . . . , n}, (E5.1)

or, equivalently,

diag(w)A = AT diag(w).

Prove the following statements:
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(i) if A is reversible, then its associated digraph is undirected, that is, if (i, j) is an edge, then so is (j, i),

(ii) if A is reversible, then diag(w)1/2Adiag(w)−1/2 is symmetric and, hence, A has n real eigenvalues

and n eigenvectors, and

(iii) if A is an equal-neighbor matrix for an unweighted undirected graph, then A is reversible.

Recall that, for w = (w1, . . . , wn) > 0, the following de�nitions hold: diag(w)1/2 = diag(
√
w1, . . . ,

√
wn)

and diag(w)−1/2 = diag(1/
√
w1, . . . , 1/

√
wn).

E5.5 A stubborn agent. Pick α ∈ ]0, 1[, and consider the discrete-time averaging algorithm

x1(k + 1) = x1(k),

x2(k + 1) = αx1(k) + (1− α)x2(k).

Perform the following tasks:

(i) compute the matrix A representing this algorithm and verify it is row-stochastic,

(ii) compute the eigenvalues and eigenvectors of A,

(iii) draw the directed graph G representing this algorithm and discuss its connectivity properties,

(iv) compute the condensation digraph of G,

(v) compute the �nal value of this algorithm as a function of the initial values in two alternate ways:

a) invoking Exercise E2.10, and

b) invoking Theorem 5.1.

E5.6 Agents with self-con�dence levels. Consider 2 agents, labeled +1 and−1, described by the self-con�dence

levels s+1 and s−1. Assume s+1 ≥ 0, s−1 ≥ 0, and s+1 + s−1 = 1. For i ∈ {+1,−1}, de�ne

x+i := sixi + (1− si)x−i.

Perform the following tasks:

(i) compute the matrix A representating this algorithm and verify it is row-stochastic,

(ii) compute A2
,

(iii) compute the eigenvalues, the right eigenvectors, and the left eigenvectors of A,

(iv) compute the �nal value of this algorithm as a function of the initial values and of the self-con�dence

levels. Is it true that an agent with higher self-con�dence makes a larger contribution to the �nal value?

E5.7 Persistent disagreement and the Friedkin-Johnsenmodel of opinion dynamics (Friedkin and Johnsen,
1999). Let A be a row-stochastic matrix whose associated digraph describes an interpersonal in�uence network.

Let each individual possess an openness level λi ∈ [0, 1], i ∈ {1, . . . , n}, descring how open is the individual to

changing her initial opinion about a subject; set Λ = diag(λ1, . . . , λn). Consider the Friedkin-Johnsen model
of opinion dynamics

x(k + 1) = ΛAx(k) + (In − Λ)x(0). (E5.2)

In other words, in this model, each individual i exhibits an attachment (1− λi) to its initial opinion xi(0),

xi(k) represents the current opinion and xi(0) represents a prejudice by individual i. Consider the following

two assumptions:

(A1) at least one individual has a strictly positive attachment to its initial opinion, that is, λi < 1 for at least

one individual i; and

(A2) the interpersonal in�uence network contains directed paths from each individual with openness level

equal to 1 to an individual with openness level less than 1.
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Note that, if Assumption (A1) is not satis�ed and therefore Λ = In, then we recover the DeGroot opinion

dynamics model introduced in Section 1.1 and analyzed in this chapter. In what follows, let Assumption (A1)

hold.

(i) Show that the matrix ΛA is convergent if and only if Assumption (A2) holds.

Hint: Recall Corollary 4.11

Next, under Assumption (A2), perform the following tasks:

(ii) show that the matrix V = (In − ΛA)−1(In − Λ) is well-de�ned and row-stochastic,

Hint: Review Exercises E2.10 and E2.12
(iii) show that the limiting opinions satisfy limk→+∞ x(k) = V x(0),

(iv) write the n-dimensional Friedkin-Johnsen model (E5.2) as a 2n-dimensional averaging model x̄(k+1) =
Āx̄(k), for an appropriate row-stochastic matrix Ā ∈ R2n×2n

,

(v) show that A and V have the same left dominant eigenvector when Λ = λIn, for 0 < λ < 1,

(vi) compute the matrix V and state whether two agents will achieve consensus or mantain persistent

disagreement for the following pairs of matrices:

A1 =

[
1/2 1/2
1/2 1/2

]
, and Λ1 = diag(1/2, 1),

A2 =

[
1/2 1/2
1/2 1/2

]
, and Λ2 = diag(1/4, 3/4).

Note: Friedkin and Johnsen (1999, 2011) make the additional assumption that λi = 1− aii, for i ∈ {1, . . . , n};
this assumption couples the openness level with the interpersonal in�uences and has the e�ect of enhancing
stubborness of the individuals. This assumption is not needed here. The model (E5.2) is also referred to the
averaging model with stubborn agents. Other properties of this model are studied in (Bindel et al., 2015; Friedkin
et al., 2016; Ravazzi et al., 2015).

E5.8 Necessary and su�cient conditions for semi-convergence. Theorem 5.2 provides a su�cient condition

for a row-stochastic matrix to be semi-convergent. We now provide a necessary a su�cient counterpart.

Let A be a row-stochastic matrix with M consended sinks. Prove that the following statements are

equivalent:

(i) the eigenvalue 1 is semi-simple with multiplicity M and all other eigenvalues have magnitude strictly

smaller than 1,

(ii) A is semi-convergent,

(iii) each sink in the condensation digraph associated to A is aperiodic.

Note: Gantmacher (1959) calls "regular" the semi-convergent row-stochastic matrices and "fully regular" the semi-
convergent row-stochastic matrices whose limiting matrix has rank one, i.e., the indecomposable row-stochastic
matrices.

E5.9 Average consensus via the parallel averaging algorithm. Let G be a weighted graph with weighted

adjacency matrix A and weighted degrees d1, . . . , dn. Assume G is connected and aperiodic and consider the

equal-neighbor matrix Aen = diag(d1, . . . , dn)−1A. Assign a value xi ∈ R to each node i and consider the

parallel averaging algorithm:
1: each node i sets yi(0) = 1/di and zi(0) = xi/di
2: the nodes run the averaging algorithms y(k + 1) = Aeny(k) and z(k + 1) = Aenz(k) for k ∈ Z≥0
3: each node i sets xi(k) = zi(k)/yi(k) at each k ∈ Z≥0

Show that the parallel averaging algorithm
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(i) is well posed, i.e., yi(k) does not vanish for any i ∈ {1, . . . , n} and k ∈ Z≥0, and

(ii) achieves average consensus, that is, limk→∞ x(k) = average(x1, . . . , xn)1n.

Note: This algorithm is also referred to as the push sum iteration, because it may implemented over directional
communication by “summing the pushed variables.” This algorithm was originally introduced by Kempe et al.
(2003) and later studied in (Olshevsky and Tsitsiklis, 2009; Benezit et al., 2010).

E5.10 Computing centrality. Write in your favorite programming language algorithms to compute degree, eigen-

vector, Katz and pagerank centralities. Compute these four centralities for the following undirected unweighted

graphs (without self-loops):

(i) the cycle graph with 5 nodes;

(ii) the star graph with 5 nodes;

(iii) the line graph with 5 nodes; and

(iv) the Zachary karate club network dataset. This dataset can be downloaded for example from: http:
//konect.uni-koblenz.de/networks/ucidata-zachary

To compute Katz centrality of a matrix A, select α = 1/(2ρ(A)). For pagerank, use α = 1/2.

Hint: Recall that pagerank centrality is well-de�ned for a row-stochastic matrix.

E5.11 Central nodes in example graph. For the unweighted undirected graph in Figure 5.11, verify (with the aid

of a computational package) that the dark nodes have indeed the largest degree, eigenvector, closeness and

betweenness centrality as stated in the �gure caption.

E5.12 Iterative computation of Katz centrality. Given a graph with adjacency matrix A, show that the solution

to the iteration x(k + 1) := αAT(x(k) + 1n) with α < 1/ρ(A) converges to the Katz centrality vector cK,

for all initial conditions x(0).

E5.13 Move away from your nearest neighbor and reducible averaging. Consider n ≥ 3 robots with positions

pi ∈ R, i ∈ {1, . . . , n}, dynamics pi(t+ 1) = ui(t), where ui ∈ R is a steering control input. For simplicity,

assume that the robots are indexed according to their initial position: p1(0) ≤ p2(0) ≤ p3(0) ≤ · · · ≤ pn(0).

Consider two walls at the positions p0 ≤ p1(0) and pn+1 ≥ pn(0) so that all robots are contained between

the walls. The walls are stationary, that is, p0(t+ 1) = p0(t) = p0 and pn+1(t+ 1) = pn+1(t) = pn+1.

Consider the following coordination law: robots i ∈ {2, . . . , n− 1} (each having two neighbors) move to

the centroid of the local subset {pi−1, pi, pi+1}. The robots {1, n} (each having one robotic neighbor and one

neighboring wall) move to the centroid of the local subsets {p0, p1, p2} and {pn−1, pn, pn+1}, respectively.

Hence, the closed-loop robot dynamics are

pi(t+ 1) =
1

3
(pi−1(t) + pi(t) + pi+1(t)) , i ∈ {1, . . . , n} .

Show that the robots become uniformly spaced on the interval [p0, pn+1] using Theorem 5.2.

E5.14 The role of the nodal degree in averaging systems. Let G be an connected undirected graph without

self-loops. Consider the averaging dynamics:

x(k + 1) = Ax(k),

where A = D−1A01, D is the degree matrix, and A01 is the binary adjacency matrix of G.

(i) Under which conditions on G will the system converge to a �nal consensus state, i.e., an element of

span{1n}?
(ii) Assuming each state converges to a �nal consensus value, what is this steady state value?

(iii) Let e(k) = x(k) − limk→∞ x(k) be the disagreement error at time instant k. Show that the error

dynamics is linear, that is, of the form e(k + 1) = Be(k) and determine the matrix B.
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(iv) Find a function f(k, λ2, . . . , λn, d1, . . . , dn) depending on the time step k, the eigenvalues λ2, . . . , λn
of A, and the degrees of the nodes d1, . . . , dn such that

‖e(k)‖2 ≤ f(k, λ2, . . . , λn, d1, . . . , dn)‖e(0)‖2.

E5.15 Hubs and authorities (Kleinberg, 1999). Let G be a digraph with vertex set V = {1, . . . , n} and edge set

E. Assume G has a globally reachable node and the subgraph of globally reachable nodes is aperiodic.

We de�ne two scores for each vertex j ∈ {1, . . . , n}: the hub score hj ∈ R and the authority score aj ∈ R.

We initialize these scores with positive values and updated them simultaneously for all vertices according to

the following mutually reinforcing relation: the hub score of vertex j is set equal to the sum of the authority

scores of all vertices pointed to by j, and, similarly, the authority score of vertex j is set equal to the sum of

the hub scores of all vertices pointing to j. In concise formulas, for k ∈ N,

{
hj(k + 1) =

∑
i: (j,i)∈E ai ,

aj(k + 1) =
∑
i: (i,j)∈E hi .

(E5.3)

(i) Let x(k) =
[
h(k)T a(k)T

]T
denote the stacked vector of hub and authority scores. Provide an update

equation for the hub and authority scores of the form

x(k + 1) = Mx(k),

for some matrix M ∈ R2n×2n
.

(ii) Will the sequence x(k) converge as k →∞?

In what follows, we consider the modi�ed iteration

y(k + 1) =
My(k)

‖My(k)‖2
,

where M is de�ned as in statement (i) above.

(iii) Will the sequence y(k) converge as k →∞?

(iv) Show that the two subsequences of even and odd iterates, k 7→ y(2k) and k 7→ y(2k + 1), converge,

that is,

lim
k→∞

y(2k) = yeven(y0), lim
k→∞

y(2k + 1) = yodd(y0),

where y0 = x(0) is the stacked vector of initial hub and authority scores.

(v) Provide expressions for yeven(y0) and yodd(y0).

E5.16 Maximum entropy random walk (Burda et al., 2009). Let G be an unweighted connected graph with

binary adjacency matrix A ∈ {0, 1}n. Let (λ, v) be the dominant eigenpair, i.e, Av = λv and 1T
nv = 1.

Similarly to E4.11, de�ne the square matrix P by

pij =
1

λ

vj
vi
aij , for i, j ∈ {1, . . . , n}.

Perform the following tasks:

(i) show that P is well de�ned, row stochastic, and irreducible,

(ii) pick i, j ∈ {1, . . . , n} and k ≥ 1. Assuming there exists a path of length k from i to j, let c
[k]
ij denote

the product of the edge weights along the path and show that

c
[k]
ij =

1

λk
vj
vi
,
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(iii) let w > 0 be the left dominant eigenvector of P , normalized so that 1T
nw = 1, and show that

wi =
1

‖v‖22
v2i .
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Chapter6

The Laplacian Matrix

The previous chapters studied adjacency matrices and their application to discrete-time averaging dynamics.

This chapter introduces and characterizes a second relevant matrix associated to a digraph, called the

Laplacian matrix. Laplacian matrices appear in numerous applications and enjoy numerous useful properties.

6.1 The Laplacian matrix

De�nition 6.1 (Laplacian matrix of a digraph). Given a weighted digraph G with adjacency matrix A
and out-degree matrix Dout, the Laplacian matrix of G is

L = Dout −A.

In components L = (`ij)i,j∈{1,...,n}

`ij =





−aij , if i 6= j,
n∑

h=1,h 6=i
aih, if i = j,

or, for an unweighted undirected graph,

`ij =





−1, if {i, j} is an edge and not self-loop,

d(i), if i = j,

0, otherwise.

An example is illustrated in Figure 6.1.

Note:

(i) the sign pattern of L is important — diagonal elements are non-negative (zero or positive) and

o�-diagonal elements are non-positive (zero or negative);

(ii) the Laplacian matrix L of a digraph G does not depend upon the existence and values of self-loops in

G;
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1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

L =




7.4 −3.7 −3.7 0 0
−8.9 10.1 0 −1.2 0

0 0 6.0 −3.7 −2.3
0 0 0 0 0
−4.4 0 0 −2.3 6.7



.

Figure 6.1: A weighted digraph and its Laplacian matrix

(iii) the graph G is undirected (i.e., symmetric adjacency matrix) if and only if L is symmetric. In this

case, Dout = Din = D and A = AT
;

(iv) in a directed graph, `ii = 0 (instead of `ii > 0) if and only if node i has zero out-degree;

(v) L is said to be irreducible if G is strongly connected.

We conclude this section with some useful equalities. By the way, obviously

(Ax)i =

n∑

j=1

aijxj . (6.1)

First, for x ∈ Rn,

(Lx)i =

n∑

j=1

`ijxj = `iixi +

n∑

j=1,j 6=i
`ijxj =

( n∑

j=1,j 6=i
aij

)
xi +

n∑

j=1,j 6=i
(−aij)xj

=
n∑

j=1,j 6=i
aij(xi − xj) =

∑

j∈N out(i)

aij(xi − xj) (6.2)

for unit weights

= dout(i)
(
xi − average({xj , for all out-neighbors j})

)
.

Second, assume L = LT
(i.e., aij = aji) and compute:

xTLx =

n∑

i=1

xi(Lx)i =

n∑

i=1

xi

( n∑

j=1,j 6=i
aij(xi − xj)

)

=

n∑

i,j=1

aijxi(xi − xj) =
(1

2
+

1

2

) n∑

i,j=1

aijx
2
i −

n∑

i,j=1

aijxixj

by symmetry

=
1

2

n∑

i,j=1

aijx
2
i +

1

2

n∑

i,j=1

aijx
2
j −

n∑

i,j=1

aijxixj

=
1

2

n∑

i,j=1

aij(xi − xj)2
(6.3)

=
∑

{i,j}∈E

aij(xi − xj)2. (6.4)
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These equalities are useful because it is common to encounter the “array of di�erences” Lx and the

quadratic “error” or “disagreement” function xTLx. They provide the correct intuition for the de�nition of

the Laplacian matrix. In some literature, the function x 7→ xTLx is referred to as the Laplacian potential
function, because of the energy and power interpetation we present in the next two examples.

6.1.1 The Laplacian in mechanical networks of springs

x

Let xi ∈ R denote the displacement of the ith rigid body. Assume that each spring is ideal linear-elastic

and let aij be the spring constant for the spring connecting the ith and jth bodies.

De�ne a graph as follows: the nodes are the rigid bodies {1, . . . , n} with locations x1, . . . , xn, and the

edges are the springs with weights aij . Each node i is subject to a force

Fi =
∑

j 6=i
aij(xj − xi) = −(Lx)i,

where L is the Laplacian for the network of springs (modeled as an undirected weighted graph). Moreover,

recalling that the spring {i, j} stores the quadratic energy
1
2aij(xi − xj)2

, the total elastic energy is

Eelastic =
1

2

∑

{i,j}∈E

aij(xi − xj)2 =
1

2
xTLx.

In this role, the Laplacian matrix is referred to as the sti�ness matrix. Sti�ness matrices can be de�ned

for spring networks in arbitrary dimensions (not only on the line) and with arbitrary topology (not only

a chain graph, or line graph, as in �gure). More complex spring networks can be found, for example, in

�nite-element discretization of �exible bodies and �nite-di�erence discretization of di�usive media.

6.1.2 The Laplacian in electrical networks of resistors

1 2

3

4

+

Suppose the graph is an electrical network with only pure resistors and ideal voltage sources: (i) each

graph vertex i ∈ {1, . . . , n} is possibly connected to an ideal voltage source, (ii) each edge is a resistor, say

with resistance rij between nodes i and j. (This is an undirected weighted graph.)
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Ohm’s law along each edge {i, j} gives the current �owing from i to j as

ci→j = (vi − vj)/rij = aij(vi − vj),

where vi is the voltage at node i and aij is the inverse resistance, called conductance. We set aij = 0
whenever two nodes are not connected by a resistance and letL denote the Laplacian matrix of conductances.

Kirchho�’s current law says that at each node i:

cinjected at i =

n∑

j=1,j 6=i
ci→j =

n∑

j=1,j 6=i
aij(vi − vj).

Hence, the vector of injected currents cinjected and the vector of voltages at the nodes v satisfy

cinjected = L v.

Moreover, the power dissipated on resistor {i, j} is ci→j(vi − vj), so that the total dissipated power is

Pdissipated =
∑

{i,j}∈E

aij(vi − vj)
2 = v

TLv.

6.2 Properties of the Laplacian matrix

Lemma 6.2 (Zero row-sums). Let G be a weighted digraph with Laplacian L and n nodes. Then

L1n = 0n.

In equivalent words, 0 is an eigenvalue of L with eigenvector 1n.

Proof. For all rows i, the ith row-sum is zero:

n∑

j=1

`ij = `ii +
n∑

j=1,j 6=i
`ij =

( n∑

j=1,j 6=i
aij

)
+

n∑

j=1,j 6=i
(−aij) = 0.

Equivalently, in vector format (remembering the weighted out-degree matrix Dout is diagonal and contains

the row-sums of A):

L1n = Dout1n −A1n =



dout(1)
...

dout(n)


−



dout(1)
...

dout(n)


 = 0n.

�

Based on this lemma, we now extend the notion of Laplacian matrix to a setting in which there is no

digraph to start with.

De�nition 6.3 (Laplacian matrix). A matrix L ∈ Rn×n, n ≥ 2, is Laplacian if
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(i) its row-sums are zero,

(ii) its diagonal entries are non-negative, and

(iii) its non-diagonal entries are non-positive.

A Laplacian matrix L induces a weighted digraph G without self-loops in the natural way, that is, by

letting (i, j) be an edge of G if and only if `ij > 0. With this de�nition, L is the Laplacian matrix of G.

Lemma 6.4 (Zero column-sums). LetG be a weighted digraph with LaplacianL and n nodes. The following
statements are equivalent:

(i) G is weight-balanced,i.e., Dout = Din; and

(ii) 1T
nL = 0T

n .

Proof. Pick j ∈ {1, . . . , n} and compute

(1T
nL)j = (LT1n)j =

n∑

i=1

`ij = `jj +
n∑

i=1,j 6=i
`ij = dout(j)− din(j),

where the last equality follows from

`jj = dout(j)− ajj and

n∑

i=1,j 6=i
`ij = −(din(j)− ajj).

In summary, we know that 1T
nL = 0T

n if and only if Dout = Din. �

Lemma 6.5 (Spectrum of the Laplacian matrix). Given a weighted digraph G with Laplacian L, the
eigenvalues of L di�erent from 0 have strictly-positive real part.

Proof. Recall `ii =
∑n

j=1,j 6=i aij ≥ 0 and `ij = −aij ≤ 0 for i 6= j. By the Geršgorin Disks Theorem 2.8,

we know that each eigenvalue of L belongs to at least one of the disks

{
z ∈ C

∣∣ |z − `ii| ≤
n∑

j=1,j 6=i
|`ij |

}
=
{
z ∈ C | |z − `ii| ≤ `ii

}
.

`ii

`jj
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These disks, with radius equal to the center, contain the origin and complex numbers with positive real

part. �

For an undirected graph without self-loops and with symmetric adjacency matrix A = AT
, we know

that L is symmetric and positive semide�nite, i.e., all eigenvalues of L are real and non-negative and that

d(i) = `i. In this case, by convention, we write these eigenvalues as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Note:

• the second smallest eigenvalue λ2 is called the Fiedler eigenvalue or the algebraic connectivity, due to

the early work by Fiedler (1973); and

• we refer the reader to Exercise E6.3 for a lower bound and an upper bound on λn based on the

maximum degree.

6.3 Graph connectivity and the rank of the Laplacian

Theorem 6.6 (Rank of the Laplacian). Let L be the Laplacian matrix of a weighted digraph G with n
nodes. Let d be the number of sinks in the condensation digraph of G. Then

rank(L) = n− d.

This theorem has the following immediate consequences:

(i) a digraph G contains a globally reachable vertex if and only if rank(L) = n − 1 (also recall the

properties of C(G) from Lemma 3.1); and

(ii) for the case of undirected graphs, we have the following two results: the rank of L is equal to n
minus the number of connected components of G and an undirected graph G is connected if and

only if λ2 > 0.

Proof. We start by simplifying the problem. De�ne a new weighted digraph Ḡ by modifying G as follows:

at each node, add a self-loop with unit weight if no self-loop is present, or increase the weight of the

self-loop by 1 if a self-loop is present. Also, de�ne another weighted digraph
¯̄G by mody�ng Ḡ as follows:

for each node, divide the weights of its out-going edges by its out-degree, so that the out-degree of each

node is 1. In other words, de�ne Ā = A+ I and L̄ = L, and de�ne
¯̄A = D̄−1

out
Ā and

¯̄L = D̄−1
out
L̄ = In − ¯̄A.

Clearly, the rank of L is equal to the rank of
¯̄L. Therefore, without loss of generality, we consider in what

follows only digraphs with row-stochastic adjacency matrices.

Because the condensation digraph C(G) has d sinks, after a renumbering of the nodes, that is, a

permutation of rows and columns (see Exercise E3.1), the adjacency matrix A can be written in block lower
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tridiagonal form as

A =




A11 0 0 · · · 0 0

0 A22 0
. . .

. . . 0

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0
. . .

. . . 0 Add 0
A1o A2o · · · · · · Ado Aothers




∈ Rn×n.

where the state vector x is correspondingly partitioned into the vectors x1, . . . , xd and xothers of dimensions

n1, . . . , nd and n− (n1 + · · ·+ nd) respectively, corresponding to the d sinks and all other nodes.

Each sink ofC(G) is a strongly connected and, therefore, the non-negative square matricesA11, . . . , Add
are irreducible. The Perron–Frobenius Theorem for irreducible matrices 2.12 implies that the number 1 is a

simple eigenvalue for each of them.

The square matrix Aothers is non-negative and it can itself be written as a block lower triangular

matrix, whose diagonal block matrices, say (Aothers)1, . . . , (Aothers)N are non-negative and irreducible.

Moreover, each of these diagonal block matrices must be row-substochastic because (1) each row-sum for

each of these matrices is at most 1, and (2) at least one of the row-sums of each of these matrices must

be smaller than 1, otherwise that matrix would correspond to a sink of C(G). In summary, because the

matrices (Aothers)1, . . . , (Aothers)N are irreducible and row-substochastic, the matrix Aothers has spectral

radius ρ(Aothers) < 1.

We now write the Laplacian matrix L = In −A with the same block lower triangular structure:

L =




L11 0 0 · · · 0 0

0 L22 0
. . .

. . . 0

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0
. . .

. . . 0 Ldd 0
−A1o −A2o · · · · · · −Ado Lothers




, (6.5)

where, for example, L11 = In1−A11. Because the number 1 is a simple eigenvalue ofA11, the number 0 is a

simple eigenvalue of L11. Therefore, rank(L11) = n1 − 1. This same argument establishes that the rank of

L is at most n− d because each one of the matrices L11, . . . , Ldd is of rank n1− 1, . . . , nd− 1, respectively.

Finally, we note that the rank ofLothers is maximal, becauseLothers = I−Aothers and ρ(Aothers) < 1 together

imply that 0 is not an eigenvalue for Lothers. �

6.4 Appendix: Community detection via algebraic connectivity

As just presented, the algebraic connectivity λ2 of an undirected and weighted graph G is positive if and

only if G is connected. We build on this insight and show that the algebraic connectivity does not only
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provide a binary connectivity measure, but it also quanti�es the “bottleneck” of the graph. To develop this

intuition, we study the problem of community detection in a large-scale undirected graph. This problem

arises, for example, when identifying group of friends in a social network by means of the interaction graph.

Speci�cally, we consider the problem of partitioning the vertices V of an undirected connected graph

G in two sets V1 and V2 so that

V1 ∪V2 = V, V1 ∩V2 = ∅, and V1, V2 6= ∅.

Of course, there are many such partitions. We measure the quality of a partition by the sum of the weights

of all edges that need to be cut to separate the vertices V1 and V2 into two disconnected components.

Formally, the size of the cut separating V1 and V2 is

J =
∑

i∈V1,j∈V2

aij .

We are interested in �nding the cut with minimal size that identi�es the two groups of nodes that are most

loosely connected. The problem of minimizing the cut size J is combinatorial and computationally hard

since we need to consider all possible partitions of the vertex set V . We present here a tractable approach

based on a so-called relaxation step. First, de�ne a vector x ∈ {−1,+1}n with entries xi = 1 for i ∈ V1

and xi = −1 for i ∈ V2. Then the cut size J can be rewritten via the Laplacian potential as

J =
1

4

n∑

i,j=1

aij(xi − xj)2 =
1

2
xTLx

and the minimum cut size problem is:

minimize

x∈{−1,1}n\{−1n,1n}
xTLx.

(Here we exclude the cases x ∈ {−1n, 1n} because they correspond to one of the two groups being

empty.) Second, since this problem is still computationally hard, we relax the problem from binary decision

variables xi ∈ {−1,+1} to continuous decision variables yi ∈ [−1, 1] (or ‖y‖∞ ≤ 1), where we exclude

y ∈ span(1n) (corresponding to one of the two groups being empty). Then the minimization problem

becomes

minimize

y∈Rn,y⊥1n,‖y‖∞=1
yTLy.

As a third and �nal step, we consider a 2-norm constraint ‖y‖2 = 1 instead of an ∞-norm constraint

‖y‖∞ = 1 (recall that ‖y‖∞ ≤ ‖y‖2 ≤
√
n‖y‖∞) to obtain the following heuristic:

minimize

y∈Rn,y⊥1n,‖y‖2=1
yTLy.

Notice that yTLy ≥ λ2‖y‖2 and this inequality holds true with equality whenever y = v2, the normalized

eigenvector associated to λ2. Thus, the unique minimum of the relaxed optimization problem is λ2 and the

minimizer is y = v2. We can then use as a heuristic x = sign(v2) to �nd the desired partition {V1, V2}.
Hence, the algebraic connectivity λ2 is an estimate for the size of the minimum cut, and the signs of the
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entries of v2 identify the associated partition in the graph. For these reasons λ2 and v2 can be interpreted

as the size and the location of a “bottleneck” in a graph.

To illustrate the above concepts, we borrow an example problem with the corresponding Matlab code

from (Gleich, 2006). we construct a randomly generated graph as follows. First, we partition n = 1000
nodes in two groups V1 and V2 of sizes 450 and 550 nodes, respectively. Second, we connect any pair of

nodes in the set V1 (respectively V2) with probability 0.3 (respectively 0.2). Third and �nally, any two

nodes in distinct groups, i ∈ V1 and j ∈ V2, are connected with a probability of 0.1. The sparsity pattern

of the associated adjacency matrix is shown in the left panel of Figure 6.2. No obvious partition is visible

at �rst glance since the indices are not necessarily sorted, that is, V1 is not necessarily {1, . . . , 450}. The

second panel displays the entries of the eigenvector v2 sorted according to their magnitude showing a

sharp transition between positive and negative entries. Finally, the third panel displays the correspondingly

sorted adjacency matrix Ã clearly indicating the partition V = V1 ∪V2.

The Matlab code to generate Figure 6.2 can be found below. For additional analysis of this problem, we

refer the reader to (Gleich, 2006).

Figure 6.2: The �rst panel shows a randomly-generated sparse adjacency matrix A for a graph with 1000 nodes. The

second panel displays the eigenvector ṽ2 which is identical to the normalized eigenvector v2 after sorting the entries

according to their magnitude, and the third panel displays the correspondingly sorted adjacency matrix Ã.

1 % choose a graph size
2 n = 1000;
3

4 % randomly assign the nodes to two grous
5 x = randperm(n);
6 group_size = 450;
7 group1 = x(1:group_size);
8 group2 = x(group_size+1:end);
9

10 % assign probabilities of connecting nodes
11 p_group1 = 0.3;
12 p_group2 = 0.2;
13 p_between_groups = 0.1;
14

15 % construct adjacency matrix
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16 A(group1, group1) = rand(group_size,group_size) < p_group1;
17 A(group2, group2) = rand(n−group_size,n−group_size) < p_group2;
18 A(group1, group2) = rand(group_size, n−group_size) < p_between_groups;
19 A = triu(A,1); A = A + A';
20

21 % can you see the groups?
22 subplot(1,3,1); spy(A);
23 xlabel('$A$', 'Interpreter','latex','FontSize',28);
24

25 % construct Laplacian and its spectrum
26 L = diag(sum(A))−A;
27 [V D] = eigs(L, 2, 'SA');
28

29 % plot the components of the algebraic connectivity sorted by magnitude
30 subplot(1,3,2); plot(sort(V(:,2)), '.−');
31 xlabel('$\tilde v_2$', 'Interpreter','latex','FontSize',28);
32

33 % partition the matrix accordingly and spot the communities
34 [ignore p] = sort(V(:,2));
35 subplot(1,3,3); spy(A(p,p));
36 xlabel('$\tilde A$', 'Interpreter','latex','FontSize',28);

6.5 Appendix: Control design for clock synchronization

In this section we consider an idealized network of heterogeneous clocks and design a control strategy to

ensure they achieve synchronization.

Consider n simpli�ed clocks modeled as discrete-time integrators: xi(k + 1) = xi(k) + di. The initial

value xi(0) is called the initial o�set and di is called the clock speed (or skew); see Figure 6.3. Assume that

we can control each clock according to

x(k + 1) = x(k) + d+ u(k). (6.6)

De�ne the average clock speed by dave = average(d) = 1T
nd/n.

k

xi, ith clock

xj , jth clock

in
it

ia
l
o
↵
se

ts

di, clock speed

xi(0)

xj(0)

Figure 6.3: Two clocks with di�erent initial o�set xi(0) 6= xj(0) and speeds di 6= dj .

The clock synchronization problem is to design a control law u such that, for all clocks for all j and j,

lim
k→∞

xi(k)− xj(k) = 0.
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Proportional/averaging control Suppose the clocks are interconnected by an connected undirected

graph so that that each node i can measure the errors (xj(k)− xi(k)) for some neighbors j. For each edge

{i, j}, let κij = κji > 0 be a control gain (and set κpq = 0 whenever {p, q} is not an edge), and select the

proportional/averaging control law

xi(k + 1) = xi(k) + di +
n∑

j=1

κij(xj(k)− xi(k)).

To analyse this control design, we proceed as follows. First, if L = LT
denotes the Laplacian matrix

de�ned by these control gains, then the control is u(k) = −Lx(k) and the closed-loop system is

x(k + 1) = (In − L)x(k) + d.

For maxi∈{1,...,n}
∑n

j=1 κij < 1, the matrix In − L is non-negative and therefore row-stochastic.

Note: we now see that the closed-loop system is an averaging system with a forcing term; this is the

reason we call this control action proportional/averaging.

Second, we de�ne y(k) = x(k)− kdave1n. One can show that y(k+ 1) = (In−L)y(k) + (d− dave1n)
and that this system is precisely an a�ne averaging system as studied in Exercise E2.11. According to

Exercise E2.11(iii), we know that, generically, y(k)→ y�nal 6∈ span{1n} so that

lim
k→∞

xi(k)− xj(k) = lim
k→∞

yi(k)− yj(k) 6= 0.

In other words, proportional control keeps the errors bounded (they would naturally diverge without it),

but does not achieve vanishing errors and therefore does not solve the clocks synchronization problem.

Proportional/averaging and integral control We now introduce a so-called integrator statewi at each

node, pick an integral control gain γ, and design the proportional/averaging integral control as

u(k) = −Lx(k)− w(k),

w(k + 1) = w(k) + γLx(k),

so that the closed-loop system dynamics is

x(k + 1) = (In − L)x(k)− w(k) + d,

w(k + 1) = w(k) + γLx(k).
(6.7)

The rationale for integral control is that, when in steady state with w(k + 1) = w(k), the integral equation

in (6.7) enforces 0n = Lx(k). Hence, if the closed loop (6.7) admits a steady state, then necessarily all clocks

must be synchronized. It is natural to assume a zero initial state for the initial integral state w(0) = 0n.

Lemma 6.7 (Asymptotic clock synchronization). Consider n clocks (6.6) with heterogeneous initial
o�sets xi(0), speeds di, and average speed dave = average(d). Assume the undirected communication graph
among them is connected. Select proportional/averaging gains κij for all edges {i, j} and an integral control
gain γ satisfying

max
i∈{1,...,n}

n∑

j=1

κij < 1, and 0 < γ < 1. (6.8)
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Then the proportional/averaging integral control ensures that, in the closed loop, the clocks synchronize and

lim
k→∞

(
x(k)− (davek + xave(0))1n

)
= 0n.

In other words, the clocks asymptotically synchronizes and their time grows linearly with a speed equal

to the average clock speed.

Proof. We start by studying the evolution of the a�ne dynamical system (6.7) using the modal decomposition

as illustrated in Section 2.1. Being a symmetric Laplacian matrix, L has real eigenvalues 0 = λ1 ≤ λ2 ≤
· · · ≤ λn with corresponding orthonormal eigenvectors v1 = 1n/

√
n, v2, . . . , vn. By left-multiplying

the closed-loop system dynamics (6.7) by vTα , α ∈ {1, . . . , n}, we obtain the following n decoupled 2-

dimensional systems:

[
xα(k + 1)
wα(k + 1)

]
=

[
1− λα −1
γλα 1

] [
xα(k)
wα(k)

]
+

[
dα
0

]
, α ∈ {1, . . . , n}, (6.9)

where xα(k) = vTαx(k), wα(k) = vTαw(k), and dα = vTαd. From this decomposition, the full state can be

reconstructed by

x(k) =
n∑

α=1

xα(k)vα = xave(k)1n +
n∑

α=2

xα(k)vα,

w(k) =

n∑

α=1

wα(k)vα = wave(k)1n +

n∑

α=2

wα(k)vα.

where xave(k) = average(x(k)) and wave(k) = average(w(k)).

For α = 1, after a simple rescaling, equation (6.9) reads

[
xave(k + 1)
wave(k + 1)

]
=

[
1 −1
0 1

] [
xave(k)
wave(k)

]
+

[
dave

0

]
.

Because w(0) = 0n, we compute w(k) = 0n and xave(k) = davek + xave(0).

It now su�ces to show that the solutions to the n − 1 equations (6.9), for α ∈ {2, . . . , n}, satisfy

limk→∞ xα(k) = 0. Simple calculations show that the only equilibrium solutions to the n−1 equations (6.9),

for α ∈ {2, . . . , n}, are x∗α = 0 and w∗α = −dα. Hence, it su�ces to show that all eigenvalues of the n− 1
matrices of dimension 2×2 have magnitude strictly less than 1. For α ∈ {2, . . . , n}, the n−1 characteristic

equations are

(z − 1)2 + λα(z − 1 + γ) = 0.

We claim that these polynomials have both roots strictly inside the unit circle if and only if, for all

α ∈ {2, . . . , n},
0 < γ < 1, and 0 < λα < 4/(2γ). (6.10)

Recall from the proof of, and the discussion following, Lemma 6.5 that

λi ≤ λn < 2 max
i∈{1,...,n}

n∑

j=1

κij .
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But by the assumption (6.8) we know maxi∈{1,...,n}
∑n

j=1 κij < 1, hence λn < 2× 1 < 4/(2− γ) for all

0 < γ < 1. Hence, the inequalities (6.10) are satis�ed.

To verify that the inequalities (6.10) imply that all roots have magnitude less than 1, we use the so-called

bilinear transform method. This method is based on the equivalence between the following two properties:

the original polynomial has roots strictly inside the unit disk and the transformed polynomial has roots

with strictly negative real part. We proceed as follows: we take z = (1 + s)/(1− s) and substitute it into

the polynomial (z − 1)2 + λα(z − 1 + γ) so that, removing the denominator, we obtain the polynomial

(4− 2λα + λαγ)s2 − λα(2γ − 2)s+ λαγ. By the Routh-Hurwitz stability criterion, this polynomial has

roots with negative real part if and only if all three coe�cients are strictly positive or strictly negative.

Some elementary calculations show that all three coe�cients may never be negative and that all three

coe�cients are positive if and only if the inequalities (6.10) hold. �

6.6 Historical notes and further reading

Standard books on algebraic graph theory with extensive characterizations of adjacency and Laplacian ma-

trices include (Biggs, 1994) and (Godsil and Royle, 2001). Two surveys about Laplacian matrices are (Mohar,

1991; Merris, 1994). Of particular interest for further reading is Kirchho�’s Matrix Tree Theorem.

The rank of the Laplacian, as characterized in Theorem 6.6, was studied as early as in (Fife, 1972; Foster

and Jacquez, 1975). A mathematical approach is given in (Agaev and Chebotarev, 2000) which features the

�rst necessary and su�cient characterization. We also refer to the more recent (Lin et al., 2005; Ren and

Beard, 2005) for the speci�c case of rank(L) = n− 1.

The generalized inverse of the Laplacian matrix appears in some applications and is studied in Gutman

and Xiao (2004).

The ground-breaking work in (Fiedler, 1973) established the use of the eigenvalues of the Laplacian

matrix for example as a way to quantify graph connectivity and to perform clustering, as illustrated in

Section 6.4. For surveys on community detection we refer to (Porter et al., 2009; Fortunato, 2010).

The example on clock synchronization via proportional/averaging and integral control in Section 6.5 is

taken from (Carli et al., 2008a). More realistic settings are studied in (Schenato and Fiorentin, 2011; Carli

and Zampieri, 2014). Surveys include (Sundararaman et al., 2005; Sivrikaya and Yener, 2004; Simeone et al.,

2008).

Complex-valued graphs, adjacency and Laplacian matrices are studied in (Re�, 2012); see also (Lin et al.,

2013; Dong and Qiu, 2014) for some related applications.
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6.7 Exercises

E6.1 The spectra of Laplacian and row-stochastic adjacency matrices. Consider a row-stochastic matrix

A ∈ Rn×n. Let L be the Laplacian matrix of the digraph associated to A. Compute the spectrum of L as a

function of the spectrum spec(A) of A.

E6.2 Basic properties of a symmetric Laplacianmatrix. LetG be a weighted undirected graph with symmetric

Laplacian matrix L ∈ Rn×n.

(i) Prove, without relying on the Geršgorin Disks Theorem 2.8, that L is symmetric positive semide�nite.

(Note that the proof of Lemma 6.5 relies on Geršgorin Disks Theorem 2.8).

Assume G is connected. Let λ2 be the smallest non-zero eigenvalue of L with eigenvector v (unique up to

rescaling). Show that

(ii) v ⊥ 1n and vTLv = λ2‖v‖22, and

(iii) for any x ∈ Rn,

xTLx ≥ λ2
∥∥∥x− 1

n
(1T
nx)1n

∥∥∥
2

2
,

with equality only when x is parallel to v.

E6.3 Upper and lower bound on largest Laplacian eigenvalue. Let G be an undirected graph with symmetric

Laplacian matrix L = LT ∈ Rn×n, Laplacian eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, and maximum degree

dmax = maxi∈{1,...,n} di. Show that the maximum eigenvalue λn satis�es:

dmax ≤ λn ≤ 2dmax.

Hint: For the upper bound review the proof of Lemma 6.5.

E6.4 Examples in spectral graph theory. Let G? be a graph with 8 nodes and with Laplacian matrix L(G?) ∈
R8×8

. For i =
√
−1, assume the spectrum of L(G?) is

spec(L(G?)) = {0, 0, 0.5104, 1.6301, 2, 2.2045− 1.0038i, 2.2045 + 1.0038i, 2.8646} .

Consider the graphs G1, G2, and G3 shown below. Argue why the following statements are true:

(i) G1 cannot be G?,

(ii) G2 cannot be G?, and

(iii) G3 cannot be G?.

G1

⌫1

G2

0.5
0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.50.5
0.4

0.2 0.2

⌫2

G3

Figure E6.1: Example graphs and digraphs with 8 noses
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E6.5 The Laplacian matrix plus its transpose. Let G be a weighted digraph with Laplacian matrix L. Prove the

following statements are equivalent:

(i) G is weight-balanced,

(ii) L+ LT
is positive semide�nite.

Next, assume G is weight-balanced with adjacency matrix A, show that

(iii) L+ LT
is the Laplacian matrix of the digraph associated to the symmetric adjacency matrix A+AT

,

and

(iv) (L+ LT)1n = 0n,

E6.6 Scaled Laplacian matrices. Let L = LT ∈ Rn×n be the Laplacian matrix of a connected, undirected, and

symmetrically weighted graph. Given scalars d1, . . . , dn, de�ne the matrices A and B by

A := diag{d1, . . . , dn}L and B := Ldiag{d1, . . . , dn}.

(i) Give necessary and su�cient conditions on {d1, . . . , dn} for A to be a Laplacian matrix.

(ii) Give necessary and su�cient conditions on {d1, . . . , dn} for B to be a Laplacian matrix.

(iii) Give a su�cient condition on {d1, . . . , dn} for A and B to be symmetric.

(iv) Assuming di 6= 0, i ∈ {1, . . . , n}, do A and B possess a zero eigenvalue? If so, what are the correspond-

ing right and left eigenvectors for A and B?

E6.7 The disagreement function in a directed graph (Gao et al., 2008). Recall that the quadratic form associ-

ated with a symmatric matrix B ∈ Rn×n is the function x 7→ xTBx. Let G be a weighted digraph G with n
nodes and de�ne the quadratic disagreement function ΦG : Rn → R by

ΦG(x) =
1

2

n∑

i,j=1

aij(xj − xi)2.

Show that:

(i) ΦG is the quadratic form associated with the symmetric positive-semide�nite matrix

P =
1

2
(Dout +Din −A−AT),

(ii) P = 1
2

(
L+ L(rev)

)
, where the Laplacian of the reverse digraph is L(rev) = Din −AT

.

E6.8 The pseudoinverse Laplacian matrix. The Moore-Penrose pseudoinverse (or simply the pseudoinverse) of an

n×m matrix M is the unique m× n matrix M† with the following properties:

(i) MM†M = M ,

(ii) M†MM† = M†, and

(iii) MM† is symmetric and M†M is symmetric.

Now, let L be the Laplacian matrix of a weighted connected undirected graph with n nodes. Let U ∈ Rn×n
be an orthonormal matrix of eigenvectors of L such that

L = U




0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


U

T.

Show that
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(i) L† = U




0 0 . . . 0
0 1/λ2 . . . 0
...

...
. . .

...
0 0 . . . 1/λn


U

T
,

(ii) LL† = L†L = In −
1

n
1n1T

n, and

(iii) L†1n = 0n.

E6.9 The regularized Laplacian matrix. Let L be the Laplacian matrix of a weighted connected undirected

graph with n nodes. Given a scalar β ∈ R, de�ne the regularized Laplacian matrix Lreg,β = L+ β
n1n1Tn . Show

that

(i) Lreg,β is nonsingular for β 6= 0,

(ii) Lreg,β is positive de�nite for β > 0, and

(iii) the inverse of Lreg,β satis�es

L−1
reg,β =

(
L+

β

n
1n1Tn

)−1
= L† +

1

β n
1n1Tn .

Hint: Make use of the singular value decomposition in Exercise E6.8.

E6.10 The Green matrix of a Laplacian matrix. Assume L is the Laplacian matrix of a weighted connected

undirected graph with n nodes. Show that

(i) the matrix L+ 1
n1n1T

n is positive de�nite,

(ii) the so-called Green matrix

X =
(
L+

1

n
1n1T

n

)−1
− 1

n
1n1T

n (E6.1)

is the unique solution to the system of equations:

{
LX = In − 1

n1n1T
n,

1T
nX = 0T

n,

(iii) X = L†, where L† is de�ned in Exercise E6.8. In other words, the Green matrix formula (E6.1) is an

alternative de�nition of the pseudoinverse Laplacian matrix.

E6.11 Monotonicity of Laplacian eigenvalues. Consider a symmetric Laplacian matrix L ∈ Rn×n associated to

a weighted and undirected graph G = {V,E,A}. Assume G is connected and let λ2(G) > 0 be its algebraic

connectivity, i.e., the second-smallest eigenvalue of L. Show that

(i) λ2(G) is a monotonically non-decreasing function of each weight aij , {i, j} ∈ E; and

(ii) λ2(G) is monotonically non-decreasing function in the edge set in the following sense: λ2(G) ≤ λ2(G′)
for any graph G′ = (V,E′, A′) with E ⊂ E′ and aij = a′ij for all {i, j} ∈ E.

Hint: Use the disagreement function.

E6.12 Gaussian elimination and Laplacian matrices. Consider an undirected and connected graph and its

associated Laplacian matrix L ∈ Rn×n. Consider the associated linear Laplacian equation y = Lx, where

x ∈ Rn is unknown and y ∈ Rn is a given vector. Verify that an elimination of xn from the last row of this
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equation yields the following reduced set of equations:



y1
...

yn−1


+



−L1n/Lnn

...
−Ln−1,n/Lnn




︸ ︷︷ ︸
=A

yn =




. . .
... . .

.

. . . Lij − Lin·Ljn
Lnn

. . .

. .
. ...

. . .




︸ ︷︷ ︸
=Lred



x1
...

xn−1


 ,

where the (i, j)-element of Lred is given by Lij − Lin · Ljn/Lnn. Show that the matrices A ∈ Rn−1×1 and

L ∈ R(n−1)×(n−1)
obtained after Gaussian elimination have the following properties:

(i) A is non-negative and column-stochastic matrix with at least one strictly positive element; and

(ii) Lred is a symmetric and irreducible Laplacian matrix.

Hint: To show the irreducibility of Lred, verify the following property regarding the �ll-in of the matrix Lred: The
graph associated to the Laplacian Lred has an edge between nodes i and j if and only if (i) either {i, j} was an
edge in the original graph associated to L, (ii) or {i, n} and {j, n} were edges in the original graph associated to
L.

E6.13 Thomson’s principle and energy routing. Consider a connected and undirected resistive electrical network

with n nodes, with external nodal current injections c ∈ Rn satisfying the balance condition 1T
nc = 0, and

with resistances Rij > 0 for every undirected edge {i, j} ∈ E. For simplicity, we set Rij =∞ if there is no

edge connecting i and j. As shown earlier in this chapter, Kirchho�’s and Ohm’s laws lead to the network

equations

cinjected at i =
∑

j∈N (i)

cj→i =

n∑

j∈N (i)

1

Rij
(vi − vj) ,

where vi is the potential at node i and cj→i = 1/Rij · (vi − vj) is the current �ow from node i to node

j. Consider now a more general set of current �ows fi→j (for all i, j ∈ Rn) “routing energy through the

network” and compatible with the following basic assumptions:

(i) Skew-symmetry: fi→j = −fj→i for all i, j ∈ Rn;

(ii) Consistency: fi→j = 0 if {i, j} 6∈ E;

(iii) Conservation: cinjected at i =
∑
j∈N (i) fj→i for all i ∈ Rn.

Show that among all possible current �ows fi→j , the physical current �ow fi→j = ci→j = 1/Rij · (vj − vi)
uniquely minimizes the energy dissipation:

minimize

fi→j , i,j∈{1,...,n}
J =

1

2

n∑

i,j=1

Rijf
2
i→j

subject to fi→j = −fj→i for all i, j ∈ Rn ,
fi→j = 0 for all {i, j} 6∈ E ,
cinjected at i =

∑

j∈N (i)

fj→i for all i ∈ Rn .

Hint: The solution requires knowledge of the Karush-Kuhn-Tucker (KKT) conditions for optimality; this is a
classic topic in nonlinear constrained optimization discussed in numerous textbooks, e.g., in (Luenberger and Ye,
2008).

E6.14 Linear spring networks with loads. Consider the two (connected) spring networks with n moving masses

in �gure. For the right network, assume one of the masses is connected with a single stationary object with a
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102 Chapter 6. The Laplacian Matrix

spring. Refer to the left spring network as free and to the right network as grounded. Let Fload be a load force

applied to the n moving masses.

x x

For the left network, let Lfree,n be the n× n Laplacian matrix describing the free spring network among the

n moving masses, as de�ned in Section 6.1.1. For the right network, let Lfree,n+ 1 be the (n+ 1)× (n+ 1)
Laplacian matrix for the spring network among the n masses and the stationary object. Let Lgrounded be

the n × n grounded Laplacian of the n masses constructed by removing the row and column of Lfree,n+ 1

corresponding to the stationary object.

For the free spring network subject to Fload,

(i) do equilibrium displacements exist for arbitrary loads?

(ii) if the load force Fload is balanced in the sense that 1T
nFload = 0, is the resulting equilibrium displacement

unique?

(iii) compute the equilibrium displacement if unique, or the set of equilibrium displacements otherwise,

assuming a balanced force pro�le is applied.

For the grounded spring network,

(iv) derive an expression relating Lgrounded to Lfree,n,

(v) show that Lgrounded is invertible,

(vi) compute the displacement for the “grounded” spring network for arbitrary load forces.

We refer to Exercise E9.10 for a comprehensive treatment of grounded Laplacian matrices.

E6.15 From algebraic to vertex connectivity. Consider an unweighted undirected graphG = (V,E) with second

smallest eigenvalue λ2(G). Given a subset of nodes S ⊆ V , we de�ne a graph G′ = (V ′, E′) by deleting the

nodes in S from G as follows: we let V ′ = V \S and E′ contain all the edges in E except for those connected

to a node in S. The vertex connectivity κ(G) of G is de�ned by

κ(G) =

{
0, if G is disconnected,

minimum number of nodes whose deletion disconnects G, otherwise.

Show that

(i) 0 ≤ λ2(G) ≤ λ2(G′) + |S|, where |S| is the cardinality of S,

(ii) λ2(G) ≤ κ(G).

Hint: Let z ∈ R|V ′|, ‖z‖2 = 1, denote the eigenvector of the Laplacian L(G′) associated with λ2(G′). You may
�nd it useful to de�ne q ∈ R|V | such that qi = zi for every i ∈ V ′ and qi = 0 for every i ∈ S.

E6.16 Maximum power dissipation. As in Subsection 6.1.2, consider an electrical network composed by three

voltage sources (v1, v2, v3) connected by three resistors (each with unit resistance in an undirected ring

topology. Let L be the Laplacian matrix of conductances. Recall that the total power dissipated by the circuit is

Pdissipated = vTLv.

What is the maximum dissipated power if the voltages v are such that ‖v‖2 = 1?

Hint: Recall the notion of induced 2-norm.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



Exercises for Chapter 6 103

E6.17 Distributed averaging-based PI control. Consider a set of n controllable agents governed by the second-

order dynamics

ẋi = yi, (E6.2a)

ẏi =ui + ηi , (E6.2b)

where i ∈ {1, . . . , n} is the index set, ui ∈ R is a control input to agent i, and ηi ∈ R is an unknown

disturbance a�ecting agent i. Given an undirected, connected, and weighted graph G = (V,E,A) with node

set V = {1, . . . , n}, edge set E ⊂ V × V , and adjacency matrix A = AT ∈ Rn×n, we assume each agent can

measure its velocity yi ∈ R as well as the relative position xi − xj for each neighbor {i, j} ∈ E. Based on

these measurements, consider now the distributed averaging-based proportional-integral (PI) controller

ui = −
∑n

j=1
aij(xi − xj)− yi − qi, (E6.3a)

q̇i = yi −
∑n

j=1
aij(qi − qj) , (E6.3b)

where qi ∈ R is a dynamic control state for each agent i ∈ {1, . . . , n}. Your tasks are as follows:

(i) show that the average state
1
n

∑n
i=1 xi(t) is bounded for all t ≥ 0,

(ii) characterize the set of equilibria (x?, y?, q?) of the closed-loop system (E6.2)-(E6.3), and

(iii) show that all trajectories converge to these closed-loop equilibria.
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Chapter7

Continuous-time Averaging Systems

In this chapter we consider averaging algorithms in which the variables evolve in continuous time, instead

of discrete time. In other words, we consider a certain class of di�erential equations and show when their

asymptotic behavior is the emergence of consensus.

7.1 Example systems

We present here some simple examples of continuous-time averaging systems.

7.1.1 Example #1: Continuous-time opinion dynamics

This example is a continuous-time version of the discrete-time averaging models we have studied in details,

starting from Section 1.1. We start by considering the opinion change of individual i from time k to time

k + 1 in the discrete-time averaging model (1.2):

∆xi(k) = xi(k + 1)− xi(k) =
( n∑

j=1

aijxj(k)
)
− xi(k) =

n∑

j=1

aij(xj(k)− xi(k)),

where the last step follows from the equality

∑n
j=1 aij = 1. Using the equality (6.2), we can obtain

∆x(k) = −Lx(k),

where L = In −A is the Laplacian of the adjacency matrix A. We now assume that the opinion change

occurs in�nitesimally slowly. Speci�cally, we assume there exists a time period ∆t � 1 such that the

time indexes k and k + 1 correspond to real times t and t + ∆t respectively, and that L = L∆t, for an

appropriate Laplacian matrix L. In summary, this assumption implies

∆x(t)

∆t
= −Lx(t),

and, taking the limit as ∆t→ 0+
, we obtain the Abelson’s continous-time opinion dynamics model:

ẋ(t) = −Lx(t).
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106 Chapter 7. Continuous-time Averaging Systems

We refer to this equation as to the Laplacian �ow. In this model, the edge weights aij of the Laplacian L are

contact rates between the individuals.

Note: As this dynamics models continuous-time averaging, we expect to see consensus value emerge

for certain classes of digraphs.

7.1.2 Example #2: Flocking behavior for a group of animals

Next, we are interested in swarming and �ocking behavior that many animal species exhibit from decentral-

ized interactions, e.g., see Figure 7.1. To model this behavior we consider a simple “alignment rule” for each

(a) A swarm of paci�c thread�ns (Polydactylus sex�lis). Public

domain image from the U.S. National Oceanic and Atmospheric

Administration.

(b) A �ock of snow geese (Chen caerulescens). Public domain

image from the U.S. Fish and Wildlife Service.

Figure 7.1: Examples of animal �ocking behaviors

agent to steer towards the average heading of its neighbors; see Figure 7.2. This alignment rule amounts to

Figure 7.2: Alignment rule: the center �sh rotates clockwise to align itself with the average heading of its neighbors.

a “spring-like” attractive force, described as follows:

θ̇i =





(θj − θi), if ith agent has one neighbor

1
2(θj1 − θi) + 1

2(θj2 − θi), if ith agent has two neighbors

1
m(θj1 − θi) + · · ·+ 1

m(θjm − θi), if ith agent has m neighbors

= average
(
{θj , for all neighbors j}

)
− θi.

This interaction law can be written as

θ̇ = −Lθ
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where L is the Laplacian of an appropriate weighted digraph G: each bird is a node and each directed edge

(i, j) has weight 1/dout(i). Here it is useful to recall the interpretation of −(Lx)i as a force perceived by

node i in a network of springs.

Note: it is mathematically ill-posed to compute averages on a circle, but we will not worry about this

matter in this chapter.

Note: this incomplete model does not concern itself with positions. In other words, we do not discuss

collision avoidance and formation/cohesion maintenance. Moreover, note that the graph G should be really

state dependent. For example, we may assume that two birds see each other and interact if and only if their

pairwise Euclidean distance is below a certain threshold.

7.1.3 Example #3: A simple RC circuit

Finally, we consider an electrical network with only pure resistors and with pure capacitors connecting

each node to ground. From the previous chapter, we know the vector of injected currents cinjected and the

vector of voltages at the nodes v satisfy

cinjected = L v,

where L is the Laplacian for the graph with coe�cients aij = 1/rij . Additionally, assuming Ci is the

capacitance at node i, and keeping proper track of the current into each capacitor, we have

Ci
d

dt
vi = −cinjected at i

so that, with the shorthand C = diag(C1, . . . , Cn),

d

dt
v = −C−1L v. (7.1)

Note: C−1L is again a Laplacian matrix (for a directed weighted graph).

Note: it is physically intuitive that after some transient all nodes will have the same potential. This

intuition will be proved later in the chapter.

7.1.4 Example #4: Discretization of partial di�erential equations

The name Laplacian matrix is inherited from the Laplacian operator in the di�usion partial di�erential

equation (PDEs) named after the French mathematician Pierre-Simon Laplace.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.
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y
x

⌦

(a) Spatial domain

j
i

(i, j) (i+1, j)

(i, j+1)

(i�1, j)

(i, j�1)

(b) Discretization through a mesh grid

Consider a closed bounded spatial domain Ω ⊂ R2
and a spatio-temporal function u(t, x, y) denoting

the temperature at a point (x, y) ∈ Ω at time t ∈ R≥0. The evolution of the temperature u(t, x, y) in time

and space is governed by the heat equation

∂u

∂t
+ c∆u = 0 , (7.2)

where c > 0 is the thermal di�usivity (which we assume constant) and the Laplacian di�erential operator is

∆u(t, x, y) =
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y).

To approximately solve this PDE, we introduce a �nite-di�erence approximation of (7.2). First, we discretize

the spatial domain Ω through a mesh grid (speci�cally, a Cartesian grid) with discrete coordinates indexed

by (i, j) and where neighboring grid points are a distance h > 0 apart. Second, we approximate the

Laplacian operator via the �nite-di�erence approximation:

∆u(t, xi, yj) ≈ −
4u(t, xi, yj)− u(t, xi−1, yj)− u(t, xi+1, yj)− u(t, xi, yj−1)− u(t, xi, yj+1)

h2
.

(This is the correct expansion for an interior point; similar approximations can be written for boundary

points, assuming the boundary conditions are free.) Now, the key observation is that the �nite-di�erence

approximation renders the heat equation to a Laplacian �ow. Speci�cally, if udiscrete denotes the vector of

values of u at the nodes, we have

d

dt
udiscrete + Ludiscrete = 0 ,

where L is the Laplacian matrix of the mesh grid with weights c/h2
.

Another standard PDE involving the Laplacian operator is the wave equation

∂2u

∂t2
+ c2 ∆u = 0 , (7.3)

modeling the displacement u(t, x, y) of an elastic surface on Ω with wave propagation speed c > 0. In this

case, a �nite-di�erence approximation gives rise to the second-order Laplacian �ow

d2

dt2
udiscrete + Ludiscrete = 0.

We study both �rst and second-order Laplacian �ows in this chapter.
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7.2. Continuous-time linear systems and their convergence properties 109

7.2 Continuous-time linear systems and their convergence properties

In Section 2.1 we presented discrete-time linear systems and their convergence properties; here we present

their continuous-time analogous.

A continuous-time linear system is

ẋ(t) = Ax(t). (7.4)

Its solution t 7→ x(t), t ∈ R≥0 from an initial con�tion x(0) satis�es x(t) = eAt x(0), where the matrix
exponential of a square matrix A is de�ned by

eA =

∞∑

k=0

1

k!
Ak.

The matrix exponential is a remarkable operation with numerous properties; we ask the reader to review a

few basic ones in Exercise E7.1. A matrix A ∈ Rn×n is

(i) continuous-time semi-convergent if limt→+∞ eAt exists, and

(ii) continuous-time convergent (Hurwitz) if limt→+∞ eAt = 0n×n.

The spectral abscissa of a square matrix A is the maximum of the real parts of the eigenvalues of A, that is,

µ(A) = max{<(λ) | λ ∈ spec(A)}.

Theorem 7.1 (Convergence and spectral abscissa). For a square matrixA, the following statements hold:

(i) A is continuous-time convergent (Hurwitz) ⇐⇒ µ(A) < 0,

(ii) A is continuous-time semi-convergent ⇐⇒ µ(A) ≤ 0, no eigenvalue has zero real part other than
possibly the number 0, and if 0 is an eigenvalue, then it is semisimple.

We leave the proof of this theorem to the reader and mention that most required steps are similar to

the dicussion in Section 2.1 and are discussed later in this chapter.

7.3 The Laplacian �ow

Let G be a weighted directed graph with n nodes and Laplacian matrix L. The Laplacian �ow on Rn is the

dynamical system

ẋ = −Lx, (7.5)

or, equivalently in components,

ẋi =
n∑

j=1

aij(xj − xi) =
∑

j∈N out(i)

aij(xj − xi).
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7.3.1 Matrix exponential of a Laplacian matrix

Before analyzing the Laplacian �ow, we provide some results on the matrix exponential of (minus) a

Laplacian matrix. We show how such an exponential matrix is row-stochastic and has properties analogous

to those for adjacency matrices studied in Section 4.2.

Theorem 7.2 (The matrix exponential of a Laplacian matrix). Let L be an n × n Laplacian matrix
with associated digraph G and with maximum diagonal entry `max = max{`11, . . . , `nn}. Then

(i) exp(−L) ≥ e−`max In ≥ 0, for any digraph G,

(ii) exp(−L)1n = 1n, for any digraph G,

(iii) 1T
n exp(−L) = 1T

n , for a weight-balanced G (i.e., 1T
nL = 0T

n ),

(iv) exp(−L) ej > 0, for a digraph G whose j-th node is globally reachable, and

(v) exp(−L) > 0, for a strongly connected digraph G (i.e., for an irreducible L).

Note that properties (i) and (ii) together imply that exp(−L) is row-stochastic.

Proof. From the equality L1n = 0n and the de�nition of matrix exponential, we compute

exp(−L)1n =
(
In +

∞∑

k=1

(−1)k

k!
Lk
)

1n = 1n.

Similarly, if 1T
nL = 0T

n , we compute

1T
n exp(−L) = 1T

n

(
In +

∞∑

k=1

(−1)k

k!
Lk
)

= 1T
n .

These calculations establish statements (ii) and (iii).

Next, we de�ne a non-negative matrix AL by

AL = −L+ `maxIn ⇐⇒ −L = −`maxIn +AL.

Because ALIn = InAL, we know

exp(−L) = exp(−`maxIn) exp(AL) = e−`max exp(AL).

Here we used the following properties of the matrix exponential operation: exp(A+B) = exp(A) exp(B)
if AB = BA and exp(aIn) = ea In. Next, because AL ≥ 0, we know that exp(AL) =

∑∞
k=0A

k
L/k! is

lower bounded by the �rst n− 1 terms of the series so that

exp(−L) = e−`max exp(AL) ≥ e−`max

n−1∑

k=0

1

k!
AkL. (7.6)

Next, we derive two useful lower bounds on exp(−L) based on the inequality (7.6). First, by keeping just

the �rst term, we establish statement (i):

exp(−L) ≥ e−`max In ≥ 0.
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Second, we lower bound the coe�cients 1/k! and write:

exp(−L) ≥ e−`max

n−1∑

k=0

1

k!
Ak ≥ e−`max

(n− 1)!

n−1∑

k=0

Ak.

Notice now that the digraph G associated to L is the same as that associated to AL (we do not need to

worry about self-loops here). Hence, if node j is globally reachable in G, then Lemma 4.4 implies that the

jth column of

∑n−1
k=0 A

k
L is positive and, by inequality (7.6), also the jth column of exp(−L) is positive.

This statement establishes (iv). Moreover, if L irreducible, then AL is irreducible, that is, AL satis�es∑n−1
k=0 A

k > 0 so that also exp(−L) > 0. This establishes statement (v). �

7.3.2 Equilibria and convergence of the Laplacian �ow

We can now focus on the Laplacian �ow dynamics.

Lemma 7.3 (Equilibrium points). If G contains a globally reachable node, then the set of equilibrium
points of the Laplacian �ow (7.5) is {α1n | α ∈ R}.

Proof. A point x is an equilibrium for the Laplacian �ow if Lx = 0n. Hence, any point in the kernel of the

matrixL is an equilibrium. From Theorem 6.6, ifG contains a globally reachable node, then rank(L) = n−1.

Hence, the dimension of the kernel space is 1. The lemma follows by recalling that L1n = 0n. �

We are now interested in characterizing the solution of the Laplacian �ow (7.5). To build some intuition,

we �rst consider an undirected graphG and write the modal decomposition of the solution as in Remark 2.3

for a discrete-time linear system. We proceed in two steps. First, because G is undirected, the matrix L
is symmetric and has real eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with corresponding orthonormal (i.e.,

orthogonal and unit-length) eigenvectors v1, . . . , vn. De�ne yi(t) = vTi x(t) and left-multiply ẋ = −Lx by

vi:
d

dt
yi(t) = −λiyi(t), yi(0) = vTi x(0).

These n decoupled ordinary di�erential equations are immediately solved to give

x(t) = y1(t)v1 + y2(t)v2 + · · ·+ yn(t)vn

= e−λ1t(vT1 x(0))v1 + e−λ2t(vT2 x(0))v2 + · · ·+ e−λnt(vTnx(0))vn.

Second, recall that λ1 = 0 and v1 = 1n/
√
n because L is a symmetric Laplacian matrix (L1n = 0n).

Therefore, we compute (vT1 x(0))v1 = average(x(0))1n and substitute

x(t) = average(x(0))1n + e−λ2t(vT2 x(0))v2 + · · ·+ e−λnt(vTnx(0))vn.

Now, let us assume that G is connected so that its second smallest eigenvalue λ2 is strictly positive. In this

case, we can infer that

lim
t→∞

x(t) = average(x(0))1n,
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or, de�ning a disagreement vector δ(t) = x(t)− average(x(0))1n, we infer

δ(t) = e−λ2t(vT2 x(0))v2 + · · ·+ e−λnt(vTnx(0))vn.

In summary, we discovered that, for a connected undirected graph, the disagreement vector converges

to zero with an exponential rate λ2. In what follows, we state a more general convergence to consensus

result for the continuous-time Laplacian �ow. This result is parallel to Theorem 5.1.

Theorem 7.4 (Consensus for Laplacian matrices with globally reachable node). If a Laplacian ma-
trix L has associated digraph G with a globally reachable node, then

(i) the eigenvalue 0 of −L is simple and all other eigenvalues of −L have negative real part,

(ii) limt→∞ e−Lt = 1nwT, where w is the left eigenvector of L with eigenvalue 0 satisfying 1T
nw = 1,

(iii) wi ≥ 0 for all nodes i and wi > 0 if and only if node i is globally reachable,

(iv) the solution to d
dtx(t) = −Lx(t) satis�es

lim
t→∞

x(t) =
(
wTx(0)

)
1n,

(v) if additionally G is weight-balanced, then G is strongly connected, 1T
nL = 0T

n , w = 1
n1n, and

lim
t→∞

x(t) =
1T
nx(0)

n
1n = average

(
x(0)

)
1n.

Note: as a corollary to the statement (iii), the left eigenvector w ∈ Rn associated to the 0 eigenvalue

has strictly positive entries if and only if G is strongly connected.

Proof. Because the associated digraph has a globally reachable node, Theorem 6.6 establishes that L has

rank n − 1 and that all eigenvalues of L have non-negative real part. Therefore, also remembering the

property L1n = 0n, we conclude that 0 is a simple eigenvalue with right eigenvector 1n and that all other

eigenvalues of L have positive real part. This concludes the proof of (i). In what follows we let w denote

the left eigenvector associated to the eigenvalue 0, that is, wTL = 0T
n , normalized so that 1T

nw = 1.

To prove statement (ii), we proceed in three steps. First, we write the Laplacian matrix in its Jordan

normal form:

L = PJP−1 = P




0 0 · · · 0

0 J2
. . . 0

...
. . .

. . . 0
0 · · · 0 Jm



P−1, (7.7)

where m ≤ n is the number of Jordan blocks, the �rst block is the scalar 0 (being the only eigenvalue we

know), the other Jordan blocks J2, . . . , Jm (unique up to re-ordering) are associated with eigenvalues with

strictly positive real part, and where the columns of P are the generalized eigenvectors of L (unique up to

rescaling).
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Second, using some properties from Exercise E7.1, we compute the limit as t→∞ of e−Lt = P e−Jt P−1

as

lim
t→∞

e−Lt = P lim
t→∞

e−Jt P−1 = P




1 0 · · · 0

0 0
. . . 0

...
. . .

. . . 0
0 · · · 0 0



P−1 = (Pe1)(eT1P

−1) = c1r1,

where c1 is the �rst column of P and r1 is the �rst row of P−1
. The contributions of the Jordan blocks

J2, . . . , Jm vanish because their eigenvalues have negative real part; e.g., for more details see (Hespanha,

2009).

Third and �nal, we characterize c1 and r1. By de�nition, the �rst column of P (unique up to rescaling)

is a right eigenvector of the eigenvalue 0 for the matrix L, that is, c1 = α1n for some scalar α since we

know L1n = 0n. Of course, it is convenient to de�ne c1 = 1n. Next, equation (7.7) can be rewritten as

P−1L = JP−1
, whose �rst row is r1L = 0T

n . This equality implies r1 = βwT
for some scalar β. Finally,

we note that P−1P = In implies r1c1 = 1, that is, βwT1n = 1. Since we know wT1n = 1, we infer that

β = 1 and that r1 = wT
. This concludes the proof of statement (ii).

Next, we prove statement (iii). Pick a positive constant ε < 1/dmax, where the maximum out-degree

is dmax = max{dout(1), . . . , dout(n)}. De�ne B = In − εL. It is easy to show that B is non-negative,

row-stochastic, and has strictly positive diagonal elements. Moreover, wTL = 0T
n implies wTB = wT

so that w is the left eigenvector with unit eigenvalue for B. Now, note that the digraph G(L) associated

to L (without self-loops) is identical to the digraph G(B) associated to B, except for the fact that B has

self-loops at each node. By assumption G(L) has a globally reachable node and therefore so does G(B),

where the subgraph induced by the set of globally reachable nodes is aperiodic (due to the self-loops).

Therefore, statement (iii) is now an immediate transcription of the same statement for row-stochastic

matrices established in Theorem 5.1 (statement (i)).

Statements (iv) and (v) are straightforward and left as Exercise E7.3. �

7.4 Second-order Laplacian �ows

In this section we assume each node of the network obeys a so-called double-integrator dynamic (also

referred to as second-order dynamic):

ẍi = ui, or, in �rst-order equivalent form,

{
ẋi = vi,

v̇i = ui,
(7.8)

where ui is an appropriate control input signal to be designed.

We assume a weighted digraph describes the sensing and/or communication interactions among the

agents with adjacency matrix A and Laplacian L. We also introduce constants kp, kd ≥ 0 describing a

so-called spring and damping coe�cients respectively, as well as constants γp, γd ≥ 0 describing position-

averaging and velocity-averaging coe�cients. Given the following law:

ui = −kpxi − kdẋi +
n∑

j=1

aij
(
γp(xj − xi) + γd(ẋj − ẋi)

)
,
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the corresponding closed-loop systems, called the second-order Laplacian �ow, is

ẍ(t) + (kdIn + γdL)ẋ(t) + (kpIn + γpL)x(t) = 0n. (7.9)

By introducing the second-order Laplacian matrix L ∈ R2n×2n
, we write the system in �rst-order form:

[
ẋ(t)
v̇(t)

]
=

[
0n×n In

−kpIn − γpL −kdIn − γdL

] [
x(t)
v(t)

]
=: L

[
x(t)
v(t)

]
.

Name Dynamics References

Second-order consensus protocol

(kp = kd = 0, γd = 1, γp > 0)

ẍ(t)+Lẋ(t)+γpLx(t) = 0n (Ren and Atkins, 2005; Ren,

2008a; Yu et al., 2010)

Harmonic oscillators coupled via velocity

averaging (kd = γp = 0, γd = 1, kp > 0)

ẍ(t) + Lẋ(t) + kpx(t) = 0n (Ren, 2008b)

Position-averaging with absoluted velocity

damping (kp = γd = 0, γp = 1, kd > 0)

ẍ(t) + kdẋ(t) + Lx(t) = 0n Exercise E7.12

Arbitrary-sign gains and digraphs (possibly

with L 6= LT
)

equation (7.9) (Zhu et al., 2009).

See (Zhang and Tian,

2009) for discrete-time

setting.

Table 7.1: Classi�cation of second-order Laplacian �ows

It turns out that it is possible to compute the eigenvalues of the second-order Laplacian matrix; we refer

to Exercise E7.11 for its eigenvectors.

Theorem 7.5 (Eigenvalues of second-order Laplacian matrices). Given a Laplacian matrix L and
coe�cients kp, kd, γp, γd ∈ R,

(i) the characteristic polynomial of L is

det(ηI2n − L) = det
(
η2In + η(kdIn + γdL) + (kpIn + γpL)

)
;

(ii) given the eigenvalues λi, i ∈ {1, . . . , n}, ofL, the 2n eigenvalues ηi,±, i ∈ {1, . . . , n}, ofL are solutions
to

η2 + (kd + γdλi)η + (kp + γpλi) = 0, i ∈ {1, . . . , n}. (7.10)

Proof. Regarding statement (i), we recall equality (E2.1b) from Exercise E2.16 and compute the characteristic

polynomial of L as:

det(ηI2n − L) = det

[
ηIn −In

kpIn + γpL (η + kd)In + γdL

]

= det
(
(ηIn)((η + kd)In + γdL)− (−In)(kpIn + γpL)

)

= det
(
η2In + η(kdIn + γdL) + (kpIn + γpL)

)
.
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Regarding statement (ii), let JL be the Jordan normal form of L, i.e., let L = TJLT
−1

for an appropriate

invertible T , and note

det(ηI2n − L) = det
(
η2In + η(kdIn + γdJL) + (kpIn + γpJL)

)

=

n∏

i=1

(
η2 + (kd + γdλi)η + (kp + γpλi)

)
.

Therefore, the 2n solutions to the characteristic equation det(ηI2n−L) = 0 are n pairs of solutions η2i,2i−i,
i ∈ {1, . . . , n}, for the second-order equations (7.10). This concludes task (ii). �

Next, we provide a necessary and su�cient characterization of a so-called asymptotic second-order

consensus concept.

Theorem 7.6 (Asymptotic second-order consensus). Consider the second-order Laplacian �ow (7.9).
The following statements are equivalent:

(i) the second-order Laplacian �ow achieves asymptotic second-order consensus, that is, |xi − xj | → 0
and |ẋi − ẋj | → 0 as t→∞ for all i, j ∈ {1, . . . , n}, and

(ii) the 2(n − 1) eigenvalues ηi,±, i ∈ {2, . . . , n}, of the second-order Laplacian matrix L have strictly
negative real part.

Proof. We introduce the following change of coordinates: Tx(t) =

[
xave(t)
δ(t)

]
, wherexave(t) = average(x(t)),

δ(t) ∈ Rn−1
, and, from Exercise E2.3, T =




1/n 1/n . . . 1/n
−1 1

. . .
. . .

−1 1


. Correspondingly, we also have

T ẋ(t) =

[
ẋave(t)

δ̇(t)

]
. To write the system in the new coordinates, we observe T1n = e1 and compute

TLT−1e1 = TLT−1(T1n) = TL1n = 0n,

where the last equality follows from L1n = 0n. This implies that the �rst column of TLT−1
is 0n, that is,

TLT−1 =

[
0 cT

0n−1 Lred

]
, for Lred ∈ R(n−1)×(n−1)

and c ∈ Rn−1, (7.11)

so that spec(L) = {0}∪ spec(Lred). Next, we compute

[
T 0n×n

0n×n T

] [
0n×n In

−kpIn − γpL −kdIn − γdL

] [
T−1 0n×n
0n×n T−1

]

=

[
0n×n T

−kpT − γpTL −kdT − γdTL

] [
T−1 0n×n
0n×n T−1

]
=

[
0n×n In

−kpIn − γpTLT
−1 −kdIn − γdTLT

−1

]
.

(7.12)
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Based on equations (7.11) and (7.12), we write the system in these new coordinates as

d

dt




xave

δ
ẋave

δ̇


 =




0 0T
n−1 1 0

0n−1 0(n−1)×(n−1)) 0n−1 In−1

−kp −γpc
T −kd −γdc

T

0n−1 −kpIn−1 − γpLred 0n−1 −kdIn−1 − γdLred







xave

δ
ẋave

δ̇


 .

We reorder the variables to obtain a block-diagonal matrix, whose eigenvalues are the eigenvalues of the

diagonal blocks:

d

dt




xave

ẋave

δ

δ̇


 =




0 1 0T
n−1 0

−kp −kd −γpc
T −γdc

T

0n−1 0n−1 0(n−1)×(n−1)) In−1

0n−1 0n−1 −kpIn−1 − γpLred −kdIn−1 − γdLred







xave

ẋave

δ

δ̇


 .

We are now ready to conclude the proof: asymptotic second-order consensus is achieved if and only if δ →
0n−1 and δ̇ → 0n−1 as t→∞ if and only if all eigenvalues of

[
0 In−1

−kpIn−1 − γpLred −kdIn−1 − γdLred

]

have strictly negative real part. But these eigenvalues are precisely the 2(n − 1) eigenvalues ηi,±, i ∈
{2, . . . , n}, of the second-order Laplacian matrix L. �

Finally, we restrict out attention to undirected graphs and positive gains and present convergence

results for this setting.

Theorem 7.7 (Asymptotic convergence of second-order Laplacian �ows). Consider the second-order
Laplacian �ow (7.9). Assume L is symmetric and irreducible (i.e., its associated digraph is undirected and
connected). De�ne the state average and its time derivative by: xave(t) = average

(
x(t)

)
and ẋave(t) =

average
(
ẋ(t)

)
. Then the state averages satisfy

d

dt

[
xave(t)
ẋave(t)

]
=

[
0 1
−kp −kd

] [
xave(t)
ẋave(t)

]
, (7.13)

and, moreover,

(i) for the second-order consensus protocol (kp = kd = 0, γd = 1, γp > 0), asymptotic consensus on a ramp
signal is achieved, that is, as t→∞,

x(t)→
(
xave(0) + ẋave(0)t

)
1n;

(ii) for the harmonic oscillators coupled via velocity averaging (kd = γp = 0, γd = 1, kp > 0), asymptotic
synchronization on an harmonic signal with frequency

√
kp is achieved, that is, as t→∞,

x(t)→
(
xave(0) cos(

√
kpt) +

1√
kp

ẋave(0) sin(
√
kpt)

)
1n;
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(iii) for the position-averaging �ow with absolute velocity damping (kp = γd = 0, γp = 1, kd > 0),
asymptotic consensus on a weighted average value is achieved, that is, as t→∞

x(t)→
(
xave(0) + ẋave(0)/kd

)
1n.

Proof. First, we show that, in the similarity transformation (7.11), if L is symmetric, then c = 0n−1. To do

this, we observe eT1 T = (1/n)1T
n and compute

eT1 TLT
−1 = 1T

nLT
−1 = 0T

n ,

where the last equality follows from LT1n = 0n. This implies that the �rst row of TLT−1
is 0n and, in

turn, that equation (7.13) are correct. Second, for the index range i ∈ {2, . . . , n}, in all three cases the

second-order polynomial (7.10) has strictly positive coe�cients, which implies that the 2(n−1) eigenvalues

ηi,±, i ∈ {2, . . . , n}, of the second-order Laplacian matrix L have strictly negative real part. Therefore,

by Theorem 7.6, the second-order Laplacian �ow achieves asymptotic second-order consensus and, more

speci�cally, xi(t)− (xave(t))i → 0 and ẋi(t)− (ẋave(t))i → 0 for all i ∈ {1, . . . , n}. Third and �nally , the

speci�c values for xave(t) follow from explicitely solving the state average dynamics (7.13). We leave the

details to the reader. �

The three scenarios discussed in Theorem 7.7 are illustrated in Figure 7.3. Case (i) with relative position

and velocity coupling, γd = 1, γp > 0, leads to consensus on a ramp, which is relevant in car platooning

problems. Case (ii) with relative velocity and absolute position feedback, γd = 1, kp > 0, leads to a

consensus on harmonic oscillations, which can be found in the synchronization of electronic oscillators,

where the states correspond to voltages and currents of resistively resonant (parallel LC) circuits. Finally,

case (iii) with relative position and absolute velocity feedback, γp = 1, kd > 0, leads to a consensus in

positions, and it can be found in robotic consensus problems or in power network swing dynamics.

7.5 Appendix: Design of weight-balanced digraphs

Problem: Given a directed graph G that is strongly connected, but not weight-balanced, how do we choose

the weights in order to obtain a weight-balanced digraph and a Laplacian satisfying 1T
nL = 0n? (Note that

an undirected graph is automatically weight-balanced.)

Answer: As usual, let w > 0 be the left eigenvector of L with eigenvalue 0 satisfying w1 + · · ·+wn = 1.

In other words, w is a vector of convex combination coe�cients, and the Laplacian L satis�es

L1n = 0n, and wTL = 0T
n .

De�ne now a new matrix:

Lrescaled = diag(w)L.

It is immediate to see that

Lrescaled1n = diag(w)L1n = 0n, 1T
nLrescaled = 1T

n diag(w)L = wTL = 0T
n .

Note that:
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t

x(t) kp = 0, �p = 1, kd = 0, �d = 1
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(a) Case (i): asymptotic consensus on a ramp signal

kp = 1, �p = 0, kd = 0, �d = 1

t

x(t)
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(b) Case (ii): asymptotic synchronization on an harmonic signal

kp = 0, �p = 1, kd = 1, �d = 0

t

x(t)

2 4 6 8

�4

�2

0

2

4

(c) Case (iii): asymptotic consensus on a weighted average

Figure 7.3: Representative trajectories of the second-order Laplacian �ow (7.9) for a randomly-generated undirected

graph with n = 20 nodes, random initial conditions, and the three choices of gains discussed in Theorem 7.7.

• Lrescaled is again a Laplacian matrix because (i) its row-sums are zero, (ii) its diagonal entries are

positive, and (iii) its non-diagonal entries are non-positive;

• Lrescaled is the Laplacian matrix for a new digraph Grescaled with the same nodes and directed edges

as G, but whose weights are rescaled as follows: aij 7→ wiaij . In other words, the weight of each

out-edge of node i is rescaled by wi.

7.6 Appendix: Distributed optimization using the Laplacian �ow

In the following, we present a computational application of the Laplacian �ow in distributed optimization.

The materials in this section are inspired by (Wang and Elia, 2010; Gharesifard and Cortes, 2014; Droge et al.,

2014; Cherukuri et al., 2017), and we present them here in a self-contained way. As only preliminaries notions,

we introduce the following two de�nitions: A function f : Rn → R is said be convex if f(αx + βy) ≤
αf(x) + βf(y) for all x and y in Rn and for all convex combination coe�cients α and β, i.e., coe�cients

satisfying α, β ≥ 0 and α+ β = 1. A function is said to be strictly convex if the previous inequality holds

strictly.

Consider a network of n processors that can perform local computation and communicate with another.

The communication architecture is modeled by an undirected, connected, and weighted graph with n
nodes and symmetric Laplacian L = LT ∈ Rn×n. The objective of the processor network is to solve the
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optimization problem

minimize x∈R f(x) =
n∑

i=1

fi(x), (7.14)

where fi : R → R is a strictly convex and twice continuously di�erentiable cost function known only

to processor i ∈ {1, . . . , n}. In a centralized setup, the decision variable x is globally available and the

minimizers x∗ ∈ R of the optimization problem (7.14) can be found by solving for the critical points of f(x)

0n =
∂

∂x
f(x) =

n∑

i=1

∂

∂x
fi(x).

A centralized continuous-time algorithm converging to the set of critical points is the negative gradient �ow

ẋ = − ∂

∂x
f(x) .

To �nd a distributed approach to solving the optimization problem (7.14), we associate a local estimate

yi ∈ R of the global variable x ∈ R to every processor and solve the equivalent problem

minimize y∈Rn f̃(y) =
n∑

i=1

fi(yi) +
1

2
yTLy subject to Ly = 0n, (7.15)

where the consistency constraint Ly = 0n assures that yi = yj for all i, j ∈ {1, . . . , n}, that is, the local

estimates of all processors coincide. We also augmented the cost function with the term yTLy, which clearly

has no e�ect on the minimizers of (7.15) (due to the consistency constraint), but it provides supplementary

damping and favorable convergence properties for our algorithm. The minimizers of the optimization

problems (7.14) and (7.15) are then related by y∗ = x∗1n.

Without any further motivation, consider the function L : Rn × Rn → R given by

L(y, z) = f(y) +
1

2
yTLy + zTLy.

In the literature on convex optimization this function is known as (augmented) Lagrangian function and

z ∈ Rn is referred to as Lagrange multiplier. What is important for us is that the augmented Lagrangian

function is strictly convex in y and linear (and hence
1

concave) in z. Hence, the augmented Lagrangian

function admits a set of saddle points (y∗, z∗) ∈ Rn × Rn, that is points satisfying

L(y∗, z) ≤ L(y∗, z∗) ≤ L(y, z∗) for all (y, z) ∈ Rn × Rn .

Since L(y, z) is di�erentiable in y and z, the saddle points can be obtained as solutions to the equations

0n =
∂

∂y
L(y, z) =

∂

∂y
f(y) + Ly + Lz,

0n =
∂

∂z
L(y, z) = Ly.

Our motivation for introducing the Lagrangian is the following lemma.

1

A function f : Rn → R is said to be concave (resp. strictly concave) if −f(x) is a convex (resp. strictly convex) function.
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Lemma 7.8 (Properties of saddle points). Let L = LT ∈ Rn×n be a symmetric Laplacian associated to
an undirected, connected, and weighted graph, and consider the Lagrangian function L, where each fi is strictly
convex and twice continuously di�erentiable for all i ∈ {1, . . . , n}. Then

(i) if (y∗, z∗) ∈ Rn × Rn is a saddle point of L, then so is (y∗, z∗ + α1n) for any α ∈ R;
(ii) if (y∗, z∗) ∈ Rn ×Rn is a saddle point of L, then y∗ = x∗1n where x∗ ∈ R is a solution of the original

optimization problem (7.14); and

(iii) if x∗ ∈ R is a solution of the original optimization problem (7.14), then there are z∗ ∈ Rn and y∗ = x∗1n
satisfying Lz∗ + ∂

∂y f̃(y∗) = 0n so that (y∗, z∗) is a saddle point of L.

We leave the proof to the reader in Exercise E7.15. Since the Lagrangian function is convex in y and

concave in z, we can compute its saddle points by following the so-called saddle-point dynamics, consisting

of a positive and negative gradient:

ẏ = − ∂

∂y
L(y, z) = − ∂

∂y
f(y)− Ly − Lz, (7.16a)

ż =
∂

∂z
L(y, z) = Ly. (7.16b)

For processor i ∈ {1, . . . , n}, the saddle-point dynamics (7.16) read component-wise as

ẏi = − ∂

∂yi
fi(yi)−

n∑

j=1

aij(yi − yj)−
n∑

j=1

aij(zi − zj),

żi =
∂

∂zi
L(y, z) =

n∑

j=1

aij(yi − yj).

Hence, the saddle-point dynamics can be implemented in a distributed processor network using only local

knowledge of fi(yi), local computation, nearest-neighbor communication and—of course—after discretizing

the continuous-time dynamics; see Exercise E7.18. As shown in (Wang and Elia, 2010; Gharesifard and

Cortes, 2014; Droge et al., 2014; Cherukuri et al., 2017), this distributed optimization setup is very versatile

and robust and extends to directed graphs and non-di�erentiable convex objective functions. We will later

establish using a powerful tool termed Krasovskiı̆-LaSalle Invariance Principle to show that the saddle-point

dynamics (7.16) always converge to the set of saddle points; see Exercise E14.4.

For now we restrict our analysis to the case of quadratic cost functions fi(x) = Pi(x − xi)
2
, where

Pi > 0 and xi ∈ R. Thus, the cost function reads, up to a constant scalar, as

f(x) =
n∑

i=1

(x− xi)
TPi(x− xi) =

n∑

i=1

(x− x∗)TPi(x− x∗) +O(1) ,

where x∗ is the weighted average x∗ = (
∑n

i=1 Pi)
−1∑n

i=1 Pixi, which is the global minimizer of f (as

obtained by ∂f(x)/∂x = 0n); see Exercise E7.17. In this case, the saddle-point dynamics (7.16) reduce to

the linear system [
˙̃y
ż

]
=

[
−P − L −L

L 0n×n

]

︸ ︷︷ ︸
=A

[
ỹ
z

]
, (7.17)
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where ỹ = y − x∗1n and P = diag({Pi}i∈{1,...,n}). In what follows, we will establish the convergence of

the dynamics (7.17) to the set of saddle points. First, observe that 0 is an eigenvalue of A with multiplicity

1 and the corresponding eigenvector, given by

[
0T
n 1T

n

]T
corresponds to the set of saddle points:

[
0n
0n

]
=

[
−P − L −L

L 0n×n

] [
ỹ
z

]
=⇒ (P + L)ỹ + Lz = 0n and Lỹ = 0n =⇒ ỹ ∈ span(1n)

=⇒ ỹTP ỹ = 0n obtained by multiplying (P + L)ỹ + Lz = 0n by ỹT

=⇒ ỹ = 0n and z = 1n .

Next, note that for any z1, z2 ∈ Rn,

[
z1

z2

]T [−P − L −L
L 0n×n

] [
z1

z2

]
=
[
zT1 zT2

] [(−P − L)z1 − Lz2

Lz1

]

= zT1 (−P − L)z1 − zT1 Lz2 + zT2 Lz1 = −zT1 (P + L)z1 ≤ 0,

because L is symmetric and both P and L are positive semide�nite. This inequality implies that A is

negative semide�nite. Since there is a unique zero eigenvalue associated with the set of saddle points, it

remains to show that the matrixA has no purely imaginary eigenvalues. This is established in the following

lemma whose proof is left to the reader in Exercise E7.16:

Lemma 7.9 (Absence of imaginary eigenvalues in saddle matrices (Benzi et al., 2005)). Given a
negative semide�nite matrix B ∈ Rn×n and a not necessarily square matrix C ∈ Rn×m, de�ne the saddle

matrix A ∈ R(n+m)×(n+m) by

A =

[
B C
−CT 0m×m

]
.

If kernel(B)∩ image(C) = {0n}, then the saddle matrix A has no eigenvalues on the imaginary axis except
for 0.

It follows that the saddle point dynamics (7.17) converge to the set of saddle points

[
ỹT zT

]T ∈
span

([
0T
n 1T

n

]T)
. Since 1T

n ż = 0, it follows that average(z(t)) = average(z0), we can further conclude

that the dynamics converge to a unique saddle point satisfying limt→∞ y(t) = x∗1n and limt→∞ z(t) =
z01n.

7.7 Historical notes and further reading

Section 7.1.1 “Example #1: Continuous-time opinion dynamics” presents the continuous-time averaging

model by (Abelson, 1964) and its relationship with the discrete-time averaging model by (French, 1956;

Harary, 1959; DeGroot, 1974). Abelson’s work is one of the earliest on what we now call the Laplacian �ow.

Regarding Example #2: “Flocking behavior for a group of animals” in Section 7.1.2, a classic early

reference on this topic is (Reynolds, 1987). In that model, �ocking behavior is controlled by three simple

rules: Separation - avoid crowding neighbors (short range repulsion) Alignment - steer towards average

heading of neighbors, and Cohesion - steer towards average position of neighbors (long range attraction).
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The RC circuit example in Section 7.1.3 is taken from (Mesbahi and Egerstedt, 2010; Ren et al., 2007).

An early reference to Theorem 7.4 is the work by Abelson (1964) in mathematical sociology; more

recent references with rigorous proofs in the control literature include (Lin et al., 2005; Ren and Beard,

2005).

Second-order Laplacian �ows are widely studied. Early references are the works by Chow (1982) and

Chow and Kokotović (1985) on slow coherency and area aggregation of power networks, modelled as �rst

and second-order Laplacian �ows; see also (Avramovic et al., 1980; Chow et al., 1984; Saksena et al., 1984)

among others.

In the consensus literature, an early reference to second-order Laplacian �ows is (Ren and Atkins, 2005).

Relevant references include (Ren, 2008a,b; Zhu et al., 2009; Zhang and Tian, 2009; Yu et al., 2010). A proof

of Theorem 7.6 based on the Jordan normal form is given in (Ren and Atkins, 2005; Ren, 2008b). We refer

to (Zhu et al., 2009) for convergence results for general digraphs and gains with arbitrary signs.

For historical and additional results on di�usively-coupled identical linear systems (as described in

Exercise E7.21, we refer to (Wu and Chua, 1995; Scardovi and Sepulchre, 2009; Li et al., 2010; Yang et al.,

2011; Jafarpour et al., 2017).

A reference for the construction in Section 7.5 is (Ren et al., 2007).
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7.8 Exercises

E7.1 Properties of the matrix exponential. Recall the de�nition of eA =
∑∞
k=0

1
k!A

k
for any square matrix A.

Complete the following tasks:

(i) show that

∑∞
k=0

1
k!A

k
converges absolutely for all square matrices A,

Hint: Recall that a matrix series
∑∞
k=1Ak is said to converge absolutely if

∑∞
k=1 ‖Ak‖ converges, where

‖ · ‖ is a matrix norm. Introduce a sub-multiplicative matrix norm ‖ · ‖ and show ‖ eA ‖ ≤ e‖A‖.
(ii) show that, if A = diag(a1, . . . , an), then eA = diag(ea1 , . . . ean),

(iii) show that AB = BA implies eAB = eA eB ,

(iv) show that eTAT
−1

= T eA T−1 for any invertible T , and

(v) compute the matrix exponential of etJ where J is a Jordan block of arbitrary size and t ∈ R.

E7.2 Continuous-time a�ne systems. Given A ∈ Rn×n and b ∈ Rn, consider the continuous-time a�ne

systems

ẋ(t) = Ax(t) + b.

Assume A is Hurwitz and, similarly to Exercise E2.10, show that

(i) the matrix A is invertible,

(ii) the only equilibrium point of the system is −A−1b, and

(iii) limt→∞ x(t) = −A−1b for all initial conditions x(0) ∈ Rn.

E7.3 Consensus for Laplacian matrices: missing proofs. Complete the proof of Theorem 7.4, that is, prove

statements (iv) and (v).

E7.4 Laplacian average consensus in directed networks. Consider the directed network in �gure below with

arbitrary positive weights and its associated Laplacian �ow ẋ(t) = −L(x(t).

124

3

(i) Can the network reach consensus, that is, as t→∞ does x(t) converge to a limiting point in span{1n}?
(ii) Does x(t) achieve average consensus, that is, limt→∞ x(t) = average(x0)1n?

(iii) Will your answers change if you smartly add one directed edge and adapt the weights?

E7.5 Convergence of discrete-time and continuous-time averaging. Consider the following two weighted

digraphs and their associated non-negative adjacency matrices A and Laplacian matrices L of appropriate

dimensions. Consider the associated discrete-time iterations x(t+ 1) = Ax(t) and continuous-time Laplacian

�ows ẋ(t) = −Lx(t). For each of these two digraphs, argue about whether the discrete and/or continuous-time

systems converge as t→∞. If they converge, what do they converge to? Please justify your answers.

E7.6 Euler discretization of the Laplacian. Given a weighted digraphG with Laplacian matrix L and maximum

out-degree dmax = max{dout(1), . . . , dout(n)}. Show that:

(i) if ε < 1/dmax, then the matrix In − εL is row-stochastic,

(ii) if ε < 1/dmax and G is weight-balanced, then the matrix In − εL is doubly-stochastic, and

(iii) if ε < 1/dmax and G is strongly connected, then In − εL is primitive.

Given these results, note that (no additional assignment in what follows)
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Figure E7.1: Two example weighted digraphs

• In − εL is the one-step Euler discretization of the continuous-time Laplacian �ow and is a discrete-time

consensus algorithm; and

• In − εL is a possible choice of weights for an undirected unweighted graph (which is therefore also

weight-balanced) in the design of a doubly-stochastic matrix (as we did in the discussion about Metropolis-

Hastings).

E7.7 Doubly-stochastic matrices on strongly-connected digraphs. Given a strongly-connected unweighted

digraph G, design weights along the edges of G (and possibly add self-loops) so that the weighted adjacency

matrix is doubly-stochastic.

E7.8 Constants of motion. In the study of mechanics, energy and momentum are two constants of motion, that

is, these quantities are constant along each evolution of the mechanical system. Show that

(i) If A is a row stochastic matrix with wTA = wT
, then wTx(k) = wTx(0) for all times k ∈ Z≥0 where

x(k + 1) = Ax(k).

(ii) If L is a Laplacian matrix with with wTL = 0T
n, then wTx(t) = wTx(0) for all times t ∈ R≥0 where

ẋ(t) = −Lx(t).

E7.9 Weight-balanced digraphs with a globally reachable node. Given a weighted directed graph G, show

that if G is weight-balanced and has a globally reachable node, then G is strongly connected.

E7.10 The Lyapunov inequality for the Laplacian matrix of a strongly-connected digraph. Let L be the

Laplacian matrix of a strongly-connected weighted digraph. Find a positive-de�nite matrix P such that

(i) PL+ LTP is positive semide�nite (this is the so-called Lyapunov inequality), and

(ii) (PL+ LTP )1n = 0n.

E7.11 Eigenvectors of the second-order Laplacian matrix. Consider a Laplacian matrix L, scalar coe�cients

kp, kd, γp, γd ∈ R and the induced second-order Laplacian matrix L. Let vl,i and vr,i be the left and right

eigenvectors of L corresponding to the eigenvalue λi, show that

(i) the right eigenvectors of L corresponding to the eigenvalues ηi,± are

[
vr,i

ηi,±vr,i

]
,
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(ii) for kp > 0, the left eigenvectors of L corresponding to the eigenvalues ηi,± are




vl,i
−ηi,±

kp + γpλi
vl,i


 .

E7.12 Laplacian oscillators. Given the Laplacian matrix L = LT ∈ Rn×n of an undirected, weighted, and

connected graph with edge weights aij , i, j ∈ {1, . . . , n}, de�ne the Laplacian oscillator �ow by

ẍ(t) + Lx(t) = 0n. (E7.1)

This �ow is written as �rst-order di�erential equation as

[
ẋ(t)
ż(t)

]
=

[
0n×n In
−L 0n×n

] [
x(t)
z(t)

]
=: L

[
x(t)
z(t)

]
.

(i) Write the second-order Laplacian �ow in components.

(ii) Write the characteristic polynomial of the matrix L using only the determinant of an n× n matrix.

(iii) Given the eigenvalues λ1 = 0, λ2, . . . , λn of L, show that the eigenvalues η1, . . . , η2n of A satisfy

η1 = η2 = 0, η2i,2i−1 = ±
√
λii, for i ∈ {2, . . . , n},

where i is the imaginary unit.

(iv) Show that the solution is the superposition of a ramp signal and of n− 1 harmonics, that is,

x(t) =
(

average(x(0)) + average(ẋ(0))t
)
1n +

n∑

i=2

ai sin(
√
λit+ φi)vi,

where {1n/
√
n, v2, . . . , vn} are the orthonormal eigenvectors of L and where the amplitudes ai and

phases φi are determined by the initial conditions

(
x(0), ẋ(0)

)
.

E7.13 Delayed Laplacian �ow. De�ne the delayed Laplacian �ow dynamics over a connected, weighted, and graph

G by:

ẋi(t) =
∑

j∈N
aij(xj(t− τ)− xi(t− τ)), i ∈ {1, . . . , n},

where aij > 0 is the weight on the edge {i, j} ∈ E, and τ > 0 is a positive scalar delay term. The Laplace

domain representation of the system is X(s) = G(s)x(0) where G(s) is associated transfer function

G(s) = (sIn + e−sτL)−1,

and L = LT ∈ Rn×n is the network Laplacian matrix. Show that the transfer function G(s) admits poles

on the imaginary axis if the following resonance condition is true for an eigenvalue λi, i ∈ {1, . . . , n}, of the

Laplacian matrix:

τ =
π

2λi
.

E7.14 Robotic coordination and geometric optimization on the real line. Consider n ≥ 3 robots with dynam-

ics ṗi = ui, where i ∈ {1, . . . , n} is an index labeling each robot, pi ∈ R is the position of robot i, and ui ∈ R
is a steering control input. For simplicity, assume that the robots are indexed according to their initial position:

p1(0) ≤ p2(0) ≤ · · · ≤ pn(0). We consider the following distributed control laws to achieve some geometric

con�guration:
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(i) Move towards the centroid of your neighbors: Each robot i ∈ {2, . . . , n − 1} (having two neighbors)

moves to the centroid of the local subset {pi−1, pi, pi+1}:

ṗi =
1

3
(pi−1 + pi + pi+1)− pi , i ∈ {2, . . . , n− 1} . (E7.2)

The robots {1, n} (each having one neighbor) move to the centroid of the local subsets {p1, p2} and

{pn−1, pn}, respectively:

ṗ1 =
1

2
(p1 + p2)− p1 and ṗn =

1

2
(pn−1 + pn)− pn . (E7.3)

Show that, by using the coordination laws (E7.2) and (E7.3), the robots asymptotically rendezvous.

(ii) Move towards the centroid of your neighbors or walls: Consider two walls at the positions p0 ≤ p1
and pn+1 ≥ pn so that all robots are contained between the walls. The walls are stationary, that is,

ṗ0 = 0 and ṗn+1 = 0. Again, the robots i ∈ {2, . . . , n − 1} (each having two neighbors) move to

the centroid of the local subset {pi−1, pi, pi+1}. The robots {1, n} (each having one robotic neighbor

and one neighboring wall) move to the centroid of the local subsets {p0, p1, p2} and {pn−1, pn, pn+1},
respectively. Hence, the closed-loop robot dynamics are

ṗi =
1

3
(pi−1 + pi + pi+1)− pi , i ∈ {1, . . . , n} . (E7.4)

Show that, by using coordination law (E7.4), the robots become uniformly spaced on the interval

[p0, pn+1].

(iii) Move away from the centroid of your neighbors or walls: Again consider two stationary walls at p0 ≤ p1
and pn+1 ≥ pn containing the positions of all robots. We partition the interval [p0, pn+1] into regions

of interest, whereby each robot is assigned the territory containing all points closer to itself than to

other robots. In other words, robot i ∈ {2, . . . , n− 1} (having two neighbors) is assigned the region

Vi = [(pi + pi−1)/2, (pi+1 + pi)/2], robot 1 is assigned the region V1 = [p0, (p1 + p2)/2], and robot n
is assigned the region Vn = [(pn−1 + pn)/2, pn+1]. We aim to design a distributed algorithm such that

the robots are assigned aymptotically equal-sized regions. (This territory partition is called a Voronoi
partition; see (Martínez et al., 2007) for further detail.) We consider the following simple coordination

law, where each robot i heads for the midpoint ci(Vi(p)) of its partition Vi:

ṗi = ci(Vi(p))− pi . (E7.5)

Show that, by using the coordination law (E7.5), the robots’ assigned regions asymptotically become

equally large.

E7.15 Properties of saddle points. Prove Lemma 7.8.

E7.16 Absence of imaginary eigenvalues in saddle matrices. Prove Lemma 7.9.

E7.17 Centralized formulation of sum-of-squares cost. Consider a distributed optimization problem with n
agents, where the cost function fi(x) of each agent i ∈ {1, . . . , n} is de�ned by fi(x) = Pi(x− x∗i )2, where

Pi > 0 and x∗i ∈ R. Consider the joint sum-of-squares cost function

fsos(x) =
∑n

i=1
Pi(x− x∗i )2 .

(i) Calculate the global minimizer x∗ of fsos(x), and

(ii) show that the sum-of-squares cost fsos(x) is, up to a constant term, equal to the centralized cost function

fcentralized(x) =
(∑n

i=1
Pi

)
(x− x∗)2 .
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E7.18 Discrete saddle-point algorithm for distributed optimization. Consider the centralized optimization

problem

z? := argminz∈R
1

2

n∑

i=1

pi(z − ri)2, (E7.6)

where pi > 0 and ri ∈ R are �xed scalar quantities for each i ∈ {1, . . . , n}. Our aim is to solve this

optimization problem in a distributed fashion, that is, distributing the computation among a group of n agents.

Each agent i has access only to pi and ri and can communicate with the other agents via a network de�ned

by the Laplacian matrix L. We assume that this network is undirected and connected.

(i) Show that solving the optimization problem (E7.6) is equivalent to solving

x? := argminx∈Rn
1

2

n∑

i=1

pi(xi − ri)2,

subject to Lx = 0n,

(E7.7)

where x = [x1, . . . , xn]T. In other words, show that x? = z?1n.

(ii) Write the KKT conditions of the optimization problem (E7.7), using the notationP := diag{p1, . . . , pn} ∈
Rn×n, r = [r1, . . . , rn]T. Let (x̄, λ̄) be a solution of such KKT system. Show that a generic pair (x̃, λ̃) is

a solution of the KKT system if and only if x̄ = x̃ = x? and λ̃ = λ̄+ α1n, for some α ∈ R.

Hint: The solution requires knowledge of the Karush-Kuhn-Tucker (KKT) conditions for optimality; this is
a classic topic in nonlinear constrained optimization discussed in numerous textbooks, e.g., in (Luenberger
and Ye, 2008).

(iii) Recall the de�nition of the saddle-point dynamics (7.16) and consider the discrete-time distributed saddle

point algorithm

xi(k + 1) = xi(k)− τ
(
pi(xi(k)− ri) +

∑
j∈N in(i)

Ljiλj(k)
)
, (E7.8a)

λi(k + 1) = λi(k) + τ
(∑

j∈N out(i)
Lijxj(k)

)
, (E7.8b)

where τ > 0 is a su�ciently small step size. Show that, if the algorithm (E7.8) converges, then it

converges to a solution of the optimization problem (E7.7).

(iv) De�ne the error vector by

e(k) :=

[
x(k)− x̄
λ(k)− λ̄

]
.

Find the error dynamics of the algorithm (E7.8), that is, the matrix G such that e(k + 1) = Ge(k).

(v) Show that, for τ > 0 small enough, if µ is an eigenvalue of G, then either µ = 1 or |µ| < 1 and that[
0n
1n

]
is, modulo rescaling, the only eigenvector relative to the eigenvalue µ = 1. Use these results to

study the convergence properties of the distributed algorithm (E7.8). Will x(k)→ x? as k →∞?

Hint: Use Lemma 7.8.

E7.19 Synchronization of inductor/capacitor storage circuits. Consider a circuit composed of n identical

resonant inductor/capacitor storage nodes (i.e., a parallel interconnection of a capacitor and an inductor)

coupled through a connected and undirected graph whose edges are identical resistors; see Figure E7.2. The

parameters `, c, r take identical values on each inductor, capacitor and resistors, respectively.

(i) Write a state-space model of the resistively-coupled inductor/capacitor storage nodes in terms of the

time constant τ = 1/rc, the resonant frequency ω0 = 1/
√
`c, and the unweighted Laplacian matrix L

of the resistive network.
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` c

r

` c ` c

` cr

r

r

Figure E7.2: A circuit of identical inductor/capacitor storage nodes coupled through identical resistors.

(ii) Characterize the asymptotic behavior of this system.

E7.20 Formation control and a�ne Laplacian �ow. Consider a group of n vehicles moving in the plane. Each

vehicle i ∈ {1, . . . , n} is described by its kinematics ẋi = ui, where xi ∈ C is the vehicle’s position in the

complex plane and ui ∈ C is a steering command. The vehicle initial position in the complex plane is a square

formation: x(0) =
[
1 i −1 −i

]T
, where i is the imaginary unit. We aim to move the vehicles to the �nal

con�guration:

lim
t→∞

x(t) = x�nal =
[
0.5 + 0.5i −0.5 + 0.5i −0.5− 0.5i 0.5− 0.5i

]T
. (E7.9)

To achieve this goal, you will investigate a class of distributed control laws described by the a�ne Laplacian
�ow

ẋ(t) = −L(αx(t) + β) , (E7.10)

where α > 0 is a constant scalar gain, β ∈ Cn is a constant vector o�set, and L is a Laplacian matrix of a

strongly connected and weight-balanced digraph. Your tasks are the following:

(i) Show that the a�ne Laplacian �ow (E7.10) converges for any choice of α > 0 and β ∈ Cn.

(ii) Characterize all the values for α > 0 and β ∈ Cnsuch that the desired �nal con�guration x�nal is

achieved by the a�ne Laplacian �ow (E7.10).

E7.21 Synchronization and stabilization of di�usively-coupled identical linear systems. In this exercise we

study a generalization and variation of the �rst and second-order Laplacian �ows. We start by recalling that

the Kronecker product of A ∈ Rn×m and B ∈ Rq×r is the nq ×mr matrix A⊗B given by

A⊗B =




a11B . . . a1mB
...

. . .
...

an1B
.. . anmB


 . (E7.11)

Horn and Johnson (1994) reviews many useful properties of the Kronecker product, including, for example

A⊗B +A⊗C = A⊗(B + C), (E7.12)

(A⊗B)(C ⊗D) = (AC)⊗(BD). (E7.13)
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Now, consider n identical linear single-input single-output dynamical systems

ẋi(t) = Axi(t) +Bui(t),

yi(t) = Cxi(t),

with xi : R≥0 → Rk, A ∈ Rk×k, B ∈ Rk×1, and C ∈ R1×k
. Given an undirected symmetric graph with

Laplacian L with eigenvalues 0 = λ1 ≤ · · · ≤ λn, consider the di�usive coupling law

u(t) = −Ly(t),

where x =
[
xT1 , . . . , x

T
n

]T ∈ Rnk , u =
[
u1, . . . , un

]T ∈ Rn, and y =
[
y1, . . . , yn

]T ∈ Rn. Show that

(i) the closed-loop system obeys

ẋ = (In⊗A− L⊗BC)x; (E7.14)

(ii) if each matrix A− λiBC , i ∈ {2, . . . , n}, is Hurwitz, then the linear systems become asymptotically

synchronized in the sense that, for each i, j ∈ {1, . . . , n},

lim
t→∞

xi(t)− xj(t) = 0,

xi(t) = eAt
( 1

n

n∑

j=1

xj(0)
)

+ hi(t), where lim
t→∞

hi(t) = 0k,

lim
t→∞

Ly(t) = 0n;

(iii) the system (E7.14) is exponentially stable if and only each matrix A−λiBC , i ∈ {1, . . . , n}, is Hurwitz;

(iv) given kp, kd ≥ 0 and γp, γd ≥ 0, assume A =

[
0 1
−kp −kd

]
, B =

[
0
1

]
, and C =

[
γp γd

]
. Show that

a) equation (E7.14) is the same as equation (7.9),

b) if λ2 > 0, kp + γp > 0 and kd + γd > 0, then each matrix A− λiBC , i ∈ {2, . . . , n}, is Hurwitz.

Note: The result in this exercise is a special case of (Xia and Scardovi, 2016, Theorem 1).
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Chapter8

The Incidence Matrix and its Applications

After studying adjacency and Laplacian matrices, in this chapter we introduce one �nal matrix associated

with a graph: the incidence matrix. We study the properties of incidence matrices and their application to a

class of estimation problems with relative measurements and to the study of cycles and cutset spaces. For

simplicity we restrict our attention to undirected graphs.

8.1 The incidence matrix

Let G be an undirected unweighted graph with n nodes and m edges (and no self-loops, as by convention).

Assign to each edge of G a unique identi�er e ∈ {1, . . . ,m} and an arbitrary direction. The (oriented)

incidence matrix B ∈ Rn×m of the graph G is de�ned component-wise by

Bie =





+1, if node i is the source node of edge e,

−1, if node i is the sink node of edge e,

0, otherwise.

(8.1)

Here, we adopt the convention that an edge (i, j) has the source i and the sink j.

It is useful to consider the following example graph, as depicted in �gure.

1 2

43

1 2

3 4

e1

e2
e3

e4

Figure 8.1: How to number and orient the edges of a graph

As depicted on the right, we add an orientation to all edges, we order them and label them as follows:
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e1 = (1, 2), e2 = (2, 3), e3 = (4, 2), and e4 = (3, 4). Accordingly, the incidence matrix is

B =




+1 0 0 0
−1 +1 −1 0
0 −1 0 +1
0 0 +1 −1


 .

Note: 1T
nB = 0T

m since each column of B contains precisely one element equal to +1, one element

equal to −1 and all other zeros.

Note: assume the edge e ∈ {1, . . . ,m} is oriented from i to j, then for any x ∈ Rn,

(BTx)e = xi − xj .

8.2 Properties of the incidence matrix

Given an undirected weighted graph G with edge set {1, . . . ,m} and adjacency matrix A, recall

L = D −A, where D is the degree matrix.

Lemma 8.1 (From the incidence to the Laplacian matrix). Let G be an undirected graph with n nodes,
m edges, and incidence matrix B. If diag({ae}e∈{1,...,m}) is the diagonal matrix of edge weights, then

L = B diag({ae}e∈{1,...,m})BT.

Note: In the right-hand side, the matrix dimensions are (n×m)× (m×m)× (m× n) = n× n. Also

note that, while the incidence matrix B depends upon the selected direction and numbering of each edge,

the Laplacian matrix is independent of that.

Proof. Recall that, for matricesO,P andQ of appropriate dimensions, we have (OPQ)ij =
∑

k,hOikPkhQhj .
Moreover, if the matrix P is diagonal, then (OPQ)ij =

∑
k OikPkkQkj .

For i 6= j, we compute

(B diag({ae}e∈{1,...,m})BT)ij =
∑m

e=1
Bieae(B

T)ej

=
∑m

e=1
BieBjeae (e-th term = 0 unless e is oriented {i, j})

= (+1) · (−1) · aij = `ij ,

where L = {`ij}i,j∈{1,...,n}, and along the diagonal of B we compute

(B diag({ae}e∈{1,...,m})BT)ii =
∑m

e=1
B2
ieae =

m∑

e=1, e=(i,∗) or e=(∗,i)

ae =
n∑

j=1,j 6=i
aij ,

where, in the last equality, we counted each edge precisely once and we noted that self-loops are not

allowed. �
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Lemma 8.2 (Rank of the incidence matrix). Let G be an undirected graph with n nodes,m edges, and
incidence matrix B. Let d be the number of connected components of G. Then

rank(B) = n− d.

Proof. We prove this result for a connected graph with d = 1, but the proof strategy easily extends to d > 1.

Recall that the rank of the Laplacian matrix L equals n− d = n− 1. Since the Laplacian matrix can be

factorized as L = B diag({ae}e∈{1,...,m})BT
, where diag({ae}e∈{1,...,m}) has full rank m (and m ≥ n− 1

due to connectivity), we have that necessarily rank(B) ≥ n− 1. On the other hand rank(B) ≤ n− 1 since

BT1n = 0n. It follows that B has rank n− 1. �

The factorization of the Laplacian matrix as L = B diag({ae}e∈{1,...,m})BT
plays an important role of

relative sensing networks. For example, we can decompose, the Laplacian �ow ẋ = −Lx into

open-loop plant: ẋi = ui , i ∈ {1, . . . , n} , or ẋ = u ,

measurements: yij = xi − xj , {i, j} ∈ E , or y = BTx ,

control gains: zij = aijyij , {i, j} ∈ E , or z = diag({ae}e∈{1,...,m})y ,
control inputs: ui = −

∑

{i,j}∈E

zij , i ∈ {1, . . . , n} , or u = −Bz .

Indeed, this control structure, illustrated as a block-diagram in Figure 8.2, is required to implement �ocking-

type behavior as in Example 7.1.2. The control structure in Figure 8.2 has emerged as a canonical control

structure in many relative sensing and �ow network problems also for more complicated open-loop

dynamics and possibly nonlinear control gains; e.g., see (Bai et al., 2011).

B B>

ẋi = ui

aij

. . .

. . .

. . .

. . .
x

yz

u
_

Figure 8.2: Illustration of the canonical control structure for a relative sensing network.

8.3 Cuts and cycles

Given an undirected unweighted graph with n nodes and m edges, its oriented incidence matrix naturally

de�nes two useful vector subspaces of Rm. With the customary convention to refer to Rm as the edge space,
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the incidence matrix induces a direct sum decomposition of the edge space based on the concepts of cycles

and graph cuts. We illustrate these concepts in what follows.

We start with some simple preliminary de�nitions. A cut χ of the graph G is a strict non-empty subset

of the nodes {1, . . . , n}. A cut and its complement χc
de�ne a partition {χ, χc} of {1, . . . , n} in the sense

that χ 6= ∅, χc 6= ∅, χ∩χc = ∅, and {1, . . . , n} = χ∪χc
. Given a cut χ, the set of edges that have one

endpoint in each subset of the partition is called the cutset of χ.

We are now ready to introduce the main concepts of this section.

De�nition 8.3 (Cutset orientation vectors and cutset space). Let G be an undirected graph with n
nodes,m edges, and with an arbitrary enumeration and orientation of its.

(i) Given a cut χ ⊂ {1, . . . , n} of G, the cutset orientation vector vχ ∈ {−1, 0,+1}m of χ is de�ned
component-wise, for each edge e ∈ {1, . . . ,m},

(vχ)e =





+1, if e has its source in χ and sink in χc,

−1, if e has its source in χc and sink in χ,
0, otherwise.

Here the source (resp. sink) of a directed edge (i, j) is the node i (resp j).

(ii) The cutset space of G is subspace of Rm spanned by the cutset orientation vectors corresponding to all
cuts of the nodes of G, that is, span{vχ ∈ Rm | χ is a cut of G}.

De�nition 8.4 (Signed path vectors and cycle space). Let G be an undirected graph with n nodes, m
edges, and with an arbitrary enumeration and orientation of its edges. Let γ be a simple undirected path in G.

(i) The signed path vector wγ ∈ {−1, 0,+1}m of γ is de�ned component-wise, for each edge e ∈
{1, . . . ,m},

(wγ)e =





+1, if e is traversed positively by γ,
−1, if e is traversed negatively by γ,
0, otherwise.

(ii) The cycle space of G is the subspace of Rm spanned by the signed path vectors corresponding to all
simple undirected cycles in G, that is, span{wγ ∈ Rm | γ is a simple cycle in G}.

Next, we illustrate the notions of cutset orientation vector and signed path vector (for a path that is a

simple cycle) for a low-dimensional example. Figure 8.3 shows three possible cuts and the only possible

cycle in a cycle digraph with 3 nodes. It is a simple exercise to write

v{1} =




+1
+1
0


 , v{2} =



−1
0

+1


 , v{3} =




0
−1
−1


 , wγ =




+1
−1
+1


 ,

and to verify that v{1}+v{2}+v{3} = 03, that span{v{1}, v{2}, v{3}} ⊥ span{wγ}, and that {v{1}, v{2}, v{3}}
are the rows of

B =




+1 +1 0
−1 0 +1
0 −1 −1


 .
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1
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�{1}
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2 3

1 2

3
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1 2

3
{2} {3}

Figure 8.3: Three possible cuts and the only simple cycle in a cycle digraph.

With these conventions we are now in a position to state the main result of this section.

Theorem 8.5 (Cycle and cutset spaces). LetG be an undirected graph with n nodes,m edges, and incidence
matrix B. The following statements hold:

(i) the cycle space is kernel(B) and has dimensionm− n+ 1,

(ii) the cutset space is image(BT) and has dimension n− 1, and

(iii) kernel(B) ⊥ image(BT) and kernel(B)⊕ image(BT) = Rm.

Statement (iii) is known as a statement in the fundamental theorem of linear algebra (Strang, 1993).

Proof of Theorem 8.5. The proof of statement (i) is given in Exercise E8.2.

Statement (ii) is proved as follows. For a cut χ, let eχ ∈ {0, 1}n be the cut indicator vector de�ned by

(eχ)i = 1 if i ∈ χ and zero otherwise. Then, using the de�nitions, the cutset orientation vector for the cut

χ is

vχ = BTeχ.

This equality implies that vχ ∈ image(BT) for all χ. Next, note that there are n− 1 independent cutset

orientation vectors corresponding to the cuts {{i} | i ∈ {1, . . . , n− 1}}. Hence these n− 1 vectors are a

basis of image(BT) and the statement is established.

Finally, statement (iii) is proved in two steps. First, for any subspace V ⊂ Rm, we have the direct sum

decomposition of orthogonal subspaces V ⊕ V ⊥ = Rm. Second, for any matrix B,

w ∈ kernel(B) ⇐⇒ ∀v ∈ Rm (Bw)Tv = 0 ⇐⇒ ∀v ∈ Rm wT(BTv) = 0 ⇐⇒ w ∈ (image(BT)⊥.

Hence, we know kernel(B) = (image(BT)⊥ and the statement follows. �

From the proof of the previous theorem and a bit more work, one can state the following result.

Lemma8.6 (Bases for the cutset space and the cycle space). LetG be a connected unweighted undirected
graph with nodes {1, . . . , n} andm edges.

(i) For each node i ∈ {1, . . . , n− 1}, let v{i} ∈ {−1, 0,+1}m denote the cutset orientation vector for the
cut {i}, that is, let v{i} be the transpose of the i-th row of B. Then {v{1}, . . . , v{n−1}} is a basis of the
cutset space image(BT).

(ii) Given a spanning tree T of G, for each edge e ∈ V \ T , de�ne the fundamental cycle associated to T
and e, denoted by γT,e, to be the cycle consisting of e and the path on T connecting the endpoints of e.
Let wT,e be the associated signed path vector. Then
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a) the fundamental cycle of each edge e ∈ V \ T exists unique and is simple, and

b) the set of signed path vectors {wT,e | e ∈ V \ T} is a basis of the cycle space kernel(B).

We illustrate this lemma with the graph and the incidence matrix given in Figure 8.4.

1

2
4

3

5

6

1

2

3

4
5

6

7

B =




+1 +1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 −1 0 +1 +1 +1 0
0 0 −1 −1 0 0 +1
0 0 0 0 −1 0 −1
0 0 0 0 0 −1 0



.

Figure 8.4: An undirected graph with arbitrary edge orientation and its associated incidence matrix B ∈ R6×7
.

Regarding a basis for the cutset space image(BT), it is immediate to state that (the transpose of) any 5

of the 6 rows of B form a basis of image(BT). Indeed, since rank(B) = n− 1, any n− 1 columns of the

matrix BT
form a basis for the cutset space. Figure 8.5 illustrates the 5 cuts and a corresponding basis for

the cutset space.

1

2
4

3

5

6

1

2

3

4
5

6

7

{1}

{2}

{3}

{4}

{5}
[
v{1} v{2} v{3} v{4} v{5}

]
=




+1 −1 0 0 0
+1 0 −1 0 0
0 +1 0 −1 0
0 0 +1 −1 0
0 0 +1 0 −1
0 0 +1 0 0
0 0 0 +1 −1




.

Figure 8.5: Five cuts, corresponding to the �rst 5 nodes, and their cutset orientation vectors generating image(BT).

In the proof of Theorem 8.5, we also stated that, for a cut χ, eχ ∈ {0, 1}n is the cut indicator vector
de�ned by (eχ)i = 1 if i ∈ χ and zero otherwise, and that the cutset orientation vector for χ is given by

vχ = BTeχ. (8.2)

Indeed, one can show the following statement for the example in Figure 8.5: the cut separating nodes

{1, 2, 3} from {4, 5, 6} has cut indicator vector

[
1 1 1 0 0 0

]T
and cutset vector v{1} + v{2} + v{3}

is equal to the sum of the �rst three columns of BT
.

Next, regarding a basis for the cutset space image(BT), the spanning tree T composed of the edges

{1, 2, 4, 5, 6} and the two fundamental cycles associated to edges 3 and 7 are illustrated in Figure 8.6.
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1
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7

�T,3
�T,7

Figure 8.6: A graph with 6 nodes, 7 edges, and hence 2 independent cycles. A spanning tree T and the two resulting

fundamental cycles.

The corresponding signed path vectors are

wT,3 =




+1
−1
+1
−1
0
0
0




, wT,7 =




0
0
0

+1
−1
0

+1




, and kernel(B) = span{wT,3, wT,7}.

Note that the cycle traversing the edges (1, 3, 7, 5, 2) in counter-clockwise orientation has a signed path

vector given by the linear combination wT,3 + wT,7.

Example 8.7 (Kirchho�’s and Ohm’s laws revisited). In the following, we revisit the electrical resistor

network from Section 6.1.2, and re-derive its governing equations via the incidence matrix; we refer

to (Dör�er et al., 2017) for a more detailed treatment. Recall that with each node i ∈ {1, . . . , n} of the

network, we associate an external current injection cinjected at i. With each edge {i, j} ∈ E we associate a

positive conductance (i.e., the inverse of the resistance) aij > 0 and (after introducing an arbitrary direction

for each edge) a current �ow ci→j and a voltage drop uij .
Kirchho�’s voltage law states that the sum of all voltage drops around each cycle must be zero. In

other words, for each cycle in the network, the corresponding signed path vector w ∈ {−1, 0, 1}m satis�es

wTu = 0. Equivalently, by Theorem 8.5, there exists a vector v ∈ Rn such that u = BT
v, whereB ∈ Rn×m

is the incidence matrix of (oriented) network. In Chapter 6 we referred to v as the vector of nodal voltages

or potentials.

Kirchho�’s current law states that the sum of all current injections at every node must be zero. In

other words, for each node i ∈ {1, . . . , n} in the network, we have that cinjected at i =
∑n

j=1 ci→j . Consider

now the cut isolating node i and its corresponding cutset orientation vector given by the ith column bTi
of BT

; see Figure 8.5. Then, we have that cinjected at i =
∑n

j=1 ci→j = bTi c. Equivalently, we have that

cinjected = Bc.

Finally, Ohm’s law states that the current cj→i and the voltage drop uij over a resistor with resistance

1/aij are related as cj→i = aijuij . By combining Kirchho�’s and Ohm’s laws, we arrive at

cinjected = Bc = B diag(aij)u = B diag(aij)B
T

v = Lv ,

where we used Lemma 8.1 to recover the conductance matrix L. •
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8.4 Appendix: Distributed estimation from relative measurements

In Chapter 1 we considered estimation problems for wireless sensor networks in which each node measures

a scalar “absolute” quantity (expressing some environmental variable such as temperature, vibrations, etc).

In this section, we consider a second class of examples in which meaurements are “relative,” i.e., pairs

of nodes measure the di�erence between their corresponding variables. Estimation problems involving

relative measurements are numerous. For example, imagine a group of robots (or sensors) where no robot

can sense its position in an absolute reference frame, but a robot can measure other robot’s relative positions

by means of on-board sensors. Similar problems arise in study of clock synchronization in networks of

processors.

8.4.1 Problem statement

The optimal estimation based on relative measurement problem is stated as follows. As illustrated in

Figure 8.7, we are given an undirected graph G = ({1, . . . , n}, E) with the following properties. First, each

node i ∈ {1, . . . , n} of the network is associated with an unknown scalar quantity xi (the x-coordinate of

node i in �gure). Second, the m undirected edges are given an orientation and, for each edge e = (i, j),

xi

xj
xi � xj

absolute reference
frame

x

Figure 8.7: A wireless sensor network in which sensors can measure each other’s relative distance and bearing. We

assume that, for each link between node i and node j, the relative distance along the x-axis xi − xj is available,

where xi is the x-coordinate of node i.

e ∈ E, the following scalar measurements are available:

y(i,j) = xi − xj + v(i,j) = (BTx)e + v(i,j),

where B is the graph incidence matrix and the measurement noises v(i,j), (i, j) ∈ E, are independent

jointly-Gaussian variables with zero-mean E[v(i,j)] = 0 and variance E[v2
(i,j)] = σ2

(i,j) > 0. The joint

matrix covariance is the diagonal matrix Σ = diag({σ2
(i,j)}(i,j)∈E) ∈ Rm×m. (For later use, it is convenient

to de�ne also y(j,i) = −y(j,i) = xj − xi − v(i,j).)

The optimal estimate x̂∗ of the unknown vector x ∈ Rn via the relative measurements y ∈ Rm is the

solution to

min
x̂
‖BTx̂− y‖2Σ−1 .

Since no absolute information is available about x, we add the additional constraint that the optimal estimate

should have zero mean and summarize this discussion as follows.
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De�nition 8.8 (Optimal estimation based on relative measurements). Given an incidence matrix B,
a set of relative measurements y with covariance Σ, �nd x̂ satisfying

min
x̂⊥1n

‖BTx̂− y‖2Σ−1 . (8.3)

8.4.2 Optimal estimation via centralized computation

From the theory of least square estimation, the optimal solution to problem 8.3 is obtained as by di�erenti-

ating the quadratic cost function with respect to the unknown variable x̂ and setting the derivative to zero.

Speci�cally:

0 =
∂

∂x̂
‖BTx̂− y‖2Σ−1 = 2BΣ−1BTx̂∗ − 2BΣ−1y.

The optimal solution is therefore obtained as the unique vector x̂∗ ∈ Rn satisfying

BΣ−1BTx̂∗ = BΣ−1y ⇐⇒ Lx̂∗ = BΣ−1y,

1T
n x̂
∗ = 0,

(8.4)

where the Laplacian matrix L is de�ned by L = BΣ−1BT
. This matrix is the Laplacian for the weighted

graph whose weights are the noise covariances associated to each relative measurement edge.

Before proceeding we review the de�nition and properties of the pseudoinverse Laplacian matrix given

in Exercise E6.8. Recall that the Moore-Penrose pseudoinverse of an n×m matrix M is the unique m× n
matrix M † with the following properties:

(i) MM †M = M ,

(ii) M †MM † = M †, and

(iii) MM † is symmetric and M †M is symmetric.

For our Laplacian matrix L, let U ∈ Rn×n be an orthonormal matrix of eigenvectors of L. It is known that

L = U




0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


U

T =⇒ L† = U




0 0 . . . 0
0 1/λ2 . . . 0
...

...
. . .

...
0 0 . . . 1/λn


U

T.

Moreover, it is known that LL† = L†L = In −
1

n
1n1T

n and L†1n = 0n.

Lemma 8.9 (Unique optimal estimate). If the undirected graph G is connected, then

(i) there exists a unique solution to equations (8.4) solving the optimization problem in equation (8.3); and

(ii) this unique solution is given by
x̂∗ = L†BΣ−1y.
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Proof. We claim there exists a unique solution to equation (8.4) and prove it as follows. SinceG is connected,

the rank of L is n − 1. Moreover, since L is symmetric and since L1n = 0n, the image of L is the

(n − 1)-dimensional vector subspace orthogonal to the subspace spanned by the vector 1n. The vector

BΣ−1y belongs to the image of L because the column-sums of B are zero, that is, 1T
nB = 0T

n , so that

1T
nBΣ−1y = 0T

n . Finally, the requirement that 1T
n x̂
∗ = 0 ensures x̂∗ is perpendicular to the kernel of L.

The expression x̂∗ = L†BΣ−1y follows from left-multiplying left and right hand side of equation (8.4)

by the pseudoinverse Laplacian matrix L† and using the property L†L = In − 1
n1n1T

n . One can also verify

that 1T
nL
†BΣ−1y = 0, because L†1n = 0n. �

8.4.3 Optimal estimation via decentralized computation

To compute x̂∗ in a distributed way, we propose the following distributed algorithm. Pick a small α > 0
and let each node implement the a�ne averaging algorithm:

x̂i(k + 1) = x̂i(k)− α
∑

j∈N (i)

1

σ2
(i,j)

(
x̂i(k)− x̂j(k)− y(i,j)

)
,

x̂i(0) = 0.

(8.5)

There are two interpretations of this algorithm. First, note that the estimate at node i is adjusted at each

iteration as a function of edge errors: each edge error (di�erence between estimated and measured edge

di�erence) contributes to a weighted small correction in the node value. Second, note that the a�ne

Laplacian �ow

˙̂x = −Lx̂+BΣ−1y (8.6)

results in a steady-state satisfying Lx̂ = BΣ−1y, which readily delivers the optimal estimate x̂∗ =
L†BΣ−1y for appropriately chosen initial conditions. The algorithm (8.5) results from an Euler discretization

of the a�ne Laplacian �ow (8.6) with step size α.

Lemma 8.10. Given a graphG describing a relative measurement problem for the unknown variables x ∈ Rn,
with measurements y ∈ Rm, and measurement covariance matrix Σ = diag({σ2

(i,j)}(i,j)∈E) ∈ Rm×m. The
following statements hold:

(i) the a�ne averaging algorithm can be written as

x̂(k + 1) = (In − αL)x̂(k) + αBΣ−1y,

x̂(0) = 0n.
(8.7)

(ii) if G is connected and if α < 1/dmax where dmax is the maximum weighted out-degree of G, then the
solution k 7→ x̂(k) of the a�ne averaging algorithm (8.5) converges to the unique solution x̂∗ of the
optimization problem 8.3.

Proof. To show fact (i), note that the algorithm can be written in vector form as

x̂(k + 1) = x̂(k)− αBΣ−1(BTx̂(k)− y),

and, using L = BΣ−1BT
, as equation (8.7).

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



8.5. Historical notes and further reading 141

To show fact (ii), de�ne the error signal η(k) = x̂∗−x̂(k). Note that η(0) = x̂∗ and that average(η(0)) =
0 because 1T

n x̂
∗ = 0. Compute

η(k + 1) = (In − αL+ αL)x̂∗ − (In − αL)x̂(k)− αBΣ−1y

= (In − αL)η(k) + α(Lx̂∗ −BΣ−1y)

= (In − αL)η(k).

Now, according to Exercise E7.6, α is su�ciently small so that In−αL is non-negative. Moreover, (In−αL)
is doubly-stochastic and symmetric, and its corresponding undirected graph is connected and aperiodic.

Therefore, Theorem 5.1 implies that η(k)→ average(η(0))1n = 0n. �

8.5 Historical notes and further reading

Standard references on incidence matrices include texts on algebraic graph theory such as (Biggs, 1994;

Foulds, 1995; Godsil and Royle, 2001). An extensive discussion about algebraic potential theory on graphs

is given by Biggs (1997).

The algorithm in Section 8.4.3 is taken from (Bolognani et al., 2010). For the notion of edge Laplacian

and its properties, we refer to (Zelazo, 2009; Zelazo and Mesbahi, 2011; Zelazo et al., 2013). Additional

references on distributed estimation for relative sensing networks include (Barooah and Hespanha, 2007,

2008; Bolognani et al., 2010; Piovan et al., 2013).

A recent survey on cycle bases, their rich structure, and related algorithms is given by Kavitha et al.

(2009).
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8.6 Exercises

E8.1 Incidencematrix, cutset and cycle spaces for basic graphs. Recall Example 4.1, and consider the following

unweighted undirected graphs with node set {1, . . . , 4}:
(i) the path graph P4;

(ii) the cycle graph C4;

(iii) the star graph S4; and

(iv) the complete graph Kn.

For each graph, select an arbitrary orientation of the edges, compute the incidence matrix, compute a basis for

the cutset space, and compute a basis for the cycle space.

E8.2 Incidencematrix and signed path vectors. Given an undirected graphG, consider an arbitrary orientation

of its edges, its incidence matrixB ∈ Rn×m, and a simple path γ with distinct initial and �nal nodes described

by a signed path vector wγ ∈ Rm.

(i) Show that the vector y = Bwγ ∈ Rn has components

yi =





+1, if node i is the initial node of γ,

−1, if node i is the �nal node of γ,

0, otherwise.

(ii) Prove statement (i) in Theorem 8.5.

E8.3 Continuous distributed estimation from relative measurements. Consider the continuous distributed

estimation algorithm given by the a�ne Laplacian �ow (8.6). Show that for an undirected and connected

graphG and appropriately initial conditions x̂(0) = 0n, the a�ne Laplacian �ow (8.6) converges to the unique

solution x̂∗ of the estimation problem given in Lemma 8.9.

E8.4 The edge Laplacian matrix (Zelazo and Mesbahi, 2011). For an unweighted undirected graph with n
nodes and m edges, introduce an arbitrary orientation for the edges. Recall the notions of incidence matrix

B ∈ Rn×m and Laplacian matrix L = BBT ∈ Rn×n and de�ne the edge Laplacian matrix by

Ledge = BTB ∈ Rm×m.

(Note that, in general, the edge Laplacian matrix is not a Laplacian matrix.) Select an edge orientation and

compute B, L and Ledge for

(i) a line graph with three nodes, and

(ii) for the graph with four nodes in Figure 8.1.

Show that, for an arbitrary undirected graph,

(iii) kernel(Ledge) = kernel(B);

(iv) rank(L) = rank(Ledge);

(v) for an acyclic graph Ledge is nonsingular; and

(vi) the non-zero eigenvalues of Ledge are equal to the non-zero eigenvalues of L.

E8.5 Evolution of the local disagreement error (Zelazo and Mesbahi, 2011). Consider the Laplacian �ow

ẋ = −Lx, de�ned over an undirected and connected graph with n nodes and m edges. Beside the absolute
disagreement error δ(t) = x(t)− average(x(t))1n ∈ Rn considered thus far, we can also analyze the relative
disagreement error eij(t) = xi(t)− xj(t), for {i, j} ∈ E.

(i) Write a di�erential equation for the relative disagreement errors t 7→ e(t) ∈ Rm.
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(ii) Based on Exercise E8.4, show that the relative disagreement errors converge to zero with exponential

convergence rate given by the algebraic connectivity λ2(L).

E8.6 Averaging with distributed integral control. Consider a Laplacian �ow implemented as a relative sensing

network over a connected and undirected graph with n nodes, m edges, incidence matrix B ∈ Rn×m and

weights aij > 0 for i, j ∈ {1, . . . , n}, and subject to a constant disturbance term η ∈ Rm, as shown in

Figure E8.1.

B B>

ẋi = ui

aij

. . .

. . .

. . .

. . .
x

y

u
_

+ +
⌘

z

Figure E8.1: A relative sensing network with a constant disturbance input η ∈ Rm.

(i) Derive the dynamic closed-loop equations describing the model in Figure E8.1.

(ii) Show that the state x(t) converges asymptotically to some constant vector x∗ ∈ Rn depending on the

value of the disturbance η and that x∗ is not necessarily a consensus state.

Consider the system in Figure E8.1 with a distributed integral controller forcing convergence to consensus,

as shown in Figure E8.2. Recall that
1
s is the the Laplace symbol for the integrator.

B B>

ẋi = ui

aij

. . .

. . .

. . .

. . .
x

y

u
_

+ +
⌘

z

. . .

. . .

1

s

p
+

Figure E8.2: Relative sensing network with a disturbance η ∈ Rm and distributed integral action.

(iii) Derive the dynamic closed-loop equations describing the model in Figure E8.2.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



144 Chapter 8. The Incidence Matrix and its Applications

(iv) Show that the distributed integral controller in Figure E8.2 asymptotically stabilizes the set of steady

states (x∗, p∗), with x∗ ∈ span{1n} corresponding to consensus.

Hint: To show stability, use Lemma 7.9.

E8.7 Sensitivity of Laplacian eigenvalues. Consider an unweighted undirected graphG = (V,E) with incidence

matrix B ∈ Rn×m, and Laplacian matrix L = BBT ∈ Rn×n. De�ne a undirected graph G′ by adding one

unweighted edge e /∈ E to G, that is, G′ = (V,E ∪ e). Show that

λmax(LG) ≤ λmax(LG′) ≤ λmax(LG) + 2.

Hint: You may want to take a detour via the edge Laplacian matrix Ledge = BTB ∈ Rm×m (see Exercise
E8.4) and use the following fact (Horn and Johnson, 1985, Theorem 4.3.17): if A is a symmetric matrix with
eigenvalues ordered as λ1 ≤ λ2 ≤ . . . ≤ λn, and B is a principal submatrix of A with eigenvalues ordered as
µ1 ≤ µ2 ≤ . . . ≤ µn−1, then the eigenvalues of A and B interlace, that is, λ1 ≤ µ1 ≤ λ2 ≤ . . . ≤ µn−1 ≤ λn.

E8.8 The orthogonal projection onto the cutset space (Jafarpour and Bullo, 2017). Recall the following

well-known facts from linear algebra: a square matrix P ∈ Rm×m is an orthogonal projection if P = PT
and

P 2 = P ; given a full-rank matrix X ∈ Rm×n, n < m, the matrix P = X(XTX)−1XT
is the orthogonal

projection onto the image(X). Prove that

(i) Πn = In − 1n1T
n/n is the orthogonal projection onto 1⊥, and

(ii) if X is not full rank (i.e., it has a trivial kernel), the matrix P = X(XTX)†XT
is the orthogonal

projection onto image(X), where (XTX)† is the pseudoinverse of XTX .

Hint: Recall the de�ning properties of the pseudoinverse in Exercise E6.8.

Given an unweighted undirected graph with an oriented incidence matrix B, Laplacian matrix L =
BBT

, and pseudoinverse Laplacian matrix L†, recall that Rm = image(BT)⊕ kernel(B) is the orthogonal

decomposition into cutset space and cycle space. Show that

(iii) P = BTL†B is an orthogonal projection matrix, and

(iv) P = BTL†B is the orthogonal projection onto the cutset space image(BT).
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Chapter9

Positive and Compartmental Systems

In this chapter we study various positive systems, that is, dynamical systems with state variables that

are non-negative for all times. For simplicity we focus on continuous-time models, though a comparable

theory exists for discrete-time systems. We are particularly interested in compartmental systems, that is,

models of dynamical processes characterized by conservation laws (e.g., mass, �uid, energy) and by the �ow

of material between units known as compartments. Example compartmental systems are transportation

networks, queueing networks, communication networks, epidemic propagation models in social contact

networks, as well as ecological and biological networks. Linear compartmental and positive systems are

described by so-called Metzler matrices; we de�ne and study such matrices in this chapter.

9.1 Example systems

In this section we review some examples of compartmental systems.

Ecological and environmental systems The �ow of energy and nutrients (water, nitrates, phosphates,

etc) in ecosystems is typically studied using compartmental modelling. For example, Figure 9.1 illustrates a

widely-cited water �ow model for a desert ecosystem (Noy-Meir, 1973). Other classic ecological network

systems include models for dissolved oxygen in stream, nutrient �ow in forest growth and biomass �ow in

�sheries (Walter and Contreras, 1999).

herbivory

uptake

drinking

precipitation

evaporation

soil

animals

plants

evaporation, drainage, runo↵

transpiration

Figure 9.1: Water �ow model for a desert ecosystem. The blue line denotes an in�ow from the outside environment.

The red lines denote out�ows into the outside environment.

145



146 Chapter 9. Positive and Compartmental Systems

Epidemiology of infectious deseases To study the propagation of infectious deseases, the population at

risk is typically divided into compartments consisting of individiduals who are susceptible (S), infected

(I), and, possibly, recovered and no longer susceptible (R). As illustrated in Figure 9.2, the three basic

epidemiological models are (Hethcote, 2000) called SI, SIS, SIR, depending upon how the desease spreads. A

detailed discussion is postponed until Chapter 16.

Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 9.2: The three basic models SI, SIS and SIR for the propagation of an infectious desease

Drug and chemical kinetics in biomedical systems Compartmental model are also widely adopted to

characterize the kinetics of drugs and chemicals in biomedical systems. Here is a classic example (Charkes

et al., 1978) from nuclear medicine: bone scintigraphy (also called bone scan) is a medical test in which

the patient is injected with a small amount of radioactive material and then scanned with an appropriate

radiation camera.

radioactive
material

blood kidneys urine

bonebone ECF

rest of the body

Figure 9.3: The kinetics of a radioactive isotope through the human body (ECF = extra-cellular �uid).

9.2 Positive systems and Metzler matrices

Motivated by the examples in the previous sections, we start our study by characterizing the class of positive

systems.

De�nition 9.1 (Positive systems). A dynamical system ẋ(t) = f(x(t), t), x ∈ Rn, is positive if x(0) ≥
0n implies x(t) ≥ 0n for all t.

We are especially interested in linear and a�ne systems, described by

ẋ(t) = Ax(t), and ẋ(t) = Ax(t) + b.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



9.2. Positive systems and Metzler matrices 147

Note that the set of a�ne systems includes the set of linear systems (each linear system is a�ne with

b = 0n).

It is now convenient to introduce a second useful de�nition.

De�nition 9.2 (Metzler matrix). For a matrix A ∈ Rn×n, n ≥ 2,

(i) A is Metzler if all its o�-diagonal elements are non-negative;

(ii) if A is Metzler, its associated digraph is a weighted digraph de�ned as follows: {1, . . . , n} are the nodes,
there are no self-loops, (i, j), i 6= j is an edge with weight aij if and only if aij > 0; and

(iii) if A is Metzler, A is irreducible if its induced digraph is strongly connected.

In other words, A is Metzler if and only if there exists a scalar α > 0 such that A+αIn is non-negative.

For example, if G is a weighted digraph with Laplacian matrix L, then −L is a Metzler matrix with zero

row-sums.

Metzler matrices are sometimes also referred to as quasi-positive or essentially non-negative.

We are now ready to classify which a�ne systems are positive.

Theorem 9.3 (Positive a�ne systems and Metzler matrices). For the a�ne system ẋ(t) = Ax(t) + b,
the following statements are equivalent:

(i) the system is positive, that is, x(t) ≥ 0n for all t and all x(0) ≥ 0n,

(ii) A is Metzler and b ≥ 0n.

Proof. We start by showing that statement (i) implies statement (ii). If x(0) = 0n, then ẋ cannot have any

negative components, hence b ≥ 0n. If any o�-diagonal entry (i, j), i 6= j, of A is strictly negative, then

consider an initial condition x(0) with all zero entries except for x(j) > bi/|aij |. It is easy to see that

ẋi(0) < 0 which is a contradiction.

Next, we show that statement (ii) implies statement (i). It su�ces to note that, anytime there exists i such

thatxi(t) = 0, the conditionsx(t) ≥ 0n,AMetzler and b ≥ 0n together imply ẋi(t) =
∑

i 6=j aijxj(t)+bi ≥
0. �

This results motivates the importance of Metzler matrices. Therefore we now study their properties in

two theorems. We start by writing a version of Perron-Frobenius Theorem 2.12 for non-negative matrices.

Theorem 9.4 (Perron-Frobenius Theorem for Metzler matrices). If A ∈ Rn×n, n ≥ 2, is Metzler,
then

(i) there exists a real eigenvalue λ such that λ ≥ <(µ) for all other eigenvalues µ, and

(ii) the right and left eigenvectors of λ can be selected non-negative.

If additionally A is irreducible, then

(iii) there exists a real simple eigenvalue λ such that λ ≥ <(µ) for all other eigenvalues µ, and

(iv) the right and left eigenvectors of λ are unique and positive (up to rescaling).
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148 Chapter 9. Positive and Compartmental Systems

As for non-negative matrices, we refer to λ as to the dominant eigenvalue. We invite the reader to

work out the details of the proof in Exercise E9.2. Next, we give necessary and su�cient conditions for the

dominant eigenvalue of a Metzler matrix to be strictly negative.

Theorem9.5 (Properties ofHurwitzMetzlermatrices). For aMetzler matrixA, the following statements
are equivalent:

(i) A is Hurwitz,

(ii) A is invertible and −A−1 ≥ 0, and

(iii) for all b ≥ 0n, there exists x∗ ≥ 0n solving Ax∗ + b = 0n.

Moreover, if A is Metzler, Hurwitz and irreducible, then −A−1 > 0.

Proof. We start by showing that (i) implies (ii). Clearly, ifA is Hurwitz, then it is also invertible. So it su�ces

to show that −A−1
is non-negative. Pick ε > 0 and de�ne Aε,A = In + εA, that is, (−εA) = (In −Aε,A).

Because A is Metzler, ε can be selected small enough so that Aε,A ≥ 0. Moreover, because the spectrum

of A is strictly in the left half plane, one can verify that, for ε small enough, spec(εA) is inside the disk

of unit radius centered at the point −1; as illustrated in Figure 9.4. In turn, this last property implies

�1

Figure 9.4: For any λ ∈ C with strictly negative real part, there exists ε such that the segment from the origin to ελ is

inside the disk of unit radius centered at the point −1.

that spec(In + εA) is strictly inside the disk of unit radius centered at the origin, that is, ρ(Aε,A) < 1.

We now adopt the Neumann series as de�ned in Exercise E2.12: because ρ(Aε,A) < 1, we know that

(In −Aε,A) = (−εA) is invertible and that

(−εA)−1 = (In −Aε,A)−1 =
∞∑

k=0

Akε,A. (9.1)

Note now that the right-hand side is non-negative because it is the sum of non-negative matrices. In

summary, we have shown thatA is invertible and that−A−1 ≥ 0. This statement proves that (i) implies (ii).

Next we show that (ii) implies (i). We know A is Metzler, invertible and satis�es −A−1 ≥ 0. By the

Perron-Frobenius Theorem 9.4 for Metzler matrices, we know there exists v ≥ 0n, v 6= 0n, satisfying

Av = λMetzlerv, where λMetzler = max{<(λ) | λ ∈ spec(A)}. Clearly, A invertible implies λMetzler 6= 0
and, moreover, v = λMetzlerA

−1v. Now, we know v is non-negative and A−1v is non-positive. Hence,

λMetzler must be negative and, in turn, A is Hurwitz. This statement establishes the equivalence between (ii)

implies (i)
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Finally, regarding the equivalence between statement (ii) and statement (iii), note that, if −A−1 ≥ 0
and b ≥ 0n, then clearly x∗ = −A−1b ≥ 0n solves Ax∗ + b = 0n. This proves that (ii) implies (iii). Vice

versa, if statement (iii) holds, then let x∗i be the non-negative solution of Ax∗i = −ei and let X be the

non-negative matrix with columns x∗1, . . . , x
∗
n. Therefore, we know AX = −In so that A is invertible, −X

is its inverse, and −A−1 = −(−X) = X is non-negative. This statement proves that (iii) implies (ii).

Finally, the statement that −A−1 > 0 for each Metzler, Hurwitz and irreducible matrix A is proved as

follows. Because A is irreducible, the matrix Aε,A = In + εA is non-negative (for ε su�ciently small) and

primitive. Therefore, the right-hand side of equation (9.1) is strictly positive. �

This theorem about Metzler matrices immediately leads to the following corollary about positive a�ne

systems, which extends the results in Exercise E7.2.

Corollary 9.6 (Existence, positivity and stability of equilibria for positive a�ne systems). Con-
sider a continuous-time positive a�ne system ẋ = Ax+ b, where A is Metzler and b is non-negative. If the
matrix A is Hurwitz, then

(i) the system has a unique equilibrium point x∗ ∈ Rn, that is, a unique solution to Ax∗ + b = 0n,

(ii) the equilibrium point x∗ is non-negative, and

(iii) all trajectories converge asymptotically to x∗.

We will provide an extension of Theorem 9.5 after introducing Lyapunov theory in Chapter 14.

9.3 Compartmental systems

In this section, motivated by the examples in Section 9.1, we study an important class of positive a�ne

systems.

A compartmental system is a dynamical system in which material is stored at individual locations and

is transferred along the edges of directed graph, called the compartmental digraph; see Figure 9.5b. The

Fj!i
Fi!j

ui Fi!0qi

F1!2

F2!4
F3!2

F4!3

F2!3

u1

u3

F2!0

F4!0

q1

q3

q2

q4

Figure 9.5: A compartment and a compartmental system

“storage” nodes are referred to as compartments; each compartment contains a time-varying quantity qi(t).

Each directed arc (i, j) represents a mass �ow (or �ux), denoted Fi→j , from compartment i to compartment
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j. The compartmental system interacts with its surrounding environment via inputs and output �ows,

denoted in �gure by blue and red arcs respectively: the in�ow from the environment into compartment i is

denoted by ui and the out�ow from compartment i into the environment is denoted by Fi→0.

In summary, a (nonlinear) compartmental system is described by a directed graph GF , by maps Fi→j
for all edges (i, j) of GF , and by in�ow and out�ow maps. (The compartmental digraph has no self-loops.)

The dynamic equations of the compartmental system are obtained by the instantaneous �ow balance at each

compartment. In other words, asking that the rate of accumulation at each compartment equals the net

in�ow rate we obtain:

q̇i(t) =
n∑

j=1,j 6=i
(Fj→i − Fi→j)− Fi→0 + ui. (9.2)

In general, the �ow along (i, j) is a function of the entire system state q = (q1, . . . , qn) and of time t, so

that Fi→j = Fi→j(q, t).

Remarks 9.7 (Basic properties). (i) The mass in each of the compartments as well as the mass �owing
along each of the edges must be non-negative at all times (recall we assume ui ≥ 0). Speci�cally, we
require the mass �ow functions to satisfy

Fi→j(q, t) ≥ 0 for all (q, t), and Fi→j(q, t) = 0 for all (q, t) such that qi = 0. (9.3)

Under these conditions, if at some time t0 one of the compartments has no mass, that is, qi(t0) = 0 and
q(t0) ∈ Rn≥0, it follows that q̇i(t0) =

∑n
j=1,j 6=i Fj→i(q(t0), t0) + ui ≥ 0 so that qi does not become

negative. The compartmental system (9.2) is therefore a positive system, as introduced in De�nition 9.1.

(ii) IfM(q) =
∑n

i=1 qi = 1T
nq denotes the total mass in the system, then along the solutions of (9.2)

d

dt
M(q(t)) = 1T

n q̇(t) = −
∑n

i=1
Fi→0(q(t), t)

︸ ︷︷ ︸
out�ow into environment

+
∑n

i=1
ui

︸ ︷︷ ︸
in�ow from environment

. (9.4)

This equality implies that the total mass t 7→ M(q(t)) is constant in systems without in�ows and
out�ows. •

Remark 9.8 (Symmetric physical �ow systems). Many physical compartmental systems are described
by symmetric �ows that depend upon e�ort variables and energy stored at nodes. For an insightful treatment
of physical and port-Hamiltonian network systems we refer to (van der Schaft, 2015; van der Schaft and Wei,
2012). We here present a brief introduction without out�ows and in�ows, for simplicity.

Following (van der Schaft, 2015), we let G be an undirected graph with n nodes and m edges and with
oriented incidence matrix B ∈ Rn×m and proceed as follows:

(i) for an oriented edge (i, j), let uij denote the total �ow from i to j (that is, uij = Fi→j − Fj→i) so that
the �ow vector is u ∈ Rm. Given storage qi at each node i, mass conservation implies q̇ = Bu ∈ Rn; (if
instead the nodes have no storage, then mass conservation implies Bu = 0n, which is consistent with
Kirchho�’s current law as stated in Exercise 8.7.)

(ii) typically, the �ow through an edge uij is proportional to an “e�ort on the edge” eij , that is, uij = −cijeij ,
for a “conductance constant” cij > 0. In vector form, u = −Ce ∈ Rm;
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(iii) typically, the ege e�ort eij is the di�erence of node e�ort variables, that is, e = BTenodes ∈ Rm, for
nodal e�ort variables enodes ∈ Rn;

(iv) �nally, node e�orts are determined by the storage variables according to:

enodes =
∂H

∂q
(q) ∈ Rn, (9.5)

whereH(q) is the total stored energy. Typically,H(q) =
∑n

i=1Hi(qi), whereHi(qi) denotes the energy
stored at node i.

In summary, the symmetric physical compartmental system obeys

q̇ = Bu = −BCe = −BCBTenodes = −BCBT∂H

∂q
(q) = −L∂H

∂q
(q), (9.6)

where L is the conductance-weighted Laplacian matrix of the compartmental graph.
For example, consider a hydraulic �ow network among n �uid reservoirs. The liquid stored at the reservoirs

is given by a vector q ∈ Rn≥0. Assume there exists an energy function Hi (possibly the same function at all
locations) such that ∂Hi∂qi

(qi) is the pressure at reservoir i. Assume that the liquid �ow along the pipe from head
reservoir i to tail reservoir j is proportional to the di�erence between the pressure at i and the pressure at j.
Then equation (9.6) describes the mass balance equation among the reservoirs. •

Linear compartmental systems

Loosely speaking, a compartmental system is linear if it has (i) constant non-negative in�ow from the

environment and (ii) all other �ows depend linearly upon the mass in the originating compartment.

De�nition 9.9 (Linear compartmental systems). A linear compartmental system with n compartments
is a triplet (F, f0, u) consisting of

(i) a non-negative n× n matrix F = (fij)i,j∈{1,...,n} with zero diagonal, called the �ow rate matrix,

(ii) a vector f0 ≥ 0n, called the out�ow rates vector, and

(iii) a vector u ≥ 0n, called the in�ow vector.

The �ow rate matrix F is the adjacency matrix of the compartmental digraphGF (a weighted digraph without
self-loops).

The �ow rate matrix F encodes the following information: the nodes are the compartments {1, . . . , n},
there is an edge (i, j) if there is a �ow from compartment i to compartment j, and the weight fij of the

(i, j) edge is the corresponding �ow rate constant. In a linear compartmental system,

Fi→j(q, t) = fijqi, for j ∈ {1, . . . , n},
Fi→0(q, t) = f0iqi, and

ui(q, t) = ui.
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Indeed, this model is also referred to as donor-controlled �ow. Note that this model satis�es the physically-

meaningful contraints (9.3). The a�ne dynamics describing a linear compartmental system is

q̇i(t) = −
(
f0i +

n∑

j=1,j 6=i
fij

)
qi(t) +

n∑

j=1,j 6=i
fjiqj(t) + ui. (9.7)

De�nition 9.10 (Compartmental matrix). The compartmental matrix C = (cij)i,j∈{1,...,n} of a com-
partmental system (F, f0, u) is de�ned by

cij =

{
fji, if i 6= j,

−f0i −
∑n

h=1,h6=i fih, if i = j.

Equivalently, if LF = diag(F1n)− F is the Laplacian matrix of the compartmental digraph,

C = −LT
F − diag(f0) = FT − diag(F1n + f0). (9.8)

In what follows it is convenient to call compartmental any matrix C with the following properties:

(i) C is Metzler, that is, cij ≥ 0, for i 6= j,

(ii) C has non-positive diagonal entries, that is, cii ≤ 0 for all i, and

(iii) C is column diagonally dominant, that is, |cii| ≥
∑n

h=1,h6=i chi for all i.

With the notion of compartmental matrix, the dynamics of the linear compartmental system (9.7) can

be written as

q̇(t) = Cq(t) + u. (9.9)

Moreover, since LF1n = 0n, we know 1T
nC = −fT0 and, consistently with equation (9.4), we know

d
dtM(q(t)) = −fT0 q(t) + 1T

nu.

Remark 9.11 (Symmetric �ows). The donor-controlled model entails a �ow fijqi from i to j and a �ow
fjiqj from j to i. If the �ow rates are equal fij = fji, then the resultant �ow as measured from i to j is
fij(qi − qj), i.e., proportional to the di�erence in stored quantities. The �ow rate matrix F is often symmetric
in physical networks. •

Algebraic and graphical properties of linear compartmental systems

In this section we present useful properties of compartmental matrices, that are related to those enjoyed by

Laplacian and Metzler matrices.

Lemma 9.12 (Spectral properties of compartmental matrices). For a compartmental system (F, f0, u)
with compartmental matrix C ,

(i) if λ ∈ spec(C), then either λ = 0 or <(λ) < 0, and

(ii) C is invertible if and only if C is Hurwitz (i.e., <(λ) < 0 for all λ ∈ spec(C)).
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Proof. Statement (i) is akin the result in Lemma 6.5 and can be proved by an application of the Geršgorin

Disks Theorem 2.8. We invite the reader to �ll out the details in Exercise E9.5. Statement (i) immediately

implies statement (ii). �

Next, we introduce some useful graph-theoretical notions, illustrated in Figure 9.6. In the compartmental

digraph, a set of compartments S is

(i) out�ow-connected if there exists a directed path from every compartment in S to the environment,

that is, to a compartment j with a positive �ow rate constant f0j > 0,

(ii) in�ow-connected if there exists a directed path from the environment to every compartment in S,

that is, from a compartment i with a positive in�ow ui > 0,

(iii) a trap if there is no directed path from any of the compartments in S to the environment or to any

compartment outside S, and

(iv) a simple trap is a trap that has no traps inside it.

It is immediate to realize the following equivalence: the system is out�ow connected (i.e., all compartments

are out�ow-connected) if and only if the system contains no trap.

(a) An example compartmental system and its strongly connected components:

this system is out�ow-connected because its two sinks in the condensation digraph

are out�ow-connected.

(b) This compartmental system is not

out�ow-connected because one of its sink

strongly-connected components is a trap.

Figure 9.6: Out�ow-connectivity and traps in compartmental system

Theorem 9.13 (Algebraic graph theory of compartmental systems). Consider the linear compartmen-
tal system (F, f0, u) with dynamics (9.9) with compartmental matrix C and compartmental digraph GF . The
following statements are equivalent:

(i) the system is out�ow-connected,

(ii) each sink of the condensation of GF is out�ow-connected, and

(iii) the compartmental matrix C is Hurwitz.

Moreover, the sinks of the condensation of GF that are not out�ow-connected are precisely the simple traps of
the system and their number equals the multiplicity of 0 as a semisimple eigenvalue of C .
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Proof. The equivalence between statements (i) and (ii) is immediate.

To establish the equivalence between (ii) and (iii), we �rst consider the case in which GF is strongly

connected and at least one compartment has a strictly positive out�ow rate. Therefore, the Laplacian matrix

LF of GF and the compartmental matrix C = −LT
F − diag(f0) are irreducible. Pick 0 < ε < 1/maxi |cii|,

and de�ne A = In + εCT
. Because of the de�nition of ε, the matrix A is non-negative and irreducible. We

compute its row-sums as follows:

A1n = 1n + ε(−LF − diag(f0))1n = 1n − εf0.

Therefore, A is row-substochastic, i.e., all its row-sums are at most 1 and one row-sum is strictly less than

1. Moreover, because A is irreducible, Corollary 4.11 implies that ρ(A) < 1. Now, let λ1, . . . , λn denote the

eigenvalues ofA. BecauseA = In+εCT
, we know that the eigenvalues η1, . . . , ηn ofC satisfy λi = 1+εηi

so that maxi<(λi) = 1 + εmaxi<(ηi). Finally, we note that ρ(A) < 1 implies maxi<(λi) < 1 so that

max
i
<(ηi) =

1

ε

(
max
i
<(λi)− 1

)
< 0.

This concludes the proof that if G is strongly connected, then F has eigenvalues with strictly negative real

part. The converse is easy to prove by contradiction: if f0 = 0n, then the matrix C has zero row-sums, but

this is a contradiction with the assumption that C is invertible.

Next, to prove the equivalence between (ii) and (iii) for a graph GF whose condensation digraph has an

arbitrary number of sinks, we proceed as in the proof of Theorem 6.6: we reorder the compartments as

described in Exercise E3.1 so that the Laplacian matrix LF is block lower-triangular as in equation (6.5).

We then de�ne an appropriately small ε and the matrix A = In − εCT
as above. We leave the remaining

details to the reader.

An alternative clever proof strategy for the equivalence between (ii) and (iii) is given as follows. De�ne

the matrix

Caugmented =

[
C 0n
fT0 0

]
∈ R(n+1)×(n+1) ,

and consider the augmented linear system ẋ = Caugmentedx with x ∈ Rn+1
. Note that Laugmented =

−CT
augmented

is the Laplacian matrix of the augmented graph Gaugmented, whose nodes {1, . . . , n, n + 1}
include the n compartments and the environment as (n+ 1)st node, and whose edges are the edges of the

compartmental graph GF as well as the out�ow edges to the environment node. Note that the environment

node n + 1 in the digraph Gaugmented is the only globally reachable node of Gaugmented if and only if the

compartmental digraphGF is out�ow connected. Assume now that statement (ii) is true. Then, Theorem 7.4

implies

lim
t→∞

e−Laugmentedt = 1n+1eTn+1,

which, taking a transpose operation, immediately implies limt→∞ e−Caugmentedt = en+11T
n+1. We now can

easily compute

lim
t→∞

[
q(t)

xn+1(t)

]
= en+11T

n+1

[
q(0)

xn+1(0)

]

=⇒ lim
t→∞

q(t) = 0n lim
t→∞

xn+1(t) = 1T
nq(0) + xn+1(0).
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In other words, all mass in the system reaches asymptotically the environment and the mass in all compart-

ments converge exponentially fast to zero. This occurs for all initial conditions if and only if the matrix C
is Hurwitz. Hence we have established that statement (ii) implies statement (iii). We leave the converse to

the reader. �

Dynamic properties of linear compartmental systems

Consider a linear compartmental system (F, f0, u) with compartmental matrix C and compartmental

digraph GF . Assuming the system has at least one trap, we de�ne the reduced compartmental system
(Frd, f0,rd, urd) as follows: remove all traps from GF and regard the edges into the trapping compartments

as out�ow edges into the environment, e.g., see Figure 9.7.

(a) A compartmental system that is not

out�ow-connected

(b) The corresponding reduced compart-

mental system

Figure 9.7: An example reduced compartmental system

We now state our main result about the asymptotic behavior of linear compartmental systems.

Theorem 9.14 (Asymptotic behavior of compartmental systems). The linear compartmental system
(F, f0, u) with compartmental matrix C and compartmental digraphGF has the following possible asymptotic
behaviors:

(i) if the system is out�ow-connected, then the compartmental matrix C is invertible, every solution tends
exponentially to the unique equilibrium q∗ = −C−1u ≥ 0n, and in the ith compartment q∗i > 0 if and
only if the ith compartment is in�ow-connected to a positive in�ow;

(ii) if the system contains one or more simple traps, then:

a) the reduced compartmental system (Frd, f0,rd, urd) is out�ow-connected and all its solutions con-
verge exponentially fast to the unique non-negative equilibrium −C−1

rd
urd, for Crd = FT

rd
−

diag(Frd1n + f0,rd);
b) any simple trapH contains non-decreasing mass along time. IfH is in�ow-connected to a positive

in�ow, then the mass inside H goes to in�nity. Otherwise, the mass inside H converges to a scalar
multiple of the right eigenvector corresponding to the eigenvalue 0 of the compartmental submatrix
for H .
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Proof. Statement (i) is an immediate consequence of Corollary 9.6. We leave the proof of statement (ii) to

the reader. �

9.4 Table of asymptotic behaviors for averaging and positive systems

Dynamics Assumptions & Asymptotic Behavior References

averaging system

x(k + 1) = Ax(k)
A row-stochastic

the associated digraph has a globally reachable node

=⇒
limk→∞ x(k) = (wTx(0))1n where w ≥ 0 is the left

eigenvector of A with eigenvalue 1 satisfying 1T
nw = 1

Convergence properties:

Theorem 5.1.

Examples: opinion dynamics

& averaging in Chapter 1

a�ne system

x(k+ 1) = Ax(k) + b
A convergent (that is, its spectral radius is less than 1)

=⇒ limk→∞ x(k) = (In −A)−1b
Convergence properties: Ex-

ercise E2.10.

Examples: Friedkin-Johnsen

system in Exercise E5.7

positive a�ne system

x(k+ 1) = Ax(k) + b
A ≥ 0, b ≥ 0n

x(0) ≥ 0n =⇒ x(k) ≥ 0n for all k, and

A convergent (that is, |λ| < 1 for all λ ∈ spec(A))

=⇒ limk→∞ x(k) = (In −A)−1b ≥ 0n

Positivity properties: Exer-

cise E9.9

Examples: Leslie population

model in Exercise E4.14

Table 9.1: Discrete-time systems

Dynamics Assumptions & Asymptotic Behavior References

averaging system

ẋ(t) = −Lx(t)
L Laplacian matrix

the associated digraph has a globally reachable node

=⇒
limt→∞ x(t) = (wTx(0))1n where w ≥ 0 is the left

eigenvector of L with eigenvalue 0 satisfying 1T
nw = 1

Convergence properties:

Theorem 7.4.

Examples: Flocking system

in Section 7.1.2

a�ne system

ẋ(t) = Ax(t) + b
A Hurwitz (that is, its spectral abscissa is negative)

=⇒ limt→∞ x(t) = −A−1b
Convergence properties: Ex-

ercise E7.2

positive a�ne system

ẋ(t) = Ax(t) + b
A Metzler, b ≥ 0n

x(0) ≥ 0n =⇒ x(t) ≥ 0n for all t, and

A Hurwitz (that is, <(λ) < 0 for all λ ∈ spec(A))

=⇒ limt→∞ x(t) = −A−1b ≥ 0n

Positivity properties: Theo-

rem 9.3 and Corollary 9.6.

Example: compartmental

systems in Section 9.1.

Table 9.2: Continuous-time systems
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9.5 Appendix: A static nonlinear �ow problem

In this appendix, we consider a static compartmental �ow system, where a commodity (e.g., power or

water) is transported through a network (e.g., a power grid or a piping system). We model this scenario

with an undirected and connected graph with n nodes and m edges. With each node we associate an

external supply/demand variable (positive for a source and negative for a sink) yi and assume that the

overall network is balanced:

∑n
i=1 yi = 0. We also associate a potential variable xi with every node (e.g.,

voltage or pressure), and assume the �ow of commodity between two connected nodes i and j depends on

the potential di�erence as fij(xi − xj), where fij is a strictly increasing function satisfying fij(0) = 0. For

example, for piping systems and power grids these functions fij are given by the rational Hazen-Williams

�ow and the trigonometric power �ow, which are both monotone in the region of interest. By balancing

the �ow at each node (akin to the Kirchho�’s current law), we obtain at node i

yi =
n∑

j=1

aijfij(xi − xj) , i ∈ {1, . . . , n},

where aij ∈ {0, 1} is the (i, j) element of the network adjacency matrix. In vector notation, the �ow

balance is

y = Bf
(
BTx

)
,

where the map f : Rm → Rm has components fij . Consider also the associated linearized problem

y = BBTx = Lx, where L is the network Laplacian matrix, where we implicitly assumed f ′ij(0) = 1. The

�ows in the linear problem are obtained as

BTx? = BTL†y,

where L† is the Moore-Pennrose pseudoinverse of L; see Exercises E6.8 and E6.10.

In what follows, we restrict ourselves to an acyclic network and show that the nonlinear solution can

be obtained from the solution of the linear problem. We formally replace the �ow f(BTx) by a new edge

variable v := f(BTx) ∈ Rm and arrive at

y = Bv , (9.10a)

v = f
(
BTx

)
. (9.10b)

In the acyclic case, kernel(B) = {0m} and necessarily v ∈ image(BT), or v = BTw for some w ∈ Rn.

Thus, equation (9.10a) reads as y = Bv = BBTw = Lw and its solution is w = L†y. Equation (9.10b) then

reads as f(BTx) = v = BTw = BTL†y, and its unique solution (due to monotonicity) is

BTx? = f−1(BTL†y).

9.6 Historical notes and further reading

This chapter is inspired by the excellent text (Walter and Contreras, 1999) and the tutorial treatment

in (Jacquez and Simon, 1993); see also the texts (Luenberger, 1979; Farina and Rinaldi, 2000; Haddad et al.,
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2010). Additional results on Metzler matrices are available in (Berman and Plemmons, 1994; Santesso and

Valcher, 2007). For nonlinear extensions of the material in this chapter, including recent studies of tra�c

networks, we refer to (Como et al., 2013; Coogan and Arcak, 2015).

Several other properties of positive a�ne systems and Metzler matrices are reviewed in (Berman and

Plemmons, 1994).
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9.7 Exercises

E9.1 The matrix exponential of a Metzler matrix. In this exercise we extend and adapt Theorem 7.2 about the

matrix exponential of a Laplacian matrix to the setting of Metzler matrices.

Let M be an n× n Metzler matrix with minimum diagonal entry mmin = min{m11, . . . ,mnn}. As usual,

associate to M a digraph G without self-loops in the natural way, that is, (i, j) is an edge if and only if

mij > 0. Prove that

(i) exp(M) ≥ emmin In ≥ 0, for any digraph G,

(ii) exp(M) ej > 0, for a digraph G whose j-th node is globally reachable,

(iii) exp(M) > 0, for a strongly connected digraph G (i.e., for an irreducible M ).

Morever, prove that, for any square matrix A,

(iv) exp(At) ≥ 0 for all t ≥ 0 if and only if A is Metzler.

E9.2 Proof of the Perron-Frobenius Theorem for Metzler matrices. Prove Theorem 9.4.

E9.3 Metzler invariance under non-negative change of basis. Consider a positive system with Metzler matrix

A and constant input b ≥ 0:

ẋ = Ax+ b.

Show that, under the change of basis

z = T−1x,

with T invertible and T−1 ≥ 0, the transformed matrix T−1AT is also Metzler.

E9.4 Monotonicity properties of positive systems. Consider the continuous-time positive a�ne system

ẋ = Ax+ b,

where A is Metzler and b is non-negative.

(i) Let x(t, x0) denote the solution from initial condition x0 ∈ Rn≥0 at time 0. Show that

0n ≤ x0 ≤ x1 =⇒ x(t, x0) ≤ x(t, x1) for all time t ≥ 0.

(ii) Let ẋ = Âx+ b̂ be a second continuous-time positive a�ne system. Assume that A and Â are Hurwitz

and, by Corollary 9.6, let x∗ and x̂∗ denote the equilibrium points of the two systems. Show that

A ≥ Â and b ≥ b̂ =⇒ x∗ ≥ x̂∗.

E9.5 Establishing the spectral properties of compartmental matrices. Prove Lemma 9.12 about the spectral

properties of compartmental matrices.

E9.6 Simple traps and strong connectivity. Show that a compartmental system that has no out�ows and that is

a simple trap, is strongly connected.

E9.7 Su�cient condition for a Metzler matrix to be Hurwitz. For n ≥ 2, given a Metzler matrix M ∈ Rn×n,

let v = M1n ∈ Rn denote its vector of row sums. Show that

(i) M − diag(v) is a Metzler matrix with zero row sums,

(ii) if M is irreducible and v is nonpositive with at least one entry strictly negative, then M is Hurwitz, and

(iii) if S is a symmetric irreducible Metzler matrix with S1n = 0n, then, for any i ∈ {1, . . . , n} and ε > 0,

all eigenvalues of A− εeieTi are negative.
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E9.8 OnMetzlermatrices and compartmental systemswith growth and decay. LetM be ann×n symmetric

Metzler matrix. Recall Lemma 9.12 and de�ne v ∈ Rn by M = −L + diag(v), where L is a symmetric

Laplacian matrix. Show that:

(i) if M is Hurwitz, then 1T
nv < 0.

Next, assume n = 2 and assume v has both non-negative and non-positive entries. (If v is non-negative,

lack of stability can be established from statement (i); if v is non-positive, stability can be established via

Theorem 9.13.) Show that

(ii) there exist non-negative numbers f , d and g such that, modulo a permutation, M can be written in the

form:

M = −f
[

1 −1
−1 1

]
+

[
g 0
0 −d

]
=

[
(g − f) f
f (−d− f)

]
,

(iii) M is Hurwitz if and only if

d > g and f >
gd

d− g .

Note: The inequality d > g (for n = 2) is equivalent to the inequality 1T
nv < 0 in statement (i). In the

interpretation of compartmental systems with growth and decay rates, f is a �ow rate, d is a decay rate and g is a
growth rate. With this interpretation, the statement (iii) is then interpreted as follows: M is Hurwitz if and only if
the decay rate is larger than the growth rate and the �ow rate is su�ciently large.

E9.9 Non-negative inverse. Let A be a non-negative square matrix and show that the following statements are

equivalent:

(i) λ > ρ(A), and

(ii) the matrix (λIn −A) is invertible and its inverse (λIn −A)−1 is non-negative.

Moreover, show that

(iii) if A is irreducible and λ > ρ(A), then (λIn −A)−1 is positive.

(Given a square matrix A, the map λ 7→ (λIn −A)−1 is sometimes referred to as the resolvent of A.)

E9.10 Grounded Laplacian matrices. Let G be a weighted undirected graph with Laplacian L ∈ Rn×n. Select

a set S of s ≥ 1 nodes and call them grounded nodes. Given S, the grounded Laplacian matrix Lgrounded ∈
R(n−s)×(n−s)

is the principal submatrix of L obtained by removing the s rows and columns corresponding to

the grounded nodes. In other words, if the grounded nodes are nodes {n− s+ 1, . . . , n} and L is partitioned

in block matrix form

L =

[
L11 L12

LT
12 L22

]
, with L11 ∈ R(n−s)×(n−s)

and L22 ∈ Rs×s,

then Lgrounded = L11. Show the following statements:

(i) If G is connected, then

a) Lgrounded is positive de�nite,

b) L−1
grounded

is non-negative, and

c) the eigenvector associated with the smallest eigenvalue of Lgrounded can be selected non-negative.

(ii) If additionally the graph obtained by removing from G the nodes in S and all the corresponding edges

is connected, then

d) L−1
grounded

is positive, and

e) the eigenvector associated with the smallest eigenvalue of Lgrounded is unique and positive (up to

rescaling).
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Hint: Show that −Lgrounded is a compartmental matrix.
Note: For more information on grounded Laplacian matrices we refer to (Dör�er and Bullo, 2013; Pirani and
Sundaram, 2016; Xia and Cao, 2017).

E9.11 Mean Residence Time for a particle in a compartmental system. Consider an out�ow-connected com-

partmental system with irreducible matrix C and µ(C) < 0. Let v is the dominant eigenvector of C , that is,

Cv = µ(C)v, 1T
nv = 1, and v > 0.

Assume a tagged particle is randomly located inside the compartmental system at time 0 with probability

mass function v. The mean residence time (mrt) of the tagged particle is the expected time that the particle

remains inside the compartmental system.

Using the de�nition of expectation, the mean residence time is

mrt =

∫ ∞

0

tP[particle leaves at time t] dt.

Let us also take for granted that:

P[particle leaves at time t] = −
( d
dt

P[particle inside at time t]
)
.

Show that

mrt = − 1

µ(C)
.

E9.12 Resistive circuits as compartmental systems (Dör�er et al., 2017). Consider a resistive circuit with

shunt capacitors at each node as in �gure below (see also in Section 7.1.3). Assume that the circuit is connected.

Attach to at least one node j ∈ {1, . . . , n} a current source generating an injected current cinjected at j > 0, and

connect to at least one node i ∈ {1, . . . , n} a positive resistor to ground.

(i) Model the resulting system as a compartmental system, i.e., identify the conserved quantity and write

the compartmental matrix, the in�ow vector and the out�ow rate vector, and

(ii) show that there exists a unique steady state that is positive and globally-asymptotically stable.

current
source

E9.13 Solutions of partial di�erential equations (Luenberger, 1979, Chapter 6). The electric potential V
within a two-dimensional domain is governed by the Laplace’s partial di�erential equation:

∂2V

∂x2
+
∂2V

∂y2
= 0, (E9.1)

combined with the value of V along the boundary of the enclosure; see the left image in Figure E9.1. (A similar

setup with a time-varying spatial quantity and free boundary conditions was described in Section 7.1.4.)
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Figure E9.1: Laplace’s equation over a rectangular enclosure and a regular Cartesian grid.

For arbitrary enclosures and boundary conditions, it is impossible to solve the Laplace’s equation in closed

form. An approximate solution is computed by (i) introducing a regular Cartesian grid of points with spacing

h, e.g., see the right image in Figure E9.1, and (ii) approximating the second-order derivatives by second-order

�nite di�erences. Speci�cally, at node 2 of the grid, we have along the x direction

∂2V

∂x2
(V2) ≈ 1

h2
(V3 − V2)− 1

h2
(V2 − V1) =

1

h2
(V3 + V2 − 2V2),

so that equation (E9.1) is approximated as follows:

0 =
∂2V

∂x2
(V2) +

∂2V

∂y2
(V2) ≈ 1

h2
(V1 + V3 + V6 + b2 − 4V2) =⇒ 4V2 = V1 + V3 + V6 + b2.

This approximation translates into the matrix equation:

4V = AgridV + Cgrid-boundaryb, (E9.2)

where V ∈ Rn is the vector of unknown potentials, b ∈ Rm is the vector of boundary conditions, Agrid ∈
{0, 1}n×n is the binary adjacency matrix of the (interior) grid graph (that is, (Agrid)ij = 1 if and only if

the interior nodes i and j are connected), and Cgrid-boundary ∈ {0, 1}n×m is the connection matrix between

interior and boundary nodes (that is, (Cgrid-boundary)iα = 1 if and only if grid interior node i is connected with

boundary node α). Show that

(i) Agrid is irreducible but not primitive,

(ii) ρ(Agrid) < 4,

Hint: Recall Theorem 4.9.
(iii) there exists a unique solution V ∗ to equation (E9.2),

(iv) the unique solution V ∗ satis�es V ∗ ≥ 0n if b ≥ 0m, and

(v) each solution to the following iteration converges to V ∗:

4V (k + 1) = AgridV (k) + Cgrid-boundaryb,

whereby, at each step, the value of V at each node is updated to be equal to the average of its neighboring

nodes.

E9.14 Irreducible Metzler matrices and positive vectors. Let M ∈ Rn×n be an irreducible Metzler matrix, let

µ(M) be its spectral abscissa (i.e., its dominant eigenvalue), and let x > 0n be a positive vector. Show that

(i) if Mx < ηx for some η ∈ R, then µ(M) < η;

(ii) if Mx = ηx for some η ∈ R, then µ(M) = η; and

(iii) if Mx > ηx for some η ∈ R, then µ(M) > η.

Hint: Read Section 2.1 in (Varga, 2009).
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E9.15 Discrete-time compartmental systems. Perform the following steps.

(i) Provide a proper de�nition of a discrete-time compartmental system without in�ows or out�ows.

(ii) Show that the system dynamics takes the form x(k + 1) = ATx(k), where A is row stochastic.

(iii) Show that the system admits a globally exponentially stable equilibrium if each sink of the digraph

associated to A is aperiodic.
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Chapter10

Convergence Rates, Scalability and

Optimization

In this chapter we discuss the convergence rate of averaging algorithms. We focus on discrete-time systems

and their convergence factors. The study of continuous-time systems is analogous. We also perform a

scalability analysis for an example system and discuss some interesting optimization problems.

Before proceeding, we recall a few basic facts. Given a square matrix A,

(i) the spectral radius of A is ρ(A) = max{|λ| | λ ∈ spec(A)};
(ii) the p-induced norm of A, for p ∈ N∪{∞}, is

‖A‖p = max
{
‖Ax‖p | x ∈ Rn and ‖x‖p = 1

}
= max

x 6=0n

‖Ax‖p
‖x‖p

,

and, speci�cally, the induced 2-norm of A is ‖A‖2 = max{
√
λ | λ ∈ spec(ATA)};

(iii) for any p, ρ(A) ≤ ‖A‖p; and

(iv) if A = AT
, then ‖A‖2 = ρ(A).

De�nition 10.1 (Essential spectral radius). The essential spectral radius of a row-stochastic matrix A is

ρess(A) =

{
0, if spec(A) = {1, . . . , 1},
max{|λ| | λ ∈ spec(A) \ {1}}, otherwise.

10.1 Some preliminary calculations and observations

The convergence factor for symmetric row-stochastic matrices To build some intuition about the

general case, we start with a weighted undirected graph G with adjacency matrix A that is row-stochastic

and primitive (i.e., the graph G, viewed as a digraph, is strongly connected and aperiodic). We consider the

corresponding discrete-time averaging algorithm

x(k + 1) = Ax(k).
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Note that G undirected implies that A is symmetric. Therefore, A has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn
and corresponding orthonormal eigenvectors v1, . . . , vn. Because A is row-stochastic, λ1 = 1 and v1 =
1n/
√
n. Next, along the same lines of the modal decomposion given in Section 2.1, we know that the

solution can be decoupled into n independent evolution equations as

x(k) = average(x(0))1n + λk2(vT2 x(0))v2 + · · ·+ λkn(vTnx(0))vn.

Moreover, A being primitive implies that max{|λ2|, . . . , |λn|} < 1. Speci�cally, for a symmetric and

primitive A, we have ρess(A) = max{|λ2|, |λn|} < 1. Therefore, as predicted by Corollary 2.15

lim
k→∞

x(k) = 1n1T
nx(0)/n = average(x(0))1n.

To upper bound the error, since the vectors v1, . . . , vn are orthonormal, we compute

∥∥∥x(k)− average(x(0))1n
∥∥∥

2
=
∥∥∥

n∑

j=2

λkj (v
T
j x(0))vj

∥∥∥
2

=

√√√√
n∑

j=2

|λj |2k
∥∥∥(vTj x(0))vj

∥∥∥
2

2

≤ ρess(A)k

√√√√
n∑

j=2

∥∥∥(vTj x(0))vj

∥∥∥
2

2
= ρess(A)k

∥∥∥x(0)− average(x(0))1n
∥∥∥

2
, (10.1)

where the second and last equalities are Pythagoras Theorem.

In summary, we have learned that, for symmetric matrices, the essential spectral radius ρess(A) < 1 is

the convergence factor to average consensus, i.e., the factor determining the exponential convergence of

the error to zero. (The wording “convergence factor” is for discrete-time systems, whereas the wording

“convergence rate” is for continuous-time systems.)

A note on convergence factors for asymmetric matrices

The behavior of asymmetric row-stochastic matrices is more complex than of symmetric ones. For large

even n, consider the asymmetric positive matrix

Alarge-gain =
1

2n
1n1T

n +
1

2

(
11:n/2eT1 + 1n/2:neTn

)
,

where 11:n/2 (resp. 1n/2:n) is the vector whose �rst (resp. second) n/2 entries are equal to 1 and whose

second (resp. �rst) n/2 entries are equal to 0. We visualize the digraph associated to this matrix in Figure 10.1.

The matrix Alarge-gain is row-stochastic because, given 1T
n1n = n and eTj 1n = 1 for all j, we compute

Alarge-gain1n =
1

2
1n +

1

2
(11:n/2 + 1n/2:n)1 = 1n.

Therefore, Corollary 2.15 implies that every solution to x(k + 1) = Alarge-gainx(k) converges to consensus

and Exercise E1.1 implies that k 7→ Vmax-min(x(k)) is non-increasing. Nevertheless, the 2-norm of the

deviation from consensus can easily increase. For example, take x(0) = e1 − en and compute

x(1) = Alarge-gainx(0) =
1

2
11:n/2 −

1

2
1n/2:n.
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1

2

34

5

6

11:3eT1 + 13:6eT6 =




1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1



.

Figure 10.1: The unweighted digraph associated to the matrix 11:n/2eT1 + 1n/2:neTn, for n = 6. This digraph is the

union of two disjoint stars. The weighted digraph associated to Alarge-gain is the superposition of these two stars with

a complete digraph.

Because average(x(0)) = average(x(1)) = 0, we compute

‖x(0)− average(x(0))1n‖2 =
√

2 and ‖x(1)− average(x(1))‖2 =
1

2
‖11:n/2 − 1n/2:n‖2 =

1

2

√
n.

In other words, the 2-norm of x(k) − average(x(k)) along the averaging system de�ned by Alarge-gain

grows to be at least of order

√
n (starting from O(1)).

1
The problem is that the eigenvalues (alone) of a

non-symmetric matrix do not fully describe the state ampli�cation that may take place during a transient

period of time.

10.2 Convergence factors for row-stochastic matrices

Consider a discrete-time averaging algorithm (distributed linear averaging)

x(k + 1) = Ax(k),

where A is doubly-stochastic and not necessarily symmetric. If A is primitive (i.e., the associated digraph is

aperiodic and strongly connected), we know

lim
k→∞

x(k) = average(x(0))1n =
(
1n1T

n/n
)
x(0).

We now de�ne two possible notions of convergence factors. The per-step convergence factor is

rstep(A) = sup
x(k)6=x�nal

‖x(k + 1)− x�nal‖2
‖x(k)− x�nal‖2

,

where x�nal = average(x(0))1n = average(x(k))1n and where the supremum is taken over any possible

sequence. Moreover, the asymptotic convergence factor is

rasym(A) = sup
x(0)6=x�nal

lim
k→∞

(
‖x(k)− x�nal‖2
‖x(0)− x�nal‖2

)1/k

.

Given these de�nitions the preliminary calculations in the previous Section 10.1, we can now state our

main results.

1

Here and in what follows, O(x) is a scalar function upper bounded by a constant times x.
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Theorem 10.2 (Convergence factor and solution bounds). Let A be doubly-stochastic and primitive.

(i) The convergence factors of A satisfy

rstep(A) = ‖A− 1n1T
n/n‖2,

rasym(A) = ρess(A) = ρ(A− 1n1T
n/n) < 1.

(10.2)

Moreover, rasym(A) ≤ rstep(A), and rstep(A) = rasym(A) if A is symmetric.

(ii) For any initial condition x(0) with corresponding x�nal = average(x(0))1n,
∥∥x(k)− x�nal

∥∥
2
≤ rstep(A)k

∥∥x(0)− x�nal

∥∥
2
, (10.3)

∥∥x(k)− x�nal

∥∥
2
≤ cε(rasym(A) + ε)k

∥∥x(0)− x�nal

∥∥
2
, (10.4)

where ε > 0 is an arbitrarily small constant and cε is a su�ciently large constant independent of x(0).

Note: A su�cient condition for rstep(A) < 1 is given in Exercise E10.1.

Before proving Theorem 10.2, we introduce an interesting intermediate result. Forx�nal = average(x(0))1n,

the disagreement vector is the error signal

δ(k) = x(k)− x�nal. (10.5)

Lemma 10.3 (Disagreement or error dynamics). Given a doubly-stochastic matrix A, the disagreement
vector δ(k) satis�es

(i) δ(k) ⊥ 1n for all k,

(ii) δ(k + 1) =
(
A− 1n1T

n/n
)
δ(k),

(iii) the following properties are equivalent:

a) limk→∞A
k = 1n1T

n/n, (that is, the averaging algorithm achieves average consensus)
b) A is primitive, (that is, the digraph is aperiodic and strongly connected)
c) ρ(A− 1n1T

n/n) < 1. (that is, the error dynamics is convergent)

Proof. To study the error dynamics, note that 1T
nx(k+ 1) = 1T

nAx(k) and, in turn, that 1T
nx(k) = 1T

nx(0);

see also Exercise E7.8. Therefore, average(x(0)) = average(x(k)) and δ(k) ⊥ 1n for all k. This completes

the proof of statement (i). To prove statement (ii), we compute

δ(k + 1) = Ax(k)− x�nal = Ax(k)− (1n1T
n/n)x(k) =

(
A− 1n1T

n/n
)
x(k),

and the equation in statement (ii) follows from

(
A− 1n1T

n/n
)
1n = 0n.

Next, let us prove the equivalence among the three properties. From Perron–Frobenius Theorem 2.12

for primitive matrices in Chapter 2 and from Corollary 2.15, we know that A primitive (statement (iii)b)

implies average consensus (statement (iii)a). The converse is true because 1n1T
n/n is a positive matrix and,

by the de�nition of limit, there must exist k such that each entry of Ak becomes positive.
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Finally, we prove the equivalence between statement (iii)a and (iii)c. First, note that P = In − 1n1T
n/n

is a projection matrix, that is, P = P 2
. This can be easily veri�ed by expanding the matrix power P 2

.

Second, let us prove a useful identity:

Ak − 1n1T
n/n = Ak(In − 1n1T

n/n) (because A row-stochastic)

= Ak(In − 1n1T
n/n)k (because In − 1n1T

n/n is a projection)

=
(
A(In − 1n1T

n/n)
)k

=
(
A− 1n1T

n/n
)k
.

The statement follows from taking the limit as k → ∞ in this identity and by recalling that a matrix is

convergent if and only if its spectral radius is less then one. �

We are now ready to prove the main theorem in this section.

Proof of Theorem 10.2. Regarding the equalities (10.2), the formula for rstep is an consequence of the de�ni-

tion of induced 2-norm:

rstep(A) = sup
x(k)6=x�nal

‖x(k + 1)− x�nal‖2
‖x(k)− x�nal‖2

= sup
δ(k)⊥1n

‖δ(k + 1)‖2
‖δ(k)‖2

= sup
δ(k)⊥1n

‖(A− 1n1T
n/n)δ(k)‖2

‖δ(k)‖2
= sup

y 6=0n

‖(A− 1n1T
n/n)y‖2

‖y‖2
,

where the last equality follows from (A− 1n1T
n/n)1n = 0n.

The equality rasym(A) = ρ(A − 1n1T
n/n) is a consequence of the error dynamics in Lemma 10.3,

statement (ii).

Next, note that ρ(A) = 1 is a simple eigenvalue and A is semi-convergent. Hence, by Exercise E2.2 on

the Jordan normal form of A, there exists a nonsingular T such that

A = T

[
1 0T

n−1

0n−1 B

]
T−1,

where B ∈ R(n−1)×(n−1)
is convergent, that is, ρ(B) < 1. Moreover we know ρess(A) = ρ(B).

Usual properties of similarity transformations imply

Ak = T

[
1 0T

n−1

0n−1 Bk

]
T−1, =⇒ lim

k→∞
Ak = T

[
1 0T

n−1

0n−1 0(n−1)×(n−1)

]
T−1.

BecauseA is doubly-stochastic and primitive, we know limk→∞A
k = 1n1T

n/n so thatA can be decomposed

as

A = 1n1T
n/n+ T

[
0 0T

n−1

0n−1 B

]
T−1,

and conclude with ρess(A) = ρ(B) = ρ(A− 1n1T
n/n). This concludes the proof of the equalities (10.2).

The bound (10.3) is an immediate consequence of the de�nition of induced norm.

Finally, we leave to the reader the proof of the bound (10.4) in Exercise E10.3. Note that the arbitrarily-

small positive parameter ε is required because the eigenvalue corresponding to the essential spectral radius

may have an algebraic multiplicity strictly larger than its geometric multiplicity. �
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Note: the matrix 1n1T
n is studied in Exercise E2.13 as the rank-one projection matrix JA associated to a

primitive matrix A. Using methods and results from that exercise one can generalize the treatment in this

section to row-stochastic instead of doubly-stochastic matrices.

10.3 Cumulative quadratic disagreement for symmetric matrices

The previous convergence metrics (per-step convergence factor and asymptotic convergence factor) are

worst-case convergence metrics (both are de�ned with a supremum operation) that are achieved only for

particular initial conditions, e.g., the performance predicted by the asymptotic metric rasym(A) is achieved

when x(0)− x�nal is aligned with the eigenvector associated to ρess(A) = ρ(A− 1n1T
n/n).

In what follows we study and appropriate average and transient performance We consider an averaging

algorithm

x(k + 1) = Ax(k),

de�ned by a row-stochastic matrix A and subject to random initial conditions x0 satisfying

E[x0] = 0n, and E[x0x
T
0 ] = In.

Recall the disagreement vector δ(k) de�ned in (10.5) and the associated disagreement dynamics

δ(k + 1) =
(
A− 1n1T

n/n
)
δ(k) ,

and observe that the initial conditions of the disagreement vector δ(0) satisfy

E[δ(0)] = 0n and E[δ(0)δ(0)T] = In − 1n1T
n/n .

To de�ne an average transient and asymptotic performance of this averaging algorithm, we de�ne the

cumulative quadratic disagreement of the matrix A by

Jcum(A) = lim
K→∞

1

n

K∑

k=0

E
[
‖δ(k)‖22

]
. (10.6)

Theorem10.4 (Cumulative quadratic disagreement for symmetricmatrices). The cumulative quadratic
disagreement (10.6) of a row-stochastic, primitive, and symmetric matrix A satis�es

Jcum(A) =
1

n

∑

λ∈spec(A)\{1}

1

1− λ2
.

Proof. Pick a terminal time K ∈ N and de�ne JK(A) = 1
n

∑K
k=0 E

[
‖δ(k)‖22

]
. From the de�nition (10.6)

and the disagreement dynamics, we compute

JK(A) =
1

n

K∑

k=0

trace
(
E
[
δ(k)δ(k)T

])

=
1

n

K∑

k=0

trace
((

A− 1n1T
n/n

)k
E
[
δ(0)δ(0)T

]((
A− 1n1T

n/n
)k)T )

=
1

n

K∑

k=0

trace
((

A− 1n1T
n/n

)k ((
A− 1n1T

n/n
)k)T )

.
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BecauseA is symmetric, also the matrixA−1n1T
n/n is symmetric and can be diagonalized asA−1n1T

n/n =
QΛQT

, where Q is orthonormal and Λ is a diagonal matrix whose diagonal entries are the elements of

spec
(
A− 1n1T

n/n
)

= {0}∪ spec(A) \ {1}. It follows that

JK(A) =
1

n

K∑

k=0

trace
(
QΛkQT

(
QΛkQT

)T)

=
1

n

K∑

k=0

trace
(
Λk · Λk

)
(because trace(AB) = trace(BA))

=
1

n

K∑

k=0

∑

λ∈spec(A)\{1}

λ2k

=
1

n

∑

λ∈spec(A)\{1}

1− λ2(K−1)

1− λ2
. (because of the geometric series)

The formula for Jcum follows from taking the limit as K → ∞ and recalling that A primitive implies

ρess(A) < 1. �

Note: All eigenvalues of A appear in the computation of the cumulative quadratic disagreement (10.6),

not only the dominant eigenvalue as in the asymptotic convergence factor.

10.4 Circulant network examples and scalability analysis

In general it is di�cult to compute explicitly the second largest eigenvalue magnitude for an arbitrary

matrix. There are some graphs with constant essential spectral radius, independent of the network size n.

For example, a complete graph with identical weights and doubly stochastic adjacency matrix A = 1n1T
n/n

has ρess(A) = 0. In this case, the associated averaging algorithm converges in a single step.

Next, we present an interesting family of examples where all eigenvalues are known. Recall the cyclic

balancing problem from Section 1.4, where each bug feels an attraction towards the closest counterclockwise

and clockwise neighbors and Exercise E4.17 on circulant matrices. Given the angular distances between

bugs di = θi+1 − θi, for i ∈ {1, . . . , n} (with the usual convention that dn+1 = d1 and d0 = dn), the

closed-loop system is d(k + 1) = An,κd(k), where κ ∈ [0, 1/2[, and

An,κ =




1− 2κ κ 0 · · · 0 κ

κ 1− 2κ κ
. . .

. . . 0

0 κ 1− 2κ
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . κ 1− 2κ κ
κ 0 · · · 0 κ 1− 2κ




.

This matrix is circulant, that is, each row-vector is equal to the preceding row-vector rotated one element
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174 Chapter 10. Convergence Rates, Scalability and Optimization

Figure 10.2: Digraph associated to the circulant matrix An,κ, for n = 6.

to the right. The associated digraph is illustrated in the Figure 10.2. From Exercise E4.17, the eigenvalues of

An,κ can be computed to be (not ordered in magnitude)

λi = 2κ cos
2π(i− 1)

n
+ (1− 2κ), for i ∈ {1, . . . , n}. (10.7)

An illustration is given in Figure 10.3. For n even (similar results hold for n odd), plotting the eigenvalues

0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

-0.5

-1.0

 = .1

 = .2

 = .3

 = .4

 = .5

fk(x) = 2 cos(2⇡x) + (1 � 2)

x

0.2 0.4 0.6 0.8 1.0

 = .4

�i = f((i � 1)/n), i 2 {1, . . . , n}, n = 5
�1 = 1

�2 = �5

�3 = �4

Figure 10.3: The eigenvalues of An,κ as given in equation (10.7). The left �gure illustrate also the case of κ = .5, even

if that value is strictly outside the allowed range κ ∈ [0, .5[.

on the segment [−1, 1] shows that

ρess(An,κ) = max{|λ2|, |λn/2+1|},

where

λ2 = 2κ cos
2π

n
+ (1− 2κ), and λn/2+1 = 1− 4κ.

If we �x κ ∈ ]0, 1/2[ and consider su�ciently large values of n, then |λ2| > |λn/2+1|. In the limit of large

graphs n→∞, the Taylor expansion cos(x) = 1− x2/2 +O(x4) leads to

ρess(An,κ) = 1− 4π2κ
1

n2
+O

( 1

n4

)
. (10.8)
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10.5. Appendix: Accelerated consensus algorithm 175

Note that ρess(An,κ) < 1 for any n, but the separation from ρess(An,κ) to 1, called the spectral gap, shrinks

with 1/n2
.

In summary, this discussion leads to the broad statement that certain large-scale graphs have slow

convergence factors.

10.5 Appendix: Accelerated consensus algorithm

The averaging algorithm x(k + 1) = Ax(k) may converge slowly as seen in Section 10.4 due to a large

ρess(A). In this section we propose a simple modi�cation of averaging that is known to be faster. The

accelerated consensus algorithm is de�ned by

x(k + 1) = βAx(k) + (1− β)x(k − 1), for k ∈ Z≥0, (10.9)

where the initial conditions are x(0) = x(−1) := x0, the matrix A ∈ Rn×n is symmetric, primitive, and

row-stochastic, and β ∈ R is a parameter to be chosen.

This iteration has some basic properties. We de�ne the iteration matrix

Tβ =

[
βA (1− β)In
In 0n×n

]
∈ R2n×2n.

One can show that Tβ12n = 12n for all β, and that Tβ is semiconvergent if and only if ρess(Tβ) < 1.

Moreover, similar to the result in (10.4) one can show that, for an appropriate value of β, the asymptotic

convergence factor for this accelerated iteration is equal to ρess(Tβ). Accordingly, in what follows, we

optimize the convergence speed of the algorithm by minimizing ρess(Tβ) with respect to β. We formally

state these results and more in the following theorem.

Theorem 10.5 (Convergence and optimization of the accelerated consensus algorithm). Consider
the accelerated consensus algorithm (10.9) with x(0) = x(−1) = x0, A ∈ Rn×n symmetric, primitive, and
row-stochastic matrix, and β ∈ R. The following statements hold:

(i) for all β ∈ R, the set of �xed points of Tβ is {α12n | α ∈ R} and, if limk→∞ x(k) exists, then it is
equal to average(x0)1n;

(ii) the following conditions are equivalent:

a) Tβ is semi-convergent,
b) ρess(Tβ) < 1, and
c) β ∈ (0, 2);

(iii) for β ∈ (0, 2), along the accelerated consensus iteration (10.9)

∥∥x(k)− average(x0)1n
∥∥

2
≤ cε(ρess(Tβ) + ε)k

∥∥x(0)− average(x0)1n
∥∥

2
,

where ε > 0 is an arbitrarily small constant and cε is a su�ciently large constant independent of x0;
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(iv) the optimal convergence rate of the accelerated consensus algorithm is

min
β∈(0,2)

ρess(Tβ) =
ρess(A)

1 +
√

1− ρess(A)2
, (10.10)

which is obtained at

β∗ = argminβ∈(0,2) ρess(Tβ) =
2

1 +
√

1− ρess(A)2
∈ (1, 2). (10.11)

Note: A key advantage of the accelerated consensus algorithm is it is faster than standard averaging in

two senses: First, it is immediate to see that ρess(Tβ∗) = ρess(A)

1+
√

1−ρess(A)2
< ρess(A). Second, Exercise E10.10

shows that performance improves also in its asymptotic order; for example, for averaging algorithms over

circulant matrices, the spectral gap of order 1/n instead of order 1/n2
. One important drawback of the

accelerated consensus algorithm is that computation of optimal gain requires knowledge of the essential

spectral radius of A.

Proof of Theorem 10.5. Regarding statement (i), we let x? = limk→∞ x(k) and take the limit in both left

and right hand side of the accelerated consensus algorithm (10.9) to obtain x∗ = βAx∗+ (1− β)x∗, that is,

after simple manipulations x? = Ax?. Under the given assumptions on the matrix A and by employing the

Perron-Frobenius Theorem, we obtain that x? = α1n for some α ∈ R. Observe also that x(t) = α1n is a

conserved quantity for the accelerated consensus algorithm (10.9). Thus, when left-multiplying x(t) = α1n
by 1T

n and evaluating the result for t = 0, we obtain α = average(x0). This concludes the proof of

statement (i).

Next, we prove statement (ii). We start by analyzing the matrix Tβ with methods similar to those

adopted for the second-order Laplacian �ow in Section 7.4. The symmetric matrix A can be expressed as

A = UΛUT
, where U is a unitary matrix and Λ = diag({λi}ni=1) collects the eigenvalues of the matrix A.

A similarity transformation with the matrix U leads us to

[
U 0
0 U

]T
Tβ

[
U 0
0 U

]
=

[
U 0
0 U

]T [
βA (1− β)In
In 0

] [
U 0
0 U

]
=

[
β Λ (1− β)In
In 0

]
.

By appropriately permuting the entries of this matrix, we arrive at

Γ =




Γ1 0 . . . 0
0 Γ2 . . . 0
...

. . .
...

0 0 . . . Γn


 , where Γi =

[
β λi 1− β

1 0

]
, i ∈ {1, . . . , n} .

Note that the similarity transformation via the matrix U and the permutation (which is itself a similarity

transformation) the spectra of Γ and Tβ are identical. We can, hence, analyze the matrix Γ to investigate

the convergence rates. For a given index i ∈ {1, . . . , n}, the eigenvalues of Γi are the roots of

v2
i − (β λi)vi + β − 1 = 0 , (10.12)
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10.5. Appendix: Accelerated consensus algorithm 177

which are given by

v1,2i =
β λi ±

√
β2 λ2

i − 4β + 4

2
. (10.13)

For the system to converge to steady-state consensus, all eigenvalues v1,2i , i ∈ {1, . . . , n}, should lie within

the unit disc, with only one eigenvalue on the unit circle. For Γn with λn = 1, we note that the eigenvalues

are {1, β − 1}. Therefore, a necessary convergence condition for β ∈ R is

− 1 < β − 1 < 1 or 0 < β < 2 . (10.14)

For the other block matrices Γi, i ∈ {2, . . . , n}, the eigenvalues are given by equation (10.13), the sum

of the roots by (v1i + v2i = β λi), and the product of the roots by (v1i · v2i = β − 1). We consider the

following cases:

a) Assume Γi has real-valued roots: For the roots to lie within the unit circle, we require |v1i | < 1,

|v2,i| < 1, and v2
1i

+ v2
2i
< 2 for all i ∈ {1, . . . , n}. Regarding the latter:

vi1i + v2
2i = (v1i + v2i)

2 − 2 · v1i · v2i < 2

⇐⇒ β2λ2
i − 2β + 2 < 2

⇐⇒ β2 − 2β < 0 (as |λi| < 1)

⇐⇒ β(β − 2) < 0 orβ ∈ (0, 2). (10.15)

We now verify |v1i | < 1, |v2,i| < 1. For Γn with λn = 1, the eigenvalues are {v1n , v2n} = {1, β−1}
and thus |v1n | < 1, |v2,n| < 1. For Γi, i ∈ {1, . . . , n− 1}, with |λi| < 1, it can explicitly calculated

that |v1i | < 1, |v2,i| < 1 if β ∈ (0, 2).

b) Assume Γi has complex conjugate roots: As the coe�cients of equation (10.12) are all real (β is real

and λi is real as the matrix A is symmetric), the complex-conjugate roots have the same magnitude.

We require the magnitudes to be strictly less than 1:

|v1i | = |v2i | =
√
β − 1 < 1 =⇒ 0 < (β − 1) < 1 orβ ∈ (0, 2). (10.16)

Equations (10.14), (10.15), and (10.16) together imply that the iteration converges for values of β ∈ (0, 2).

This concludes the proof of statement (ii).

Regarding statement (iii), it is an immediate consequence of Exercise E10.3 and some ad-hoc bounds.

We leave it to the reader to �ll out the details.

Finally, we prove statement (iv). In order to minimize the modulus of the eigenvalues of Γi, we choose

β such that the discriminant in the expression (10.13) becomes zero:

β2 λ2
i − 4β + 4 = 0 . (10.17)

Let us keep the index i ∈ {1, . . . , n− 1} �xed. Two possible values of β arise from equation (10.17):

β ∈





2

1 +
√

1− λ2
i

,
2

1−
√

1− λ2
i



 ,
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Because the second root may lead to a value of β outside the existence interval (0, 2), we restrict ourselves

to the optimal selection (for the index i) of the gain β as

β =
2

1 +
√

1− λ2
i

.

Among all choices of β for di�erent indices i ∈ {1, . . . , n−1}, we note that β? = 2/(1 +
√

1− ρess(A)2) as

in equation (10.11) is the optimal choice to minimize the maximum magnitude of |v1,2i | for i ∈ {1, . . . , n−1}.
Furthermore, since 1 > ρess(A) ≥ 0, we have 2 > β? ≥ 1, and thus the magnitudes of all eigenvalues of Γ
is strictly less than 1, except for the the eigenvalue at 1. The magnitudes of the other eigenvalues of Γ for

β = β? are

{
1, |β? − 1|}︸ ︷︷ ︸

Γn

, {|
√
β? − 1|, |

√
β? − 1|}︸ ︷︷ ︸

Γn−1

, {|v1n−2(β?)|, |v2n−2(β?)|︸ ︷︷ ︸
Γn−2

, . . . , {|v11(β?)|, |v21(β?)|︸ ︷︷ ︸
Γ1

}
.

(10.18)

Furthermore, it can be veri�ed that for β = β? we have identical magnitudes |v1i(β
?)| = |v2i(β

?)| =√
β? − 1 for all i ∈ {1, . . . , n− 2}. Finally, note that

√
β? − 1 ≥ |β? − 1| = β? − 1 so that

ρess(Tβ∗) = ρess(Γ) =
√
β? − 1 =

ρess(A)

1 +
√

1− ρess(A)2
< ρess(A).

�

10.6 Appendix: Design of fastest distributed averaging

We are interested in optimization problems of the form:

minimize rasym(A) or rstep(A)

subject to A compatible with a digraph G, doubly-stochastic and primitive

where A is compatible with G if its only non-zero entries correspond to the edges E of the graph. In

other words, if Eij = eieTj is the matrix with entry (i, j) equal to one and all other entries equal to zero,

then A =
∑

(i,j)∈E aijEij for arbitrary weights aij ∈ R. We refer to such problems as fastest distributed

averaging (FDAs) problems.

Note: In what follows, we remove the constraint A ≥ 0 to widen the set of matrices of interest. Accord-

ingly, we remove the constraint of A being primitive. Convergence to average consensus is guaranteed by

(1) achieving convergence factors less than 1, (2) subject to row-sums and column-sums equal to 1.

Problem 10.6 (Asymmetric FDA with asymptotic convergence factor).

minimize ρ
(
A− 1n1T

n/n
)

subject to A =
∑

(i,j)∈E

aijEij , A1n = 1n, 1T
nA = 1T

n

The asymmetric FDA is a hard optimization problem. Even though the constraints are linear, the objective

function, i.e., the spectral radius of a matrix, is not convex (and, additionally, not even Lipschitz continuous).
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Problem 10.7 (Asymmetric FDA with per-step convergence factor).

minimize

∥∥A− 1n1T
n/n

∥∥
2

subject to A =
∑

(i,j)∈E

aijEij , A1n = 1n, 1T
nA = 1T

n

Problem 10.8 (Symmetric FDA problem).

minimize ρ
(
A− 1n1T

n/n
)

subject to A =
∑

(i,j)∈E

aijEij , A = AT, A1n = 1n

Recall here that A = AT
implies ρ(A) = ‖A‖2.

Both Problems 10.7 and 10.8 are convex and can be rewritten as so-called semi-de�nite programs (SDPs);

see (Xiao and Boyd, 2004). An SDP is an optimization problem where (1) the variable is a positive semide�nite

matrix, (2) the objective function is linear, and (3) the constraints are a�ne equations. SDPs can be e�ciently

solved by software tools such as CVX; see (Grant and Boyd, 2016).

10.7 Historical notes and further reading

The main ideas in Sections 10.1 and 10.2 are taken from (Olshevsky and Tsitsiklis, 2009; Garin and Schenato,

2010; Fagnani, 2014).

A recent breakthrough in achieving linear time average consensus on �xed graphs (not reviewed here)

is given by Olshevsky (2014).

The cumulative quadratic disagreement in Section 10.3 is taken from (Carli et al., 2009). Theorem 10.4

may be extended to the setting of normal matrices, as opposed to symmetric, as illustrated in (Carli et al.,

2009); it is not known how to compute the cumulative quadratic disagreement for arbitrary doubly-stochastic

primitive matrices.

Regarding Section 10.4, for more results on the study of circulant matrices and on the elegant settings

of Cayley graphs we refer to (Davis, 1979; Carli et al., 2008b).

The accelerated consensus algorithm (10.9) is rooted in momentum methods for optimization (Polyak,

1964), and it has been applied to averaging algorithms for example in (Muthukrishnan et al., 1998; Bof et al.,

2016).
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10.8 Exercises

E10.1 Induced norm of certain doubly stochastic matrices. Assume A is doubly stochastic, primitive and has

a strictly-positive diagonal. Show that

rstep(A) = ‖A− 1n1T
n/n‖2 < 1.

E10.2 Spectrum of A − 1n1T
n/n. Consider a matrix A doubly stochastic, primitive and symmetric. Assume

λ1 ≥ · · · ≥ λn are its real eigenvalue with corresponding orthonormal eigenvectors v1, . . . , vn. Show that

the matrix A− 1n1T
n/n has eigenvalues 0, λ2 ≥ · · · ≥ λn with eigenvectors v1, . . . , vn.

E10.3 Bounds on the norm of a matrix power. Given a matrix B ∈ Rn×n and an index k ∈ N, show that

(i) there exists c > 0 such that

‖Bk‖2 ≤ c kn−1ρ(B)k,

(ii) for all ε > 0, there exists cε > 0 such that

‖Bk‖2 ≤ cε(ρ(B) + ε)k.

Hint: Adopt the Jordan normal form

E10.4 Spectral gap of regular cycle graphs. A k-regular cycle graph is an undirected cycle graph with n-nodes

each connected to itself and its 2k nearest neighbors with a uniform weight equal to 1/(2k + 1). The

associated doubly-stochastic adjacency matrix An,k is a circulant matrix with �rst row given by

An,k(1, :) =
[

1
2k+1 . . . 1

2k+1 0 . . . 0 1
2k+1 . . . 1

2k+1

]
.

Using the results in Exercise E4.17, compute

(i) the eigenvalues of An,k as a function of n and k;

(ii) the limit of the spectral gap for �xed k as n→∞; and

(iii) the limit of the spectral gap for 2k = n− 1 as n→∞ .

E10.5 Properties of the spectral radius. For any A ∈ Cn×n and any matrix norm, show

(i) ρ(A) ≤ ‖A‖, and

(ii) ρ(A) ≤ ‖Ak‖1/k for all k,

(iii) ρ(A) = limk→∞ ‖Ak‖1/k .

Next, for any A ∈ Cn×n, let |A| denote the matrix with entries |aij |, and for any real matrices B, C , let

B ≤ C mean bij ≤ cij for each i and j. Show

(iv) if |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Hint: Peruse (Meyer, 2001, Chapter 7).

E10.6 H2 performance of balanced averaging in continuous time. Consider the continuous-time averaging

dynamics with disturbance

ẋ(t) = −Lx(t) + w(t),

where L = LT
is the Laplacian matrix of an undirected and connected graph and w(t) is an exogenous

disturbance input signal. Pick a matrix Q ∈ Rp×n satisfying Q1n = 0p and de�ne the output signal

y(t) = Qx(t) ∈ Rp as the solution from zero initial conditions x(0) = 0n. De�ne the systemH2 norm from

w to y by

‖H‖22 =

∫ ∞

0

y(t)Ty(t)dt =

∫ ∞

0

x(t)TQTQx(t)dt = trace

(∫ ∞

0

H(t)TH(t)dt

)
,

where H(t) = Qe−Lt is the so-called impulse response matrix.
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(i) Show ‖H‖2 =
√

trace(P ), where P is the solution to the so-called Lyapunov equation

LP + PL = QTQ. (E10.1)

(ii) Show ‖H‖2 =
√

trace (L†QTQ) /2, where L† is the pseudoinverse of L.

(iii) De�ne short-range and long-range output matricesQsr andQlr byQT
sr
Qsr = L andQT

lr
Qlr = In− 1

n1n1T
n,

respectively. Show:

‖H‖22 =





n− 1, for Q = Qsr,
n∑

i=2

1

λi(L)
, for Q = Qlr.

Hint: TheH2 norm has several interesting interpretations, including the total output signal energy in response
to a unit impulse input or the root mean square of the output signal in response to a white noise input with
identity covariance. You may �nd useful Theorem 7.4 and Exercise E6.8.

E10.7 Convergence rate for the Laplacian �ow. Consider a weight-balanced, strongly connected digraph G
with self-loops, degree matrices Dout = Din = In, doubly-stochastic adjacency matrix A, and Laplacian

matrix L. Consider the associated Laplacian �ow

ẋ(t) = −Lx(t).

For xave :=
1T
nx(0)
n , de�ne the disagreement vector by δ(t) = x(t)− xave1n.

(i) Show that the average t 7→ 1T
nx(t)
n is conserved and that, consequently, 1T

nδ(t) = 0 for all t ≥ 0.

(ii) Derive the matrix E describing the disagreeement dynamics

δ̇(t) = Eδ(t).

(iii) Describe the spectrum spec(E) of E as a function of the spectrum spec(A) of the doubly-stochastic

adjacency matrix A associated with G. Show that spec(E) has a simple eigenvalue at λ = 0 with

corresponding normalized eigenvector v1 := 1n/
√
n.

(iv) The Jordan form J of E can be described as follows

E = P




0 0 0 0
0 J2 0 0

0 0
. . . 0

0 0 0 Jm


P

−1 =:
[
c1 C̃

] [0 0

0 J̃

] [
r1
R̃

]
,

where c1 is the �rst column of P and r1 is the �rst row of P−1. Show that

δ(t) = C̃ exp(J̃ t)R̃δ(0).

(v) Use statements (iii) and (iv) to show that, for all ε > 0, there exists Cε > 0 satisfying

‖δ(t)‖ ≤ Cε(eµ + ε)t‖δ(0)‖,

where µ = max{<(λ)− 1 | λ ∈ spec(A)\{1}} < 0. Show that, if A = AT
, then µ ≤ ρess(A)− 1.

Hint: Use arguments similar to those in Exercise E10.3 and in the proof of Theorem 7.4.
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182 Chapter 10. Convergence Rates, Scalability and Optimization

E10.8 Convergence factors in digraphs with equal out-degree. Consider the unweighted digraphs in the

�gure below with their associated discrete-time averaging systems x(t+1) = A1x(t) and x(t+1) = A2x(t).

For which digraph is the worst-case discrete-time consensus protocol (i.e., the evolution starting from the

worst-case initial condition) guaranteed to converge faster? Assign to each edge the same weight equal to
1
3 .

1 2

34

(a) Digraph 1

1 2

34

(b) Digraph 2

E10.9 Convergence estimates. Consider a discrete-time averaging system with 4 agents, state variable x ∈ R4
,

dynamics x(k + 1) = Ax(k), and averaging matrix A =
∑3
i=1 αiviv

T
i ∈ R4×4

with

α1 = 1, α2 =
1

2
, α3 =

1

4
, v1 =

1

2




1
1
1
1


 , v2 =

1√
2




0
1
0
−1


 , v3 =

1√
2




1
0
−1
0


 .

(i) Verify A is row-stochastic, symmetric and primitive.

(ii) Suppose x(0) = [0, 8, 2, 2]T. It is possible that x(3) = [4, 3, 2, 3]T?

E10.10 Scalability of accelerated consensus.

(i) Prove the following series expansion around x = 0:

f(x) =
1− x

1 +
√

1− (1− x)2
= 1−

√
2
√
x+ o(x).

Next, consider a sequence of increasing dimension row-stochastic matrices {An ∈ Rn×n}n∈N, and the

corresponding accelerated consensus algorithms with sequence of optimal iteration matrices {Tβ∗,n ∈
R2n×2n}n∈N.

(ii) Prove that, if ρess(An) = 1− g(n) with g(n) = o(n) as n→∞, then the following series expansion

holds as n→∞:

ρess(Tβ∗,n) = 1−
√

2
√
g(n) + o(g(n)).

(iii) Show that, for circulant matrices {An}n with spectral radius given in equation (10.8) in Section 10.4,

there exists a constant c such that the accelerated consensus algorithm satis�es

ρess(Tβ∗,n) = 1− c 1

n
+O

( 1

n2

)
.
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Chapter11

Time-varying Averaging Algorithms

In this chapter we discuss time-varying averaging systems, that is, systems in which the row-stochastic

matrix is a function of time. We provide su�cient conditions on the sequence of digraphs associated to the

sequence of row-stochastic matrices for consensus to be achieved. We focus mainly on the discrete-time

setting, but present the main result also for continuous-time systems.

11.1 Examples and models of time-varying discrete-time algorithms

In time-varying or time-varying algorithms the averaging row-stochastic matrix is not constant throughout

time, but instead changes values and, possibly, switches among a �nite number of values. Here are examples

of discrete-time averaging algorithms with switching matrices.

Example 11.1 (Shared Communication Channel). Given a communication digraph Gshared-comm, at

each communication round, only one node can transmit to all its out-neighbors over a common bus and

every receiving node will implement a single averaging step. For example, if agent j receives the message

from agent i, then agent j will implement:

x+
j :=

1

2
(xi + xj). (11.1)

Each node is allocated a communication slot in a periodic deterministic fashion, e.g., in a round-robin
scheduling, where the n agents are numbered and, for each i, agent i talks only at times i, n + i, 2n +
i, . . . , kn + i for k ∈ Z≥0. For example, in Figure 11.1 we illustrate the communication digraph and in

Figure 11.2 the resulting round-robin communication protocol.

1 2

43

Gshared-comm

Figure 11.1: Example communication digraph
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1 2

43

1 2

43

1 2

43

1 2

43

time = 1, 5, 9, . . . time = 2, 6, 10, . . . time = 3, 7, 11, . . . time = 4, 8, 12, . . .

Figure 11.2: Round-robin communication protocol.

Formally, let Ai denote the averaging matrix corresponding to the transmission by agent i to its

out-neighbors. With round robin scheduling, we have

x(n+ 1) = AnAn−1 · · ·A1x(1). •

Example 11.2 (Asynchronous Execution). Imagine each node has a di�erent clock, so that there is no

common time schedule. Suppose that messages are safely delivered even if transmitting and receiving

agents are not synchronized. Each time an agent wakes up, the available information from its neighbors

varies. At an iteration instant for agent i, assuming agent i has new messages/information from agents

i1, . . . , im, agent i will implement:

x+
i :=

1

m+ 1
xi +

1

m+ 1
(xi1 + · · ·+ xim).

Given arbitrary clocks, one can consider the set of times at which one of the n agents performs an

iteration. Then the system is a discrete-time averaging algorithm. It is possible to carefully characterize all

possible sequences of events (who transmitted to agent i when it wakes up). •

11.2 Models of time-varying averaging algorithms

Consider a sequence of row-stochastic matrices {A(k)}k∈Z≥0
, or equivalently a time-varying row-stochastic

matrix k 7→ A(k). The associated time-varying averaging algorithm is the discrete-time dynamical system

x(k + 1) = A(k)x(k), k ∈ Z≥0. (11.2)

We let {G(k)}k∈Z≥0
be the sequence of weighted digraphs associated to the matrices {A(k)}k∈Z≥0

.

Note that (1,1n) is an eigenpair for each matrixA(k). Hence, all points in the consensus set

{
α1n | α ∈

R
}

are equilibria for the algorithm. We aim to provide conditions under which each solution converges to

consensus.

We start with a useful de�nition, for two digraphs G = (V,E) and G′ = (V ′, E′), union of G and G′ is
de�ned by

G∪G′ = (V ∪V ′, E ∪E′).
In what follows, we will need to compute only the union of digraphs with the same set of vertices; in

that case, the graph union is essentially de�ned by the union of the edge sets. Some useful properties of

the product of multiple row-stochastic matrices and of the unions of multiple digraphs are presented in

Exercise E11.1.
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11.3. Convergence over time-varying graphs connected at all times 185

11.3 Convergence over time-varying graphs connected at all times

Let us �rst consider the case when A(k) induces an undirected, connected, and aperiodic graph G(k) at

each time k.

Theorem 11.3 (Convergence under connectivity at all times). Let {A(k)}k∈Z≥0
be a sequence of

symmetric and doubly-stochastic matrices with associated digraphs {G(k)}k∈Z≥0
so that

(AC1) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant ε > 0;
and

(AC2) each graph G(k) is connected.

Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average
(
x(0)

)
1n.

Note: Assumption (AC1) prevents the weights from becoming arbitrarily close to zero as k →∞ and,

as we show below, ensures that ρess(A(k)) is upper bounded by a number strictly lower than 1 at every

time k ∈ Z≥0. To gain some intuition into what can go wrong, consider a sequence of symmetric and

doubly-stochastic averaging matrices {A(k)}k∈Z≥0
with entries given by

A(k) =

[
exp(−1/(k + 1)α) 1− exp(−1/(k + 1)α)

1− exp(−1/(k + 1)α) exp(−1/(k + 1)α)

]

for k ∈ Z≥0 and exponent α ≥ 1. These matrices fail to satisfy Assumption (AC1). For any α ≥ 1 and for

k, we know the ρess(A(k) < 1. For any α ≥ 1 and for k →∞, this matrix converges to A∞ = [ 0 1
1 0 ] with

spectrum spec(A∞) = {−1,+1} and essential spectral radius ρess(A∞) = 1. One can show that,

(i) for α = 1, the convergence of A(k) to A∞ is so slow that {x(k)}k converges to average(x(0))1n,

(ii) for α > 1, the convergence of A(k) to A∞ is so fast that {x(k)}k oscillates inde�nitely.
1

Proof of Theorem 11.3. At �xed n, there exist only a �nite number of possible connected unweighted graphs

and, for each given graph, the set of matrices with edge weights in the interval [ε, 1] is compact. It is known

that the following maps are continuous: the function from a matrix to its eigenvalues, the function from a

complex number to its magnitude, and the function from n− 1 non-negative numbers to their maximum.

Hence, by composition, the essential spectral radius ρess is a continuous function of the matrix entries

de�ned over a compact set and, therefore, it attains its maximum value. Because each essential spectral

radius of each possible weighted graph is strictly less than 1, so is its maximum value. In summary, we

now know that, under assumptions (AC1) and (AC2), there exists a c ∈ [0, 1[ so that ρess(A(k)) ≤ c < 1
for all k ∈ Z≥0. Recall the notion of the disagreement vector δ(k) = x(k)− average(x(0))1n and de�ne

V (δ) = ‖δ‖22. It is immediate to compute

V (δ(k + 1)) = V (A(k)δ(k)) = ‖A(k)δ(k)‖22 ≤ ρess(A(k))2‖δ(k)‖22 ≤ c2V (δ(k)).

It follows that V (δ(k)) ≤ c2kV (δ(0)) or ‖δ(k)‖2 ≤ ck‖δ(0)‖2, that is, δ(k) converges to zero exponentially

fast. Equivalently, as k →∞, x(k) converges exponentially fast to average
(
x(0)

)
1n. �

1

A simpli�ed version of this example is the scalar iteration x(k + 1) = exp(−1/(k + 1)α)x(k) whose solution satis�es

log(x(k)) = −
∑k−1
κ=0

1
(κ+1)α

+ log(x0). For α = 1, limk→∞ log(x(k)) diverges to −∞, and limk→∞ x(k) converges to zero.

Instead, for α > 1, limk→∞ log(x(k)) exists �nite, and thus limk→∞ x(k) does not converge to zero.
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186 Chapter 11. Time-varying Averaging Algorithms

This proof is based on a positive “energy function” that decreases along the system’s evolutions (we

postpone a careful discussion of Lyapunov theory to Chapter 14). The same quadratic function is useful also

for sequences of primitive row-stochastic matrices {A(k)}k∈Z≥0
with a common dominant left eigenvector,

see Exercise E11.5. More general cases require a di�erent type (not quadratic) of “decreasing energy”

fuctions.

11.4 Convergence over time-varying digraphs connected over time

We are now ready to state the main result in this chapter.

Theorem 11.4 (Consensus for time-varying algorithms (Moreau, 2005)). Let {A(k)}k∈Z≥0
be a se-

quence of row-stochastic matrices with associated digraphs {G(k)}k∈Z≥0
. Assume that

(A1) each digraph G(k) has a self-loop at each node;

(A2) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant ε > 0;
and

(A3) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the digraph G(k)∪ · · · ∪G(k + δ − 1)
contains a globally reachable node.

Then

(i) there exists a non-negative w ∈ Rn normalized to w1 + · · ·+ wn = 1 such that limk→∞A(k)·A(k −
1) · · · · ·A(0) = 1nwT;

(ii) the solution to x(k + 1) = A(k)x(k) converges exponentially fast to
(
wTx(0)

)
1n;

(iii) if additionally each matrix in the sequence is doubly-stochastic, then w = 1
n1n so that

lim
k→∞

x(k) = average
(
x(0)

)
1n.

Note: In a sequence with property (A2), edges can appear and disappear, but the weight of each edge

(that appears an in�nite number of times) does not go to zero as k →∞.

Note: This result is analogous to the time-invariant result that we saw in Chapter 5. The existence of a

globally reachable node is the connectivity requirement in both cases.

Note: Assumption (A3) is a uniform connectivity requirement, that is, any interval of length δ must

have the connectivity property. In equivalent words, the connectivity property holds for any contiguous

interval of duration δ.

Example 11.5 (Shared communication channel with round robin scheduling). Consider the shared

communication channel model with round-robin scheduling. Assume the algorithm is implemented over a

communication graph Gshared-comm that is strongly connected.

Consider now the assumptions in Theorem 11.4. Assumption (A1) is satis�ed because in equation (11.1)

the self-loop weight is equal to 1/2. Similarly, Assumption (A2) is satis�ed because the edge weight is equal

to 1/2. Finally, Assumption (A3) is satis�ed with duration δ selected equal to n, because after n rounds

each node has transmitted precisely once and so all edges of the communication graph Gshared-comm are
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present in the union graph. Therefore, the algorithm converges to consensus. However, the algorithm does

not converge to average consensus since it is false that the averaging matrices are doubly-stochastic.

Note: round robin is not necessarily the only scheduling protocol with convergence guarantees. Indeed,

consensus is achieved so long as each node is guaranteed a transmission slot once every bounded period of

time. •

Next, we provide a second theorem on convergence over time-varying averaging systems, whereby we

assume the matrix to be symmetric and the corresponding graphs to be connected over time.

Theorem 11.6 (Consensus for symmetric time-varying algorithms). Let {A(k)}k∈Z≥0
be a sequence

of symmetric row-stochastic matrices with associated undirected graphs {G(k)}k∈Z≥0
. Let the matrix sequence

{A(k)}k∈Z≥0
satisfy Assumptions (A1) and (A2) in Theorem 11.4 as well as

(A4) for all k ∈ Z≥0, the graph ∪τ≥kG(τ) is connected.

Then

(i) limk→∞A(k)·A(k − 1) · · · · ·A(0) = 1
n1n1T

n ;

(ii) each solution to x(k + 1) = A(k)x(k) converges exponentially fast to average
(
x(0)

)
1n.

Note: this result is analogous to the time-invariant result that we saw in Chapter 5. For symmetric

row-stochastic matrices and undirected graphs, the connectivity of an appropriate graph is the requirement

in both cases.

Note: Assumption (A3) in Theorem 11.4 requires the existence of a �nite time-interval of duration δ
so that the union graph ∪k≤τ≤k+δ−1G(τ) contains a globally reachable node for all times k ≥ 0. This

assumption is weakened in the symmetric case in Theorem 11.6 to Assumption (A4) requiring that the

union graph ∪τ≥kG(τ) is connected for all times k ≥ 0.

Finally, we conclude this section with an instructive example.

Example 11.7 (Uniform connectivity is required for non-symmetric matrices). We have learned

that, for asymmetric matrices, a uniform connectivity property (A3) is required, whereas for symmetric

matrices, uniform connectivity is not required (see (A4)). Here is a counter-example from (Hendrickx, 2008)

showing that Assumption (A3) cannot be relaxed for asymmetric graphs. Initialize a group of n = 3 agents

to

x1 < −1, x2 < −1, x3 > +1.

Step 1: Perform x+
1 := (x1 + x3)/2, x+

2 := x2, x+
3 := x3 a number of times δ1 until

x1 > +1, x2 < −1, x3 > +1.

Step 2: Perform x+
1 := x1, x+

2 := x2, x+
3 := (x2 + x3)/2 a number of times δ2 until

x1 > +1, x2 < −1, x3 < −1.

Step 3: Perform x+
1 := x1, x+

2 := (x1 + x2)/2, x+
3 := x3 a number of times δ3 until

x1 > +1, x2 > +1, x3 < −1.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



188 Chapter 11. Time-varying Averaging Algorithms

And repeat this process.

3

1

2

∪

3

1

2

∪

3

1

2

=

3

1

2

Step 1 Step 2 Step 3 union

Observe that on steps 1, 7, 15, . . . , the variable x1 is made to become larger than +1 by computing averages

with x3 > +1. Note that every time this happens the variable x3 > +1 is increasingly smaller and closer

to +1. Hence, δ1 < δ7 < δ15 < . . . , that is, it takes more steps for x1 to become larger than +1. Indeed,

one can formally show the following:

(i) The agents do not converge to consensus.

(ii) Hence, one of the assumptions of Theorem 11.4 must be violated.

(iii) It is easy to see that (A1) and (A2) are satis�ed.

(iv) Regarding connectivity, note that, for all k ∈ Z≥0, the digraph ∪τ≥kG(τ) contains a globally

reachable node. However, this property is not quite equivalent to Assumption (A3).

(v) Assumption (A3) in Theorem 11.4 must be violated: there does not exist a duration δ ∈ N such that,

for all k ∈ Z≥0, the digraph G(k)∪ · · · ∪G(k + δ − 1) contains a globally reachable node.

(vi) Indeed, one can show that limk→∞ δk =∞ so that, as we keep iterating Steps 1+2+3, their duration

grows unbounded. •

11.5 A new analysis method for convergence to consensus

It is well known that, for time-varying systems, the analysis of eigenvalues is not appropriate anymore. In

the following example, two matrices with spectral radius equal to 1/2 are multiplied to obtain a spectral

radius larger than 1: [
1
2 1
0 0

] [
1
2 0
1 0

]
=

[
5
4 0
0 0

]
.

This example explains how it is not possible to predict the convergence of arbitrary products of matrices,

just based on their spectral radii. In other words, we need to work harder and with sharper tools.

11.5.1 The max-min function and row-stochastic matrices

In what follows we present a new analysis method for the convergence to consensus for the discrete-time

averaging system. Before establishing the results for time-varying averaging systems, it is instructive to

rederive the convergence results for time-invariant averaging systems.
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11.5. A new analysis method for convergence to consensus 189

We start our analysis by de�ning the max-min function Vmax-min : Rn → R≥0 by

Vmax-min(x) = max(x1, . . . , xn)−min(x1, . . . , xn)

= max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi.

Note that:

(i) Vmax-min(x) ≥ 0, and

(ii) Vmax-min(x) = 0 if an only if x = α1n for some α ∈ R.

The following result is a generalization of Exercise E1.1.

Lemma 11.8 (Monotonicity and bounded evolutions). If A is row-stochastic, then for all x ∈ Rn

Vmax-min(Ax) ≤ Vmax-min(x).

For any sequence of row-stochastic matrices, the solution x(k) of the corresponding time-varying averaging
algorithm satis�es, from any initial condition x(0) and at any time k,

Vmax-min(x(k)) ≤ Vmax-min(x(0)), and

minx(0) ≤ minx(k) ≤ minx(k + 1) ≤ maxx(k + 1) ≤ maxx(k) ≤ maxx(0).

Proof. For the maximum, let us compute:

max
i

(Ax)i = max
i

n∑

j=1

aijxj ≤ max
i

n∑

j=1

aij
(

max
h

xh
)

=
(

max
i

n∑

j=1

aij

)(
max
h

xh
)

= 1 ·max
i
xi.

Similarly, for the minimum,

min
i

(Ax)i = min
i

n∑

j=1

aijxj ≥ min
i

n∑

j=1

aij
(

min
h
xh
)

=
(

min
i

n∑

j=1

aij

)(
min
h
xh
)

= 1 ·min
i
xi.

�

Next, given an n-dimensional row-stochastic matrix A, we de�ne its column-maximum row-minimum
entry, denoted γ(A), by

γ(A) = max
j∈{1,...,n}

min
i∈{1,...,n}

aij ∈ [0, 1]. (11.3)

It is useful to clarify this de�nition and explain how to compute this quantity: for each column j the

quantity bj = mini aij is the smallest entry over the n rows, and then γ(A) = maxj bj is the largest of

these entries over the n columns.

The next lemma provides an alternative proof method for the convergence to consensus of row stochastic

matrices.

Lemma11.9 (Alternative convergence analysis for discrete-time averaging). Given ann-dimensional
row-stochastic matrix A, the following statements hold:
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190 Chapter 11. Time-varying Averaging Algorithms

(i) for all x ∈ Rn, the max-min function satis�es

Vmax-min(Ax) ≤
(
1− γ(A)

)
Vmax-min(x);

(ii) γ(A) > 0 if and only if A has a strictly positive column;

(iii) the following properties of A are equivalent:

a) the digraph associated to A contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic,

b) there exists an index h ∈ N such that Ah has a positive column, and
c) A is semiconvergent to a rank-one matrix.

The lemma immediately implies the following statement: if A satis�es any (and therefore all) of the

properties in statement (iii), then k 7→ Vmax-min(x(k)) converges exponentially fast to zero in the sense

that, for all time k ∈ N and for an index h as in statement (iii)b,

Vmax-min(x(k)) ≤
(
1− γ(Ah)

)
︸ ︷︷ ︸

<1

bk/hc
Vmax-min(x(0)).

Proof of Lemma 11.9. Statement (i) is trivial if maxj∈{1,...,n}mini∈{1,...,n} aij = 0; e.g., see Exercise E1.1.

Hence, let us prove the statement when maxj∈{1,...,n}mini∈{1,...,n} aij = aı̄̄ > 0. We compute

Vmax-min(Ax) = max
i

∑n

p=1
aipxp −min

i

∑n

p=1
aipxp

= max
i

( n∑

p=1,p 6=j
aipxp + aijxj

)
−min

i

( n∑

p=1,p 6=j
aipxp + aijxj

)

≤ min
j

[
max
i

( n∑

p=1,p 6=j
aipxmax + aijxj

)
−min

i

( n∑

p=1,p 6=j
aipxmin + aijxj

)]
,

where, after using the bounds xmin ≤ xp ≤ xmax, we minimize the right hand side as a function of j. From

the latter equation we obtain

Vmax-min(Ax) = min
j

max
i

(
(1− aij)xmax + aijxj

)
−max

j
min
i

(
(1− aij)xmin + aijxj

)

and, noting that minj maxi(1− aij) = 1−maxj mini aij = 1− aı̄̄,

=
(

(1− aı̄̄)xmax + aı̄̄x̄

)
−
(

(1− aı̄̄)xmin + aı̄̄x̄

)

= (1− aı̄̄)
(
xmax − xmin

)
= (1− aı̄̄)Vmax-min(x).

Statement (ii) is an immediate consequence of the de�nition of γ(A). Indeed, if each column j has an

entry equal to zero, then the quantity bj = mini aij = 0 for all j and, and in turn, γ(A) = maxj bj = 0.

Regarding statement (iii), the equivalence between (iii)a and (iii)b is a generalization of Theorem 4.7

(given as Exercise E4.12) and the equivalence between (iii)a and (iii)c is given in Theorem 5.1. �
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11.5.2 Connectivity over time

Before presenting the convergence to consensus proof for time-varying averaging systems, we provide one

more useful result. This result allows us to manipulate our assumption of connectivity over time.

Lemma 11.10 (Global reachability over time). Given a sequence of digraphs {G(k)}k∈Z≥0
such that

each digraph G(k) has a self-loop at each node, the following two properties are equivalent:

(i) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the digraph G(k)∪ · · · ∪G(k + δ − 1)
contains a directed spanning tree;

(ii) there exists a duration ∆ ∈ N such that, for all times k ∈ Z≥0, there exists a node j = j(k) that reaches
all nodes i ∈ {1, . . . , n} over the interval {k, k + ∆− 1} in the following sense: there exists a sequence
of nodes {j, h1, . . . , h∆−1, i} such that (j, h1) is an edge at time k, (h1, h2) is an edge at time k + 1,
. . . , (h∆−2, h∆−1) is an edge at time k + ∆− 2, and (h∆−1, i) is an edge at time k + ∆− 1;

or, equivalently, for the reverse digraph,

(iii) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the digraph G(k)∪ · · · ∪G(k + δ − 1)
contains a globally reachable node;

(iv) there exists a duration ∆ ∈ N such that, for all times k ∈ Z≥0, there exists a node j reachable from all
nodes i ∈ {1, . . . , n} over the interval {k, k + ∆− 1} in the following sense: there exists a sequence of
nodes {j, h1, . . . , h∆−1, i} such that (h1, j) is an edge at time k, (h2, h1) is an edge at time k + 1, . . . ,
(h∆−1, h∆−2) is an edge at time k + ∆− 2, and (i, h∆−1) is an edge at time k + ∆− 1.

Note: It is sometimes easy to see if a sequence of digraphs satis�es properties (i) and (iii). Property (iv)

is directly useful in the analysis later in the chapter. Regarding the proof of the lemma, it is easy to check

that (ii) implies (i) and that (iv) implies (iii) with δ = ∆. The converse is left as Exercise E11.3.

11.5.3 Proof of Theorem 11.4: the max-min function is exponentially decreasing

We are �nally ready to prove Theorem 11.4. We start by noting that Assumptions (A1) and (A3) imply

property Lemma 11.10(iv) about the existence of a duration ∆ with certain properties. Next, without loss of

generality, we assume that at some time h∆, for some h ∈ N, the solution x(h∆) is not equal to a multiple

of 1n and, therefore, satis�es Vmax-min(x(h∆)) > 0. Clearly,

x((h+ 1)∆) = A((h+ 1)∆− 1) · · ·A(h∆ + 1) ·A(h∆)x(h∆)

=: Ax(h∆).

By Assumption (A3), we know that there exists a node j reachable from all nodes i over the interval

{h∆, (h + 1)∆ − 1} in the following sense: there exists a sequence of nodes {j, h1, . . . , h∆−1, i} such

that all following edges exist in the sequence of digraphs: (h1, j) at time h∆, (h2, h1) at time h∆ + 1, . . . ,

(i, h∆−1) at time (h+ 1)∆− 1. Therefore, Assumption (A2) implies

ah1,j

(
h∆
)
≥ ε, ah2,h1

(
h∆ + 1

)
≥ ε, . . . , ai,h∆−1

(
(h+ 1)∆− 1

)
≥ ε,
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and therefore their product satis�es

ai,h∆−1

(
(h+ 1)∆− 1

)
· ah∆−1,h∆−2

(
(h+ 1)∆− 2

)
· · · ah2,h1

(
h∆ + 1

)
· ah1,j

(
h∆
)
≥ ε∆.

Remarkably, this product is one term in the (i, j) entry of the row-stochastic matrix A = A((h+ 1)∆−
1) · · ·A(h∆). In other words, Assumption (A3) implies Aij ≥ ε∆

.

Hence, for all nodes i, given globally reachable node j during interval {h∆, (h+ 1)∆}, we compute

xi
(
(h+ 1)∆

)
= Ai,jxj(h∆) +

∑n

p 6=j,p=1
Ai,pxp(h∆) (by de�nition)

≤ Ai,jxj(h∆) + (1−Ai,j) max
(
x(h∆)

)
(because xp(h∆) ≤ max

(
x(h∆)

)
)

≤ min
Ai,j

(
Ai,jxj(h∆) + (1−Ai,j) max

(
x(h∆)

))
(because xj(h∆) ≤ max

(
x(h∆)

)
)

≤ ε∆xj(h∆) + (1− ε∆) max
(
x(h∆)

)
.

A similar argument leads to

xi
(
(h+ 1)∆

)
≥ ε∆xj(h∆) + (1− ε∆) min

(
x(h∆)

)
,

so that

Vmax-min

(
x((h+ 1)∆)

)
= max

i
xi
(
(h+ 1)∆

)
−min

i
xi
(
(h+ 1)∆

)

≤
(
ε∆xj(h∆) + (1− ε∆) max

(
x(h∆)

))
−
(
ε∆xj(h∆) + (1− ε∆) min

(
x(h∆)

))

≤ (1− ε∆)Vmax-min

(
x(h∆)

)
.

This �nal inequality, together with Lemma 11.8, proves exponential convergence of the cost function

k 7→ Vmax-min(x(k)) to zero and convergence of x(k) to a multiple of 1n. We leave the other statements in

Theorem 11.4 to the reader and refer to (Moreau, 2005; Hendrickx, 2008) for further details.

11.6 Time-varying algorithms in continuous-time

We now brie�y consider the continuous-time linear time-varying system

ẋ(t) = −L(t)x(t).

We associate a time-varying graph G(t) (without self loops) to the time-varying Laplacian L(t) in the usual

manner.

For example, in Chapter 7, we discussed how the heading in some �ocking models is described by the

continuous-time Laplacian �ow:

θ̇ = −Lθ,
where each θ is the heading of a bird, and where L is the Laplacian of an appropriate weighted digraph

G: each bird is a node and each directed edge (i, j) has weight 1/dout(i). We discussed also the need to

consider time-varying graphs: birds average their heading only with other birds within sensing range, but

this sensing relationship may change with time.
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Recall that the solution to a continuous-time time-varying system can be given in terms of the state

transition matrix:

x(t) = Φ(t, 0)x(0),

We refer to (Hespanha, 2009) for the proper de�nition and study of the state transition matrix.

Theorem 11.11 (Consensus for time-varying algorithms in continuous time). Let t 7→ A(t) be a
time-varying adjacency matrix with associated time-varying digraph t 7→ G(t), t ∈ R≥0. Assume

(A1) each non-zero edge weight aij(t) is larger than a constant ε > 0,

(A2) there exists a duration T > 0 such that, for all t ∈ R≥0, the digraph associated to the adjancency matrix

∫ t+T

t
L(τ)dτ

contains a globally reachable node.

Then

(i) there exists a non-negative w ∈ Rn normalized to w1 + · · · + wn = 1 such that the state transition
matrix Φ(t, 0) associated to −L(t) satis�es limt→∞Φ(t, 0) = 1nwT,

(ii) the solution to ẋ(t) = −L(t)x(t) converges exponentially fast to
(
wTx(0)

)
1n,

(iii) if additionally, the 1T
nL(t) = 0T

n for almost all times t (that is, the digraph is weight-balanced at all
times, except a set of measure zero), then w = 1

n1n so that

lim
t→∞

x(t) = average
(
x(0)

)
1n.

11.7 Historical notes and further reading

The main theorem in this chapter is due to Moreau (2005). Note that Theorem 11.4 provides only su�-

cient condition for consensus in time-varying averaging systems. For results on necessary and su�cient

conditions we refer the reader to the recent works (Blondel and Olshevsky, 2014; Xia and Cao, 2014)

and references therein. The proof of Theorem 11.4 is inspired by the presentation in (Hendrickx, 2008,

Theorem 9.2).

In the context of time-varying averaging systems, other relevant references on �rst and second order,

discrete and continuous time systems include (Tsitsiklis, 1984; Tsitsiklis et al., 1986; Hong et al., 2006, 2007;

Cao et al., 2008; Carli et al., 2008b).

For references on time-varying continuous-time averaging systems we refer to (Moreau, 2004; Lin et al.,

2007; Hendrickx and Tsitsiklis, 2013).
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11.8 Exercises

E11.1 On the product of stochastic matrices (Jadbabaie et al., 2003). Let k ≥ 2 and A1, A2, . . . , Ak be non-

negative n× n matrices with positive diagonal entries. Let amin (resp. amax) be the smallest (resp. largest)

diagonal entry of A1, A2, . . . , Ak and let G1, . . . , Gk be the digraphs associated with A1, . . . , Ak .

Show that

(i) A1A2 · · ·Ak ≥
(
a2

min

2amax

)k−1
(A1 +A2 + · · ·+Ak), and

(ii) if the digraph G1 ∪ . . .∪Gk is strongly connected, then the matrix A1 · · ·Ak is irreducible.

Hint: Set Ai = aminIn +Bi for a non-negative Bi, and show statement (i) by induction on k.

E11.2 Products of primitive matrices with positive diagonal. Let A1, A2, . . . , An−1 be primitive n × n ma-

trices with positive diagonal entries. Show that A1A2 · · ·An−1 > 0.

E11.3 A simple proof. Prove Lemma 11.10.

Hint: You will want to use Exercise E3.6.

E11.4 Alternative su�cient condition. As in Theorem 11.4, let {A(k)}k∈Z≥0
be a sequence of row-stochastic

matrices with associated digraphs {G(k)}k∈Z≥0
. Prove that the same asymptotic properties in Theorem 11.4

hold true under the following Assumption (A5), instead of Assumptions (A1), (A2), and (A3):

(A5) there exists a node j such that, for all times k ∈ Z≥0, each edge weight aij(k), i ∈ {1, . . . , n}, is larger

than a constant ε > 0.

In other words, Assumption (A5) requires that all digraphs G(k) contain all edges aij(k), i ∈ {1, . . . , n},
and that all these edges have weights larger than a strictly positive constant.

Hint: Modify the proof of Theorem 11.4.

E11.5 Convergence over digraphs strongly-connected at all times. Consider a sequence {A(k)}k∈Z≥0
of

row-stochastic matrices with associated digraphs {G(k)}k∈Z≥0
so that

(A1) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant

ε > 0;

(A2) each digraph G(k) is strongly connected and aperiodic point-wise in time; and

(A3) there is a positive vector w ∈ Rn satisfying 1T
nw = 1 and wTA(k) = wT

for all k ∈ Z≥0.

Without relying on Theorem 11.4, show that the solution to x(k+1) = A(k)x(k) satis�es to limk→∞ x(k) =
(wTx(0))1n.

Hint: Search for a non-negative cost function decreasing along the dynamics, as in the proof of Theorem 11.3.
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Chapter12

Randomized Averaging Algorithms

In this chapter we discuss averaging algorithms de�ned by sequences of random stochastic matrices. In

other words, we imagine that at each discrete instant, the averaging matrix is selected randomly according

to some stochastic model. We refer to such algorithms as randomized averaging algorithms. Randomized

averaging algorithms are well behaved and easy to study in the sense that much information can be learned

simply from the expectation of the averaging matrix.

12.1 Examples of randomized averaging algorithms

Consider the following models of randomized averaging algorithms.

Uniform Symmetric Gossip. Given an undirected graph G, at each iteration, select uniformly likely one

of the graph edges, say agents i and j talk, and they both perform (1/2, 1/2) averaging, that is:

xi(k + 1) = xj(k + 1) :=
1

2

(
xi(k) + xj(k)

)
.

Packet Loss in Communication Network. Given a strongly connected and aperiodic digraph, at each

communication round, packets travel over directed edges and, with some likelihood, each edge may

drop the packet. (If information is not received, then the receiving node can either do no update

whatsoever, or adjust its averaging weights to compensate for the packet loss).

Broadcast Wireless Communication. Given a digraph, at each communication round, a randomly-

selected node transmits to all its out-neighbors. (Here we imagine that simultaneous transmissions

are prohibited by wireless interference.)

Opinion Dynamics with Stochastic Interactions and Prominent Agents. (Somehow similar to uni-

form gossip) Given an undirected graph and a probability 0 < p < 1, at each iteration, select

uniformly likely one of the graph edges and perform: with probability p both agents perform the

(1/2, 1/2) update, and with probability (1−p) only one agent performs the update and the “prominent

agent” does not.

Note that, in the second, third and fourth example models, the row-stochastic matrices at each iteration

are not symmetric in general, even if the original digraph was undirected.

195



196 Chapter 12. Randomized Averaging Algorithms

12.2 A brief review of probability theory

We brie�y review a few basic concepts from probability theory and refer the reader for example to (Breiman,

1992).

• Loosely speaking, a random variable X : Ω → E is a measurable function from the set of possible
outcomes Ω to some set E which is typically a subset of R.

• The probability of an event (i.e., a subset of possible outcomes) is the measure of the likelihood that

the event will occur. An event occurs almost surely if it occurs with probability equal to 1.

• The random variable X is called discrete if its image is �nite or countably in�nite. In this case, X is

described by a probability mass function assigning a probability to each value in the image of X .

Speci�cally, ifX takes value in {x1, . . . , xM} ⊂ R, then the probability mass function p : {x1, . . . , xM} →
[0, 1] satis�es pX(xi) ≥ 0 and

∑n
i=1 pX(xi) = 1, and determines the probability of X being equal to

xi by P[X = xi] = pX(xi).

• The random variable X is called continuous if its image is uncountably in�nite. If X is an absolutely

continuous function, X is described by a probability density function assigning a probability to

intervals in the image of X .

Speci�cally, if X takes value in R, then the probability density function fX : R → [0, 1] satis�es

f(x) ≥ 0 and

∫
R f(x)dx = 1, and determines the probability of X taking value in the interval [a, b]

by P[a ≤ X ≤ b] =
∫ b
a f(x)dx.

• The expected value of a discrete variable is E[X] =
∑M

i=1 xipX(xi).

The expected value of a continuous variable is E[X] =
∫∞
−∞ xfX(x)dx.

• A (�nite or in�nite) sequence of random variables is independent and identically distributed (i.i.d.) if

each random variable has the same probability mass/distribution as the others and all are mutually

independent.

12.3 Randomized averaging algorithms

In this section we consider random sequences of row stochastic sequences. Accordingly, let A(k) be the

row-stochastic averaging matrix occurring randomly at time k and G(k) be its associated graph. We then

consider the stochastic linear system

x(k + 1) = A(k)x(k).

We are now ready to present the main result of this chapter.

Theorem 12.1 (Consensus for randomized algorithms). Let {A(k)}k∈Z≥0
be a sequence of random

row-stochastic matrices with associated digraphs {G(k)}k∈Z≥0
. Assume

(A1) the sequence of variables {A(k)}k∈Z≥0
is i.i.d.,

(A2) at each time k, the random matrix A(k) has a strictly positive diagonal so that each digraph in the
sequence {G(k)}k∈Z≥0

has a self-loop at each node, and
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(A3) the digraph associated to the expected matrix E[A(k)], for any k, has a globally reachable node.

Then the following statements hold almost surely:

(i) there exists a random non-negative vector w ∈ Rn with w1 + · · ·+ wn = 1 such that

lim
k→∞

A(k)·A(k − 1) · · · · ·A(0) = 1nw
T almost surely,

(ii) as k →∞, each solution x(k) of x(k + 1) = A(k)x(k) satis�es

lim
k→∞

x(k) =
(
wTx(0)

)
1n almost surely,

(iii) if additionally each random matrix is doubly-stochastic, then w = 1
n1n so that

lim
k→∞

x(k) = average
(
x(0)

)
1n.

Note: if each random matrix is doubly-stochastic, then E[A(k)] is doubly-stochastic. The converse is

easily seen to be false.

Note: Assumption (A1) is restrictive and more general conditions are su�cient; see the discussion

below in Section 12.4.

12.3.1 Additional results on uniform symmetric gossip algorithms

Recall: given undirected graph G, at each iteration, select uniformly likely one of the graph edges, say

agents i and j talk, and they both perform (1/2, 1/2) averaging, that is:

xi(k + 1) = xj(k + 1) :=
1

2

(
xi(k) + xj(k)

)
.

Corollary 12.2 (Convergence for uniform symmetric gossip). If the graph G is connected, then each
solution to the uniform symmetric gossip converges to average consensus with probability 1.

Proof based on Theorem 12.1. The corollary can be established by verifying that Assumptions (A1)–(A3) in

Theorem 12.1 are satis�ed. Regarding (A3), note that the graph associated to the expected averaging matrix

is G. �

We provide also an alternative elegant proof.

Proof based on Theorem 11.6. For any time k0 ≥ 0 and any edge (i, j), consider the event “the edge (i, j) is

not selected for update at any time larger than k0.” Since the probability that (i, j) is not selected at any

time k is 1− 1/m, whre m is the number of edges, the probability that (i, j) is not selected at any times

after k0 is

lim
k→∞

(
1− 1

m

)k−k0

= 0.

With this fact one can verify that all assumptions in Theorem 11.6 are satis�ed by the random sequence

of matrices almost surely. Hence, almost sure convergence follows. Finally, since each matrix is doubly

stochastic, average(x(k)) is preserved, and the solution converges to average(x(0))1n. �
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198 Chapter 12. Randomized Averaging Algorithms

12.3.2 Additional results on the mean-square convergence factor

Given a sequence of stochastic averaging matrices {A(k)}k∈Z≥0
and corresponding solutions x(k) to

x(k + 1) = A(k)x(k), we de�ne the mean-square convergence factor by

rmean-square

(
{A(k)}k∈Z≥0

)
= sup

x(0)6=x�nal

lim sup
k→∞

(
E
[
‖x(k)− average(x(k))1n‖22

])1/k

.

We now present upper and lower bounds for the mean-square convergence factor.

Theorem 12.3 (Upper and lower bounds on the mean-square convergence factor). Under the same
assumptions as in Theorem 12.1, the mean-square convergence factor satis�es

ρess

(
E[A(k)]

)2 ≤ rmean-square ≤ ρ
(
E
[
A(k)T(In − 1n1T

n/n)A(k)
])
.

12.4 Historical notes and further reading

In this chapter we present results from (Fagnani and Zampieri, 2008; Tahbaz-Salehi and Jadbabaie, 2008; Garin

and Schenato, 2010) that build on classic references such as (Chatterjee and Seneta, 1977; Cogburn, 1984).

Speci�cally, references for the main Theorem 12.1 are (Tahbaz-Salehi and Jadbabaie, 2008) and (Fagnani

and Zampieri, 2008). Note that Assumption (A1) is restrictive and more general conditions are su�cient.

For example, Tahbaz-Salehi and Jadbabaie (2010) treat the case of a sequence of row-stochastic matrices

generated by an ergodic and stationary random process. Related analysis and modeling results are presented

in (Hatano and Mesbahi, 2005; Bajović et al., 2013; Matei et al., 2013; Touri and Nedić, 2014; Ravazzi et al.,

2015).

For a comprehensive analysis of the mean-square convergence factor we refer to (Fagnani and Zampieri,

2008, Proposition 4.4).

A detailed analysis of the uniform symmetric gossip model is given by Boyd et al. (2006). A detailed

analysis of the model with stochastic interactions and prominent agents is given by (Acemoglu and Ozdaglar,

2011); see also (Acemoglu et al., 2013).

In this book we will not discuss averaging algorithms in the presence of quantization e�ects, we refer the

reader instead to (Kashyap et al., 2007; Nedić et al., 2009; Frasca et al., 2009). Similarly, regarding averaging

in the presence of noise, we refer to (Xiao et al., 2007; Bamieh et al., 2012; Lovisari et al., 2013; Jadbabaie

and Olshevsky, 2015). Finally, regarding averaging in the presence of delays, we refer to (Olfati-Saber and

Murray, 2004; Hu and Hong, 2007; Lin and Jia, 2008).
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12.5 Table of asymptotic behaviors for averaging systems

Dynamics Assumptions & Asymptotic Behavior References

discrete-time:

x(k + 1) = Ax(k),

A row-stochastic adjacency

matrix of digraph G

G has a globally reachable node

=⇒
limk→∞ x(k) = (wTx(0))1n,

where w ≥ 0, wTA = wT
, and 1T

nw = 1

Thm 5.1

continuous-time:

ẋ(t) = −Lx(t),

L Laplacian matrix of

digraph G

G has a globally reachable node

=⇒
limt→∞ x(t) = (wTx(0))1n,

where w ≥ 0, wTL = 0T
n , and 1T

nw = 1

Thm 7.4

time-varying discrete-time:

x(k + 1) = A(k)x(k),

A(k) row-stochastic adjacency

matrix of digraph G(k),

k ∈ Z≥0

(i) at each time k, G(k) has self-loop at each node,

(ii) each aij(k) ≥ 0 is larger than ε > 0,

(iii) there exists duration δ s.t., for all time k,

G(k)∪ · · · ∪G(k + δ − 1) has a globally reachable node

=⇒
limk→∞ x(k) = (wTx(0))1n, where w ≥ 0, 1T

nw = 1

Thm 11.4

time-varying symmetric

discrete-time:

x(k + 1) = A(k)x(k),

A(k) symmetric stochastic

adjacency of G(k), k ∈ Z≥0

(i) at each time k, G(k) has self-loop at each node,

(ii) each aij(k) ≥ 0 is larger than ε > 0,

(iii) for all time k, ∪τ≥kG(τ) is connected

=⇒
limk→∞ x(k) = average

(
x(0)

)
1n

Thm 11.6

time-varying continuous-time:

ẋ(t) = −L(t)x(t),

L(t) Laplacian matrix of

digraph G(t), t ∈ R≥0

(i) each aij(k) ≥ 0 is larger than ε > 0,

(ii) there exists duration T s.t., for all time t,
digraph associated to

∫ t+T
t L(τ)dτ has a globally reachable

node

=⇒
limk→∞ x(k) = (wTx(0))1n, where w ≥ 0, 1T

nw = 1

Thm 11.11

randomized discrete-time:

x(k + 1) = A(k)x(k),

A(k) random row-stochastic

adjacency matrix

of digraph G(k), k ∈ Z≥0

(i) {A(k)}k∈Z≥0
is i.i.d.,

(ii) each matrix has strictly positive diagonal,

(iii) digraph associated to E[A(k)] has a globally reachable

node,

=⇒
limk→∞ x(k) =

(
wTx(0)

)
1n almost surely,

where w > 0 is random vector with 1T
nw = 1

Thm 12.1

Table 12.1: Averaging systems: de�nitions, assumptions, asymptotic behavior, and reference
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Nonlinear Systems
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Chapter13

Motivating Problems and Systems

In this chapter we begin our study of nonlinear network systems by introducing some example models

and problems. Although the models presented are simple and their mathematical analyses are elementary,

these models provide the appropriate notation, concepts, and intuition required to consider more realistic

and complex models.

13.1 Lotka-Volterra population models

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for

modeling the dynamics of interacting populations in mathematical ecology. These equations were originally

developed in (Lotka, 1920; Volterra, 1928). In what follows we introduce various single-species and multi-

species model of population dynamics. We start with single-species models. We let x(t) denote the

population number or its density at time t. The ratio ẋ/x is the average contribution of an individual to the

growth of the population.

Single-species constant growthmodel In a simplest model, one may assume ẋ/x is equal to a constant

growth rate r. This assumption however leads to exponential growth or decay x(t) = x(0) ert depending

upon whether r is positive or negative. Of course, exponential growth may be reasonable only for short

periods of time and violates a reasonable assumption of bounded resources for large times.

Single-species logistic growth model In large populations it is natural to assume that resources would

diminish with the growing size of the population. In a very simple model, one may assume ẋ/x = r(1−x/κ),

where r > 0 is the intrinsic growth rate and κ > 0 is called the carrying capacity. This assumption leads to

the so-called logistic equation
ẋ(t) = rx(t)

(
1− x(t)/κ

)
. (13.1)

This dynamical system has the following behavior:

(i) there are two equilibrium points 0 and κ,
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204 Chapter 13. Motivating Problems and Systems

(ii) the solution is

x(t) =
κx(0) ert

κ+ x(0)(ert−1)
,

(iii) all solutions with 0 < x(0) < κ are monotonically increasing and converge asymptotically to κ,

(iv) all solutions with κ < x(0) are monotonically decreasing and converge asymptotically to κ.

The reader is invited to show these facts and related ones in Exercise E13.1. The evolution of the logistic

equation from multiple initial values is illustrated in Figure 13.1.

t



x(t) =
x(0)ert

+ x(0)(ert � 1)

1/r 2/r 3/r 4/r 5/r

Figure 13.1: Solutions to the logistic equations from 10 initial conditions

Multi-species Lotka-Volterra model with signed interactions Finally, we consider the case of n ≥ 2
interacting species. We assume logistic growth model for each species with an additional term due to the

interaction with the other species. Speci�cally, we write the growth rate for species i ∈ {1, . . . , n},

ẋi
xi

= ri + aiixi +

n∑

j=1,j 6=i
aijxj , (13.2)

where the �rst two terms are the logistic equation (so that aii is typically negative because of bounded

resources and the carrying capacity is κi = −ri/aii), and the third term is the combined e�ect of the

pairwise interactions with all other species. The vector r is called the intrisic growth rate, the matrix

A = [aij ] is called the interaction matrix, and the ordinary di�erential equations (13.2) are called the

Lotka-Volterra model for n ≥ 2 interacting species. For x ∈ Rn≥0, this model is written in vector form as

ẋ = diag(x)
(
Ax+ r

)
=: fLV(x). (13.3)

As illustrated in Figure 13.2, for any two species i and j, the sign of aij and aji in the interaction matrix

A is determined by which of the following three possible types of interaction is being modeled:

(+, +) = mutualism: for aij > 0 and aji > 0, the two species are in symbiosis and cooperation. The

presence of species i has a positive e�ect on the growth of species j and vice versa.
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(a) Common clown�sh (Amphiprion ocel-
laris) near magni�cent sea anemones

(Heteractis magni�ca) on the Great Bar-

rier Reef, Australia. Clown�sh and

anemones provide an example of eco-

logical mutualism in that each species

bene�ts from the activity of the other.

Public domain image from Wikipedia.

(b) The canadian lynx (Lynx canadensis)
is a major predator of the snowshoe hare

(Lepus americanus). Historical records of

animals captures indicate that the lynx

and hare numbers rise and fall periodi-

cally; see (Odum, 1959). Public domain

image from Rudolfo’s Usenet Animal

Pictures Gallery (no longer in existence).

(c) Subadult male lion (Panthera Leo)

and spotted hyena (Crocuta Crocuta)

compete for the same resources in the

Maasai Mara National Reserve in Narok

County, Kenya. Picture "Hyänen und

Löwe im Morgenlicht" by lubye134, li-

censed under Creative Commons Attri-

bution 2.0 Generic (BY 2.0).

Figure 13.2: Mutualism, predation and competition in population dynamics

(+,-) = predation: for aij > 0 and aji < 0, the species are in a predator-prey or host-parasite relationship.

In other words, the presence of a prey (or host) species j favors the growth of the predator (or parasite)

species i, wheres the presence of the predator species has a negative e�ect on the growth of the prey.

(-,-) = competition: for aij < 0 and aji < 0, the two species compete for a common resources of sorts

and have therefore a negative e�ect on each other.

Note: the typical availability of bounded resources suggests it is ecologically meaningful to assume that

the interaction matrix A is Hurwitz and that, to model the setting in which species live in isolation, the

diagonal entries aii are negative.

Scienti�c questions of interest include:

(i) Does the Lotka-Volterra system have equilibrium points? Are they stable?

(ii) How does the presence of mutualism, predation, and/or competition a�ect the dynamic behavior?

(iii) Does the model predict extinction or periodic evolution of species?

13.2 Virus propagation models

We now study the di�usion and propagation of infectious diseases over networks. The proposed models may

be relevant also in the context of propagation of information/signals in a communication network, spread

of rumors over a social network, and di�usion of innovations in competitive economic networks. In the

interest of clarity, we begin with “lumped” variables, i.e., variables which represent an entire “well-mixed”

population of nodes. We then introduce “distributed” variable models, i.e., network models.

We start by studying three low-dimensional deterministic models in which nodes may be in one of two

or three states; see Figure 13.3. For the SI and SIS models, we say that an epidemic outbreak takes place if a

small initial fraction of infected individuals leads to the contagion of a signi�cant fraction of the population.
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We say the system displays an epidemic threshold if epidemic outbreaks occur when some combined value

of parameters and initial conditions are above critical values.

Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 13.3: The three basic models SI, SIS and SIR for the propagation of an infectious disease

The SI model Given a population, let x(t) denote the fraction of infected individuals at time t ∈ R≥0.

Similarly, let s(t) denote the fraction of susceptible individuals. Clearly, x(t) + s(t) = 1 at all times. We

model propagation via the following �rst-order di�erential equation, called the susceptible–infected (SI)
model

ẋ(t) = βs(t)x(t) = β(1− x(t))x(t), (13.4)

where β > 0 is the infection rate. It is immediate to see that the SI model (13.4) is a logistic equation (13.1)

with growth rate r = β and carrying capacity κ = 1. As before, the solution from initial condition

x(0) = x0 ∈ [0, 1] is

x(t) =
x0 eβt

1− x0 + x0 eβt
. (13.5)

From all positive initial conditions 0 < x0 < 1, the solution x(t) is monotonically increasing and converges

to the unique equilibrium 1 as t→∞, as illustrated in Figure 13.4.

t

x(t), % infected individuals

20%

40%

60%

80%

100%

2/� 4/� 6/� 8/�

Figure 13.4: Evolution of the fraction of infected individuals in the (lumped deterministic) SI model

The SISmodel Next, we study a model in which individuals recover from the infection, but are susceptible

to being re-infected. As in the SI model, the population is divided into two fractions with s(t) + x(t) = 1
and β is the infection rate. We model the recovery process via a constant recovery rate γ and write the

(susceptible–infected–susceptible) SIS model as

ẋ = βsx− γx = (β − γ − βx)x. (13.6)
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This SIS model is again a logistic equation with closed-form solution

x(t) =
(β − γ)x0

βx0 − e−(β−γ)t(γ − β(1− x0))
, (13.7)

from initial condition x(0) = x0 ∈ [0, 1] and for β 6= γ. Note, however, that there is a change now: it is

possible for the carrying capacity β/(β − γ) to be positive or negative. From the solution in equation (13.7)

and from the simulations in Figure 13.5, one can observe the following two cases:

(i) if β ≤ γ, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic disappears), and

(ii) if β > γ, then, from all positive initial conditions x(0) > 0, all trajectories converge to the unique

exponentially stable equilibrium x = (β − γ)/β < 1 (epidemic outbreak and steady-state epidemic

contagion).

t

20%

40%

60%

80%

100%

4 8 12 16

x(t) % infected individuals

(a) SIS model with β = 1 < γ = 2

t

20%

40%

60%

80%

100%

4 8 12 16

x(t) % infected individuals

(b) SIS model with β = 1 > γ = .5

Figure 13.5: Evolution of the fraction of infected individuals in the (lumped deterministic) SIS model

The SIR model As third and �nal lumped deterministic model, we study the setting in which individuals

recover from the infection and are not susceptible to the epidemics after one round of infection. In other

words, we assume the population is divided into three distinct groups: s(t) denotes the fraction of susceptible

individuals, x(t) denotes the fraction of infected individuals, and r(t) denotes the fraction of recovered

individuals. Clearly, s(t) + x(t) + r(t) = 1. We model the recovery process via a constant recovery rate γ
and write our (susceptible–infected–recovered) SIR model as

ṡ(t) = −βs(t)x(t),

ẋ(t) = βs(t)x(t)− γx(t),

ṙ(t) = γx(t).

(13.8)

Note that the �rst term is the same infection term as in the SI model and the second term is the same

recovery term as in the SIS model.

We postpone the analysis of this mode till later, but illustrate its behavior via a simulation in Figure 13.6.

Note the qualitatively di�erent behavior for β/γ = 4 and β/γ = 1/4.
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t

20%

40%

60%

80%

100%

4 8 12 16

x(t)

s(t)

r(t)

x(t) % infected, s(t) % susceptible, r(t) % recovered

(a) SIR model with β = 2, γ = 1/4, initial infected 1%

t

x(t) % infected, s(t) % susceptible, r(t) % recovered

20%

40%

60%

80%

100%

4 8 12 16

x(t)

s(t)

r(t)

(b) SIR model with β = 2, γ = 4, initial infected 30%

Figure 13.6: Evolution of the fraction of infected, susceptible and recovered individuals in the (lumped deterministic)

SIR model (assuming zero recovered individuals at initial time)

The network/multigroup epidemicmodels We conclude this section by presenting natural extensions

of the three lumped SI/SIS/SIR scalar models to the setting of network multigroup models; originally due

to (Lajmanovich and Yorke, 1976; Hethcote, 1978). In other words, we new present deterministic network

models for the propagation of epidemics.

Two interpretations of the provided models are possible: if node i is a population of individuals

at location i, then xi can be interpreted as the infected fraction of that population. If node i is a sin-

gle individual, then xi can be interpreted as the probability that the individual is infected: xi(t) =
P[individual i is infected at time t].

Consider an undirected weighted graph of order n with adjacency matrix A and degree matrix D =
diag(A1n). The entries of A describe the frequency of contact among individuals; the graph is therefore

referred to as a contact network (the nodes are individuals, the links are social contacts). Let xi(t) ∈ [0, 1]
denote the fraction of infected individuals at node i ∈ V at time t ∈ R≥0. Given an infection rate β, for

x ∈ [0, 1]n, the network SI model is

ẋi(t) = β(1− xi(t))
∑n

j=1
aijxj(t). (13.9)

Next, given additionally a recovery rate γ, the network SIS model is

ẋi(t) = β(1− xi(t))
∑n

j=1
aijxj(t)− γxi(t). (13.10)

And, �nally, we consider the SIR model. Let si(t), xi(t), ri(t) ∈ [0, 1] denote the fractions of susceptibile,

infected and recovered individuals at node i ∈ V at time t ∈ R≥0. The network SIR model is

ṡi(t) = −βsi(t)
∑n

j=1
aijxj(t),

ẋi(t) = βsi(t)
∑n

j=1
aijxj(t)− γxi(t),

ṙi(t) = γxi(t).

(13.11)
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13.3. Kuramoto coupled-oscillator models 209

These models are immediately written in equivalent vector form as:

network SI: ẋ = β
(
In − diag(x)

)
Ax, (13.12)

network SIS: ẋ = β
(
In − diag(x)

)
Ax− γx, (13.13)

network SIR: ṡ = −β diag(s)Ax, (13.14)

ẋ = β diag(s)Ax− γx.

Note that the SIR system is completely speci�ed by two equations and the constraint s(t)+x(t)+r(t) = 1n.

Scienti�c questions of interest for network epidemic models include:

(i) Do the network models have a behavior similar to the scalar models?

(ii) As a function of the model parameters, what possible asymptotic behaviors (e.g., vanishing infection,

steady-state epidemic, full contagion) arise?

(iii) What is the transient propagation of epidemics starting from small initial fractions of infected nodes

(epidemic outbreak or monotonically vanishing infection)?

13.3 Kuramoto coupled-oscillator models

In this section we introduce network of coupled oscillators and, in particular, phase-coupled oscilla-

tors. We start with two simple de�nitions. Given a connected, weighted, and undirected graph G =
({1, . . . , n}, E,A) and angles θ1, . . . , θn associated to each node in the network, de�ne the coupled oscilla-
tors model by

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}. (13.15)

A special case of this model is due to (Kuramoto, 1975); theKuramoto coupled oscillators model is characterized

by a complete homogeneous graph (i.e., a graph with identical edge weights aij = K/n for all i, j ∈
{1, . . . , n} and for some coupling strength K):

θ̇i = ωi −
K

n

n∑

j=1

sin(θi − θj), i ∈ {1, . . . , n}. (13.16)

Note: for n = 2, with the shorthands ω = ω1 − ω2 and a = a12 + a21, the coupled oscillator model can

be written as a one-dimensional system in the di�erence variable θ = θ1 − θ2 as:

θ̇ = ω − a sin(θ). (13.17)

Coupled oscillator models arise naturally in many circumstances; in what follows we present three

examples taken from (Dör�er and Bullo, 2014).
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210 Chapter 13. Motivating Problems and Systems

Example #1: A spring network on a ring We start by studying a system of n dynamic particles

constrained to rotate around a unit-radius circle and assumed to possibly overlap without ever colliding.

Each particle is subject to (1) a non-conservative torque τi, (2) a linear damping torque, and (3) a total elastic

torque. This system is illustrated in Figure 13.7.

We assume that pairs of interacting particles i and j are coupled through elastic springs with sti�ness

kij > 0; we set kij = 0 if the particles are not interconnected. The elastic energy stored by the spring

between particles at angles θi and θj is

Uij(θi, θj) =
kij
2

distance
2 =

kij
2

(
(cos θi − cos θj)

2 + (sin θi − sin θj)
2
)

= kij
(
1− cos(θi) cos(θj)− sin(θi) sin(θj)

)
= kij

(
1− cos(θi − θj)

)
,

so that the elastic torque on particle i is

Ti(θi, θj) = − ∂

∂θi
Uij(θi, θj) = −kij sin(θi − θj).

Newton’s Law applied to this rotating system implies that the network of spring-interconnected particles

obeys the dynamics

miθ̈i + diθ̇i = τi −
∑n

j=1
kij sin(θi − θj),

where mi and di are inertia and damping coe�cients. In the limit of small masses mi and uniformly-high

viscous damping d = di, that is, mi/d ≈ 0, the model simpli�es to the coupled oscillator network (13.15)

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}.

with natural rotation frequencies ωi = τi/d and with coupling strengths aij = kij/d.

⌧1

⌧3

⌧2

k12

k24

⌧4
k34

k23

Figure 13.7: Mechanical analog of a coupled oscillator network
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13.3. Kuramoto coupled-oscillator models 211

Example #2: The structure-preserving power network model As second example we consider an

AC power network, visualized in Figure 13.8, with n buses including generators and load buses. We present

two simpli�ed models for this network, a static power-balance model and a dynamic continuous-time

model.
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34
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8
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1112

13

14

15

16

South Arizona
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(a) Line diagram

10 2

3
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5
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9
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13

14
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1
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ArizonaSoCal

NoCal

PacNW

Canada

North

Montana

Utah

(b) Equivalent graph representation

Figure 13.8: A simpli�ed aggregated model with 16 generators and 25 load busses of the Western North American

power grid, ofter referred to as the Western Interconnect. This model is often studied in the context of inter-area

oscillations (Trudnowski et al., 1991). In the equivalent graph representation, generators are represented by light blue

boxes and load buses by light red boxes.

The transmission network is described by an admittance matrix Y ∈ Cn×n that is symmetric and sparse

with line impedances Zij = Zji for each branch {i, j} ∈ E. The network admittance matrix is sparse

matrix with nonzero o�-diagonal entries Yij = −1/Zij for each branch {i, j} ∈ E; the diagonal elements

Yii = −∑n
j=1,j 6=i Yij assure zero row-sums.

The static model is described by the following two concepts. Firstly, according to Kirchho�’s current

law, the current injection at node i is balanced by the current �ows from adjacent nodes:

Ii =

n∑

j=1

1

Zij
(Vi − Vj) =

n∑

j=1

YijVj .

Here, Ii and Vi are the phasor representations of the nodal current injections and nodal voltages, so that, for

example, Vi = |Vi| eiθi
corresponds to the signal |Vi| cos(ω0t+ θi). (Recall i =

√
−1.) The complex power

injection Si = Vi · Ii (where z denotes the complex conjugate of z ∈ C) then satis�es the power balance

equation

Si = Vi ·
n∑

j=1

Y ijV j =
n∑

j=1

Y ij |Vi||Vj |ei(θi−θj) .

Secondly, for a lossless network the real part of the power balance equations at each node is

Pi︸︷︷︸
active power injection

=
n∑

j=1

aij · sin(θi − θj)︸ ︷︷ ︸
active power �ow from j to i

, i ∈ {1, . . . , n}, (13.18)
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212 Chapter 13. Motivating Problems and Systems

where aij = |Vi||Vj ||Yij | denotes the maximum power transfer over the transmission line {i, j}, and

Pi = <(Si) is the active power injection into the network at node i, which is positive for generators and

negative for loads. The systems of equations (13.18) are the active power �ow equations at balance.

Next, we discuss a simpli�ed dynamic model. Many appropriate dynamic models have been proposed

for each network node: zeroth order (for so-called constant power loads), �rst-order models (for so-called

frequency-dependent loads and inverter-based generators), and second and higher order for generators;

see (Bergen and Hill, 1981). For extreme simplicity, we here assume that every node is described by a

�rst-order integrator with the following intuition: node i speeds up (i.e., θi increases) when the power

balance at node i is positive, and slows down (i.e., θi decreases) when the power balance at node i is negative.

This assumption leads immediately to the coupled-oscillators model (13.15) written as:

θ̇i = Pi −
n∑

j=1

aij sin(θi − θj). (13.19)

The systems of equations (13.19) are a �rst-order simpli�ed version of the so-called coupled swing

equations; see (Bergen and Hill, 1981). A more realistic model of power network necessarily include

higher-order dynamics for the generators, uncertain load models, mixed resistive-inductive lines, and the

modelling of reactive power.

Example #3: Flocking, schooling, and vehicle coordination As third example, we consider a set

of n kinematic particles in the plane R2
, which we identify with the complex plane C. Each particle

i ∈ {1, . . . , n} is characterized by its position ri ∈ C, its heading angle θi ∈ S1
, and a steering control

law ui(r, θ) depending on the position and heading of itself and other vehicles, see Figure 13.9.(a). For

simplicity, we assume that all particles have unit speed. The particle kinematics are then given by

ṙi = eiθi ,

θ̇i = ui(r, θ) ,
(13.20)

for i ∈ {1, . . . , n}. If no control is applied, then particle i travels in a straight line with orientation θi(0),

and if ui = ωi ∈ R is a nonzero constant, then particle i traverses a circle with radius 1/|ωi|.
The interaction among the particles is modeled by a interaction graph G = ({1, . . . , n}, E,A) deter-

mined by communication and sensing patterns. Interesting motion patterns emerge if the controllers use

only relative phase information between neighboring particles. As we will discuss later, we may adopt

potential functions-based gradient control strategies (i.e., negative gradient �ows) to coordinate the relative

heading angles θi(t)− θj(t). As shown in Example #1, an intuitive extension of the quadratic elastic spring

potential to the circle is the function Uij : S1,S1 → R de�ned by

Uij(θi, θj) = aij(1− cos(θi − θj)),
for each edge {i, j} of the graph. Note that the potential Uij(θi, θj) achieves its unique minimum value if

the heading angles θi and θj are synchronized and its unique maximum when θi and θj are out of phase by

angle π.

These considerations motivate the gradient-based control strategy

θ̇i = ω0 −K
∂

∂θi

∑

{i,j}∈E

Uij(θi − θj) = ω0 −K
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (13.21)
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13.4. Appendix: Stochastic propagation models 213

to synchronize the heading angles of the particles for K > 0 (gradient descent), respectively, to disperse

the heading angles for K < 0 (gradient ascent). The term ω0 can induce additional rotations (for ω0 6= 0)

or translations (for ω0 = 0). A few representative trajectories are illustrated in Figure 13.9.

The controlled phase dynamics (13.21) give rise to elegant and useful coordination patterns that mimic

animal �ocking behavior (Leonard et al., 2012) and �sh schools. Inspired by these biological phenomena,

scientists have studied the controlled phase dynamics (13.21) and their variations in the context of tracking

and formation controllers in swarms of autonomous vehicles (Paley et al., 2007).

(x, y)
θ

‖r‖ =

∥∥∥∥
[
x
y

]∥∥∥∥

θ

eiθi

(a) (b) (c) (d) (e)

Figure 13.9: Figure (a) illustrates the particle kinematics (13.20). Figures (b)-(e) illustrate the controlled dynamics (13.20)-

(13.21) with n = 6 particles, a complete interaction graph, and identical and constant natural frequencies: ω0(t) = 0
in �gures (b) and (c) and ω0(t) = 1 in �gures (d) and (e). The values of K are K = +1 in �gures (b) and (d) and

K = −1 in �gure (c) and (e). The arrows depict the orientation, the dashed curves show the long-term position

dynamics, and the solid curves show the initial transient position dynamics. As illustrated, the resulting motion

displays synchronized or dispersed heading angles for K = ±1, and translational motion for ω0 = 0, respectively

circular motion for ω0 = 1. Image reprinted from (Dör�er and Bullo, 2014) with permission from Elsevier.

Scienti�c questions of interest for coupled oscillator model include:

(i) When do the oscillators asymptotically achieve frequency synchronization, that is, when do they

asymptotically reach an equal velocity?

(ii) When do they reach phase synchronization?

(iii) Are frequency (or phase) synchronized solutions stable and attractive in some sense?

13.4 Appendix: Stochastic propagation models

In this appendix, for readers with a background in probability theory, we discuss some models for stochastic

virus propagation and show that their behavior in expectation is captured by the deterministic scalar models

described above in Section 13.2.

We �rst consider a stochastic SI model. We consider a population of n individuals in which pairwise

meetings between individuals take place. We assume the existence of a meeting rate βm > 0 such that,

over the interval (t, t+ ∆t), nβm∆t individuals will meet on average other nβm∆t individuals. Assum-

ing meetings involve uniformly-selected individuals on average, over the interval (t, t + ∆t), there are

s(t)2nβm∆t meetings between a susceptible and another susceptible individual; these meetings, as well

as meetings between infected individuals result in no epidemic propagation. However, there will also

be s(t)x(t)nβm∆t + x(t)s(t)nβm∆t meetings between a susceptible and an infected individual. We as-

sume a fraction βi ∈ [0, 1], called transmission rate, of these meetings results on average in the successful
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214 Chapter 13. Motivating Problems and Systems

transmission of the infection:

βi

(
s(t)x(t)nβm∆t+ x(t)s(t)nβm∆t

)
= 2βiβmx(t)s(t)n∆t.

In summary, based on these assumptions, the fraction of infected individuals satis�es on average

x(t+ ∆t) = x(t) + 2βiβmx(t)s(t)∆t.

Now it is immediate to see that the SI model (13.4) is the limit at ∆t→ 0+
, where the infection parameter

β is twice the product of meeting rate βm and infection transmission fraction βi.

The SIS and SIR models are also justi�ed by showing that the constant recovery rate assumption

corresponds to assuming a so-called Poisson recovery rate for the stochastic version of the SI model. This

assumption is arguably not very realistic, but it leads to a simple analysis.
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13.5 Exercises

E13.1 Logistic ordinary di�erential equation. Given a growth rate r > 0 and a carrying capacity κ > 0,

consider the logistic equation (13.1) de�ned by

ẋ = rx(1− x/κ),

with initial condition x(0) ∈ R≥0. Show that

(i) there are two equilibrium points 0 and κ,

(ii) the solution is

x(t) =
κx(0) ert

κ+ x(0)(ert−1)
, (E13.1)

and it takes value in R≥0,

(iii) all solutions with 0 < x(0) < κ are monotonically increasing and converge asymptotically to κ,

(iv) all solutions with κ < x(0) are monotonically decreasing and converge asymptotically to κ, and

(v) if x(0) < κ/2, then the solution x(t) has an in�ection point when x(t) = κ/2.

E13.2 Simulating coupled oscillators. Simulate in your favorite programming language and software package

the coupled Kuramoto oscillators in equation (13.16). Set n = 10, de�ne a vector ω ∈ R10
with entries

deterministically uniformly-spaced between −1 and 1. Select random initial phases.

(i) Simulate the resulting di�erential equations for K = 10 and K = 0.1.

(ii) Find the approximate value of K at which the qualitative behavior of the system changes from

asynchrony to synchrony.

Turn in your code, a few printouts (as few as possible), and your written responses.
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Chapter14

Stability Theory for Dynamical Systems

In this chapter we provide a brief self-contained review of stability theory for nonlinear dynamical systems.

We review the key ideas and theorems in stability theory, including the Lyapunov Stability Criteria and

the Krasovskiı̆-LaSalle Invariance Principle. We then apply these theoretical tools to a number of example

systems, including linear and linearized systems, negative gradient systems, continuous-time averaging

dynamics (i.e., the Laplacian �ow) and positive linear systems described by Metzler matrices.

This chapter is not meant to provide a comprehensive treatment, e.g., we leave out matters of existence

and uniqueness of solutions and we do not include proofs. Section 14.9 below provides numerous references

for further reading. We start the chapter by introducing a running example with three prototypical

dynamical systems.

Example 14.1 (Gradient and mechanical systems). We start by introducing a di�erentiable function

V : R→ R; for example see Figure 14.1. Based on V and on two positive coe�cients m and d, we de�ne

x

V (x)

Figure 14.1: A di�erentiable function V playing the role of a po-

tential energy function (i.e., a function describing the potential

energy stored) in a negative gradient system, a conservative me-

chanical systems or a dissipative mechanical systems. Speci�cally,

V (x) = −x e−x /(1 + e−x) + (x− 10)2/(1 + (x− 10)2).

three instructive and prototypical dynamical systems:

negative gradient system: ẋ = −∂V
∂x

(x), (14.1)

conservative mechanical system: mẍ = −∂V
∂x

(x), (14.2)

dissipative mechanical system: mẍ = −∂V
∂x

(x)− dẋ. (14.3)

In the study of physical systems, the parameter m is an inertia, d is a damping coe�cient, and the function

V is the potential energy function, describing the potential energy stored in the system.

217
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These example are also know as a (�rst order, second order, or second order dissipative) particle on an

energy landscape, or the “rolling ball on a hill” examples. According to Newton’s law, the correct physical

systems are models (14.2) and (14.3), but we will also see interesting examples of �rst-order negative

gradient systems (14.1). •

14.1 On sets and functions

Before proceeding we review some basic general properties of sets and functions. First, we recall that a set

W ⊂ Rn is bounded if there exists a constant K that each w ∈W satis�es ‖w‖ ≤ K , closed if it contains

its boundary (or, equivalently, if it contains all its limit points), and compact if it is bounded and closed.

Second, given a di�erentiable function V : Rn → R, a critical point of V is a point x∗ ∈ Rn satisfying

∂V

∂x
(x∗) = 0n.

A critical point x∗ is a local minimum point (resp. local strict minimum point) of V if there exists a distance

ε > 0 such that V (x∗) ≤ V (x) (resp. V (x∗) < V (x)) for all x 6= x∗ within distance ε of x. The point x∗ is

a global minimum if V (x∗) < V (x) for all x 6= x∗. Local and global maximum points are de�ned similarly.

Given a constant ` ∈ R, we de�ne the `-level set of V and the `-sublevel set of V by

V −1(`) = {y ∈ Rn | V (y) = `}, and V −1
≤ (`) = {y ∈ Rn | V (y) ≤ `}.

These notions are illustrated in Figure 14.2.

x

`1

`2

`3

x1 x2 x3 x4 x5

V �1
 (`2) = {x | V (x)  `2}

Figure 14.2: A di�erentiable function, its sublevel set and its critical points. The sublevel set V −1≤ (`1) = {x | V (x) ≤
`1} is unbounded. The sublevel set V −1≤ (`2) = [x1, x5] is compact and contains three critical points (x2 and x4 are

local minima and x3 is a local maximum). Finally, the sublevel set V −1≤ (`3) is compact and contains a single critical

point, the global minimum x4.

Third, given a point x0 ∈ Rn, a function V : Rn → R is

(i) locally positive-de�nite (resp. positive-semide�nite) about x0 if V (x0) = 0 and if there exists a

neighborhood U of x0 such that V (x) > 0 (resp. V (x) ≥ 0) for all x ∈ U \ {x0},
(ii) globally positive-de�nite about x0 if V (x0) = 0 and V (x) > 0 for all x ∈ Rn \ {x0}, and
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(iii) locally (resp. globally) negative-de�nite if −V is locally (resp. globally) positive-de�nite; and negative-
semide�nite if −V is positive-semide�nite.

Note: Assume a di�erentiable V is locally positive-de�nite about x0. Pick α > V (x0). One can

show that the sublevel set V −1
≤ (α) contains a neighborhood of x0. Indeed, in Figure 14.2, V is locally

positive-de�nite about x4 and V −1
≤ (`2) and V −1

≤ (`3) are both compact intervals containing x4.

Fourth and �nally, a non-negative continuous function V : X → R≥0 is

(i) radially unbounded if X = Rn and V (x)→∞ along any trajectory such that ‖x‖ → ∞, i.e., for any

sequence {xn}n∈N satisfying limn→∞ ‖xn‖ =∞ we have limn→∞ V (xn) =∞, and

(ii) proper if, for all ` ∈ R, the `-sublevel set of V is compact.

We illustrate these concepts in Figure 14.3 and state a useful equivalence without proof.

Lemma 14.2. A continuous function V : Rn → R≥0 is proper if and only if it is radially unbounded.

x

V (x) = �x
e�x

1 + e�x
+

(x � 10)2

1 + (x � 10)2

(a) This function V : R → R is not radially unbounded

because limx→+∞ V (x) = 1.

x

Vlog-lin(x) = x � 1 � log(x)

(b) The function Vlin-log : R>0 → R is proper on X = R>0

since each sublevel set is a compact interval.

Figure 14.3: Example proper and not proper functions

14.2 Dynamical systems and stability notions

Dynamical systems

A (continuous-time) dynamical system is a pair (X, f) where X , called the state space, is a subset of Rn and

f , called the vector �eld, is a map from X to Rn. Given an initial state x0 ∈ X , the solution (also called

trajectory or evolution) of the dynamical system is a curve t 7→ x(t) ∈ X satisfying the di�erential equation

ẋ(t) = f(x(t)), x(0) = x0.

A dynamical system (X, f) is linear if x 7→ f(x) = Ax for some square matrix A.

Typically, the map f is assumed to have some continuity properties so that the solution exists and is

unique for at least small times. Moreover, some of our examples are de�ned on closed submanifolds of Rn
(e.g., the Lotka-Volterra model (13.3) is de�ned over the positive orthant Rn≥0, the network SIS model (13.10)

is de�ned over the hypercube [0, 1]n, and the coupled oscillator model (13.15) is de�ned over the set of n
angles) and additional assumptions are required to ensure that the solution exists for all times in X . We do
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not discuss these topics in great detail here, we simply assume the systems admit solutions inside X for all

time, and refer to the references in Section 14.9 below.

Equilibrium points and their stability

An equilibrium point for the dynamical systems (X, f) is a point x∗ ∈ X such that f(x∗) = 0n. If the

initial state is x(0) = x∗, then the solution exists unique for all time and is constant: x(t) = x∗ for all

t ∈ R≥0.

An equilibrium point x∗ for the dynamical system (X, f) is

(i) stable (or Lyapunov stable) if, for each ε > 0, there exists δ = δ(ε) > 0 so that if ‖x(0)− x∗‖ < δ,

then ‖x(t)− x∗‖ < ε for all t ≥ 0,

(ii) unstable if it is not stable, and

(iii) locally asymptotically stable if it is stable and if there exists δ > 0 such that limt→∞ x(t) = x∗ for all

trajectories satisfying ‖x(0)− x∗‖ < δ.

These three concepts are illustrated in Figure 14.4.

x⇤

"

�

(a) Stable equilibrium: for all ε, each so-

lution inside a su�ciently small δ-disk

remains inside the ε-disk.

x⇤

(b) Unstable equilibrium: no matter how

small δ is, at least one solution starting

inside the δ-disk diverges.

x⇤

(c) Asymptotically stable equilibrium: so-

lutions starting in a su�ciently small δ-

disk converge asymptotically to the equi-

librium.

Figure 14.4: Illustrations of a stable, an unstable and an asymptotically stable equilibrium.

These �rst three notions are local in nature. To characterize global properties of a dynamical system

(X, f), we introduce the following notions. Given a locally asymptotically stable equilibrium point x∗,

(i) the set of initial conditions x0 ∈ X whose corresponding solution x(t) converges to x∗ is called the

region of attraction of x∗,

(ii) x∗ is said to be globally asymptotically stable if its region of attraction is the whole space X , and

(iii) x∗ is said to be globally (respectively, locally) exponentially stable if it is globally (respectively, locally)

asymptotically stable and there exist positive constants c1 and c2 such that all trajectories starting in

the region of attraction satisfy

‖x(t)− x∗‖ ≤ c1‖x(0)− x∗‖ e−c2t .
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Example 14.3 (Gradient and mechanical systems: Example 14.1 continued). It is instructive to

report some numerical simulations of the three dynamical systems and state some conjectures about their

equilibria and stability properties. These conjectures will be established in the next section.

t

solutions to ẋ = �@V

@x
(x)

(a) Conjecture: solutions converge to one of the two local

minima.

x

trajectories converge to local minima

(b) Sketch of the motion on the potential energy surface.

solutions to mẍ = �@V

@x
(x)

t

(c) Conjecture: solutions oscillate around a local minimum or

diverge.

x

trajectories oscillate about local minima

(d) Sketch of the motion on the potential energy surface.

solutions to mẍ = �@V

@x
(x) � dẋ

t

(e) Conjecture: solutions converge to one of the two local

minima.

x

trajectories converge to local minima

(f) Sketch of the motion on the potential energy surface.

Figure 14.5: Numerically computed solutions (left) and graphical visualization of the solutions (right) for the three

example systems with potential energy function V . Parameters are x(0) ∈ {−2,−1, . . . , 14} and m = d = 1.

•

14.3 First main convergence tool: the Lyapunov Stability Criteria

We are now ready to provide a critical tool in the study of the stability and convergence properties of a

dynamical system. Roughly speaking, Lyapunov’s idea is to use the concept of an energy function with a

local/global minimum that is non-increasing along the system’s solution.
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Before proceeding, we require one �nal useful notion. The Lie derivative (also called the directional
derivative) of a di�erentiable function V : Rn → R with respect to a vector �eld f : Rn → Rn is the

function LfV : Rn → R de�ned by

LfV (x) =
∂V

∂x
(x)f(x) =

n∑

i=1

∂V

∂xi
(x)fi(x). (14.4)

Note that, along the �ow of a dynamical system (X, f), we have V̇ (x(t)) = LfV (x(t)). Therefore,

V : Rn → R is non-increasing along every trajectory of (X, f) if each solution x : R≥0 → X satis�es

V̇ (x(t)) = LfV (x(t)) ≤ 0,

or, equivalently, if each point x ∈ X satis�es LfV (x) ≤ 0. Because of this last inequality, when the

vector �eld f is clear from the context, it is customary to adopt a slight abuse of notation and write

V̇ (x) = LfV (x).

We are now ready to present the main result of this section.

Theorem 14.4 (Lyapunov Stability Criteria). Consider a dynamical system (Rn, f) with di�erentiable
vector �eld f and with an equilibrium point x∗ ∈ Rn. The equilibrium point x∗ is

stable if there exists a continuously-di�erentiable function V : Rn → R, called a weak Lyapunov function,
satisfying

(L1) V is locally positive-de�nite about x∗,
(L2) LfV is locally negative-semide�nite about x∗;

locally asymptotically stable if there exists a continuously-di�erentiable function V : Rn → R, called a local

Lyapunov function, satisfying Assumption (L1) and

(L3) LfV is locally negative-de�nite about x∗;

globally asymptotically stable if there exists a continuously-di�erentiable function V : Rn → R, called a
global Lyapunov function, satisfying

(L4) V is globally positive-de�nite about x∗,
(L5) LfV is globally negative-de�nite about x∗,
(L6) V is proper.

Note the immediate implications: (L4) =⇒ (L1) and (L5) =⇒ (L3) =⇒ (L2).

Note: Theorem 14.4 assumes the existence of a Lyapunov function with certain properties, but does

not provide constructive methods to design or compute one. In what follows we will see that Lyapunov

functions can be designed for certain classes of systems. But, in general, the design of Lyapunov function is

challenging. A common procedure is based on trial-and-error: one selects a so-called candidate Lyapunov
function and veri�es which, if any, of the properties (L1)–(L6) is satis�ed.
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Example 14.5 (Gradient and mechanical systems: Example 14.3 continued). We now apply the

Lyapunov Stability Criteria in Theorem 14.4 to the example dynamical systems in Exercise 14.1. Based on

the properties of the function V in Figures 14.2 with local minimum points x2 and x4, we establish most of

the conjectures from Exercise 14.3. Note that the vector �elds and the Lyapunov functions we adopt in

what follows are all continuously di�erentiable.

Negative gradient systems: For the dynamics ẋ = −∂V/∂x(x), as candidate Lyapunov function about x2,

we consider the function V (x)− V (x2). We compute

V̇ (x) = −‖∂V/∂x‖2 ≤ 0.

Note that V − V (x2) is locally positive de�nite about x2 (Assumption (L1)) and V̇ is locally negative

de�nite about x2 (Assumption (L3)); hence V −V (x2) is a local Lyapunov function for the equilibrium

point x2. An identical argument applies to x4. Hence, both local minima x2 and x4 are locally

asymptotically stable;

Conservative and dissipative mechanical systems: Given a positive inertia m and a non-negative damping

coe�cient d ≥ 0, we write the conservative and the dissipative mechanical systems in �rst order

form as:

ẋ = v, mv̇ = −dv − ∂V

∂x
(x),

where (x, v) ∈ R2
are the position and velocity coordinates. As candidate Lyapunov function about

the equilibrium point (x2, 0), we consider the mechanical energy E : R×R→ R≥0 given by the sum

of kinetic and potential energy:

E(x, v) =
1

2
mv2 + V (x).

We compute its derivative along trajectories of the considered mechanical system as follows:

Ė(x, v) = mvv̇ +
∂V

∂x
(x)ẋ = v

(
− dv − ∂V

∂x
(x)
)

+
∂V

∂x
(x)v = −dv2 ≤ 0 .

This calculation, and x2 being a local minimum of V , together establish that, for d ≥ 0, the function

E−V (x2) is locally positive de�nite about x2 (Assumption (L1)) and Ė is locally negative semide�nite

about x2 (Assumption (L2)). Hence, the function E − V (x2) is a weak Lyapunov function for the

equilibrium point (x2, 0) and, therefore, the point (x2, 0) is stable for both the conservative and the

dissipative mechanical system. An identical argument applies to the point (x4, 0).

Note that we obtain the correct properties, i.e., consistent with the simulations in the previous exercise,

for negative gradient system and for the conservative mechanical system. But more work is required to

show that the local minima are locally asymptotically stable for the dissipative mechanical system. •

Example 14.6 (The logistic equation). As second example, we consider the logistic equation (13.1):

ẋ(t) = rx(t)
(

1− x(t)

κ

)
=: flogistic(x),
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x

Vlog-lin,(x)

 2 3 4

Figure 14.6: The function Vlog-lin,κ(x) = x− κ− κ log(x/κ), with κ > 0.

with growth rate r and carrying capacity κ. We neglect the possible initial condition x(0) = 0 (with

subsequent equilibrium solution x(t) = 0 for all t ≥ 0) and restrict out attention to solutions in X = R>0.

For κ > 0, de�ne the logarithmic-linear function Vlog-lin,κ : R>0 → R, illustrated in Figure 14.6, by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.

In Exercise E14.1 we ask the reader to verify that

(i) Vlog-lin,κ is continuously di�erentiable with
d
dxVlog-lin,κ(x) = (x− κ)/x,

(ii) Vlog-lin,κ(x) ≥ 0 for all x > 0 and Vlog-lin,κ(x) = 0 if and only if x = κ, and

(iii) limx→0+ Vlog-lin,κ(x) = limx→∞ Vlog-lin,κ(x) = +∞.

Next we compute

Lflogistic
Vlog-lin,κ(x) =

x− κ
x
· rx
(

1− x

κ

)
= − r

κ
(x− κ)2.

In summary, we have established that flogistic is a di�erentiable vector �eld, x∗ = κ is an equilibrium

point, Vlog-lin,κ is globally positive de�nite about κ, Lflogistic
Vlog-lin,κ is globally negative de�nite about κ,

and Vlog-lin,κ is proper. Hence, Vlog-lin,κ is a global Lyapunov function and x∗ = κ is globally asymptotically

stable. (This result is consistent with the behavior characterized in Exercise E13.1.) •

14.4 Second main convergence tool: the Krasovskiı̆-LaSalle Invariance
Principle

While the Lyapunov Stability Criteria are very useful, it is sometimes di�cult to �nd a Lyapunov function

with a negative-de�nite Lie derivative. To overcome this obstacle, in this section we introduce a powerful

tool for the convergence analysis, namely the Krasovskiı̆-LaSalle Invariance Principle.

Before stating the main result, we introduce two useful concepts:

(i) A curve t 7→ x(t) approaches a set S ⊂ Rn as t → +∞ if the distance
1

from x(t) to the set S
converges to 0 as t→ +∞.

If the set S consists of a single point s and t 7→ x(t) approaches S, then t 7→ x(t) converges to s in

the usual sense: limt→+∞ x(t) = s. If the set S consists of multiple disconnected components and

1

Here we de�ne the distance from a point y to a set Z to be infz∈Z ‖y − z‖.
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t 7→ x(t) approaches S, then t 7→ x(t) must approach one of the disconnected components of S.

Speci�cally, if the set S is composed of a �nite number of points, then t 7→ x(t) must converge to

one of the points.

(ii) Given a dynamical system (X, f), a set W ⊂ X is invariant if each solution starting in W remains

in W , that is, if x(0) ∈W implies x(t) ∈W for all t ≥ 0.

For example, any sublevel set of a function is invariant for the corresponding negative gradient �ow.

We are now ready to present the main result of this section.

Theorem 14.7 (Krasovskiı̆-LaSalle Invariance Principle). For a dynamical system (X, f) with di�er-
entiable f , assume that

(KL1) all trajectories of (X, f) are bounded,

(KL2) there exists a closed setW ⊂ X that is invariant for (X, f), and

(KL3) there exists a continuously-di�erentiable function V : X → R satisfying LfV (x) ≤ 0 for all x ∈ X .

Then for each solution t 7→ x(t) starting inW there exists c ∈ R such that x converges to the largest invariant
set contained in {

x ∈W | LfV (x) = 0
}
∩V −1(c).

Note: if the closed invariant set W ⊂ X in Assumption (KL2) is also bounded, then Assumption (KL1)

is automatically satis�ed.

Note: unlike in the Lyapunov Stability Criteria, the Krasovskiı̆-LaSalle Invariance Principle does not

require the function V to be locally positive de�nite and establishes certain asymptotic convergence

properties without requiring the Lie derivative of V to be locally negative de�nite.

Note: in some examples it is sometimes su�cient for one’s purposes to show that x(t) →
{
x ∈

W | LfV (x) = 0
}

. In other cases, however, one really needs to analyze the largest invariant set inside{
x ∈W | LfV (x) = 0

}
.

Note: If the largest invariant set is the union of multiple disjoint non-empty sets, then the solution to

the negative gradient �ow must converge to one of these disjoint sets.

Example 14.8 (Gradient and mechanical systems: Example 14.5 continued). We continue the anal-

ysis of the example dynamical systems in Exercises 14.1 and 14.5. Speci�cally, we sharpen here our results

about the dissipative mechanical system about a local minimum point x2 (or x4) based on Krasovskiı̆-LaSalle

Invariance Principle.

First, we note that the assumptions of the Krasovskiı̆-LaSalle Invariance Principle in Theorem 14.7 are

satis�ed:

(i) the function E and the vector �eld (the right-hand side of the mechanical system) are continuously

di�erentiable;

(ii) the derivative Ė is locally negative semide�nite; and

(iii) for any initial condition (x0, v0) ∈ R2
su�ciently close to (x2, 0) the sublevel set {(x, v) ∈

R2 | E(x, v) ≤ E(x0, v0)} is compact due to the local positive de�niteness of V at x2.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



226 Chapter 14. Stability Theory for Dynamical Systems

It follows that (x(t), v(t)) converges to largest invariant set contained in

C = {(x, v) ∈ R2 | E(x, v) ≤ E(x0, v0), v = 0} = {(x, 0) ∈ R2 | E(x, 0) ≤ E(x0, v0)}.

A subset of C is invariant if any trajectory initiating in the subset remains in it. But this is only true if the

starting position x̄ satis�es
∂
∂xV (x̄) = 0, because otherwise the resulting trajectory would experience a

strictly non-zero v̇(0) and hence leave C . In other words, the largest invariant set inside C is {(x, 0) ∈
R2 | E(x, 0) ≤ E(x0, v0), ∂∂xV (x) = 0}. But the local minimum point x2 is the unique critical point in the

sublevel set and, therefore,

lim
t→+∞

(x(t), v(t)) = (x2, 0). •

14.5 Application #1: Linear and linearized systems

It is interesting to study the convergence properties of a linear system. Recall that a symmetric matrix is

positive de�nite if all its eigenvalues are strictly positive.

Theorem 14.9 (Convergence of linear systems). For a matrix A ∈ Rn×n, the following properties are
equivalent:

(i) each solution to the di�erential equation ẋ = Ax satis�es limt→+∞ x(t) = 0n,

(ii) A is Hurwitz, i.e., all the eigenvalues of A have strictly-negative real parts, and

(iii) for every positive-de�nite matrix Q, there exists a unique solution positive-de�nite matrix P to the
so-called Lyapunov equation:

ATP + PA = −Q.

Note: one can show that statement (iii) implies statement (i) using the Lyapunov Stability Criteria with

function V (x) = xTPx, whose Lie derivative along the systems solutions is V̇ = xT(ATP + PA)x =
−xTQx ≤ 0.

Next, we show a very useful way to apply linear stability methods to analyze the local stability of a

nonlinear system.

The linearization at the equilibrium point x∗ of the dynamical system (X, f) is the linear dynamical

system de�ned by the di�erential equation ẋ = Ax, where

A =
∂f

∂x
(x∗).

Theorem 14.10 (Convergence of nonlinear systems via linearization). Consider a dynamical system
(X, f) with an equilibrium point x∗, with twice di�erentiable vector �eld f , and with linearization A at x∗.
The following statements hold:

(i) the equilibrium point x∗ is locally exponentially stable if all the eigenvalues of A have strictly-negative
real parts; and

(ii) the equilibrium point x∗ is unstable if at least one eigenvalue of A has strictly-positive real part.
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Example 14.11 (Two coupled oscillators). For θ ∈ R, consider the dynamical system (13.17) arising

from two coupled oscillators:

θ̇ = f(θ) = ω − sin(θ).

If ω ∈ [0, 1[, then there are two equilibrium points inside the range θ ∈ [0, 2π[:

θ∗1 = arcsin(ω) ∈ [0, π/2[, and θ∗2 = π − arcsin(ω) ∈ ]π/2,+π].

(Moreover, for θ ∈ R, the 2π-periodic set of equilibria are {θ∗1 + 2kπ | k ∈ Z} and {θ∗2 + 2kπ | k ∈ Z}.)
The linearization matrix A(θ∗i ) = ∂f

∂θ (θ∗i ) = − cos(θ∗i ) for i ∈ {1, 2} shows that θ∗1 is locally exponentially

stable and θ∗2 is unstable. •

Example 14.12 (A third order scalar system). Pick a scalar c and, for x ∈ R, consider the dynamical

system

ẋ = f(x) = c · x3.

The linearization at the equilibrium x∗ = 0 is inde�nite: A(x∗) = 0. Thus, Theorem 14.10 o�ers no

conclusions other than the equilibrium cannot be exponentially stable. On the other hand, the Krasovskiı̆-

LaSalle Invariance Principle shows that for c < 0 every trajectory converges to x∗ = 0. Here, a non-

increasing and di�erentiable function is given by V (x) = x2
with Lie derivative LfV (x) = −2cx4 ≤ 0.

Since V (x(t)) is non-increasing along the solution to the dynamical system, a compact invariant set is then

readily given by any sublevel set {x | V (x) ≤ `} for ` ≥ 0. •

14.6 Application #2: Negative gradient systems

We now summarize and extend the analysis given in Example 14.3 of the stability properties of negative

gradient systems. Recall for convenience that, given a di�erentiable function V : Rn → R, the negative
gradient �ow de�ned by V is the dynamical system

ẋ(t) = −∂V
∂x

(x(t)). (14.5)

We start by noting that, as in the Exercise, the Lie derivative of V along the negative gradient �ow is

L− ∂V
∂x
V (x) = −

∥∥∥∥
∂V

∂x
(x)

∥∥∥∥
2

≤ 0,

and that, therefore, each sublevel set V −1
≤ (`), for ` ∈ R is invariant (provided it is non-empty).

Given a twice di�erentiable function V : Rn → R and a point x ∈ Rn, the Hessian matrix of
V , denoted by HessV (x) ∈ Rn×n, is the symmetric matrix of second order partial derivatives at x:

(HessV )ij(x) = ∂2V/∂xi∂xj(s). Given a critical point x∗ ofV , if the Hessian matrix HessV (x∗) is positive

de�nite, then x∗ is an isolate local minimum point of V . The converse is not true; as a counterexample,

consider the function V (x) = x4
and the critical point x∗ = 0.

Theorem 14.13 (Convergence of negative gradient �ows). Let V : Rn → R be twice-di�erentiable
and assume its sublevel set V −1

≤ (`) = {x ∈ Rn | V (x) ≤ `} is compact for some ` ∈ R. Then the negative
gradient �ow (14.5) has the following properties:
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(i) each solution t 7→ x(t) starting in V −1
≤ (`) satis�es limt→+∞ V (x(t)) = c, for some c ≤ `, and

approaches the set of critical points of V :
{
x ∈ Rn

∣∣ ∂V
∂x

(x) = 0n
}
,

(ii) each local minimum point x∗ is locally asymptotically stable and it is locally exponentially stable if and
only if HessV (x∗) is positive de�nite,

(iii) a critical point x∗ is unstable if at least one eigenvalue of HessV (x∗) is strictly negative,

(iv) if the function V is analytic, then every solution starting in a compact sublevel set has �nite length (as a
curve in Rn) and converges to a single equilibrium point.

Proof. To show statement (i), we verify that the assumptions of the Krasovskiı̆-LaSalle Invariance Principle

are satis�ed as follows. First, as set W we adopt the sublevel set V −1
≤ (`) which is compact by assumption

and is invariant. Second we know the Lie derivative of V along the vector �eld is non-positive. Statement (i)

is now an immediate consequence of the Krasovskiı̆-LaSalle Invariance Principle.

The statements (ii) and (iii) follow from observing that the linearization of the negative gradient system

at the equilibrium x∗ is the negative Hessian matrix evaluated at x∗ and from applying Theorem 14.10.

Regarding statement (iv), we refer to the original source (Łojasiewicz, 1984). �

Note: If the function V has isolated critical points, then the negative gradient �ow evolving in a compact

set must converge to a single critical point. In such circumstances, it is also true that from almost all initial

conditions the solution converges to a local minimum rather than a local maximum point or other critical

points.

Note: If a twice-di�erentiable function V is strictly convex (as de�ned in Section 7.6), then its unique

global minimum point x∗ is globally exponentially stable; see Exercise E14.3.

14.7 Application #3: Continuous-time averaging systems and Laplacian
matrices

In this section we revisit the continuous-time averaging system, i.e., the Laplacian �ow, and study the

evolution of the max-min function as a Lyapunov function.

As in Section 11.5, de�ne the max-min function Vmax-min : Rn → R≥0 by

Vmax-min(x) = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi, (14.6)

and that Vmax-min(x) ≥ 0, and Vmax-min(x) = 0 if an only if x = α1n for some α ∈ R.

Lemma 14.14 (The max-min function along the Laplacian �ow). Let L ∈ Rn×n be the Laplacian
matrix of a weighted digraph G. Let x(t) be the solution to the Laplacian �ow ẋ = −Lx. Then

(i) t 7→ Vmax-min(x(t)) is non-increasing,

(ii) if G has a globally reachable node, then limt→∞ Vmax-min(x(t)) = 0 and limt→∞ x(t) = α1n for some
α ∈ R.
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Numerous proofs for these results are possible (e.g., statement (ii) is established in Theorem 7.4). A

second approach is to use the properties of the row-stochastic matrices exp(−Lt), t ∈ R≥0, as established

in Theorem 7.2.

Here we pursue a strategy based on adopting Vmax-min as a weak Lyapunov function and, because

Vmax-min is not continuously-di�erentiable, applying an appropriate generalization of the Krasovskiı̆-LaSalle

Invariance Principle in Theorem 14.7. For our purposes here, it su�ces to present the following concepts.

De�nition 14.15. The upper right Dini derivative and upper left Dini derivative of a continuous function
f : ]a, b[→ R at a point t ∈ ]a, b[ are de�ned by, respectively,

D+f(t) = lim sup
∆t>0,∆t→0

f(t+ ∆t)− f(t)

∆t
, and D−f(t) = lim sup

∆t<0,∆t→0

f(t+ ∆t)− f(t)

∆t
.

Note that the sup operator is always de�ned (possibly equal to +∞) and therefore so are the Dini

derivatives.

Lemma 14.16 (Properties of the upper Dini derivatives). Given a continuous function f : ]a, b[→ R,

(i) if f is di�erentiable at t ∈ ]a, b[, then D+f(t) = D−f(t) = d
dtf(t) is the usual derivative of f at t,

(ii) if D+f(t) ≤ 0 and D−f(t) ≤ 0 for all t ∈ ]a, b[, then f is non-increasing on ]a, b[, and

(iii) given di�erentiable functions f1, . . . , fm : ]a, b[→ R, if

f(t) = max{fi(t) | i ∈ {1, . . . ,m}},

then

D+f(t) = max
{ d
dt
fi(t)

∣∣ i ∈ I(t)
}
, and D−f(t) = min

{ d
dt
fi(t)

∣∣ i ∈ I(t)
}
,

where I(t) = {i ∈ {1, . . . ,m} | fi(t) = f(t)}.

Note: statement (i) follows from the de�nition of derivative of a di�erentiable function. Statement (ii) is

a consequence of Lemmas 1.3 and 1.4 in (Giorgi and Komlósi, 1992), where proofs are given. Statement (iii)

is known as Danskin’s Lemma. Given di�erentiable functions f1, . . . , fm, a consequence of statements (ii)

and (iii) is that the function t 7→ max{f1(t), . . . , fm(t)} is non-increasing on ]a, b[ if D+f(t) ≤ 0 for all

t ∈ ]a, b[.

Proof of Lemma 14.14. Letxmax(t) = max(x(t)) andxmin(t) = min(x(t)). For simplicity, let argmax(x(t)) =
{i ∈ {1, . . . , n} | xi(t) = xmax(t)} and argmin(x(t)) = {i ∈ {1, . . . , n} | xi(t) = xmin(t)}. Along the

Laplacian �ow ẋi =
∑n

j=1 aij(xj − xi), Lemma 14.16(iii) (Danskin’s Lemma) implies

D+Vmax-min(x(t)) = max{ẋi(t) | i ∈ argmax(x(t))} −min{ẋi(t) | i ∈ argmin(x(t))}

= max
{ n∑

j=1

aij(xj − xmax) | i ∈ argmax(x(t))
}

−min
{ n∑

j=1

aij(xj − xmin) | i ∈ argmin(x(t))
}
,
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where we have used−min(x) = max(−x). Becausexj−xmax ≤ 0 andxj−xmin ≥ 0 for all j ∈ {1, . . . , n},
we have established that D+Vmax-min(x(t)) is the sum of two non-positive terms. This property, combined

with Lemma 14.16(ii), implies that t 7→ Vmax-min(x(t)) is non-increasing, thereby completing the proof of

statement (i).

To establish statement (ii) we invoke a generalized version of the Krasovskiı̆-LaSalle Invariance Princi-

ple 14.7. First, we note that statement (i) implies that any solution is bounded inside [xmin(0), xmax(0)]n;

this is a su�cient property (in lieu of the compactness of the set W ). Second, we know the continuous

function Vmax-min along the Laplacian �ow is non-increasing (in lieu of the same property for a Lie derivative

of a continuously-di�erentiable function). Therefore, we now know that there exists c such that the solution

starting from x(0) converges to the largest invariant set C contained in

{
x ∈ [xmin(0), xmax(0)]n | D+Vmax-min(x)

∣∣
ẋ=−Lx = 0

}
∩V −1

max-min
(c).

Because Vmax-min is non-negative, we know c ≥ 0. We now assume by absurd that c > 0, we let y(t) be

a trajectory originating in C , and we aim to show that Vmax-min(y(t)) decreases along time (which is a

contradiction because C is invariant).

Let k be a globally reachable node. Let i (resp. j) be an arbitrary index in argmax(y(0)) (resp. argmin(y(0)))

so that yi(0)− yj(0) = c > 0. Without loss of generality we assume yk(0) < yi(0). (Otherwise it would

need to be yk(0) > yj(0) and we would proceed similarly.) Recall we know ẏi(0) ≤ 0. We now note that,

if ẏi(t) = 0 for all t ∈ (0, ε) for a positive ε, then the equation ẏi =
∑

j aij(yj − yi) and the property

yi(0) = max y(0) together imply that yj(t) = yi(t) for all t ∈ (0, ε) and for all j such that aij > 0.

Iterating this argument along the directed path from i to k, we get the contradiction that yk(t) = yi(t)
for all t ∈ (0, ε). Therefore, we know that ẏi(t) < 0 for small times. Because i is an arbitrary index in

argmax(y(0)), we have proved that t 7→ max y(t) is strictly decreasing for small times. This establishes

that C is not invariant if c > 0 and completes the proof of statement (ii). �

14.8 Application #4: Positive linear systems and Metzler matrices

In this section we study the positive linear system ẋ = Ax, x ∈ Rn≥0, with equilibrium point 0n, and with

matrix A being Metzler matrix. To establish the stability properties of 0n, we start by characterizing certain

properties of Metzler matrices.

We recall from Section 9.2 the properties of Metzler matrices. For example the Perron-Frobenius

Theorem 9.4 for Metzler matrices establishes the existence of a dominant eigenvalue. If the dominant

eigenvalue is negative, then the Metzler matrix is Hurwitz; this case was studied in Theorem 9.5.

For the remainder of this section, given a symmetric matrix A ∈ Rn×n, we write A � 0 (resp. A ≺ 0) if

A is positive de�nite (resp. negative de�nite), that is, if all its eigenvalues are strictly positive (resp. strictly

negative).

Theorem14.17 (Properties ofHurwitzMetzlermatrices: continued). For aMetzlermatrixA ∈ Rn×n,
the following statements are equivalent:

(i) A is Hurwitz,

(ii) A is invertible and −A−1 ≥ 0,

(iii) for all b ≥ 0n, there exists x∗ ≥ 0n solving Ax∗ + b = 0n,

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



14.8. Application #4: Positive linear systems and Metzler matrices 231

(iv) there exists ξ ∈ Rn such that ξ > 0n and Aξ < 0n,

(v) there exists η ∈ Rn such that η > 0n and ηTA < 0T, and

(vi) there exists a diagonal matrix P � 0 such that ATP + PA ≺ 0.

Note: if the vectors ξ and η satisfy the conditions of statements (iv) and (v) respectively, then the matrix

P = diag(η1/ξ1, . . . , ηn/ξn) satis�es the conditions of statement (vi).

Note: a matrix A with a diagonal matrix P as in statement (vi) is said to be diagonally stable.

Proof. The equivalence between statements (i), (ii), and (iii) is established in Theorem 9.5.

Statements (iv) and (v) are equivalent because of the following argument and its converse: if statement (iv)

holds with ξ = ξ(A), then statement (v) holds with η = ξ(AT).

We �rst prove that (ii) implies (iv). Set ξ = −A−11n. Because −A−1 ≥ 0 is invertible, it can have no

row identically equal to zero. Hence ξ = −A−11n > 0n. Moreover Aξ = −1n < 0n.

Next, we prove that (iv) implies (i). Let λ be an eigenvalue of A with eigenvector v. De�ne w ∈ Rn by

wi = vi/ξi, for i ∈ {1, . . . , n}, where ξ is as in statement (iv). We have therefore λξiwi =
∑n

j=1 aijξjwj .
If ` is the index satisfying |w`| = maxi |wi| > 0, then

λξ` = a``ξ` +
n∑

j=1,j 6=`
a`jξj

wj
w`
,

which, in turn, implies

|λξ` − a``ξ`| ≤
n∑

j=1,j 6=`
a`jξj

∣∣∣∣
wj
w`

∣∣∣∣ ≤
n∑

j=1,j 6=`
a`jξj < −a``ξ`,

where the last equality follows from the `-th row of the inequality Aξ < 0n. Therefore, |λ− a``| < −a``.
This inequality implies that the eigenvalue λ must belong to an open disc in the complex plan with center

a`` < 0 and radius |a``|. Hence, λ, together with all other eigenvalues of A, must have negative real part.

We now prove that (iv) implies (vi). From statement (iv) applied toA andAT
, let ξ > 0n satisfyAξ < 0n

and η > 0n satisfy ATη < 0n. De�ne P = diag(η1/ξ1, . . . , ηn/ξn) and consider the symmetric matrix

ATP + PA. This matrix is Metzler and satis�es (ATP + PA)ξ = ATη + PAξ < 0n. Hence, ATP + PA
is negative diagonally dominant and, because (iv) =⇒ (i), Hurwitz. In summary, ATP + PA is symmetric

and Hurwitz, hence, it is negative de�nite.

Finally, the implication (vi) =⇒ (i) is established in Theorem 14.9. �

The following corollary illustrates how each of the conditions (iv), (v), and (vi) corresponds to a Lyapunov

function of a speci�c form for a Hurwitz Metzler system.

Corollary 14.18 (Lyapunov functions for positive linear systems). LetA be a Hurwitz Metzler matrix.
The positive linear system ẋ = Ax, x ∈ Rn≥0, with equilibrium point 0n, admits the following global Lyapunov
functions:

V1(x) = maxi∈{1,...,n} xi/ξi, for ξ > 0 satisfying Aξ < 0,

V2(x) = ηTx, η > 0 satisfying ηTA < 0,

V3(x) = V (x) = xTPx, for a diagonal matrix P � 0 satisfying ATP + PA ≺ 0.
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232 Chapter 14. Stability Theory for Dynamical Systems

We illustrate the level sets of these three Lyapunov functions in Figure 14.7.

(a) Rectangular level set (b) Linear level set (c) Quadratic level set

Figure 14.7: Level curves of Lyapunov functions for positive linear systems de�ned by Hurwitz Lyapunov matrix

14.9 Historical notes and further reading

Classic historical works on stability properties of physical systems include (Lagrange, 1788; Maxwell, 1868;

Thomson and Tait, 1867). Modern stability theory started with the work by Lyapunov (1892), who proposed

the key ideas towards a general treatment of stability notions and tests for nonlinear dynamical systems.

Lyapunov’s ideas were extended by Barbashin and Krasovskiı̆ (1952); Krasovskiı̆ (1963) and LaSalle (1960,

1968, 1976) through their work on invariance principles. Other in�uential works include (Chetaev, 1961;

Hahn, 1967).

For comprehensive treatments, we refer the reader to the numerous excellent texts in this area, e.g.,

including the classic control texts (Sontag, 1998; Khalil, 2002; Vidyasagar, 2002), the classic dynamical

systems texts (Hirsch and Smale, 1974; Arnol’d, 1992; Guckenheimer and Holmes, 1990), and the more

recent works (Haddad and Chellaboina, 2008; Goebel et al., 2012; Blanchini and Miani, 2015).

This chapter has treated systems evolving in continuous time. Naturally, it is possible to develop a

Lyapunov theory for discrete-time systems, even though remarkably there are only few references on this

topic; see (LaSalle, 1976, Chapter 1).

Our treatment of Metzler matrices in Section 14.8 is inspired by the presentation in (Rantzer, 2015).

We refer to (Clarke et al., 1998; Cortés, 2008) for a comprehensive review of stability theory for

nonsmooth systems and Lyapunov functions. Properties of the Dini derivatives are reviewed by Giorgi and

Komlósi (1992). The usefulness of Dini derivatives in continuous-time averaging systems is highlighted for

example by Lin et al. (2007); see also (Danskin, 1966) for Danskin’s Lemma.
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14.10 Exercises

E14.1 The logarithmic-linear function. For κ > 0, de�ne the function Vlog-lin,κ : R>0 → R by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.

Show that

(i) Vlog-lin,κ is continuously di�erentiable and
d
dxVlog-lin,κ(x) = (x− κ)/x,

(ii) Vlog-lin,κ(x) ≥ 0 for all x > 0 and Vlog-lin,κ(x) = 0 if and only if x = κ, and

(iii) limx→0+ Vlog-lin,κ(x) = limx→∞ Vlog-lin,κ(x) = +∞.

E14.2 Grönwall-Bellman Comparison Lemma. Given a continuous function of time t 7→ a(t) ∈ R, suppose

the signal t 7→ x(t) satis�es

ẋ(t) ≤ a(t)x(t).

De�ne a new signal t 7→ y(t) satisfying ẏ(t) = a(t)y(t). Show that

(i) y(t) = y(0) exp
( ∫ t

0
a(τ)dτ

)
, and

(ii) if x(0) ≤ y(0), then x(t) ≤ y(t).

E14.3 The negative gradient �ow of a strictly convex function. Let f : Rn → R be a strictly convex and

twice di�erentiable function. Show convergence of the associated negative gradient �ow, ẋ = − ∂
∂xf(x), to

the global minimizer x∗ of f using the Lyapunov function candidate V (x) = (x− x∗)T(x− x∗) and the

Krasovskiı̆-LaSalle Invariance Principle in Theorem 14.7.

Hint: Use the global underestimate property of a strictly convex function stated as follows: f(y)− f(x) >
∂
∂xf(x)(y − x) for all distinct x and y in the domain of f .

E14.4 Distributed optimization using the Laplacian �ow. Consider the saddle point dynamics (7.16) that

solve the optimization problem (7.15) in a distributed fashion. Assume that the objective functions are

strictly convex and twice di�erentiable and that the underlying communication graph among the distributed

processors is connected and undirected. By using the Krasovskiı̆-LaSalle Invariance Principle show that all

solutions of the saddle point dynamics converge to the set of saddle points.

Hint: Use the following global underestimate property of a strictly convex function: f(y)−f(x) > ∂
∂xf(x)(y−x)

for all distinct x and y in the domain of f ; and the following global overestimate property of a concave function:
g(y)− g(x) ≤ ∂

∂xg(x)(y − x) for all distinct x and y in the domain of g. Finally, note that the overestimate
property holds with equality g(y)− g(x) = ∂

∂xg(x)(y − x) if g(x) is a�ne.

E14.5 Region of attraction for an example nonlinear systems. Consider the nonlinear system

ẋ1 = −2x1 − 2x2 − 4x31x
2
2,

ẋ2 = −2x1 − 2x2 − 2x41x2.

Is the origin locally asymptotically stable? What is the region of attraction?

E14.6 A useful corollary by Barbashin and Krasovskiı̆ (1952). Consider a dynamical system (Rn, f) with

di�erentiable vector �eld f and with an equilibrium point x∗ ∈ Rn.

Assume the continuously-di�erentiable V : Rn → R is a weak Lyapunov function, but not a local

Lyapunov function (as de�ned in Theorem 14.4). In other words, assume V is locally positive-de�nite about

x∗ (Assumption (L1)) and LfV is locally negative-semide�nite about x∗ (Assumption (L2)), but LfV is not

locally negative-de�nite about x∗ (Assumption (L3)). Then Lyapunov Theorem 14.4 implies that x∗ is stable

but not necessarily locally asymptotically stable.

Now, assume:
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234 Chapter 14. Stability Theory for Dynamical Systems

(L7) {x∗} is the only positively invariant set in {x ∈W | LfV (x) = 0}, where W be a neighborhood of

x∗ on which V is positive-de�nite and LfV is negative-semide�nite.

Prove that Assumptions (L1), (L2) and (L7) imply the equilibrium point x∗ is locally asymptotically stable.

E14.7 Limit sets of dynamical systems. Consider the following nonlinear dynamical system

ẋ1 = 4x21x2 − f1(x1)(x21 + 2x22 − 4), (E14.1a)

ẋ2 = −2x31 − f2(x2)(x21 + 2x22 − 4), (E14.1b)

where the di�erentiable functions f1(x), f2(x) have the same sign as their arguments, i.e., xifi(xi) > 0 if

xi 6= 0, fi(0) = 0, and f ′i(0) > 0. This vector �eld exhibit some very unconventional limit sets. In what

follows you will investigate this vector �eld and show that each trajectory converge to an equilibrium, but

that none of the equilibria is Lyapunov stable.

(i) Show that E = {x ∈ R2 | x21 + 2x22 = 4} is an invariant set. Calculate the equilibria on the set E .

(ii) Show that all trajectories converge either to the invariant set E or to the origin (0, 0).

(iii) Determine the largest invariant set inside E , such that all trajectories originating in E converge to that

set.

(iv) Show that the origin (0, 0) and all equilibria on E are unstable, i.e., not stable in the sense of Lyapunov.

Sketch the vector �eld.
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Chapter15

Lotka-Volterra Population Dynamics

In this chapter we study the behavior of the Lotka-Volterra population model, that was introduced in

Section 13.1. First we illustrate the behavior of the 2-dimensional model via simple phase portraits. Then,

using Lyapunov stability theory from Chapter 13 we provide su�cient conditions for the general n-

dimensional model to have a globally asymptotically stable point. As a special case, we study the case of

cooperative models.

Recall that the Lotka-Volterra vector �eld for n ≥ 2 interacting species, as given in equation (13.3), is

ẋ = diag(x)
(
Ax+ r

)
=: fLV(x), (15.1)

where the matrix A = [aij ] is called the interaction matrix, and the vector r is called the intrisic growth

rate.

15.1 Two-species model and analysis

In this section we consider the two-species Lotka-Volterra system

ẋ1 = x1(r1 + a11x1 + a12x2),

ẋ2 = x2(r2 + a21x1 + a22x2),
(15.2)

with scalar parameters (r1, r2) and (a11, a12, a21, a22). It is possible to fully characterize the dynamics

behavior of this system as a function of the six scalar parameters. As explained in Section 13.1, to model

bounded resources, our standing assumptions are:

ri > 0, and aii < 0, for i ∈ {1, 2}.

We study various cases depending upon the sign of a12 and a21.

To study the phase portrait of this two-dimensional system, it is establish the following details:

(i) along the axis x2 = 0, there exists a unique non-trivial equilibrium point x∗1 = −r1/a11;

(ii) similarly, along the axis x1 = 0, there exists a unique non-trivial equilibrium point x∗2 = −r2/a22;
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(iii) the x1-null-line is the set of points (x1, x2) where ẋ1 = 0, that is, the line in the (x1, x2) plane

de�ned by r1 + a11x1 + a12x2 = 0;

(iv) similarly, the x2-null-line is the (x1, x2) plane de�ned by r2 + a21x1 + a22x2 = 0.

Clearly, the x1-null-line (respectively the x1-null-line) passes through the equilibrium point x∗1 (respec-

tively x∗2).

In what follows we study the cases of mutualistic interactions and competitive interactions. We refer to

Exercise E15.2 for a specially-interesting case of predator-prey interactions.

15.1.1 Mutualism

Here we assume inter-species mutualism, that is, we assume both inter-species coe�cients a12 and a21

are positive. We identify two distinct parameter ranges corresponding to distinct dynamic behavior and

illustrate them in Figure 15.1.

Lemma 15.1 (Two-species mutualism). Consider the two-species Lotka-Volterra system (15.2) with scalar
parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is mutualistic, i.e., assume a12 > 0 and
a21 > 0. The following statements hold:

Case I: if a12a21 < a11a22, then there exists a unique positive equilibrium point (x∗1, x
∗
2), solution to

[
a11 a12

a21 a22

] [
x∗1
x∗2

]
= −

[
r1

r2

]
,

and all trajectories starting in R2
>0 converge to it;

Case II: otherwise, if a12a21 > a11a22, then there exists no positive equilibrium point and all trajectories
starting in R2

>0 diverge.

x⇤
1 = �r1/a11

x
⇤ 2

=
�

r 2
/a

2
2

x1-null-line

x2-null-line

Case I: a12 > 0, a21 > 0, a12a21 < a11a22. There exists a

unique positive equilibrium point. All trajectories starting in

R2
>0 converge to the equilibrium point.

x⇤
1 = �r1/a11

x
⇤ 2

=
�

r 2
/a

2
2

x1-null-line

x2-null-line

Case II: a12 > 0, a21 > 0, a12a21 > a11a22. There exists

no positive equilibrium point. All trajectories starting in R2
>0

diverge.

Figure 15.1: Two possible cases of mutualism in the two-species Lotka-Volterra system
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15.1.2 Competition

Here we assume inter-species competition, that is, we assume both inter-species coe�cients a12 and a21 are

negative. We identify four (two sets of two) distinct parameter ranges corresponding to distinct dynamic

behavior and illustrate them in Figures 15.2 and 15.3.

Lemma 15.2 (Two-species competition with a positive equilibrium). Consider the two-species Lotka-
Volterra system (15.2) with scalar parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is
competitive, i.e., assume a12 < 0 and a21 < 0. The following statements hold:

Case III: if r2/|a22| < r1/|a12| and r1/|a11| < r2/|a21|, then there exists a unique positive equilibrium,
which attracts all trajectories starting in R2

>0;

Case IV: if r1/|a12| < r2/|a22| and r2/|a21| < r1/|a11|, then the equilibrium in R2
>0 is unstable; all

trajectories (except the equilibrium solution) converge either to the equilibrium (−r1/a11, 0) or to the
equilibrium (0,−r2/a22).

As for Case I, for Cases III and IV, it is easy to compute the unique positive equilibrium point (x∗1, x
∗
2)

as the solution to

[
a11 a12

a21 a22

] [
x∗1
x∗2

]
= −

[
r1

r2

]
.

�r2/a21

�
r 1

/a
1
2

�r1/a11

�
r 2

/a
2
2

x1-null-line

x2-null-line

Case III: a12 < 0, a21 < 0, r2/|a22| < r1/|a12|, and

r1/|a11| < r2/|a21|. There exists a unique positive equi-

librium, which attracts all trajectories starting in R2
>0.

�
r 1

/a
1
2

�
r 2

/a
2
2

�r2/a21 �r1/a11

x1-null-line

x2-null-line

Case IV: a12 < 0, a21 < 0, r1/|a12| < r2/|a22|, and

r2/|a21| < r1/|a11|. The equilibrium in R2
>0 is unstable;

all trajectories (except the equilibrium solution) converge ei-

ther to the equilibrium (−r1/a11, 0) or to the equilibrium

(0,−r2/a22).

Figure 15.2: Two competition cases with an equilibrium in the two-species Lotka-Volterra system

Lemma 15.3 (Two-species competition without positive equilibria). Consider the two-species Lotka-
Volterra system (15.2) with scalar parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is
competitive, i.e., assume a12 < 0 and a21 < 0. The following statements hold:

Case V: if r2/|a22| < r1/|a12| and r2/|a21| < r1/|a11|, then there exists no equilibrium in R2
>0 and all

trajectories starting in R2
>0 converge to the equilibrium (−r1/a11, 0);
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Case VI: if r1/|a12| < r2/|a22| and r1/|a11| < r2/|a21|, then there exists no equilibrium in R2
>0 and all

trajectories starting in R2
>0 converge to the equilibrium (0,−r2/a22).

�r2/a21 �r1/a11

�
r 1

/a
1
2

�
r 2

/
a
2
2

x1-null-line

x2-null-line

Case V: a12 < 0, a21 < 0, r2/|a22| < r1/|a12|, and

r2/|a21| < r1/|a11|. There exists no equilibrium in R2
>0.

All trajectories starting in R2
>0 converge to the equilibrium

(−r1/a11, 0).

x2-null-line

x1-null-line

�r2/a21�r1/a11

�
r 1

/a
1
2

�
r 2

/
a
2
2

Case VI: a12 < 0, a21 < 0, r1/|a12| < r2/|a22|, and

r1/|a11| < r2/|a21|. There exists no equilibrium in R2
>0.

All trajectories starting in R2
>0 converge to the equilibrium

(0,−r2/a22).

Figure 15.3: Two competition cases without equilibria in the two-species Lotka-Volterra system

15.2 General results for Lotka-Volterra models

We have seen some variety of behavior in the 2-species Lotka-Volterra model (15.2). Much richer dynamical

behavior is possible in the n-species Lotka-Volterra model (13.3), including persistence, extinction, equilibria,

periodic orbits, and chaotic evolution. In what follows we focus on su�cient conditions for the existence

and stability of equilibrium points.

Lemma 15.4 (Lotka-Volterra is a positive system). For n ≥ 2, the Lotka-Volterra system (15.1) is a
positive system, i.e., x(0) ≥ 0 implies x(t) ≥ 0 for all subsequent t. Moverover, if xi(0) = 0, then xi(t) = 0
for all subsequent t.

Therefore, without loss of generality, we can assume that all initial conditions are positive vectors in

Rn>0. In other words, if a locally-asymptotically stable positive equilibrium exists, the best we can hope for

is to establish that its region of attraction is Rn>0. We are now ready to state the main result of this section.

Theorem 15.5 (Su�cient conditions for global asymptotic stability). For the Lotka-Volterra sys-
tem (15.1) with interaction matrix A and intrinsic growth rate r, assume

(A1) A is diagonally stable, i.e., there exists a positive vector p ∈ Rn such that diag(p)A + AT diag(p) is
negative de�nite, and

(A2) the unique equilibrium point x∗ = −A−1r is positive.
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Then x∗ is globally asymptotically stable on Rn>0.

Proof. Note that A diagonally stable implies A Hurwitz and invertible. For κ > 0, recall the logarithmic-
linear function Vlog-lin,κ : R>0 → R illustrated in Figure 14.6 and de�ned by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.

Assumption (A2) allows us to de�ne V : Rn>0 → R≥0 by

V (x) =

n∑

i=1

piVlog-lin,x∗i
(xi) =

n∑

i=1

pi
(
xi − x∗i − x∗i log(xi/x

∗
i )
)
.

From Exercise E14.1 we know that the function Vlog-lin,κ is continuously di�erentiable, takes non-negative

values and satis�es Vlog-lin,κ(xi) = 0 if and only if xi = κ. Moreover, this function is unbounded in the

limits as xi →∞ and xi → 0+
. Therefore, V is globally positive-de�nite about x∗ and proper.

Next, we compute the Lie derivative of V along the �ow of the Lotka-Volterra vector �eld fLV(x) =
diag(x)(Ax+ r). First, compute

d
dxi
Vlog-lin,x∗i

(xi)(xi) = (xi − x∗i )/xi, so that

LfLV
V (x) =

n∑

i=1

pi
xi − x∗i
xi

(fLV(x))i.

Because A is invertible and x∗ = −A−1r, we write Ax+ r = A(x− x∗) and obtain

LfLV
V (x) =

n∑

i=1

pi(xi − x∗i )(A(x− x∗))i

= (x− x∗)TAT diag(p)(x− x∗)

=
1

2
(x− x∗)T(AT diag(p) + diag(p)A)(x− x∗).

where we use the equality yTBy = yT(B +BT)y/2 for all y ∈ Rn and B ∈ Rn×n. Assumption (A1) now

implies that LfLV
V (x) ≤ 0 with equality if and only if x = x∗. Therefore, LfLV

V is globally negative-

de�nite about x∗. According to the Lyapunov Stability Criteria in Theorem 14.4, x∗ is globally asymptotically

stable on Rn>0. �

Note: Assumption (A2) is not critical and, via a more complex treatment, a more general theorem can

be obtained. Under the diagonal stability Assumption (A1), (Takeuchi, 1996, Theorem 3.2.1) shows the

existence of a unique non-negative and globally stable equilibrium point x∗ for each r ∈ Rn; the existence

and uniqueness of x∗ is established via a linear complementarity problem.

15.3 Cooperative Lotka-Volterra models

In this section we focus on the case of Lotka-Volterra systems with only mutualistic interactions. In other

words, we consider systems whose interaction terms satisfy aij ≥ 0 for all i and j. For such systems,

whenever i 6= j we know

∂

∂xj
(fLV)i(x) = aijxj ≥ 0,
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240 Chapter 15. Lotka-Volterra Population Dynamics

so that the Jacobian matrix of such systems is Metzler everywhere in R≥0. Such systems are called

cooperative.
We recall from Section 9.2 the properties of Metzler matrices. For example the Perron-Frobenius

Theorem 9.4 for Metzler matrices establishes the existence of a dominant eigenvalue. Metzler matrices

have so much structure that we are able to provide the following fairly comprehensive characterization:

(1) Metzler matrices with a positive dominant eigenvalue have unbounded solutions of the Lotka-Volterra

model (see Lemma 15.6 below), and (2) Metzler matrices with a negative dominant eigenvalue (and positive

intrinsic growth parameter) have a globally asymptotically-stable equilibrium point (see Theorem 15.7

below).

We start with a su�cient condition for unbounded evolutions.

Lemma 15.6 (Unbounded evolutions for unstable Metzler matrices). Consider the Lotka-Volterra
system (15.1) with interaction matrix A and intrinsic growth rate r. If A is an irreducible Metzler matrix with
a positive dominant eigenvalue, then

(i) there exist unbounded solutions starting from R>0, and

(ii) if r > 0, then all solutions starting from R>0 are unbounded.

Proof. Let λ > 0 and w > 0 with 1T
nw = 1 be the dominant eigenvalue and left eigenvector of A, whose

existence and properties are established by the Perron-Frobenius Theorem 9.4 for Metzler matrices. De�ne

V : Rn>0 → R>0 as the following weighted geometric average:

V (x) = Πn
i=1x

wi
i .

Along the �ow of the Lotka-Volterra system, simple calculations show

∂V (x)

∂xi
= wi

1

xi
V (x) =⇒ LfLV

V (x)

V (x)
=

n∑

i=1

wi
1

xi
(fLV(x))i = wT(Ax+ r) = wT(λx+ r).

Generalizing the classic inequality (a+ b)/2 ≥ (ab)1/2
for any a, b ∈ R>0, we recall from (Lohwater, 1982)

the weighted arithmetic-geometric mean inequality: wTx ≥ Πn
i=1x

wi
i for any x,w ∈ Rn>0. Therefore, we

have

LfLV
V (x)

V (x)
= wT(λx+ r) ≥ λΠn

i=1x
wi
i + wTr = λV (x) + wTr,

so that

LfLV
V (x) ≥ V (x)(λV (x) + wTr).

This inequality implies that, for any x(0) such that V (x(0)) > −wTr/λ, the function t 7→ V (x(t)), and

therefore the state x(t), goes to in�nity in �nite time. This concludes the proof of statement (i).

Statement (ii) follows by noting that r > 0 implies V (x(0)) > −wTr/λ for all x(0) ∈ Rn>0. �

Note: this lemma is true for any interaction matrix A that has a positive left eigenvector with positive

eigenvalue.

We next provide a su�cient condition for global convergence to a unique equation* point.
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Theorem15.7 (Global convergence for cooperative Lotka-Volterra). For the Lotka-Volterra system (15.1)

with interaction matrix A and intrinsic growth rate r, assume

(A3) the interaction matrix A is Metzler and Hurwitz, and

(A4) the intrinsic growth parameter r is positive.

Then there exists a unique interior equilibrium point x∗ and x∗ is globally attractive on Rn>0.

Proof. We leave it to the reader to verify that, based on Assumptions (A3) and (A4), the Assumptions (A1)

and (A2) of Theorem 15.5 are satis�ed so that its consequences hold. �

Note: In (Baigent, 2010, Chapter 4), Theorem 15.7 is established via the Lyapunov function V (x) =

maxi∈{1,...,n}
|xi−x∗i |
ξi

, where x∗ is the equilibrium point and diag(ξ1, . . . , ξn) is the diagonal Lyapunov

matrix (as in Theorem 14.17(vi)) for the Metzler Hurwitz matrix A.

15.4 Historical notes and further reading

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for

modeling the dynamics of interacting populations in mathematical ecology. These equations were originally

developed in (Lotka, 1920; Volterra, 1928).

An early reference for the analysis of the 2-species model is (Goh, 1976). Early references for the key

stability result in Theorem 15.5 are (Takeuchi et al., 1978; Goh, 1979).

Textbook treatment include (Goh, 1980; Takeuchi, 1996; Baigent, 2010). For a more complete treatment of

the n-special model, we refer the interested reader to (Takeuchi, 1996; Baigent, 2010). For example, Baigent

(2010) discusses conservative Lotka-Volterra models (Hamiltonian structure and existence of periodic orbits),

competitive and monotone models.

We refer to the texts (Hofbauer and Sigmund, 1998; Sandholm, 2010) for comprehensive discussions

about the connection with between Lotka-Volterra models and evolutionary game dynamics.
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242 Chapter 15. Lotka-Volterra Population Dynamics

15.5 Exercises

E15.1 Proofs for 2-species behavior. Provide proofs for Lemmas 15.1, 15.2, and 15.3.

E15.2 The 2-dimensional Lotka-Volterra predator/prey dynamics. In this exercise we study a 2-dimensional

predator/prey model. We specialize the general Lotka-Volterra population model to the following set of

equations:

ẋ(t) = αx(t)− βx(t)y(t),

ẏ(t) = −γy(t) + δx(t)y(t),
(E15.1)

where x is the non-negative number of preys, y is the non-negative number of predators individuals, and α,

β, and γ are �xed positive systems parameters.

(i) Compute the unique non-zero equilibrium point (x∗, y∗) of the system.

(ii) Determine, if possible, the stability properties of the equilibrium points (0, 0) and (x∗, y∗) via lineariza-

tion (Theorem 14.10).

(iii) De�ne the function V (x, y) = −δx− βy + γ ln(x) + α ln(y) and note its level sets as illustrated in

Figure (E15.1).

a) Compute the Lie derivative of V (x, y) with respect to the Lotka-Volterra vector �eld.

b) What can you say about the stability properties of (x∗, y∗)?

c) Sketch the trajectories of the system for some initial conditions in the x-y positive orthant.

x

(x⇤, y⇤)y

Figure E15.1: Level sets of the function V (x, y) for unit parameter values
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Chapter16

Virus Propagation in Contact Networks

In this chapter we continue our discussion about the di�usion and propagation of infectious diseases.

Starting from the scalar lumped models discussed in Section 13.2, we presents deterministic nonlinear

models over strongly-connected contact networks. We consider network models for susceptible-infected

(SI), susceptible-infected-susceptible (SIS), and susceptible-infected-recovered (SIR) settings. In each setting,

we provide a comprehensive nonlinear analysis of equilibria, stability properties, convergence, monotonicity,

positivity, and threshold conditions; in all three cases the network results are appropriate generalizations

of the respective scalar models.

As in previous chapters, for an irreducible nonnegative matrix A, we let λmax = ρ(A), wmax, and vmax

denote the dominant eigenvalue of A and the corresponding positive left and right eigenvectors associated

with λmax, normalized to satisfy wT
maxvmax = 1.

16.1 Susceptible-Infected Model

Recall that the scalar SI model is discussed in Section 13.2, including model (13.4), solution (13.5), and

sample evolution in Figure 13.4. Given an adjacency matrix A ∈ Rn×n≥0 , the network SI model, illustrated in

Figure 16.1, is given by

ẋi(t) = β
(
1− xi(t)

) n∑

j=1

aijxj(t), (16.1)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag

(
x(t)

))
Ax(t), (16.2)

where β > 0 is the infection rate. Alternatively, in terms of the fractions of susceptibile individuals

s(t) = 1n − x(t), the network SI model is

ṡ(t) = −β diag(s(t))A(1n − s(t)). (16.3)

Theorem 16.1 (Dynamical behavior of network SI model). Consider the network SI model (16.2) with
β > 0. For strongly connected graph with adjacency matrix A, the following statements hold:
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244 Chapter 16. Virus Propagation in Contact Networks

Susceptible Infected
� (infection rate)

Figure 16.1: In the network SI model, each node is described by a fraction of infected individuals taking value between

0 (blue) and 1 (red). Individuals become increasingly infected with infection rate β.

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, x(t) is monotonically non-
decreasing (here by monotonically non-decreasing we mean x(t1) ≤ x(t2) for all t1 ≤ t2). Finally, if
x(0) ≥ 0n and x(0) 6= 0n, then x(t) > 0n for all t > 0;

(ii) the model (16.2) has two equilibrium points: 0n (no epidemic), and 1n (full contagion);

a) the linearization of model (16.2) about the equilibrium point 0n is ẋ = βAx and it is exponentially
unstable;

b) let D = diag(A1n) be the out-degree matrix. The linearization of model (16.3) about the equilib-
rium 0n is ṡ = −βDs and it is exponentially stable;

(iii) each trajectory with initial condition x(0) 6= 0n converges asymptotically to 1n, that is, the epidemic
spreads monotonically to the entire network.

Proof. Regarding statement (i), the fact that, if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0
means that [0, 1]n is an invariant set for the di�erential equation (16.2). This is the consequence of Nagumo’s

Theorem (see (Blanchini and Miani, 2015, Theorem 4.7)), since for any x belonging on the boundary of the

set [0, 1]n, the vector β
(
In − diag

(
x
))
Ax is either tangent or points inside the set [0, 1]n.

Observe that the invariance of the set [0, 1]n implies that ẋ(t) ≥ 0n and so x(t1) ≤ x(t2) for all t1 ≤ t2.

We now want to prove that, if x(0) ≥ 0n and x(0) 6= 0n, then x(t) > 0n for all t > 0. If, by

contradiction, there is i ∈ {1, . . . , n} and T > 0 such that xi(T ) = 0, then the monotonicity of xi(t) = 0
implies that xi(t) = 0 for all t ∈ [0, T ], which yields ẋi(t) = 0 for all t ∈ [0, T ]. By equation (16.1) this

implies that xj(t) = 0 for all t ∈ [0, T ] for all j such that aij > 0. We iterate this argument and using the

irreducibility of A we get the contradiction that x(t) = 0 for all t ∈ [0, T ]. This concludes the proof of (i).

Regarding statement (ii), note that 0n and 1n are clearly equilibrium points. Let x̄ ∈ [0, 1]n be an

equilibrium and assume that x̄ 6= 1n. Then there is i such that x̄i 6= 1. Since β
(
1− x̄i

)∑n
j=1 aij x̄j = 0,

then

∑n
j=1 aij x̄j = 0 which implies that x̄j = 0 for all j such that aij > 0. By iterating this argument

and using the irreducibility of A we get that x̄ = 0 concluding only 0n and 1n are equilibrium points.

Statements (ii)a and (ii)b are obvious. Exponential stability of the linearization ṡ = −βDs is obvious, and

the Perron-Frobenius Theorem implies the existence of the unstable positive eigenvalue ρ(A) > 0 for the

linearization ẋ = βAx.
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16.2. Susceptible-Infected-Susceptible model 245

Regarding statement (iii), consider the function V (x) = 1T
n(1n − x); this is a smooth function de�ned

over the compact and forward invariant set [0, 1]n (see statement (i)). Since V̇ = −β1T
n

(
In − diag(x)

)
Ax,

we know that V̇ ≤ 0 for all x and V̇ (x) = 0 if and only if x ∈ {0n,1n}. The Krasovskiı̆-LaSalle Invariance

Principle implies that all trajectories with x(0) converge asymptotically to either 1n or 0n. Additionally,

note that 0 ≤ V (x) ≤ n for all x ∈ [0, 1]n, that V (x) = 0 if and only if x = 1n and that V (x) = n if and

only if x = 0n. Therefore, all trajectories with x(0) 6= 0n converge asymptotically to 1n. �

For the adjacency matrix A, there exists a non-singular matrix T such that A = TJT−1
, where J is the

Jordan normal form of A. Since A is non-negative and irreducible, the �rst Jordan block J1 = (λmax)1×1

and λmax > <(λi) for any other eigenvalue λi of A. Consider now the onset of an epidemic in a large

population characterized by a small initial infection x(0) = x0 much smaller than 1n. The system evolution

is approximated by ẋ = βAx. This “initial-times” linear evolution satis�es

x(t) = eβAt x(0) = T eβJt T−1x(0)

= eβλmaxt
(
Te1eT1 T

−1x(0) + o(1)
)
,

where e1 is the �rst standard basis vector in Rn and o(1) denotes a time-varying vector that vanishes as

t→ +∞. Let u1 denote the �rst column of T and let vT1 denote the �rst row of T−1
. Since AT = TJ and

T−1A = JT−1
, one can check that u1 (v1 resp.) is the right (left resp.) eigenvector of A associated with

the eigenvalue λmax. Since T−1T = In, we have vT1 u1 = 1. Therefore,

x(t) = eβλmaxt
(
u1v

T
1 x(0) + o(1)

)

= eβλmaxt
(wT

maxx(0)

wT
maxvmax

vmax + o(1)
)
. (16.4)

That is, the epidemic initially experiences exponential growth with rate βλmax and with distribution among

the nodes given by the eigenvector vmax.

Now suppose that at some time T , for all i we have that xi(T ) = 1− εi, where each εi is much smaller

than 1. Then, for time t > T , the approximated system for s(t) is given by:

ṡi(t) = −βdisi(t) =⇒ si(t) = εi e−βdi(t−T ) .

From the discussion above, we conclude that the initial infection rate is proportional to the eigenvector

centrality, and the �nal infection speed is proportional to the degree centrality.

16.2 Susceptible-Infected-Susceptible model

Recall that the scalar SIS model is discussed in Section 13.2, including model (13.6), solution (13.7), and

sample evolution in Figure 13.5. The network SIS model with infection rate β and recovery rate γ is given

by:

ẋi(t) = β(1− xi(t))
n∑

j=1

aijxj(t)− γxi(t), (16.5)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag(x(t))

)
Ax(t)− γx(t). (16.6)
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In the rest of this section we study the dynamical properties of this model. We start by de�ning the

monotonically-increasing functions

f+(y) = y/(1 + y), and f−(z) = z/(1− z),

for y ∈ R≥0 and z ∈ [0, 1[. Note that f+(f−(z)) = z for all z ∈ [0, 1). For vector variables y ∈ Rn≥0 and

z ∈ [0, 1)n, we write F+(y) = (f+(y1), . . . , f+(yn)), and F−(z) = (f−(z1), . . . , f−(zn)).

We �rst characterize the behavior of the network SIS model in a regime we describe as “below the

threshold.”

Theorem 16.2 (Dynamical behavior of the network SIS model: Below the threshold). Consider the
network SIS model (16.5), with β > 0 and γ > 0, over a strongly connected digraph with adjacency matrix
A. Let λmax and wmax be the dominant eigenvalue of A and the corresponding normalized left eigenvector
respectively. If βλmax/γ < 1, then

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) ≥ 0n and x(0) 6= 0n,
then x(t) > 0n for all t > 0;

(ii) there exists a unique equilibrium point 0n, the linearization of (16.5) about 0n is ẋ = (βA − γIn)x
and it is exponentially stable;

(iii) from any x(0) 6= 0n, the weighted average t 7→ wT
maxx(t) is monotonically and exponentially decreasing,

and all the trajectories converge to 0n.

Proof. Regarding statement (i), as in Theorem 16.1 the �rst part is the consequence of Nagumo’s The-

orem. Then de�ne y(t) := eγtx(t). Notice that this variable satis�es the di�erential equation ẏ(t) =
β diag(s(t))Ay(t). From the same arguments used in the proof of the statement (i) in Theorem 16.1 we

argue that y(t) > 0n for all t > 0. From this it follows that also x(t) > 0n for all t > 0.

Regarding statement (ii), assume that x∗ is an equilibrium point. It is easy to se that x∗ < 1n. Observe

moreover that x∗ is an equilibrium point if and only if Âx∗ = F−(x∗) or, equivalently, if and only if

F+

(β
γAx

∗) = x∗. This means that x∗ is an equilibrium if and only if it is a �xed point of F , where

F(x) := F+

(β
γAx

)
. Let Â = βA/γ. For x ∈ [0, 1]n, note F+(Âx) ≤ Âx because f+(z) ≤ z. Moreover,

0n ≤ x ≤ y implies that 0n ≤ F(x) ≤ Ây. Therefore, if 0n ≤ x, then Fk(x) ≤ Âkx, for all k. Since Â is

Schur stable, then limk→∞Fk(x) = 0. This shows that the only �xed point of F is zero.

Next, the linearization of equation (16.6) is veri�ed by dropping the second-order terms. The linearized

system is exponentially stable at 0n for βλmax − γ < 0 because λmax is larger, in real part, than any other

eigenvalue of A by the Perron-Frobenius Theorem for irreducible matrices.

Finally, regarding statement (iii), de�ne y(t) = wT
maxx(t) and note that

(
In − diag(z)

)
wmax ≤ wmax

for any z ∈ [0, 1]n. Therefore,

ẏ(t) ≤ βwT
maxAx(t)− γwT

maxx(t) = (βλmax − γ)y(t) < 0.

By the Grönwall-Bellman Comparison Lemma in Exercise E14.2, y(t) is monotonically decreasing

and satis�es y(t) ≤ y(0) exp
(
(βλmax − γ)t

)
from all initial conditions y(0). This concludes our proof of

statement (iii). �

We next present the dynamical behavior of the network SIS model “above the threshold” as follows.
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Theorem 16.3 (Dynamical behavior of the network SIS model: Above the threshold). Consider the
network SIS model (16.5), with β > 0 and γ > 0, over a strongly connected digraph with adjacency matrix A.
Let λmax be the dominant eigenvalue of A and let wmax and vmax be the corresponding normalized left and
right eigenvectors respectively. Let d = A1n. If βλmax/γ > 1, then

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) ≥ 0n and x(0) 6= 0n,
then x(t) > 0n for all t > 0;

(ii) 0n is an equilibrium point, the linearization of system (16.6) at 0n is unstable due to the unstable
eigenvalue βλmax − γ (i.e., there will be an epidemic outbreak);

(iii) besides the equilibrium 0n, there exists a unique equilibrium point x∗, called the endemic state, such
that

a) x∗ > 0n,
b) x∗ = δavmax +O(δ2) as δ → 0+, where δ := βλmax/γ − 1 and

a =
wTmaxvmax

wTmax diag(vmax)vmax
,

c) x∗ = 1n − (γ/β) diag(d)−11n +O(γ2/β2), at �xed A, as γ/β → 0+,
d) de�ne a sequence {y(k)}k∈N ⊂ Rn by

y(k + 1) := F+

(β
γ
Ay(k)

)
. (16.7)

If y(0) ≥ 0 is a scalar multiple of vmax and satis�es either 0 < maxi yi(0) ≤ 1− γ/(βλmax) or
mini yi(0) ≥ 1− γ/(βλmax), then

lim
k→∞

y(k) = x∗.

Moreover, ifmaxi yi(0) ≤ 1−γ/(βλmax), then y(k) is monotonically non-decreasing; ifmini yi(0) ≥
1− γ/(βλmax), then y(k) is monotonically non-increasing.

(iv) the endemic state x∗ is locally exponentially stable and its domain of attraction is [0, 1]n \ 0n.

Note: statement (ii) means that, near the onset of an epidemic outbreak, the exponential growth rate is

βλmax − γ and the outbreak tends to align with the dominant eigenvector vmax; for more details see the

discussion leading up to the approximate evolution (16.4).

Proof of selected statements in Theorem 16.3. Statement (i) can be proved as done for statement (i) of Theo-

rem 16.1.

Statement (ii) follows from the same analysis of the linearized system as in the proof of Theorem 16.2(ii).

Regarding statement (iii), we begin by establishing two properties of the map x 7→ F+(Âx), for

Â = βA/γ. First, we claim that, y > z ≥ 0n implies F+(Ây) > F+(Âz). Indeed, note that G being

connected implies that the adjacency matrix A has at least one strictly positive entry in each row. Hence,
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y − z > 0n implies Â(y − z) > 0n and, since f+ is monotonically increasing, Ây > Âz implies

F+(Ây) > F+(Âz).

Second, we observe that, for any 0 < α < 1 and z > 0, we have f+(αz) ≥ z if and only if z ≤ 1− 1/α.

Suppose y(0) is a scalar multiple of vmax and 0 < maxi yi(0) ≤ 1− γ/(βλmax). We have

F+(Ây(0))i = f+

(βλmax

γ
yi(0)

)
≥ yi(0).

Therefore, the sequence {y(k)}k∈N de�ned by equation (16.7) satis�es y(1) ≥ y(0), which in turn leads to

y(2) = F+(Ây(1)) ≥ F+(Ây(0)) = y(1), and by induction, y(k+1) = F+(Ây(k)) ≥ y(k) for any k ∈ N.

Such sequence {y(t)} is monotonically non-decreasing and entry-wise upper bounded by 1n. Therefore,

as k diverges, y(k) converges to some x∗ > 0n such that F+

(
Âx∗

)
= x∗. This proves the existence of an

equilibrium x∗ = limk→∞ y(k) > 0n as claimed in statements (iii)a and (iii)d.

Similarly, for any 0 < α < 1 and z > 0, f+(αz) ≤ z if and only if z ≥ 1− 1/α. Following the same

line of argument in the previous paragraph, one can check that the {y(k)}k∈N de�ned by equation (16.7) is

monotonically non-increasing and converges to some x∗, if y(0) is a scalar multiple of vmax and satis�es

mini yi(0) ≥ 1− γ/(βλmax).

We now establish the uniqueness of the equilibrium x∗ ∈ [0, 1]n \ {0n}. First, we claim that an

equilibrium point with an entry equal to 0 must be 0n. Indeed, assume y∗ is an equilibrium point and assume

y∗i = 0 for some i ∈ {1, . . . , n}. The equality y∗i = f+(
∑n

j=1 aijy
∗
j ) implies that also any node j with

aij > 0 must satisfy y∗j = 0. BecauseG is connected, all entries of y∗ must be zero. Second, by contradiction,

we assume there exists another equilibrium point y∗ > 0n distinct from x∗. Let α := minj{y∗j /x∗j} and

let i satisfy α = y∗i /x
∗
i . Then y∗ ≥ αx∗ > 0n and y∗i = αx∗i . Notice that we can assume with no loss of

generality that α < 1, otherwise we exchange x∗ and y∗. Observe now that

(
F+(Ây∗)− y∗

)
i

= f+

(
(Ây∗)i

)
− αx∗i

≥ f+

(
α(Âx∗)i

)
− αx∗i (Â ≥ 0n×n)

> αf+

(
(Âx∗)i

)
− αx∗i (0 < α < 1 and z > 0)

= α
(
F+(Âx∗)− x∗

)
i

= 0. (x∗ is an equilibrium)

Therefore,

(
F+(Ây∗)− y∗

)
i
> 0, which contradicts the fact that y∗ is an equilibrium.

Now we prove statement (iii)b. Observe �rst that, if we take

y(0) =

(
1− γ

βλmax

)
vmax

maxi{vmax,i}
=

δ

δ + 1

vmax

maxi{vmax,i}
,

then y(k) is monotonically non-decreasing and converges to x∗, and if we take instead

y(0) =

(
1− γ

βλmax

)
vmax

mini{vmax,i}
=

δ

δ + 1

vmax

mini{vmax,i}
,

then y(k) is monotonically non-increasing and converges to x∗. These two statements together imply

argue that

δ

δ + 1

vmax

maxi{vmax,i}
≤ x∗ ≤ δ

δ + 1

vmax

mini{vmax,i}
,
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and, in turn, that x∗ is in�nitesimal as a function of δ. Consider now the Taylor expansion x∗(δ) =
x1δ + x2δ

2 +O(δ3). Since the equilibrium x∗ satis�es the equation

(δ + 1)
(
In − diag(x∗)

)
Ax∗ − λmaxx

∗ = 0,

by substituting the expansion and equating to zero the coe�cient of the term δ, we obtain the equation

Ax1 − λmaxx1 = 0. This proves that x1 is a multiple of vmax, namely x1 = avmax for some constant a. By

equating to zero the coe�cient of the term δ2
, we obtain instead the equation

Ax1 +Ax2 − diag(x1)Ax1 − λmaxx2 = 0.

Using the fact that x1 = avmax we argue that

aλmaxvmax +Ax2 − a2λmax diag(vmax)vmax − λmaxx2 = 0.

By multiplying on the left by wTmax we obtain

aλmaxw
T
maxvmax − a2λmaxw

T
max diag(vmax)vmax = 0,

which proves that

a =
wTmaxvmax

wTmax diag(vmax)vmax
.

Point (iii)c can be proved in a similar way; we refer the reader to (Mei et al., 2017) for the details.

Regarding statement (iv) we refer the reader to (Lajmanovich and Yorke, 1976; Fall et al., 2007)

or (Khanafer et al., 2016, Theorems 1 and 2) in the interest of brevity. �

16.3 Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

Scalar SIR model In this model individuals who recover from infection are assumed not susceptible

to the epidemic any more. In this case, the population is divided into three distinct groups: s(t), x(t),

and r(t), denoting the fraction of susceptible, infected, and recovered individuals, respectively, with

s(t) + x(t) + r(t) = 1. We write the (Susceptible–Infected–Recovered) SIR model as:

ṡ(t) = −βs(t)x(t),

ẋ(t) = βs(t)x(t)− γx(t),

ṙ(t) = γx(t),

(16.8)

and present its dynamical behavior as follows.

Lemma 16.4 (Dynamical behavior of the SIR model). Consider the SIR model (16.8). From each initial
condition s(0) + x(0) + r(0) = 1 with s(0) > 0, x(0) > 0 and r(0) ≥ 0, the resulting trajectory t 7→
(s(t), x(t), r(t)) has the following properties:
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(i) s(t) > 0, x(t) > 0, r(t) ≥ 0, and s(t) + x(t) + r(t) = 1 for all t ≥ 0;

(ii) t 7→ s(t) is monotonically decreasing and t 7→ r(t) is monotonically increasing;

(iii) limt→∞(s(t), x(t), r(t)) = (s∞, 0, r∞), where r∞ is the unique solution to the equality

1− r∞ = s(0) e
−β
γ

(
r∞−r(0)

)
; (16.9)

(iv) if βs(0)/γ < 1, then t 7→ x(t) monotonically and exponentially decreases to zero as t→∞;

(v) if βs(0)/γ > 1, then t 7→ x(t) �rst monotonically increases to a maximum value and thenmonotonically
decreases to 0 as t→∞; the maximum fraction of infected individuals is given by:

xmax = x(0) + s(0)− γ

β

(
log(s(0)) + 1− log

(γ
β

))
.

As mentioned before, we describe the behavior in statement (v) as an epidemic outbreak, an exponential

growth of t 7→ x(t) for small times.

Network SIR model The network SIR model on a graph with adjacency matrix A is given by

ṡi(t) = −βsi(t)
∑n

j=1
aijxj(t),

ẋi(t) = βsi(t)
∑n

j=1
aijxj(t)− γxi(t),

ṙi(t) = γxi(t),

where β > 0 is the infection rate and γ > 0 is the recovery rate. Note that the third equation is redundant

because of the constraint si(t) + xi(t) + ri(t) = 1. Therefore, we regard the dynamical system in vector

form as:

ṡ(t) = −β diag(s(t))Ax(t), (16.10a)

ẋ(t) = β diag(s(t))Ax(t)− γx(t). (16.10b)

Theorem16.5 (Dynamical behavior of thenetwork SIRmodel). Consider the network SIRmodel (16.10),
with β > 0 and γ > 0, over a strongly connected digraph with adjacency matrix A. For t ≥ 0, let λmax(t)
and wmax(t) be the dominant eigenvalue of the non-negative matrix diag(s(t))A and the corresponding
normalized left eigenvector, respectively. The following statements hold:

(i) if x(0) ≥ 0n and s(0) > 0n, then

a) t 7→ s(t) and t 7→ x(t) are strictly positive for all t > 0,
b) t 7→ s(t) is monotonically decreasing, and
c) t 7→ λmax(t) is monotonically decreasing;

(ii) the set of equilibrium points is the set of pairs (s∗, 0n), for any s∗ ∈ [0, 1]n, and the linearization of
model (16.10) about (s∗, 0n) is

ṡ(t) = −β diag
(
s∗
)
Ax,

ẋ(t) = β diag
(
s∗
)
Ax− γx;

(16.11)
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(iii) (behavior below the threshold) let the time τ ≥ 0 satisfy βλmax(τ) < γ. Then the weighted average
t 7→ wmax(τ)Tx(t) , for t ≥ τ , is monotonically and exponentially decreasing to zero;

(iv) (behavior above the threshold) if βλmax(0) > γ and x(0) > 0n, then,

a) (epidemic outbreak) for small time, the weighted average t 7→ wmax(0)Tx(t) grows exponentially
fast with rate βλmax(0)− γ, and

b) there exists τ > 0 such that βλmax(τ) < γ;

(v) each trajectory converges asymptotically to an equilibrium point, that is, limt→∞ x(t) = 0n so that the
epidemic asymptotically disappears.

In other words, when βλmax(0)/γ > 1, we have an epidemic outbreak, i.e., an exponential growth

of infected individual for short time. In any case, the theorem guarantees that, after at most �nite time,

βλmax(t)/γ < 1 and the infected population decreases exponentially fast to zero.

Proof. Regarding statement (i)a, s(t) > 0n is due to the fact that Ax is bounded and s(t) is continuously

di�erentiable to t. The statement that x(t) > 0n for all t > 0 is proved in the same way as Theorem 16.2 (i).

Statement (i)b is the immediate consequence of ṡi(t) being strictly negative. From statement (i)a we know

that each si(t) is positive, and fromA being irreducible and x(0) 6= 0n we know that

∑n
j=1 aijxj is positive.

Therefore, ṡi(t) = −βsi(t)
∑n

j=1 aijxj(t) < 0 for all i ∈ {1, . . . , n} and t ≥ 0.

For statement (i)c, we start by recalling the following property from (Meyer, 2001, Example 7.10.2): for

B and C nonnegative square matrices, if B ≤ C , then ρ(B) ≤ ρ(C). Now, pick two time instances t1 and

t2 with 0 < t1 < t2. Let α = maxi si(t2)/si(t1) and note 0 < α < 1 because s(t) is strictly positive and

monotonically decreasing. Now note that,

diag(s(t1))A > α diag(s(t1))A ≥ diag(s(t2))A,

so that, using the property above, we know

ρ(diag(s(t1))A) > αρ(diag(s(t1))A) ≥ ρ(diag(s(t2))A).

This concludes the proof of statement (i)c.

Regarding statement (ii), note that a point (s∗, x∗) is an equilibrium if and only if:

0n = −β diag(s∗)Ax∗, and

0n = β diag(s∗)Ax∗ − γx∗.

Therefore, each point of the form (s∗, 0n) is an equilibrium. On the other hand, summing the last two

equalities we obtain 0n = γx∗ and thus x∗ must be 0n. As a straightforward result, the linearization of

model (16.10) about any equilibrium point (s∗, 0n,1n − s∗) is given by equation (16.11).

Regarding statement (iii), left multiplying wmax(τ)T on both sides of equation (16.10b) we obtain:

d

dt

(
wmax(τ)Tx(t)

)
= wmax(τ)T

(
β diag

(
s(t)

)
Ax(t)− γx(t)

)
,

≤ wmax(τ)T
(
β diag

(
s(τ)

)
Ax(t)− γx(t)

)
= (βλmax(τ)− γ)wmax(τ)Tx(t).
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Therefore, we obtain

wmax(τ)Tx(t) ≤ (wmax(τ)Tx(0)) e(βλmax(τ)−γ)t .

The right-hand side exponentially decays to zero when βλmax(τ) < γ. Therefore, wmax(τ)Tx(t) also

decreases monotonically and exponentially to zero for all t > τ .

Regarding statement (iv)a, note that based on the argument in (i)a, we only need to consider the case

when x(0) > 0n. Left-multiplying wmax(0)T on both sides of equation (16.10b), we obtain:

d

dt

(
wmax(0)Tx(t)

)∣∣∣
t=0

= wmax(0)T
(
β diag

(
s(t)

)
Ax(t)− γx(t)

)∣∣∣
t=0

= (βλmax(0)− γ)wmax(0)Tx(0).

Since βλmax(0)− γ > 0, the initial time derivative of wmax(0)Tx(t) is positive. Since t 7→ wmax(0)Tx(t)
is a continuously di�erentiable function, there exists τ ′ > 0 such that

d
dt

(
wmax(0)Tx(t)

)
> 0 for any

t ∈ [0, τ ′].

Regarding statement (iv)b, since ṡ(t) ≤ 0n and is lower bounded by 0n, we conclude that the limit

limt→+∞ s(t) exists. Moreover, since s(t) is monotonically non-increasing, we have limt→+∞ ṡ(t) = 0,

which implies either limt→+∞ s(t) = 0n or limt→+∞ x(t) = 0n. If s(t) converges to 0n, then ẋ(t)
converges to −γx(t). Therefore, there exists T > 0 such that βλmax(T ) < γ, which leads to x(t)→ 0n as

t→ +∞. If s(t) converges to some s∗ > 0n, then x(t) still converges to 0n. Therefore, for any

(
s(0), x(0)

)
,

the trajectory

(
s(t), x(t)

)
converges to some equilibria with the form (s∗,0n), where s∗ ≥ 0n. Let

s(t) = s∗ + δs(t), and x(t) = 0n + δx(t).

We know that δs(t) ≥ 0 and δx(t) ≥ 0 for all t ≥ 0. Moreover, δs(t) is monotonically non-increasing and

converges to 0n, and there exists T̃ > 0 such that, for any t ≥ T , δx(t) is monotonically non-increasing

and converges to 0n.

Let λ∗ and v∗ denote the dominant eigenvalue and the corresponding normalized left eigenvector of

matrix diag(s∗)A, respectively, that is, v∗T diag(s∗)A = λ∗v∗T. First let us suppose βλ∗ − γ > 0, then

the linearized system of (16.8) around (s∗, 0n) is written as

δ̇s = −β diag(s∗)Aδx,

δ̇x = β diag(s∗)Aδx − γδx.

Since βλ∗ − γ > 0, the linearized system is exponentially unstable, which contradicts the fact that(
δs(t), δx(t)

)
→ (0n,0n) as t → +∞. Alternatively, suppose βλ∗ − γ = 0. By left multiplying v∗T on

both sides of the equation for ẋ(t) in (16.8), we obtain

v∗Tδ̇x = (βλ∗ − γ)(v∗Tδx) + βv∗T diag(δs)Aδx

= βv∗T diag(δs)Aδx ≥ 0n,

which contradicts δx(t) → 0n as t → +∞. Therefore, we conclude that βλ∗ − γ < 0. Since λmax(t) is

continuous on t, we conclude that there exists τ < +∞ such that βλmax(t)− γ < 0.

�
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In the rest of this section, we present some numerical results for the network SIR model on the undirected

unweighted graph illustrated in Figure 16.2. The adjacency matrix A is binary. Unless otherwise stated, the

system parameters are β = 0.5 and γ = 0.4. As initial condition, we select one node fully infected (the

dark-gray node in Figure 16.2, say, with index 1), 19 fully healthy individuals, and zero recovered fraction —

corresponding to x(0) = e1, r(0) = 0n, and s(0) = 1n − x(0).

Figure 16.2: Sample undirected unweighted graph with 20 nodes

The left image in Figure 16.3 illustrates the time evolution of (β/γ)λmax(t) with varying network

parameters. Note that each evolution starts above the threshold, reaches the threshold value 1 in �nite

time, and converges to a �nal value below 1. The right image in Figure 16.3 illustrates the behavior of the

average susceptible, average infected and average recovered quantities in populations starting from a small

initial infection fraction and with βλmax(t)/γ above 1 at time 0. Note that the evolution of the infected

fraction of the population displays a unimodal dependence on time, like in the scalar model.
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�
�max(t)

1 t

(a) The spectral radius of (β/γ) diag(s(t))A); the

parameter γ takes value in .1, .2, . . . , .9 correspond-

ing, respectively, to the curves from top to bottom.
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(b) Fraction of susceptible, infected, and recovered individu-

als. At initial time we have βλmax(0)/γ = 3.57.

Figure 16.3: Evolution of the network SIR model from initial condition consisting of one node fully infected individual

(the dark-gray node in Figure 16.2), 19 fully healthy individuals, and zero recovered fraction.

16.4 Appendix: The stochastic network SI model

Building on Appendix 13.4, we now present and study a stochastic model of the propagation phenomenon

over a contact network.

The stochastic model The stochastic network SI model, illustrated in Figure 16.4, is de�ned as follows:
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(i) We consider a group of n individuals. The state of each individual is either S for susceptible or I for

infected.

(ii) The n individuals are in pairwise contact, as speci�ed by an undirected graph G with adjacency

matrix A (without self-loops). The edge weights represent the frequency of contact among two

individuals.

(iii) Each individual in susceptible status can transition to infected as follows: given an infection rate
β > 0, if a susceptible individual i is in contact with an infected individual j for time ∆t, the

probability of infection is aijβ∆t. Each individual can be infected by any neighboring individual:

these random events are independent.

Susceptible Infected
� (infection rate)

Figure 16.4: In the stochastic network SI model, each susceptible individual (blue) becomes infected by contact with

infected individuals (red) in its neighborhood according to an infection rate β.

An approximate deterministic model We de�ne the infection variable at time t for individual i by

Yi(t) =

{
1, if node i is in state I at time t,

0, if node i is in state S at time t,

and the expected infection, which turns out to be equal to the probability of infection, of individual i by

xi(t) = E[Yi(t)] = 1 · P[Yi(t) = 1] + 0 · P[Yi(t) = 0]

= P[Yi(t) = 1].

In what follows it will be useful to approximate P[Yi(t) = 0 |Yj(t) = 1] with P[Yi(t) = 0], that is, to

require Yi and Yj to be independent for arbitrary i and j. We claim this approximation is acceptable over

certain graphs with large numbers n of individuals. The �nal model, which we obtain below based on the

Independence Approximation, is an upper bound on the true model because P[Yi(t) = 0] ≥ P[Yi(t) =
0 |Yj(t) = 1].

De�nition 16.6 (Independence Approximation). For any two individuals i and j, the infection variables
Yi and Yj are independent.
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Theorem 16.7 (From the stochastic to the deterministic network SI model). Consider the stochastic
network SI model with infection rate β over a contact graph with adjacency matrix A. The probabilities of
infection satisfy

d

dt
P[Yi(t) = 1] = β

n∑

j=1

aijP[Yi(t) = 0, Yj(t) = 1].

Moreover, under the Independence Approximation 16.6, the probabilities of infection xi(t) = P[Yi(t) = 1],
i ∈ {1, . . . , n}, satisfy (deterministic) network SI model de�ned by

ẋi(t) = β(1− xi(t))
n∑

j=1

aijxj(t).

We study the deterministic network SI model in the next section.

Proof. We start by de�ning the random variables

Y−i(t) = (Y1(t), . . . , Yi−1(t), Yi+1(t), . . . , Yn(t)),

and, similarly, Y−i−j(t), for i, j ∈ {1, . . . , n}. We are interested in the event that a susceptible individual

remains susceptible (or, vice versa, the event that susceptible individual becomes infected) over the interval

of time [t, t+ ∆t], for a short interval duration ∆t. We start by computing the probability of non-infection

for a duration ∆t, conditioned upon Y−i(t):

P[Yi(t+ ∆t) = 0 |Yi(t) = 0, Y−i(t)] =
n∏

j=1

(
1− aijYj(t)β∆t

)
= 1−

n∑

j=1

aijYj(t)β∆t+O(∆t2).

The complementary probability, i.e., the probability of infection for duration ∆t is:

P[Yi(t+ ∆t) = 1 |Yi(t) = 0, Y−i(t)] =
n∑

j=1

aijYj(t)β∆t+O(∆t2).

We are now ready to study the random variable Yi(t+ ∆t)− Yi(t), given Y−i(t):

E[Yi(t+∆t)− Yi(t) |Y−i(t)]
= 1 · P[Yi(t+ ∆t) = 1, Yi(t) = 0 |Y−i(t)]

+ 0 · P
[
(Yi(t+ ∆t) = Yi(t) = 0) or (Yi(t+ ∆t) = Yi(t) = 1) |Y−i(t)

]
(by def. expectation)

= P[Yi(t+ ∆t) = 1 |Yi(t) = 0, Y−i(t)] · P[Yi(t) = 0 |Y−i(t)] (by conditional prob.)

=
( n∑

j=1

aijYj(t)β∆t+O(∆t2)
)
· P[Yi(t) = 0 |Y−i(t)].

We now remove the conditioning upon Y−i(t) and compute

E[Yi(t+ ∆t)− Yi(t)] = E
[
E[Yi(t+ ∆t)− Yi(t) |Y−i(t)]

]

=
( n∑

j=1

aijβ∆t
)
· E
[
Yj(t) · P[Yi(t) = 0 |Y−i(t)]

]
+O(∆t2),
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Next, assuming y is an arbitrary realization of the random variable Y , we have

E
[
Yj(t) · P[Yi(t) = 0 |Y−i(t)]

]

=
∑

y−i
yj · P[Yi(t) = 0 |Y−i(t) = y−i] · P[Y−i(t) = y−i] (by def. expectation)

=
∑

y−i−j
1 · P[Yi(t) = 0 |Y−i−j(t) = y−i−j , Yj(t) = 1]

× P[Y−i−j(t) = y−i−j , Yj(t) = 1] (because yj ∈ {0, 1})
=
∑

y−i−j

P[Yi(t) = 0, Y−i−j(t) = y−i−j , Yj(t) = 1] (by conditional prob.)

= P[Yi(t) = 0, Yj(t) = 1],

where the �rst summation is taken over all possible values y−i that the variable Y−i(t) takes and a similar

convention applies to the other summations. In summary, we know

E[Yi(t+ ∆t)− Yi(t)] =

n∑

j=1

aijβ∆t · P[Yi(t) = 0, Yj(t) = 1] +O(∆t2),

so that, also recalling P[Yi(t) = 1] = E[Yi(t)],

d

dt
P[Yi(t) = 1] = lim

∆t→0+

E[Yi(t+ ∆t)− Yi(t)]
∆t

= β
n∑

j=1

aijP[Yi(t) = 0, Yj(t) = 1].

The �nal step is an immediate consequence of the Independence Approximation: P[Yi(t) = 0, Yj(t) = 1] =
P[Yi(t) = 0 |Yj(t) = 1] · P[Yj(t) = 1] ≈ (1− P[Yi(t) = 1]) · P[Yj(t) = 1]. �

16.5 Historical notes and further reading

The dynamics of several classic scalar epidemic models are surveyed by Hethcote (2000).

The earliest work on the network SIS model is (Lajmanovich and Yorke, 1976); this article proposes a

rigorous analysis of the threshold for the epidemic outbreak, which depends on both the disease parameters

and the spectral radius of the contact network. For the case when the basic reproduction number is above

the epidemic threshold, this paper establishes the existence and uniqueness of a nonzero steady-state

infection probability, called the endemic state. Lajmanovich and Yorke (1976) refer to the model and the

multi-group or multi-population SIS model. Numerous extensions and variations on these basic results

have appeared over the years.

Allen (1994) proposes and analyzes a discrete-time network SIS model. This work appears to be the

�rst to revisit and formally reproduce for the discrete-time case the earlier results by (Lajmanovich and

Yorke, 1976); see also the later (Wang et al., 2003). Further recent results on the discrete-time model are

obtained by Ahn and Hassibi (2013) and by Azizan Ruhi and Hassibi (2015).

Van Mieghem et al. (2009) rediscoveres this model, refers to it as the intertwined SIS model, and argue

that the (continuous-time) network SIS model is in fact the mean-�eld approximation of the original

Markov-chain SIS model of exponential dimension; this claim is rigorously proven by Sahneh et al. (2013).
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Fall et al. (2007) and Khanafer et al. (2016) discuss the continuous-time network SIS model in a modern

language. Fall et al. (2007) apply Lyapunov theory and Metzler matrix theory to establish existence,

uniqueness, and stability of the equilibrium points below and above the epidemic threshold. Khanafer

et al. (2016) use positive system theory in their analysis and extend the existence, uniqueness, and stability

results to the setting of weakly connected digraphs. Mei et al. (2017) propose an algorithm and Taylor

expansions for the endemic state above the epidemic threshold.

An early work by Hethcote (1978) proposes a general multi-group SIR model with birth, death, immu-

nization, and de-immunization. The epidemic threshold and the equilibria below/above the threshold are

characterized. For the simpli�ed model without birth/death and de-immunization, Hethcote (1978) proves

that the system converges asymptotically to an all-healthy state. Guo et al. (2008) consider a generalized

network SIR model with vital dynamics, that is, with birth and death. Youssef and Scoglio (2011) study

a special case of the network SIR model under the name of individual-based SIR model over undirected

networks.

We conclude by mentioning other surveys and textbook treatments. In (Mesbahi and Egerstedt, 2010),

the stability of equilibria for a generalized SIR model is reviewed through Lyapunov and graph theory.

(Newman, 2010, Chapter 17), (Easley and Kleinberg, 2010, Chapter 21), and (Barrat et al., 2008, Chapter 9)

review various heterogeneous epidemic models. The recent survey by Nowzari et al. (2016) presents various

epidemic models and discusses related control problems.
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16.6 Exercises

E16.1 Initial evolution of network SIS model. Consider the network SIS model with initial fraction x(0) = εx0,

where we take x0 � 1n and ε � 1. Show that in the time scale t(ε) = ln(1/ε)/(βλmax), the linearized

evolution satis�es

lim
ε→0+

x
(
t(ε)

)
=
(
wT

maxx0
)
wmax.
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Chapter17

Networks of Coupled Oscillators

In this chapter we continue our discussion about coupled-oscillator models and their behavior. Starting

from the basic models discussed in Section 13.3, we here focus on characterizing synchronization and other

dynamic phenomena.

Recall that the coupled-oscillators model, as given in equation (13.15), is

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}, (17.1)

and its homogeneous counterpart, the Kuramoto model (13.16), is

θ̇i = ωi −
K

n

n∑

j=1

sin(θi − θj), i ∈ {1, . . . , n}. (17.2)

17.1 Preliminary notation and analysis

17.1.1 The geometry of the circle and the torus

Parametrization The unit circle is S1
. The torus Tn is the set consisting of n-copies of the circle. We

parametrize the circle S1
by assuming (i) angles are measured counterclockwise, (ii) the 0 angle is the

intersection of the unit circle with the positive horizontal axis, and (iii) angles take value in [−π, π[.

Geodesic distance The clockwise arc-length from θi to θj is the length of the clockwise arc from θi to

θj . The counterclockwise arc-length is de�ned analogously. The geodesic distance between θi and θj is

the minimum between clockwise and counterclockwise arc-lengths and is denoted by |θi − θj |. In the

parametrization:

distcc(θ1, θ2) = mod((θ2 − θ1), 2π), distc(θ1, θ2) = mod((θ1 − θ2), 2π)

|θ1 − θ2| = min{distc(θ1, θ2),distcc(θ1, θ2)}.
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Rotations Given the angle α ∈ [−π, π[, the rotation of the n-tuple θ = (θ1, . . . , θn) ∈ Tn by α, denoted

by rotα(θ), is the counterclockwise rotation of each entry (θ1, . . . , θn) by α. For θ =∈ Tn, we also de�ne

its rotation set to be

[θ] = {rotα(θ) ∈ Tn | α ∈ [−π, π[}.

The coupled oscillator model (17.1) is invariant under rotations, that is, given a solution θ : R≥0 → Tn to

the coupled oscillator model, a rotation of rotα(θ(t)) by any angle α is again a solution.

Arc subsets of the n-torus Given a length γ ∈ [0, 2π[, the arc subset Γarc(γ) ⊂ Tn is the set of n-tuples

(θ1, . . . , θn) such that there exists an arc of length γ containing all θ1, . . . , θn. The set Γarc(γ) is the interior

of Γarc(γ). For example, θ ∈ Γarc(π) implies all angles θ1, . . . , θn belong to a closed half circle. Note:

(i) If (θ1, . . . , θn) ∈ Γarc(γ), then |θi − θj | ≤ γ for all i and j. The converse is not true in general.

For example, {θ ∈ Tn | |θi − θj | ≤ π for all i, j} is equal to the entire Tn. However, the converse

statement is true in the following form (see also Exercise E17.1): if |θi − θj | ≤ γ for all i and j and

(θ1, . . . , θn) ∈ Γarc(π), then (θ1, . . . , θn) ∈ Γarc(γ).

(ii) If θ = (θ1, . . . , θn) ∈ Γarc(π), then average(θ) is well posed. (The average of n angles is ill-posed in

general. For example, there is no reasonable de�nition of the average of two diametrically-opposed

points.)

17.1.2 Synchronization notions

Consider the following notions of synchronization for a solution θ : R≥0 → Tn:

Frequency synchrony: A solution θ : R≥0 → Tn is frequency synchronized if θ̇i(t) = θ̇j(t) for all time t
and for all i and j.

Phase synchrony: A solution θ : R≥0 → Tn is phase synchronized if θi(t) = θj(t) for all time t and for

all i and j.

Phase cohesiveness: A solution θ : R≥0 → Tn is phase cohesive with respect to γ > 0 if one of the

following conditions holds for all time t:

(i) θ(t) ∈ Γarc(γ);

(ii) |θi(t)− θj(t)| ≤ γ for all edges (i, j) of a graph of interest; or

(iii)

√∑n
i,j=1 |θi(t)− θj(t)|2/2 < γ.

Asymptotic notions: We will also talk about solutions that asymptotically achieve certain synchronization

properties. For example, a solution θ : R≥0 → Tn achieves phase synchronization if limt→∞ |θi(t)−
θj(t)| = 0. Analogous de�nitions can be given for asymptotic frequency synchronization and

asymptotic phase cohesiveness.

Finally, notice that phase synchrony is the extreme case of all phase cohesiveness notions with γ = 0.
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17.1.3 Preliminary results

We have the following result on the synchronization frequency.

Lemma 17.1 (Synchronization frequency). If a solution of the coupled oscillator model (17.1) achieves
frequency synchronization, then it does so with a constant synchronization frequency equal to

ωsync ,
1

n

n∑

i=1

ωi = average(ω).

Proof. This fact is obtained by summing all equations (17.1) for i ∈ {1, . . . , n}. �

Lemma 17.1 implies that, by expressing each angle with respect to a rotating frame with frequency

ωsync and by replacing ωi by ωi − ωsync, we obtain ωsync = 0 or, equivalently, ω ∈ 1⊥n . In this rotating

frame a frequency-synchronized solution is an equilibrium. Due to the rotational invariance of the coupled

oscillator model (17.1), it follows that if θ∗ ∈ Tn is an equilibrium point, then every point in the rotation set

[θ∗] = {θ ∈ Tn | rotα(θ∗) , α ∈ [−π, π[}

is also an equilibrium. Notice that the set [θ∗] is a connected circle in Tn, and we refer to it as an equilibrium
set.

We have the following important result on local stability properties of equilibria.

Lemma 17.2 (Linearization). Assume the frequencies satisfy ω ∈ 1⊥n and G is connected with incidence
matrix B. The following statements hold:

(i) Jacobian: the Jacobian of the coupled oscillator model (17.1) at θ ∈ Tn is

J(θ) = −B diag({aij cos(θi − θj)}{i,j}∈E)BT,

(ii) Local stability: if there exists an equilibrium θ∗ such that |θ∗i − θ∗j | < π/2 for all {i, j} ∈ E, then

a) −J(θ∗) is a Laplacian matrix; and
b) the equilibrium set [θ∗] is locally exponentially stable.

Proof. We start with statements (i) and (ii)a. Given θ ∈ Tn, we de�ne the undirected graph Gcosine(θ) with

the same nodes and edges as G and with edge weights aij cos(θi − θj). Next, we compute

∂

∂θi

(
ωi −

∑n

j=1
aij sin(θi − θj)

)
= −

∑n

j=1
aij cos(θi − θj),

∂

∂θj

(
ωi −

∑n

k=1
aik sin(θi − θk)

)
= aij cos(θi − θj).

Therefore, the Jacobian is equal to minus the Laplacian matrix of the (possibly negatively weighted) graph

Gcosine(θ) and statement (i) follows from Lemma 8.1. Regarding statement (ii)a, if |θ∗i − θ∗j | < π/2 for all

{i, j} ∈ E, then cos(θ∗i − θ∗j ) > 0 for all {i, j} ∈ E, so that Gcosine(θ) has strictly non-negative weights

and all usual properties of Laplacian matrices hold.
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To prove statement (ii)b notice that J(θ∗) is negative semide�nite with the nullspace 1n arising from

the rotational symmetry. All other eigenvectors are orthogonal to 1n and have negative eigenvalues. We

now restrict our analysis to the orthogonal complement of 1n: we de�ne a coordinate transformation

matrix Q ∈ R(n−1)×n
with orthonormal rows orthogonal to 1n,

Q1n = 0n−1 and QQT = In−1,

and we note that QJ(θ∗)QT
has negative eigenvalues. Therefore, in the original coordinates, the zero

eigenspace 1n is exponentially stable. By Theorem 14.10, the corresponding equilibrium set [θ∗] is locally

exponentially stable. �

Corollary 17.3 (Frequency synchronization). If a solution of the coupled oscillator model (17.1) satis�es
the phase cohesiveness properties |θi(t)− θj(t)| ≤ γ for some γ ∈ [0, π/2[ and for all t ≥ 0, then the coupled
oscillator model (17.1) achieves exponential frequency synchronization.

Proof. Let xi(t) = θ̇i(t) be the frequency. Then ẋ(t) = J(θ(t))x(t) is a time-varying averaging system.

The associated undirected graph has time-varying yet strictly positive weights aij cos(θi(t) − θj(t)) ≥
aij cos(γ) > 0 for each {i, j} ∈ E. Hence, the weighted graph is connected for each t ≥ 0. From the

analysis of time-varying averaging systems in Theorem 11.11, the exponential convergence of x(t) to

average(x(0))1n follows. Equivalently, the frequencies synchronize. �

17.1.4 The order parameter and the mean �eld model

An alternative synchronization measure (besides phase cohesiveness) is the magnitude of the order parameter

reiψ =
1

n

∑n

j=1
eiθj . (17.3)

The order parameter (17.3) is the centroid of all oscillators represented as points on the unit circle in C1
.

The magnitude r of the order parameter is a synchronization measure:

• if the oscillators are phase-synchronized, then r = 1;

• if the oscillators are spaced equally on the unit circle, then r = 0; and

• for r ∈ ]0, 1[ and oscillators contained in a semi-circle, the associated con�guration of oscillators

satisfy a certain level of phase cohesiveness; see Exercise E17.2.

By means of the order parameter reiψ
the all-to-all Kuramoto model (17.2) can be rewritten in the

insightful form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (17.4)

(We ask the reader to establish this identity in Exercise E17.3.) Equation (17.4) gives the intuition that the

oscillators synchronize because of their coupling to a mean �eld represented by the order parameter reiψ
,

which itself is a function of θ(t). Intuitively, for small coupling strength K each oscillator rotates with its

distinct natural frequency ωi, whereas for large coupling strength K all angles θi(t) will entrain to the

mean �eld reiψ
, and the oscillators synchronize. The transition from incoherence to synchrony occurs at a

critical threshold value of the coupling strength, denoted by Kcritical.
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17.2 Synchronization of identical oscillators

We start our discussion with the following insightful lemma.

Lemma 17.4. Consider the coupled oscillator model (17.1). If ωi 6= ωj for some distinct i, j ∈ {1, . . . , n},
then the oscillators cannot achieve phase synchronization.

Proof. We prove the lemma by contraposition. Assume that all oscillators are in phase synchrony θi(t) =
θj(t) for all t ≥ 0 and all i, j ∈ {1, . . . , n}. Then by equating the dynamics, θ̇i(t) = θ̇j(t), it follows

necessarily that ωi = ωj . �

Motivated by Lemma 17.4, we consider oscillators with identical natural frequencies, ωi = ω ∈ R for

all i ∈ {1, . . . , n}. By working in a rotating frame with frequency ω, we have ω = 0. Thus, we consider

the model

θ̇i = −
∑n

j=1
aij sin(θi − θj), i ∈ {1, . . . , n}. (17.5)

Notice that phase synchronization is an equilibrium of the this model. Conversely, phase synchronization

cannot be an equilibrium of the original coupled oscillator model (17.1) if ωi 6= ωj .

17.2.1 An averaging-based approach

Let us �rst analyze the coupled oscillator model (17.5) with initial conditions restricted to an open semi-

circle, θ(0) ∈ Γarc(γ) for some γ ∈ [0, π[. In this case, the oscillators remain in a semi-circle at least for

small times t > 0 and the two coordinate transformations

xi(t) = tan(θi(t)) (with xi ∈ R), and yi(t) = θi(t) (with yi ∈ R)

are well-de�ned and bijective (at least for small times).

In the xi-coordinates, the coupled oscillator model reads as the time-varying continuous-time averaging

system

ẋi(t) = −
∑n

j=1
bij(t)(xi(t)− xj(t)), (17.6)

where bij(t) = aij
√

(1 + xi(t)2)/(1 + xj(t)2) and bij(t) ≥ aij cos(γ/2); see Exercise E17.7 for a deriva-

tion. Similarly, in the yi-coordinates, the coupled oscillator model reads as

ẏi(t) = −
∑n

j=1
cij(t)(yi(t)− yj(t)), (17.7)

where cij(t) = aij sinc(yi(t) − yj(t)) and cij(t) ≥ aij sinc(γ). Notice that both averaging formulations

(17.6) and (17.7) are well-de�ned as long as the the oscillators remain in a semi-circle Γarc(γ) for some

γ ∈ [0, π[.

Theorem 17.5 (Phase cohesiveness and synchronization in open semicircle). Consider the coupled
oscillator model (17.5) with a connected, undirected, and weighted graph G = ({1, . . . , n}, E,A). The
following statements hold:

(i) phase cohesiveness: for each γ ∈ [0, π[ each solution orginating in Γarc(γ) remains in Γarc(γ) for all
times;
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264 Chapter 17. Networks of Coupled Oscillators

(ii) asymptotic phase synchronization: each trajectory originating in Γarc(γ) for γ ∈ [0, π[ achieves expo-
nential phase synchronization, that is,

‖θ(t)− average(θ(0))1n‖2 ≤ ‖θ(0)− average(θ(0))1n‖2eλpst , (17.8)

where λps = −λ2(L) cos(γ/2).

Proof. Consider the averaging formulations (17.6) and (17.7) with initial conditions θ(0) ∈ Γarc(γ) for some

γ ∈ [0, π[. By continuity, for small positive times t > 0, the oscillators remain in a semi-circle, the time-

varying weights bij(t) ≥ aij(cos(γ/2) and cij(t) ≥ aij sinc(γ) are strictly positive for each {i, j} ∈ E,

the associated time-dependent graph is connected. As one establishes in the proof of Theorem 11.11, the

max-min function Vmax-min, de�ned in equation (14.6), evaluated along the solutions to the time-varying

consensus systems (17.6) and (17.7) are strictly decreasing for until consensus is reached.

Thus, the oscillators remain in Γarc(γ) phase synchronization exponentially fast. Since the graph is

undirected, we can also conclude convergence to the average phase. Finally, the explicit convergence

estimate (17.8) follows, for example, by analyzing (17.6) with the disagreement Lyapunov function and

using bij(t) ≥ aij cos(γ/2). �

17.2.2 The potential landscape, convergence and phase synchronization

The consensus analysis in Theorem 17.5 leads to a powerful result but is inherently restricted to a semi-circle.

To overcome this limitation, we use potential functions as an analysis tool. Inspired by Examples #1 and #3

in Section 13.3, de�ne the potential function U : Tn → R by

U(θ) =
∑

{i,j}∈E

aij
(
1− cos(θi − θj)

)
. (17.9)

Then the coupled oscillator model (17.1) (with all ωi = 0) can be formulated as the negative gradient �ow

θ̇ = −∂U(θ)

∂θ

T

. (17.10)

Among the many critical points of the potential function U in equation (17.9), each point in the set of phase-

synchronized angles is a global minimum of U . This fact can be easily seen since each summand in (17.9) is

bounded in [0, 2aij ] and the lower bound is reached only if neighboring oscillators are phase-synchronized.

Theorem 17.6 (Phase synchronization). Consider the coupled oscillator model (17.5) with a connected,
undirected, and weighted graph G = ({1, . . . , n}, E,A). Then

(i) Global convergence: For all initial conditions θ(0) ∈ Tn, the phases θi(t) converge to the set of critical
points {θ ∈ Tn | ∂U(θ)/∂θ = 0T

n}; and
(ii) Local stability: Phase synchronization is a locally exponentially stable equilibrium set.

Proof. Statement (i) is an immediate consequence of the Krasovskiı̆-LaSalle Invariance Principle in Theo-

rem 14.7. Statement (ii) follows from the Jacobian result in Lemma 17.2 and Theorem 14.10. �
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Theorem 17.6 together with Theorem 17.5 gives a fairly complete picture of the convergence and phase

synchronization properties of the coupled oscillator model (17.5).

According to Theorem 17.6 phase synchronization is only locally stable. A stronger result can be made

in case of an all-to-all homogeneous coupling graph, that is, for the Kuramoto model (17.2).

Corollary 17.7 (Almost global phase synchronization for the Kuramoto model). Consider the Ku-
ramoto model (17.2) with identical natural frequencies ωi = ωj for all i, j ∈ {1, . . . , n}. Then for almost all
initial conditions in Tn, the oscillators achieve phase synchronization.

Proof. For identical natural frequencies, the Kuramoto model (17.2) can be put in rotating coordinates so

that ωi = 0 for all i ∈ {1, . . . , n}; see Section 17.2. The Kuramoto model reads in the order-parameter

formulation (17.4) as

θ̇i = −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (17.11)

The associated potential function reads as (see Exercise E17.5)

U(θ) =
∑

{i,j}∈E

aij
(
1− cos(θi − θj)

)
=
Kn

2
(1− r2) , (17.12)

and its unique global minimum is obtained for r = 1, that is, in the phase-synchronized state. By

Theorem 17.6, all angles converge to the set of equilibria which are from (17.11) either (i) r = 0, (ii) r > 0
and in-phase with the order parameter θi = ψ, or (iii) r > 0 and out-of-phase with the order parameter

θi = ψ + kπ for k ∈ Z \ {0} for all i ∈ {1, . . . , n}. In the latter case, any in�nitesimal deviation from an

out-of-phase equilibrium causes the potential (17.12) to decrease, that is, the out-of-phase equilibria are

unstable. Likewise, the equilibria with r = 0 correspond to the global maxima of the potential (17.12), and

any in�nitesimal deviation from these equilibria causes the potential (17.12) to decrease. It follows that,

from almost all initial conditions
1
, the oscillators converge to phase-synchronized equilibria θi = ψ for all

i ∈ {1, . . . , n}. �

17.2.3 Phase balancing

Applications in neuroscience, vehicle coordination, and central pattern generators for robotic locomo-

tion motivate the study of coherent behaviors with synchronized frequencies where the phases are not

synchronized, but rather dispersed in appropriate patterns. While the phase-synchronized state can be

characterized by the order parameter r achieving its maximal (unit) magnitude, we say that a solution

θ : R≥0 → Tn to the coupled oscillator model (17.1) achieves phase balancing if all phases θi asymptotically

converge to the set {
θ ∈ Tn | r(θ) =

∣∣∑n

j=1
eiθj/n

∣∣ = 0
}
,

that is, asymptotically the oscillators are uniformly distributed over the unit circle S1
so that their centroid

converges to the origin.

1

To be precise further analysis is needed. A linearization of the Kuramoto model (17.11) at the unstable out-of-pase equilibria

yields that these are exponentially unstable. The region of attraction (the so-called stable manifold) of such exponentially unstable

equilibria is known to be a zero measure set (Potrie and Monzón, 2009, Proposition 4.1).
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For a complete homogeneous graph with coupling strength aij = K/n, i.e., for the Kuramoto model

(17.2), we have a remarkable identity between the magnitude of the order parameter r and the potential

function U(θ)

U(θ) =
Kn

2

(
1− r2

)
. (17.13)

(We ask the reader to establish this identity in Exercise E17.5.) For the complete graph, the correspon-

dence (17.13) shows that the global minimum of the potential function U(θ) = 0 (for r = 1) corresponds to

phase-synchronization and the global maximum U(θ) = Kn/2 (for r = 0) corresponds to phase balancing.

This motivates the following gradient ascent dynamics to reach phase balancing:

θ̇ = +
∂U(θ)

∂θ

T

, or, equivalently, θ̇i =
n∑

j=1

aij sin(θi − θj) . (17.14)

Theorem17.8 (Phase balancing). Consider the coupled oscillatormodel (17.14)with a connected, undirected,
and weighted graph G = ({1, . . . , n}, E,A). Then

(i) Global convergence: For all initial conditions θ(0) ∈ Tn, the phases θi(t) converge to the set of critical
points {θ ∈ Tn | ∂U(θ)/∂θ = 0T

n}; and
(ii) Local stability: For a complete graph with uniform weights aij = K/n, phase balancing is the global

maximizer of the potential function (17.13) and is a locally asymptotically stable equilibrium set.

Proof. The proof statement (i) is analogous to the proof of statement (i) in Theorem 17.6.

To prove statement (ii), notice that, for a complete graph, the phase balanced set characterized by r = 0
achieves the global maximum of the potential U(θ) = Kn

2

(
1− r2

)
. By Theorem 14.13, local maxima of

the potential are locally asymptotically stable for the gradient ascent dynamics (17.14). �

17.3 Synchronization of heterogeneous oscillators

In this section we analyze non-identical oscillators with ωi 6= ωj . As shown in Lemma 17.4, these oscillator

networks cannot achieve phase synchronization. On the other hand frequency synchronization with a

certain degree of phase cohesiveness can be achieved provided that the natural frequencies satisfy certain

bounds relative to the network coupling. We start o� with the following necessary conditions.

Lemma 17.9. Necessary synchronization condition Consider the coupled oscillator model (17.1) with graph
G = ({1, . . . , n}, E,A), frequenciesω ∈ 1⊥n , and nodal degree degi =

∑n
j=1 aij for each node i ∈ {1, . . . , n}.

If there exists a frequency-synchronized solution satisfying the phase cohesiveness |θi−θj | ≤ γ for all {i, j} ∈ E
and for some γ ∈ [0, π/2], then the following conditions hold:

(i) Absolute bound: For each node i ∈ {1, . . . , n},

degi sin(γ) ≥ |ωi| . (17.15)

(ii) Incremental bound: For distinct i, j ∈ {1, . . . , n},

(degi + degj) sin(γ) ≥ |ωi − ωj | . (17.16)
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Proof. Statement (i) follows directly from the fact that synchronized solutions must satisfy the equilibrium

equation θ̇i = 0. Since the sinusoidal interaction terms in equation (17.1) are upper bounded by the nodal

degree degi =
∑n

j=1 aij , condition (17.15) is necessary for the existence of an equilibrium.

Statement (ii) follows from the fact that frequency-synchronized solutions must satisfy θ̇i − θ̇j = 0. By

analogous arguments, we arrive at the necessary condition (17.16). �

17.3.1 Synchronization of heterogeneous oscillators over complete homogeneous graphs

Consider the Kuramoto model over a complete homogeneous graph:

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj), i ∈ {1, . . . , n}. (17.17)

As discussed in Subsection 17.1.4, the Kuramoto model synchronizes provided that the coupling gain K is

larger than some critical value Kcritical. The necessary condition (17.16) delivers a lower bound for Kcritical

given by

K ≥ n

2(n− 1)

(
max
i
ωi −min

i
ωi

)
.

Here we evaluated the left-hand side of (17.16) for aij = K/n, for the maximum γ = π/2, and for all

distinct i, j ∈ {1, . . . , n}. Perhaps surprisingly, the lower necessary bound (17.3.1) is a factor 1/2 away

from the upper su�cient bound.

Theorem 17.10 (Synchronization test for all-to-all Kuramoto model). Consider the Kuramoto model
(17.17) with natural frequencies ω ∈ 1⊥n and coupling strengthK . Assume

K > Kcritical , max
i
ωi −min

i
ωi, (17.18)

and de�ne the arc lengths γmin ∈ [0, π/2[ and γmax ∈ ]π/2, π] as the unique solutions to sin(γmin) =
sin(γmax) = Kcritical/K .

The following statements hold:

(i) phase cohesiveness: each solution starting in Γarc(γ), for γ ∈ [γmin, γmax], remains in Γarc(γ) for all
times;

(ii) asymptotic phase cohesiveness: each solution starting in Γarc(γmax) asymptotically reaches the set
Γarc(γmin); and

(iii) asymptotic frequency synchronization: each solution starting in Γarc(γmax) achieves frequency synchro-
nization.

Moreover, the following converse statement is true: Given an interval [ωmin, ωmax], the coupling strength
K satis�es K > ωmax − ωmin if, for all frequencies ω supported on [ωmin, ωmax] and for the arc length γmax

computed as above, the set Γarc(γmax) is positively invariant.

We illustrate the de�nitions of γmin, γmax, and Γarc(γ), for γ ∈ [γmin, γmax] in Figure 17.1.
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�min�max
Kcritical/K

�arc(�)

Figure 17.1: Illustrating the de�nitions of γmin, γmax, and Γarc(γ), for γ ∈ [γmin, γmax].

Proof. We start with statement (i). De�ne the function W : Γarc(π)→ [0, π[ by

W (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}.

The arc containing all angles ψ has two boundary points: a counterclockwise maximum and a counter-

clockwise minimum. If Umax(ψ) (resp. Umin(ψ)) denotes the set indices of the angles ψ1, . . . , ψn that are

equal to the counterclockwise maximum (resp. the counterclockwise minimum), then

W (ψ) = |ψm′ − ψk′ |, for all m′ ∈ Umax(ψ) and k′ ∈ Umin(ψ).

We now assume θ(0) ∈ Γarc(γ), for γ ∈ [γmin, γmax], and aim to show that θ(t) ∈ Γarc(γ) for all times

t > 0. By continuity, Γarc(γ) is positively invariant if and only if W (θ(t)) does not increase at any time t
such that W (θ(t)) = γ.

In the next equation we compute the maximum possible amount of in�nitesimal increase of t 7→W (θ(t))
along system (17.17). Based on the notion of upper Dini derivative and the treatment in Section 14.7, we

compute

D+W (θ(t)) := lim sup
∆t→0+

W (θ(t+ ∆t))−W (θ(t))

∆t
= θ̇m(t)− θ̇k(t),

wherem ∈ Umax(θ(t)) and k ∈ Umin(θ(t)) have the property that θ̇m(t) = max{θ̇m′(t) | m′ ∈ Umax(θ(t))}
and θ̇k(t) = min{θ̇k′(t) | k′ ∈ Umin(θ(t))}. In components

D+W (θ(t)) = ωm − ωk −
K

n

n∑

j=1

(
sin(θm(t)− θj(t)) + sin(θj(t)− θk(t))

)
.

The trigonometric identity sin(x) + sin(y) = 2 sin(x+y
2 ) cos(x−y2 ) leads to

D+W (θ(t)) = ωm − ωk −
K

n

n∑

i=1

(
2 sin

(
θm(t)− θk(t)

2

)
cos

(
θm(t)− θi(t)

2
− θi(t)− θk(t)

2

))
.
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Measuring angles counterclockwise and modulo 2π, the equality W (θ(t)) = γ implies θm(t)− θk(t) = γ,

θm(t)− θi(t) ∈ [0, γ], and θi(t)− θk(t) ∈ [0, γ]. Moreover,

min
θ

cos

(
θm − θi

2
− θi − θk

2

)
= cos

(
max
θ

∣∣∣∣
θm − θi

2
− θi − θk

2

∣∣∣∣
)

= cos(γ/2),

so that

D+W (θ(t)) ≤ ωm − ωk −
K

n

n∑

i=1

(
2 sin

(γ
2

)
cos
(γ

2

))
.

Applying the reverse identity 2 sin(x) cos(y) = sin(x− y) + sin(x+ y), we obtain

D+W (θ(t)) ≤ ωm − ωk −
K

n

n∑

i=1

sin(γ) ≤ (max
i
ωi −min

i
ωi)−K sin(γ) .

Hence, the W (θ(t)) does not increase at all t such that W (θ(t)) = γ if K sin(γ) ≥ Kcritical = maxi ωi −
mini ωi.

Given the structure of the level sets of γ 7→ K sin(γ), there exists an open interval of arc lengths

γ ∈ [0, π] satisfying K sin(γ) ≥ maxi ωi −mini ωi if and only if equation (17.18) is true with the strict

equality sign at γ∗ = π/2, that is, if K > Kcritical. Additionally, if K > Kcritical, there exists a unique

γmin ∈ [0, π/2[ and a unique γmax ∈ ]π/2, π] that satisfy equation (17.18) with the equality sign. In

summary, for every γ ∈ [γmin, γmax], if W (θ(t)) = γ, then the arc-length W (θ(t)) is non-increasing. This

concludes the proof of statement (i).

Moreover, pick ε� γmax − γmin. For all γ ∈ [γmin + ε, γmax − ε], there exists a positive δ(ε) with the

property that, if W (θ(t)) = γ, then D+W (θ(t)) ≤ −δ(ε). Hence, each solution θ : R≥0 → Tn starting

in Γarc(γmax − ε) must satisfy W (θ(t)) ≤ γmin − ε after time at most (γmax − γmin)/δ(ε). This proves

statement (ii).

Regarding statement (iii), we just proved that for every θ(0) ∈ Γarc(γmax) and for all γ ∈ ]γmin, γmax]
there exists a �nite time T ≥ 0 such that θ(t) ∈ Γarc(γ) for all t ≥ T and for some γ < π/2. It follows that

|θi(t)− θj(t)| ≤ γ < π/2 for all {i, j} ∈ E and for all t ≥ T . We now invoke Corollary 17.3 to conclude

the proof of statement (iii).

The converse statement can be established by noticing that all of the above inequalities and estimates

are exact for a bipolar distribution of natural frequencies ωi ∈ {ω, ω} for all i ∈ {1, . . . , n}. We refer the

reader for these details to the full proof in (Dör�er and Bullo, 2011). �

17.3.2 Synchronization of heterogeneous oscillators over weighted undirected graphs

Consider the coupled oscillator model over a weighted undirected graph:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj), i ∈ {1, . . . , n}. (17.19)

Adopt the following shorthands:

∥∥ω
∥∥

2, pairs
=

√
1

2

∑n

i,j=1
(ωi − ωj)2, and

∥∥θ
∥∥

2, pairs
=

√
1

2

∑n

i,j=1
|θi − θj |2.
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270 Chapter 17. Networks of Coupled Oscillators

Theorem 17.11 (Synchronization test I). Consider the coupled oscillator model (17.19) with frequencies
ω ∈ 1⊥n de�ned over a weighted undirected graph with Laplacian matrix L. Assume

λ2(L) > λcritical , ‖ω‖2, pairs, (17.20)

and de�ne γmax ∈ ]π/2, π] and γmin ∈ [0, π/2[ as the solutions to (π/2) · sinc(γmax) = sin(γmin) =
λcritical/λ2(L). The following statements hold:

(i) phase cohesiveness: each solution starting in
{
θ ∈ Γarc(π) | ‖θ‖2, pairs ≤ γ

}
, for γ ∈ [γmin, γmax],

remains in
{
θ ∈ Γarc(π) | ‖θ‖2, pairs ≤ γ

}
for all times,

(ii) asymptotic phase cohesiveness: each solution starting in
{
θ ∈ Γarc(π) | ‖θ‖2, pairs < γmax

}
asymptoti-

cally reaches the set
{
θ ∈ Γarc(π) | ‖θ‖2, pairs ≤ γmin

}
; and

(iii) asymptotic frequency synchronization: each solution starting in{
θ ∈ Γarc(π) | ‖θ‖2, pairs < γmax

}
achieves frequency synchronization.

The proof of Theorem 17.11 follows the reasoning of the proof of Theorem 17.10 using the quadratic

Lyapunov function

∥∥θ
∥∥2

2, pairs
. The full proof is in (Dör�er and Bullo, 2012, Appendix B).

17.4 Historical notes and further reading

The scienti�c interest in synchronization of coupled oscillators can be traced back to the work by Huygens

(1673) on “an odd kind of sympathy” between coupled pendulum clocks. The model of coupled oscillator

which we study was originally proposed by Winfree (1967). For complete interaction graphs, this model is

nowadays known as the Kuramoto model due to the work by Kuramoto (1975, 1984). An detailed historical

account is given by Strogatz (2000).

The Kuramoto model and its variations appear in the study of biological synchronization phenomena

such as pacemaker cells in the heart (Michaels et al., 1987), circadian rhythms (Liu et al., 1997), neuroscience

(Varela et al., 2001; Brown et al., 2003; Crook et al., 1997), metabolic synchrony in yeast cell populations

(Ghosh et al., 1971), �ashing �re�ies (Buck, 1988), chirping crickets (Walker, 1969), and rhythmic applause

(Néda et al., 2000), among others. The Kuramoto model also appears in physics and chemistry in modeling

and analysis of spin glass models (Daido, 1992; Jongen et al., 2001), �avor evolutions of neutrinos (Pantaleone,

1998), and in the analysis of chemical oscillations (Kiss et al., 2002). Some technological applications include

deep brain stimulation (Tass, 2003), vehicle coordination (Paley et al., 2007; Sepulchre et al., 2007; Klein

et al., 2008), semiconductor lasers (Kozyre� et al., 2000; Hoppensteadt and Izhikevich, 2000), microwave

oscillators (York and Compton, 1991), clock synchronization in wireless networks (Simeone et al., 2008),

and droop-controlled inverters in microgrids (Simpson-Porco et al., 2013).

Our treatment borrows ideas from (Dör�er and Bullo, 2011, 2014). Recent surveys include (Strogatz,

2000; Acebrón et al., 2005; Arenas et al., 2008; Mauroy et al., 2012; Dör�er and Bullo, 2014). We refer

to (Mallada et al., 2016; Gushchin et al., 2016) for a more general treatment with odd-coupling functions

and with varying coupling strengths.
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17.5 Exercises

E17.1 Phase cohesiveness and arc length. Pick γ < 2π/3 and n ≥ 3. Show the following statement: if θ ∈ Tn
satis�es |θi − θj | ≤ γ for all i, j ∈ {1, . . . , n}, then there exists an arc of length γ containing all angles, that

is, θ ∈ Γarc(γ).

E17.2 Order parameter and arc length. Given n ≥ 2 and θ ∈ Tn, the shortest arc length γ(θ) is the length of the

shortest arc containing all angles, i.e., the smallest γ(θ) such that θ ∈ Γarc(γ(θ)). Given θ ∈ Tn, the order
parameter is the centroid of (θ1, . . . , θn) understood as points on the unit circle in the complex plane C:

r(θ) eψ(θ)i :=
1

n

n∑

j=1

eθj i .

where recall i =
√
−1. Show that

(i) if γ(θ) ∈ [0, π], then r(θ) ∈ [cos(γ(θ)/2), 1].

The order parameter magnitude r is known to measure synchronization. Show the following statements:

(iv) if all oscillators are phase-synchronized, then r = 1, and

(v) if all oscillators are spaced equally on the unit circle (the so-called splay state), then r = 0.

E17.3 Order parameter and mean-�eld dynamics. Show that the Kuramoto model (17.2) is equivalent to the

so-called mean-�eld model (17.4) with the order parameter r de�ned in (17.3).

E17.4 Multiplicity of equilibria in the Kuramoto model. A common misconception in the literature is that

the Kuramoto model has a unique equilibrium set in the phase cohesive set {θ ∈ Tn | |θi − θj | <
π/2 for all {i, j} ∈ E}. Consider now the example of a Kuramoto oscillator network de�ned over a sym-

metric cycle graph with identical unit weights and zero natural frequencies. The equilibria are determined

by

0 = sin(θi − θi−1) + sin(θi − θi+1) ,

where i ∈ {1, . . . , n} and all indices are evaluated modulo n. Show that for n > 4 there are at least two

disjoint equilibrium sets in the phase cohesive set {θ ∈ Tn | |θi − θj | < π/2 for all {i, j} ∈ E}.
E17.5 Potential and order parameter. RecallU(θ) =

∑
{i,j}∈E aij

(
1−cos(θi−θj)

)
. ProveU(θ) = Kn

2 (1−r2)

for a complete homogeneous graph with coupling strength aij = K/n.

E17.6 Analysis of the two-node case. Present a complete analysis of a system of two coupled oscillators:

θ̇1 = ω1 − a12 sin(θ1 − θ2) ,

θ̇2 = ω2 − a21 sin(θ2 − θ1) ,

where a12 = a21 and ω1 + ω2 = 0. When do equilibria exist? What are their stability properties and their

basins of attraction?

E17.7 Averaging analysis of coupled oscillators in a semi-circle. Consider the coupled oscillator model (17.5)

with θ ∈ Γarc(γ) for some γ < π. Show that the coordinate transformations xi = tan(θi), with xi ∈ R,

gives the averaging system (17.6) with bij ≥ aij cos(γ/2).

E17.8 Phase synchronization in spring network. Consider the spring network from Example #1 in Section 13.3

with identical oscillators, no external torques, and a connected, undirected, and weighted graph:

miθ̈i + diθ̇i +

n∑

j=1

aij sin(θi − θj) = 0 , i ∈ {1, . . . , n} .

Prove the phase synchronization result (in Theorem 17.6) for this spring network.
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272 Chapter 17. Networks of Coupled Oscillators

E17.9 Synchronization on acyclic graphs. For frequencies

∑n
i=1 ωi = 0, consider the coupled oscillator model

θ̇i = −
∑n

j=1
aij sin(θi − θj).

Assume the adjacency matrix A with elements aij = aji ∈ {0, 1} is associated to an undirected, connected,

and acyclic graph. Show that the following statements are equivalent:

(i) there exists a locally stable frequency-synchronized solution in the set {θ ∈ Tn | |θi − θj | <
π/2 for all {i, j} ∈ E},

(ii)

∥∥BTL†ω
∥∥
∞ < 1, where B and L are the network incidence and Laplacian matrices.

Hint: Follow the derivation in Appendix 9.5.

E17.10 Distributed averaging-based PI control for coupled oscillators. Consider a set of n controllable coupled

oscillators governed by the second-order dynamics

θ̇i =ωi, (E17.1a)

miω̇i = − diωi −
∑n

j=1
aij sin(θi − θj) + ui , (E17.1b)

where i ∈ {1, . . . , n} is the index set, each oscillator has the state (θi, ωi) ∈ T1×R, ui ∈ R is a control input

to oscillator i, and mi > 0 and di > 0 are the inertia and damping coe�cients. The oscillators are coupled

through an undirected, connected, and weighted graph G = (V,E,A) with node set V = {1, . . . , n}, edge

set E ⊂ V × V , and adjacency matrix A = AT ∈ Rn×n. To reject disturbances a�ecting the oscillators,

consider the distributed averaging-based integral controller (see Exercise E6.17)

ui = − qi, (E17.2a)

q̇i =wi −
∑n

j=1
bij(qi − qj) , (E17.2b)

where qi ∈ R is a controller state for each agent i ∈ {1, . . . , n}, and the matrix B with elements bij is the

adjacency matrix of an undirected and connected graph. Your tasks are as follows:

(i) characterize the set of equilibria (θ?, ω?, q?) of the closed-loop system (E17.1)-(E17.2),

(ii) show that all trajectories converge to the set of equilibria, and

(iii) show that the phase synchronization set {θ ∈ Tn | θi = θj for all i, j ∈ {1, . . . , n}} together with

ω = q = 0n is an equilibrium and that it is locally asymptotically stable.
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Chapter18

Robotic Coordination and Formation

Control

In this chapter we present some methods and ideas related to coordination in robotic networks with relative

sensing. We discuss rendezvous, �ocking, and formation control problems.

18.1 Coordination in relative sensing networks

We consider the following setup for the coordination of n autonomous mobile robots (referred to as agents)

in a planar environment:

(i) Agent dynamics: We consider a simple and fully actuated agent model: ṗi = ui, where pi ∈ R2

and ui ∈ R2
are the position and steering control input of agent i.

(ii) Relative sensing model: We consider the following sensing model.

• Each agent is equipped with onboard sensors only and has no communication devices.

• The sensing topology is encoded by an undirected and connected graph G = (V,E)

• Each agent i can measure the relative position of neighboring agents: pi − pj for {i, j} ∈ E.

To formalize the relative sensing model, we introduce an arbitrary orientation and labeling k ∈
{1, . . . , |E|} for each undirected edge {i, j} ∈ E. Recall the incidence matrix B ∈ Rn×|E| of the

associated oriented graph and de�ne the 2n× 2|E| matrix B̂ = B ⊗ I2 via the Kronecker product

(see Exercise E7.21). The Kronecker product A⊗B is the “element-wise” matrix product so that each

scalar entry Aij of A is replaced by a block-entry Aij ·B in the matrix A⊗B. For example, if B is

given by

B =




+1 0 0 0
−1 +1 −1 0
0 −1 0 +1
0 0 +1 −1


 , then B̂ is given by B̂ = B ⊗ I2 =




+I2 0 0 0
−I2 +I2 −I2 0

0 −I2 0 +I2

0 0 +I2 −I2


 .

With this notation the vector of relative positions is given by e = B̂Tp.
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274 Chapter 18. Robotic Coordination and Formation Control

p1

p2

p3

e1

e2

e3

Figure 18.1: A cycle graph with three agents. The �rst panel shows the agents embedded in the plane R2
with

positions pi and relative positions ei. The second panel shows the arti�cial potentials as springs connecting the

robots, and the third panel shows the resulting forces.

(iii) Geometric objective: The objective is to achieve desired geometric con�guration which can be

expressed as a function of relative distances ‖pi − pj‖ for each {i, j} ∈ E. Examples include

rendezvous (‖pi − pj‖ = 0), collision avoidance (‖pi − pj‖ > 0), and desired relative spacings

(‖pi − pj‖ = dij > 0).

(iv) Potential-based control: We specify the geometric objective for each edge {i, j} ∈ E as the

minimum of an arti�cial potential function Vij : Dij ⊂ R→ R≥0. We require the potential functions

to be twice continuously di�erentiable on their domain Dij .

It is instructive to think of Vij(‖pi − pj‖) as a spring coupling neighboring agents {i, j} ∈ E. The

resulting spring forces acting on agents i and j are fij(pi − pj) = − ∂
∂pi
Vij(‖pi − pj‖) and fji(pi − pj) =

−fij(pi − pj) = − ∂
∂pj

Vij(‖pi − pj‖); see Figure 18.1 for an illustration. The overall network potential

function is then

V (p) =
∑

{i,j}∈E

Vij(‖pi − pj‖) .

We design the associated gradient descent control law as

ṗi = ui = −∂V (p)

∂pi
= −

∑

{i,j}∈E

∂

∂pi
Vij(‖pi − pj‖) =

∑

{i,j}∈E

fij(pi − pj) , i ∈ {1, . . . , n} .

In vector form the control reads as the negative gradient �ow

ṗ = u = −∂V (p)

∂p

T

= B̂ · diag({fij}{i,j}∈E) ◦ B̂Tp . (18.1)

The closed-loop relative sensing network (18.1) is illustrated in Figure 18.2.

Controllers based on arti�cial potential functions induce a lot of structure in the closed-loop system.

Recall the set of 2-dimensional orthogonal matrices O(2) = {R ∈ R2 | RRT = I2}, introduced in

Exercise E2.14, as the set of 2-dimensional rotations and re�ections.

Lemma 18.1 (Symmetries of relative sensing networks). Consider the closed-loop relative sensing net-
work (18.1) with an undirected and connected graph G = (V,E). For every initial condition p0 ∈ R2n, we
have that
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B̂ B̂>

ẋi = ui

fij(·)

. . .

. . .

. . .

. . .
x

yz

u

Figure 18.2: Closed-loop diagram of the relative sensing network (18.1).

(i) the center of mass is stationary: average(p(t)) = average(p0) for all t ≥ 0; and

(ii) the closed-loop ṗ = −∂V (p)
∂p

T
is invariant under rigid body transformations: if ξi = Rpi + q, where

R ∈ O(2) and q ∈ R2 is a translation vector, then ξ̇ = −∂V (ξ)
∂ξ

T
.

Proof. Regarding statement (i), since

∑n
i=1 ṗi = 0, it follows that

∑n
i=1 pi(t) =

∑n
i=1 pi0.

Regarding statement (ii), �rst, notice that potential function is invariant under translations since

V (p) = V (p+ 1n ⊗ q) for any translation q ∈ R2
. Second, notice that the potential function is invariant

under rotations and re�ections since Vij(‖R(pi − pj)‖) = Vij(‖pi − pj‖) and thus V (R̂p) = V (p) where

R̂ = In ⊗ R. From the chain rule we obtain
∂
∂pV (R̂p)R̂ = ∂

∂pV (p) or
∂
∂pV (R̂p) = ∂

∂pV (p)R̂T
. By

combining these insights when changing coordinates via ξi = Rpi + q (or ξ = R̂p+ 1n ⊗ q), we �nd that

ξ̇ = R̂ṗ = −R̂∂V (p)

∂p

T

= −
(
∂V (p)

∂p
R̂T

)T

= −∂V (R̂p)

∂p

T

= −∂V (ξ)

∂ξ

T

.

�

Example 18.2 (The linear-quadratic rendezvous problem). An undirected consensus system is a

relative sensing network coordination problem where the objective is rendezvous: pi = pj for all {i, j} ∈ E.

For each edge {i, j} ∈ E consider the arti�cial potential Vij : R2n → R≥0 which has a minimum at the

desired objective. For example, for the quadratic potential function

Vij(pi − pj) =
1

2
aij‖pi − pj‖22 ,

the overall potential function is obtained as the Laplacian potential V (p) = 1
2p

TL̂p, where L̂ = L ⊗ I2.

The resulting gradient descent control law gives rise to the linear Laplacian �ow

ṗi = ui = − ∂

∂pi
V (p) = −

∑

{i,j}∈E

aij(pi − pj) . (18.2)

So far, we analyzed the consensus problem (18.2) using matrix theory and exploiting the linearity of the

problem. In the following, we introduce numerous tools that will allow us to analyze nonlinear consensus-

type interactions and more general nonlinear dynamical systems. •
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276 Chapter 18. Robotic Coordination and Formation Control

18.2 A nonlinear rendezvous problem

Consider the nonlinear rendezvous system

ṗi = fi(p) = −
∑

{i,j}∈E

gij(pi − pj) , (18.3)

where (for each {i, j} ∈ E) gij = gji is a continuously di�erentiable, strictly increasing, and anti-symmetric

function satisfying e · gij(e) ≥ 0 and gij(e) = 0 if and only if e = 0. Notice that the linearization of the

system around the consensus subspace may be zero and thus not very informative, for example, when

gij(e) = ‖e‖2e. The nonlinear rendezvous system (18.3) can be written as a negative gradient �ow:

ṗi = − ∂

∂pi
V (p) = −

n∑

j=1

∂

∂pi
Vij(‖pi − pj‖) .

with the associated edge potential function Vij(‖pi − pj‖) =
∫ ‖pi−pj‖

0 gij(χ) dχ.

Theorem 18.3 (Nonlinear rendezvous). Consider the nonlinear rendezvous system (18.3) with an undi-
rected and connected graphG = (V,E). Assume that the associated edge potential functions Vij(‖pi−pj‖) =∫ ‖pi−pj‖

0 gij(χ) dχ are radially unbounded. For every initial condition p0 ∈ R2n, we have that

(i) the center of mass is stationary: average(p(t)) = average(p0) for all t ≥ 0; and

(ii) limt→∞ p(t) = 1n ⊗ average(p0).

Proof. Note that the nonlinear rendezvous system (18.3) is the negative gradient system de�ned by the

network potential function

V (p) =
∑

{i,j}∈E

Vij(‖pi − pj‖) .

Recall from Lemma 18.1 that the center of mass is stationary, and observe that the function V (p) is radially

unbounded with exception of the direction span(12n) associated with a translation of the stationary center

of mass. Thus, for every initial condition p0 ∈ R2n
, the set of points (with �xed center of mass)

{p ∈ R2n | average(p) = average(p0) , V (p) ≤ V (p0)}

de�nes a compact set. By the Krasovskiı̆-LaSalle Invariance Principle in Theorem 14.7, each solution

converges to the largest invariant set contained in

{
p ∈ R2n

∣∣ average(p(t)) = average(p0) , V (p) ≤ V (p0) ,
∂V (p)

∂p
= 0T

n

}
.

It follows that the only positive limit set is the set of equilibria: limt→∞ p(t) ∈ span(1n ⊗ average(p0)).

�
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18.3 Flocking and Formation Control

In �ocking control, the objective is that the robots should mimic the behavior of �sh schools and bird �ocks

and attain a pre-scribed formation de�ned by a set of distance constraints. Given an undirected graph

G(V,E) and a distance constraint dij for every edge {i, j} ∈ E, a formation is de�ned by the set

F = {p ∈ R2n | ‖pi − pj‖2 = dij ∀{i, j} ∈ E} .

We embed the graph G into the plane R2
by assigning to each node i a location pi ∈ R2

. We refer to the

pair (G, p) as a framework, and we denote the set of frameworks (G,F) as the target formation. A target

formation is a realization of F in the con�guration space R2
. A triangular example is shown in Figure 18.3.

p1

p2

p3

�e12�2 = d12

�e13�2 = d13

�e23�2 = d23

p1

p2

p3

p3

p1

p2

�e23�2 = d23

�e23�2 = d23

�e13�2 = d13

�e13�2 = d13

�e12�2 = d12

Figure 18.3: A triangular formation speci�ed by the distance constraints d12, d13, and d23. The left sub�gure shows

one possible target formation, the middle sub�gure shows a rotation of this target formation, and the right sub�gure

shows a “�ip” of the left target formation. All of these triangles satisfy the speci�ed distance constraints and are

elements of F .

We make the following three observations on the geometry of the target formation:

• To be non-empty, the formation F has to be realizable in the plane. For example, for the triangular

formation in Figure 18.3 the distance constraints dij need to satisfy the triangle inequalities:

d12 ≤ d13 + d23 , d23 ≤ d12 + d13 , d13 ≤ d12 + d23 .

• A framework (G, p) with p ∈ F is invariant under rigid body transformations, that is, rotation or

translation, as seen in Figure 18.3. Hence, the formation F is a set of at least of “dimension 3”.

• The formation F may consist of multiple disconnected components. For instance, for the triangular

example in Figure 18.3 there is no continuous deformation from the left framework to the right

“�ipped” framework, even though both are target formations. In the state space R6
, this absence of a

continuous deformation corresponds to two disconnected components of the set F .

To steer the agents towards the target formation, consider an arti�cial potential function for each edge

{i, j} ∈ E which mimics the Hookean potential of a spring with rest length dij :

Vij(‖pi − pj‖) =
1

2

(
‖pi − pj‖2 − dij

)2
.
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Since this potential function is not di�erentiable, we choose the modi�ed potential function

Vij(‖pi − pj‖) =
1

2

(
‖pi − pj‖22 − d2

ij

)2
. (18.4)

The resulting closed loop under the gradient descent control law u = − ∂
∂pV (p) is given by

ṗi = ui = − ∂

∂pi
V (p) = −2

∑

{i,j}∈E

(
‖pi − pj‖22 − d2

ij

)
· (pi − pj) . (18.5)

Observe that the set of equilibria of the closed loop (18.5) is the set of critical points of V (p) which is a

strict super-set of the target formation F . For example, it includes the set of points when two neighbors

are collocated: pi = pj for {i, j} ∈ E. In the following, we show convergence to the equilibrium set.

Theorem 18.4 (Flocking). Consider the nonlinear �ocking system (18.5) with an undirected and connected
graph G = (V,E) and a realizable formation F . For every initial condition p0 ∈ Rn, we have that

• the center of mass is stationary: average(p(t)) = average(p0) for all t ≥ 0; and

• the agents asymptotically converge to the set of critical points of the potential function.

Proof. As in the proof of Theorem 18.3, the center of mass is stationary and the potential is non-increasing:

V̇ (p) = −
∥∥∥∥∥
∂V (p)

∂p

T
∥∥∥∥∥

2

≤ 0 .

Observe further that for a �xed initial center of mass, the sublevel sets of V (p) form a compact set. By

the Krasovskiı̆-LaSalle Invariance Principle in Theorem 14.7, p(t) converges to the largest invariant set

contained in

{
p ∈ R2n

∣∣ average(p(t)) = average(p0) , V (p) ≤ V (p0) ,
∂V (p)

∂p
= 0T

n

}
.

It follows that the positive limit set is the set of critical points of the potential function. �

Observe that Theorem 18.4 guarantees at most convergence to the critical points of the potential

function. Depending on the problem scenario of interest, we still have to investigate which of these critical

points are locally asymptotically stable or unstable on a case-by-case basis; see Exercise E18.3 for an

application to a linear formation and Section 18.4 for a more general analysis.

The above Theorem 18.4 also holds true for non-smooth potential functions Vij : ]0,∞[ → R that

satisfy

(P1) regularity: Vij(ξ) is de�ned and twice continuously-di�erentiable on ]0,∞[;

(P2) distance speci�cation: fij(ξ) = ∂
∂ξVij(ξ) = 0 if and only if ξ = dij ;

(P3) mutual attractivity: fij(ξ) = ∂
∂ξVij(ξ) is strictly monotone increasing; and

(P4) collision avoidance: limξ→0 Vij(ξ) =∞.
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d2
ij

kpi � pjk

Vij

(a) Arti�cial potential functions

kfijk

d2
ij

kpi � pjk

(b) Induced arti�cial spring forces

Figure 18.4: Illustration of the quadratic potential function (18.4) (blue solid plot) and a logarithmic barrier potential

function (red dashed plot) that approaches∞ as two neighboring agents become collocated

An illustration of possible potential functions can be found in Figure 18.4. These potential functions

can also be modi�ed to include input constraints; see Exercise E18.1.

Theorem 18.5 (Flocking with collision avoidance). Consider the negative gradient �ow (18.1) with an
undirected and connected graph G = (V,E), a realizable formation F , and arti�cial potential functions
satisfying (P1)–(P1). Then, for every initial condition p0 ∈ R2n satisfying pi(0) 6= pj(0) for all {i, j} ∈ E,

(i) the solution to the non-smooth dynamical system exists for all times t ≥ 0;

(ii) the center of mass average(p(t)) = average(p(0)) is stationary for all t ≥ 0;

(iii) neighboring robots will not collide, that is, pi(t) 6= pj(t) for all {i, j} ∈ E and for all t ≥ 0; and

(iv) the agents asymptotically converge to the set of critical points of the potential function.

Proof. The proof of Theorem 18.5 is identical to that of Theorem 18.4 after realizing that, for initial conditions

satisfying pi(0) 6= pj(0) for all {i, j} ∈ E, the dynamics are con�ned to the compact and forward invariant

set {
p ∈ R2n

∣∣ average(p(t)) = average(p0) , V (p) ≤ V (p0)
}
.

Within this set, the dynamics (18.5) are twice continuously di�erentiable and collisions are avoided. �

At this point we should ask ourselves the following three questions:

(i) Do the agents actually stop, that is, does there exist an p∞ ∈ Rn so that limt→∞ p(t) = p∞?

(ii) The formation F is a subset of the set of critical points of the potential function. How can we render

this particular subset stable (amongst possible other critical points)? What are the other critical

points?

(iii) Does our speci�cation of the target formation make sense? For example, in Figure 18.5 the target

formation can be in�nitesimally deformed, such that the resulting geometric con�gurations are not

congruent.

The answers to all this question is tied to a graph-theoretic concept called rigidity.
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Figure 18.5: A rectangular target formation among four robots, which is speci�ed by four distance constraints.

The initial geometric con�guration (solid circles) can be continuously deformed such that the resulting geometric

con�guration is not congruent anymore. All of the displayed con�gurations are part of the target formation set and

satisfy the distance constraints, even the case when the agents are collinear.

18.4 Rigidity and stability of the target formation

To introduce the notion of graph rigidity, we view the undirected graph G = (V,E) as a framework (G, p)
embedded in the plane R2

. Given a framework (G, p), we de�ne the rigidity function rG(p) as

rG : R2n → R|E| , rG(p) ,
[
. . . , ‖pi − pj‖22 , . . .

]T
,

where each component in rG(p) corresponds the length of the relative position pi − pj for {i, j} ∈ E.

De�nition 18.6 (Rigidity). Given an undirected graph G(V,E) and p ∈ R2n, the framework (G, p) is said
to be rigid if there is an open neighbourhood U of p such that if q ∈ U and rG(p) = rG(q), then (G, p) is
congruent to (G, q).

An example of a rigid and non-rigid framework is shown in Figure 18.6.

(a) A �exible framework (b) A rigid framework

Figure 18.6: The framework in Figure 18.6a is not rigid since a slight perturbation of the upper two points of the

framework results in a framework that is not congruent to the original one although their rigidity functions coincide.

If an additional cross link is added to the framework as in Figure 18.6b, small perturbations that do not change the

rigidity function result in a congruent framework. Thus, the framework in Figure 18.6b is rigid.

Although rigidity is a very intuitive concept, its de�nition does not provide an easily veri�able condition,

especially if one is interested in �nding the exact neighbourhood U where the framework is rigid. The
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following “linearized rigidity concept” o�ers an easily checkable algebraic condition. The idea is to allow an

in�nitesimally small perturbation ∂p of the framework (G, p) while keeping the rigidity function constant

up to �rst order. Then the �rst order Taylor approximation of the rigidity function rG about p is

rG(p+ ∂p) = rG(p) +
∂rG(p)

∂p
∂p+O(‖∂p‖2) .

The rigidity function then remains constant up to �rst order if ∂p ∈ kernel
(
∂rG(p)
∂p

)
. The matrix

∂rG(p)
∂p ∈

R|E|×2n
is called the rigidity matrix of the graph G. If the perturbation ∂p is a rigid body motion, that is

a translation and rotation of the framework, then, by De�nition 18.6, the framework is still rigid. Thus,

the dimension of the kernel of the rigidity matrix is at least 3. The idea that rigidity is preserved under

in�nitesimal perturbations motivates the following de�nition of in�nitesimal rigidity.

De�nition 18.7 (In�nitesimal rigidity). Given an undirected graphG(V,E) and p ∈ R2n, the framework
(G, p) is said to be in�nitesimally rigid if dim

(
kernel

(
∂rG(p)
∂p

))
= 3 or equivalently if rank

(
∂rG(p)
∂p

)
=

2n− 3.

If a framework is in�nitesimally rigid, then it is also rigid but the converse is not necessarily true

(Asimow and Roth, 1979). Also note that an in�nitesimally rigid framework must have at least 2n − 3
edges E. If it has exactly 2n− 3 edges, then we call it a minimally rigid framework. Finally, if (G, p) is

in�nitesimally rigid at p, so is (G, p′) for p′ in an open neighborhood of p. Thus, in�nitesimal rigidity

is a generic property that depends almost only on the graph G and not on the speci�c point p ∈ R2n
.

Throughout the literature (in�nitesimally, minimally) rigid frameworks are often denoted as (in�nitesimally,

minimally) rigid graphs.

Example 18.8 (Rigidity and in�nitesimal rigidity of triangular formation). Consider the triangu-

lar framework in Figure 18.7a and the collapsed triangular framework in Figure 18.7b which are both

embeddings of the same triangular graph. The rigidity function for both frameworks is given by

rG(p) =



‖p2 − p1‖2
‖p3 − p2‖2
‖p1 − p3‖2


 .

p1

p2

p3

(a) A rigid and in�nitesimally rigid framework (trian-

gle inequalities are strict)

p1

p2

p3

(b) A rigid but not in�nitesimally rigid framework

(triangle inequalities are equalities)

Figure 18.7: In�nitesimal rigidity properties of a framework with three points
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Both frameworks are rigid but only the left framework is in�nitesimally rigid. To see this, consider the

rigidity matrix

∂rG(p)

∂p
= 2



pT1 − pT2 pT2 − pT1 0T

2

0T
2 pT2 − pT3 pT3 − pT2

pT1 − pT3 0T
2 pT3 − pT1


 .

The rank of the rigidity matrix at a collinear point is 2 < 2n− 3. Hence, the collapsed triangle in Figure

18.7b is not in�nitesimally rigid. All non-collinear realizations are in�nitesimally and minimally rigid.

Hence, the triangular framework in Figure 18.7a is generically minimally rigid (for almost every p ∈ R6
).•

Minimally rigid graphs can be constructed by adding a new node with two undirected edges to an

existing minimally rigid graph; see Figure 18.8. This construction is known under the name Henneberg
sequence.

Figure 18.8: Construction of a minimally rigid graph by means of Henneberg sequence

The �ocking result in Theorem 18.4 identi�es the critical points of the potential function as the positive

limit set. For minimally rigid graphs, we can perform a more insightful stability analysis. To do so, we

�rst reformulate the formation control problem in the coordinates of the relative positions e = B̂Tp. The

rigidity function can be conveniently rewritten in terms of the relative positions eij = pi − pj for every

edge {i, j} ∈ E:

rG : BTR2n → R|E| , rG(e) =
[
. . . , ‖eij‖22 , . . .

]T
.

The rigidity matrix is then obtained in terms of the relative positions as

R(e) ,
∂rG(e)

∂p
=
∂rG(e)

∂e
· ∂e
∂p

= 2 diag(eT) · B̂T .

Consider the shorthand rG(e)−d =
[
. . . , ‖pi− pj‖22− d2

ij , . . .
]T

. Then the closed-loop formation control

equations (18.5) can be reformulated in terms of relative positions as

ė = B̂T ṗ = B̂Tu = −2 B̂TB̂ diag(e)(rG(e)− d) = −B̂TR(e)T(rG(e)− d) . (18.6)

The associated initial condition e0 = B̂Tp0 is a vector in image(B̂T).

Theorem 18.9 (Stability of minimally rigid formations (Dör�er and Francis, 2010)). Consider the
nonlinear �ocking system (18.5) with an undirected and connected graph G = (V,E) and a realizable and
minimally rigid formation F . For every initial condition p0 ∈ Rn, we have that

• the center of mass is stationary: average(p(t)) = average(p0) for all t ≥ 0;
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• the agents asymptotically converge to the set

Wp0 = {p ∈ R2n | average(p) = average(p0) , V (p) ≤ V (p0) , ‖R(e)T [rG(e)− d]‖2 = 0|E|} .

In particular, the limit setWp0 is a union of realizations of the target formation (G, p) with p ∈Wp0 ∩F
and the set of points p ∈Wp0 where the framework (G, p) is not in�nitesimally rigid; and

• For every p0 ∈ R2n such that the framework (G, p) is minimally rigid for all p in the set

{p ∈ R2n | average(p) = average(p0) , V (p) ≤ V (p0)} ,

the agents converge exponentially fast to a stationary target formation (G, p∞) with p∞ ∈Wp0 ∩F .

Proof. Consider the potential function (18.4), which reads in e-coordinates as

V (e) =
1

2

∥∥rG(e)− d
∥∥2
, (18.7)

In the space of relative positions the target formation set B̂TF is compact since the translational invariance

is removed. Also the sublevel sets of V (e) are compact, and the derivative along the trajectories of (18.6) is

∂V (e)

∂e
ė = −2 [rG(e)− d]T diag(eT)B̂TR(e)[rG(e)− d] = −[rG(e)− d]TR(e)R(e)T[rG(e)− d] ≤ 0 .

Notice that V (e(t)) is non-increasing, and for every c ≥ 0 the sublevel set

Ω(c) := {e ∈ Im(B̂T) | V (e) ≤ c}

is forward invariant. By the Krasovskiı̆-LaSalle Invariance Principle, for every initial condition e0 ∈
image(B̂T) the associated solution of (18.6) converges to the largest invariant set in

We0 = {e ∈ image(B̂T) | V (e) ≤ V (e0) , ‖R(e)T [rG(e)− d]‖2 = 0|E|}.

In particular, the limit set We0 includes (i) realizations of the target formation (G, p) with p ∈ Wp0 ∩F ,

e = B̂Tp, and [rG(e) − d] = 0|E|, and (ii) the set of points e ∈ We0 where the rigidity matrix R(e)T ∈
Rn×|E| loses rank corresponding to points p ∈Wp0 where the framework (G, p) is not in�nitesimally rigid.

Due to minimal rigidity of the target formation the matrix R(e)T ∈ R2n×m
has full rank |E| = 2n− 3

for all e ∈ B̂TF , or said di�erently R(e)R(e)T has no zero eigenvalues for all e ∈ B̂TF . The minimal

eigenvalue ofR(e)R(e)T is positive for all e ∈ B̂TF and thus (due to continuity of eigenvalues with respect

to the matrix elements) also in an open neighborhood of B̂TF . In particular, for any strictly positive λ > 0,

we can �nd ρ = ρ(λ) so that everywhere in the sublevel set Ω(ρ) the matrix R(e)R(e)T is positive de�nite

with eigenvalues lower-bounded by λ. Formally, ρ is obtained by

ρ = argmaxe,ρ̃ ρ̃

subject to e ∈ Ω(ρ̃)

min
e∈Ω(ρ̃)

eig

(
R(e)R(e)T

)
≥ λ.
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Then, for all e ∈ Ω(ρ), we can upper-bound the derivative of V (e) along trajectories as

V̇ (e) ≤ −λ‖rG(e)− d‖2 = −2λV (e) . (18.8)

By the Grönwall-Bellman Comparison Lemma in Exercise E14.2, we have that for every e0 ∈ Ω(ρ),

V (e(t)) ≤ V (e0)e−2λt
. It follows that the the target formation set (parameterized in terms of relative

positions) B̂TF is exponentially stable with Ω(ρ) as guaranteed region of attraction.

Although the e-dynamics (18.6) and the p-dynamics (18.5) both have the formation F as a limit set,

convergence of the e-dynamics does not automatically imply convergence to a stationary target formation

(but only convergence of the point-to-set distance toF ). To establish stationarity, we rewrite the p-dynamics

(18.5) as

p(t) = p0 +

∫ t

0
f(τ) dτ , (18.9)

where f(t) = −B̂ diag(e(t))
(
v(e(t)− d

)
. Due to the exponential convergence rate of the e-dynamics in

We0 the function f(t) is exponentially decaying in time and thus an integrable (L1) function. It follows

that the integral on the right-hand side of (18.9) exists even in the limit as t→∞ and thus a solution of the

p-dynamics converges to a �nite point in F , that is, the agents converge to a stationary target formation.

In conclusion, for every p0 ∈ R2n
satisfying e0 = B̂Tp0 ∈ Ω(ρ), the agents converge exponentially fast to

a stationary target formation. �

18.5 Historical notes and further reading

Recent surveys and tutorials on rigidity and formation control include (Anderson et al., 2008; Oh et al.,

2015). The presentation in this chapter borrows ideas from (Dör�er and Francis, 2010; Krick et al., 2009).

Rigidity theory is a classic topic in graph theory; relevant references include (Asimow and Roth, 1979;

White and Whiteley, 1983). A theory of network localization based on graph rigidity is provided in (Aspnes

et al., 2006).

Theorem 18.9 formulated for minimally rigid formations can also be extended to more redundant

in�nitesimally rigid formations; see (Oh et al., 2015).
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18.6 Exercises

E18.1 Consensus with input constraints. Consider a set of n agents each with �rst-order dynamics ẋi = ui.

(i) Design a consensus protocol that respects input constraints ui(t) ∈ [−1, 1] for all t ≥ 0, and prove

that your protocol achieves consensus.

Hint: Adopt the hyperbolic tangent function (or the arctangent function) and Theorem 18.3.
(ii) Extend the protocol and the proof to the case of second-order dynamics ẍi = ui to achieve consensus

of position states and convergence of velocity states to zero.

Hint: Recall Examples 14.5 and 14.8.

E18.2 Pentagon formation. Consider n = 5 agents that should form a pentagon with unit side lengths ac-

cording to the formation control protocol (18.5). Design a graph so that the pentagon formation is locally

asymptotically stable.

E18.3 Global analysis of a linear formation. Consider two agents with positions pi = (xi, yi) ∈ R2
, i ∈

{1, . . . , 2}, with controllable integrator dynamics ṗi = ui, where ui ∈ R2
is the steering command that

serves as control input. The two agents have access to only relative position measurements p1 − p2. Your

tasks are as follows:

(i) propose a control law for u1 and u2 as function of the relative position p1 − p2 and a design parameter

d12 > 0 so that the agents achieve a desired distance ‖p1 − p2‖ = d12 > 0 in steady state (possibly

next to other undesired equilibria).

(ii) study the convergence properties of the closed loop under your proposed control law.

(iii) show that your proposed control law (or a modi�cation thereof) achieves that almost all trajectories

converge to the desired formation. Possibly you need to modify your controller accordingly.
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