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Preface

Books which try to digest, coordinate, get rid of the duplication, get rid of the less fruitful methods
and present the underlying ideas clearly of what we know now, will be the things the future
generations will value. Richard Hamming (1915-1998)

Topics These lecture notes are intended for first-year graduate students interested in network systems,
distributed algorithms, and cooperative control. The objective is to answer basic questions such as: What
are fundamental dynamical models of interconnected systems? What are the essential dynamical properties
of these models and how are they related to network properties? What are basic estimation, control, design,
and optimization problems for these dynamical models?

The book is organized in three parts: Linear Systems, Topics in Averaging Systems, and Nonlinear
Systems. The Linear Systems part, together with part on the Topics in Averaging Systems, includes

(i) several key motivating examples systems drawn from social, sensor, and compartmental networks,
as well as additional ones from robotics,

(i) basic concepts and results in matrix and graph theory, with an emphasis on Perron-Frobenius theory,
algebraic graph theory and linear dynamical systems,

(iii) averaging systems in discrete and continuous time, described by static, time-varying and random
matrices, and

(iv) positive and compartmental systems, described by Metzler matrices, with examples from ecology,
epidemiology and chemical kinetics.

The Nonlinear Systems part includes

(v) formation control and coordination problems for relative sensing networks,

(vi) networks of phase oscillator systems with an emphasis on the Kuramoto model and models of power
networks, and

(vii) virus propagation models, including lumped and network models as well as stochastic and determin-
istic models, and

ix
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(viii) population dynamic models, describing mutualism, competition and cooperation in multi-species
systems.

Teaching instructions These lecture notes are meant to be taught over a quarter-long course with a
total 35 to 40 hours of contact time. On average, each chapter should require approximately 2 hours of
lecture time. Indeed, these lecture notes are an outgrowth of an introductory graduate course that I taught
at UC Santa Barbara over the last several years.

The intended audience is 1st year graduate students in Engineering, Sciences, and Applied Mathematics
programs. For the first part on Linear Systems, the required background includes competency in linear
algebra and only very basic notions of dynamical systems. For the second part on Nonlinear Systems
(including coupled oscillators and virus propagation), the required background includes a calculus course.
The treatment is self-contained and does not require a nonlinear systems course.

For the benefit of instructors, these lecture notes are supplemented by three documents:

« a solution manual, available upon request by instructors at accredited institutions;

+ an abbreviated version of these notes in slides/landscape format, especially suited for displaying on a
projector for classroom teaching, and

« an abbreviated version of these notes in classnotes format (with large sans-serif fonts, small margins),
especially suited as markup copy for classroom teaching.

The book, in its three formats, are available for download at: http://motion.me.ucsb.edu/book-1ns.
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(ii) Chapter 18 “Robotic Coordination and Formation Control,”
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(iv) alarge number of exercises.
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Part 1

Linear Systems






1.1

CHAPTER ]

Motivating Problems and Systems

In this chapter, we introduce some example problems and systems from multiple disciplines to motivate
our treatment of linear network systems in the following chapters. We look at the following examples:

(i) In the context of social influence networks, we discuss a classic model on how opinions evolve and
possibly reach a consensus opinion in groups of individuals.

(ii) In the context of wireless sensor networks, we discuss a simple distributed averaging algorithms and,
in the appendix, two advanced design problems for parameter estimation and hypothesis testing.

(iii) In the context of compartmental networks, we discuss dynamical flows among compartments with a
classic example for water in desert ecosystems.

(iv) Finally, we discuss simple robotic behaviors for cyclic pursuit and balancing.

In all cases we are interested in presenting the basic models and motivating interest in understanding their
dynamic behaviors, such as the existence and attractivity of equilibria.

Social influence networks: opinion dynamics

We consider a group of n individuals who must act together as a
team. Each individual has his own subjective probability density
function (pdf) p; for the unknown value of some parameter (or
more simply an estimate of the parameter). We assume now that
individual ¢ is appraised of the pdf p; of each other member j # i of
the group. Then the model by (French, 1956; Harary, 1959), see also
the later (DeGroot, 1974), predicts that the individual will revise its

pdf to be:
n
p? = Z QijPj
j=1

where a;; denotes the weight that individual 7 assigns to the pdf of
individual j when carrying out this revision. More precisely, the coefficient a;; describes the attachment of

Figure 1.1: Interactions in a social influ-
ence network



Chapter 1. Motivating Problems and Systems

individual ¢ to its own opinion and a;j, j # %, is an interpersonal influence weight that individual ¢ accords
to individual j.

In this model, the coefficients a;; satisfy the following constraints: they are non-negative, that is, a;; > 0,
and, for each individual, the sum of self-weight and accorded weights equals 1, that is, Z;n:l a;; = 1forall
4. In mathematical terms, the matrix

aiy ... Qip

A=
apl .. Qpp

has non-negative entries and each of its rows has unit sum. Such matrices are said to be row-stochastic.
Scientific questions of interest include:
(i) Is this model of human opinion dynamics believable? Is there empirical evidence in its support?
(ii) How does one measure the coefficients a;;?
(iii) Under what conditions do the pdfs converge to consensus? What is this value?

(iv) What are more realistic, empirically-motivated models, possibly including stubborn individuals or
antagonistic interactions?

Wireless sensor networks: averaging algorithms

k:l sensor node
|1j| gateway node

Figure 1.2: A wireless sensor network composed of a collection of spatially-distributed sensors in a field and a
gateway node to carry information to an operator. The nodes are meant to measure environmental variables, such as
temperature, sound, pressure, and cooperatively filter and transmit the information to an operator.

A wireless sensor network is a collection of spatially-distributed devices capable of measuring physical and
environmental variables (e.g., temperature, vibrations, sound, light, etc), performing local computations,
and transmitting information to neighboring devices and, in turn, throughout the network (including,
possibly, an external operator).

Suppose that each node in a wireless sensor network has measured a scalar environmental quantity, say
x;. Consider the following simple distributed algorithm, based on the concepts of linear averaging: each
node repeatedly executes

x = average (wi, {z;, for all neighbor nodes j}), (1.1)

7

where xj denotes the new value of x;. For example, for the graph in Figure 1.3, one
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1.3

1.3. Compartmental systems: dynamical flows among compartments

can easily write xf = (21 + x2)/2, :[;5r = (21 + 22 + a3+ x4)/4, and @ @
so forth. In summary, the algorithm’s behavior is described by

12 1/2 0 0
N YV VA ©) @
TS0 13 1/3 173 T v

0 1/3 1/3 1/3 Figure 1.3: Example graph

where the matrix Ay, in equation is again row-stochastic.

Motivated by these examples from social influence networks and wireless sensor networks, we define
the averaging model to be the dynamical system

x(k+1) = Azx(k), (1.2)

where A has non-negative entries and unit row sums. Here, k is the discrete-time variable. We will discuss
the continuous-time analogue of this discrete-time model later the book.
Scientific questions of interest for the averaging model include:

(i) Does each node converge to a value? Is this value the same for all nodes?

(ii) Is this value equal to the average of the initial conditions?

(iii) What properties do the graph and the corresponding matrix need to have in order for the algorithm
to converge?

(iv) How quick is the convergence?

Compartmental systems: dynamical flows among compartments

Compartmental systems model dynamical processes characterized by conservation laws (e.g., mass, fluid,
energy) and by the flow of material between units known as compartments. For example, the flow of energy
and nutrients (water, nitrates, phosphates, etc) in ecosystems is typically studied using compartmental

modelling; Figure 1.4 illustrates a widely-cited water flow model for a desert ecosystem ( , )-
precipitation——>|  soil | ——————evaporation, drainage, runoff ——
uptake plants transpiration ——
drinking herbivory
animals ———evaporation———

Figure 1.4: Noy-Meir water flow model for a desert ecosystem. The blue line denotes an inflow from the outside
environment. The red lines denote outflows into the outside environment.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



Chapter 1. Motivating Problems and Systems

1.4

Given a collection of interconnected compartments, we let ¢; denote the amount of material in com-
partment i, for i € {1,...,n}, and write the mass balance equation for the ith compartment as:

n
¢ = Z (Fjmi — Finsg) — Fiso + g, (1.3)
j=Lji

where u; is the inflow from the environment and F;_,q is the outflow into the environment. We refer to
equation (1.3) as a compartmental system. We next assume linear flows, that is, we assume that the flow
F;_,; from node i to node j (as well as to the environment) is proportional to the mass quantity at 7, that
is, F;_s; = fi;jq; for a positive flow rate constant f;;. Therefore we can write the dynamics of a linear
compartmental system as

n
a(t)= D (fua;(t) = fiai(t) — fioai(t) + us. (1.4)
j=1,j#i
Here, ¢ is the continuous-time variable. Equivalently, in vector notation, for an appropriate compartmental
matrix C,

q(t) = Cq(t) + u. (1.5)

For example, let us write down the compartmental matrix C' for the water flow model in figure. We
let g1, g2, g3 denote the water mass in soil, plants and animals, respectively. Moreover, as in figure, we
let fe-dr, funsps fevaps famk> fuptks fherb, denote respectively the evaporation-drainage-runoff, transpiration,
evaporation, drinking, uptake, and herbivory rate. With these notations, we can write

_fe—d—r - fuptk - fdrnk 0 0
C= fuptk _ftrnsp — Jherb 0
f drnk f herb - f evap

Scientific questions of interest include:

(i) for constant inflows u, does the total mass in the system remain bounded?
(ii) is there an equilibrium solution? do all evolutions converge to it?

(iii) which compartments become empty asymptotically?

Appendix: Robotic networks in cyclic pursuit and balancing

In this section we consider two simple examples of coordination motion in robotic networks. The standing
assumption is that n robots, amicably referred to as “bugs,” are placed and restricted to move on a circle of
unit radius. Because of this bio-inspiration and because this language is common in the literature (
, ; , ), we refer to the following two problems as n-bugs problems.
On this unit circle the bugs’ positions are angles measured counterclockwise from the positive horizontal
axis. We let angles take value in [0, 27), that is, an arbitrary position @ satisfies 0 < 6 < 27. The bugs are
numbered counterclockwise with identities i € {1,...,n} and are at positions 61, . .., 0,. It is convenient
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1.4. Appendix: Robotic networks in cyclic pursuit and balancing

to identify n 4+ 1 with 1. We assume the bugs move in discrete times % in a counterclockwise direction by a
controllable amount u; (i.e., a control signal), that is:

0i(k + 1) = mod(6;(k) + ui(k), 2m).
where mod (1), 2) is the remainder of the division of ¥ by 27 and its introduction is required to ensure

that 0;(k + 1) remains inside [0, 27).

Objective: optimal patrolling of a perimeter. Approach: Cyclic pursuit

We now suppose that each bug feels an attraction and moves towards the closest counterclockwise
neighbor, as illustrated in Figure 1.5. Recall that the counterclockwise distance from 0; and 6;1 is the length
of the counterclockwise arc from 6; and 6,1 and satisfies:

diStcc(Qi, 01+1) = mod(@iﬂ — 91', 271'),
In short, given a control gain k € [0, 1], we assume that the ith bug sets its control signal to

upursuit,i(k) = ﬂdiStcc(ei(k)a 01+1(k))

/_\QH- /‘\oei
9@'/4_1 91’4—1

K diStcc(ei, 6i+1) K diStcc(gi, 92'_._1) — kdist, (02 6’2'_1)

(a) Cyclic pursuit control law (b) Cyclic balancing control law

Figure 1.5: Cyclic pursuit and balancing are prototypical n-bug problems.

Scientific questions of interest include:
(i) Does this system have any equilibrium?

(ii) Is a rotating equally-spaced configuration a solution? An equally-spaced angle configuration is one
for which mod(6;4+1 — 6;, 2m) = mod(#; — 0;_1, 2m) foralli € {1,...,n}. Such configurations are
sometimes called splay states.

(iii) For which values of « do the bugs converge to an equally-spaced configuration and with what
pairwise distance?

Objective: optimal sensor placement. Approach: Cyclic balancing

Next, we suppose that each bug feels an attraction towards both the closest counterclockwise and the
closest clockwise neighbor, as illustrated in Figure 1.5. Given a “control gain” € [0, 1/2] and the natural
notion of clockwise distance, the ith bug sets its control signal to

ubalancing,i(k) = K‘diStcc(ei(k‘)a 01+1(k)) - /{diStc(Hi(k)a 91',1(]{3)),
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Chapter 1. Motivating Problems and Systems

where dist¢(0;(k), 0;—1(k)) = distcc(0i—1(k), 0:(k)).
Questions of interest are:
(i) Is a static equally-spaced configuration a solution?

(ii) For which values of « do the bugs converge to a static equally-spaced configuration?

(iii) Is it true that the bugs will approach an equally-spaced configuration and that each of them will
converge to a stationary position on the circle?

A preliminary analysis

It is unrealistic (among other aspects of this setup) to assume that the bugs know the absolute position
of themselves and of their neighbors. Therefore, it is interesting to rewrite the dynamical system in terms
of pairwise distances between nearby bugs.

Fori € {1,...,n}, we define the relative angular distances (the lengths of the counterclockwise arcs)
d; = distec(0;,0i+1) > 0. (We also adopt the usual convention that d,,+; = d; and that dy = d,,). The
change of coordinates from (61, ...,0,) to (d1,...,d,) leads us to rewrite the cyclic pursuit and the cyclic
balancing laws as:

Upursuit,i (k) =

Ubalancing,i (k) =

In this new set of coordinates, one can show that the cyclic pursuit and cyclic balancing systems are,
respectively,

dz(k + 1) = (1 — /i)dz(k> + Hdi+1(k), (1.6)
dl(k + 1) = /idi_:,_l(k‘) + (1 — 2/4:)d7;<k) + Kdi_1<k). (1.7)
These are two linear time-invariant dynamical systems with state d = (dy, . .., d,,) and governing equation

described by the two n X n matrices:

[1—k K 0 0 T [1— 2k K 0 ko]
0 1—x o 0 K 1-2k . 0
Apursuit = : 0 |, Abalancing = : 0
0 R ) K 0 Lo 1-2k K

L 0 0 1— k] | K 0 K 1 -2k

We conclude with the following remarks.
(i) Equations (1.6) and (1.7) are correct if the counterclockwise order of the bugs is never violated. One
can show that this is true for x < 1 in the pursuit case and £ < 1/2 in the balancing case; we leave
this proof to the reader in Exercise E1.4.

(ii) The matrices Apursuit and Apalancing, for varying n and , are called Toeplitz and circulant based on
the nonzero/zero patterns of their entries; we study the properties of such matrices in later chapters.
Moreover, they have non-negative entries for the stated ranges of x and are row-stochastic.
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1.5.1

1.5. Appendix: Design problems in wireless sensor networks

(iii) If one defines the agreement space, ie., {(a, ,...,a) € R" | a € R}, then each point in this set is
an equilibrium for both systems.

(iv) It must be true for all times that (d,...,d,) € {x € R™ | 2; > 0,>_"" | x; = 2w }. This property is
indeed the consequence of the non-negative matrices Apyrsuit and Apatancing being doubly-stochastic,
i.e., each row-sum and each column-sum is equal to 1.

(v) We will later study for which values of « the system converges to the agreement space.

Appendix: Design problems in wireless sensor networks

In this appendix we show how averaging algorithms are relevant in wireless sensor network problems and
can be used to tackle more sophisticated than what shown in Section 1.2.

Wireless sensor networks: distributed parameter estimation

The next two examples are also drawn from the field of wireless sensor network, but they feature a more
advanced setup and require a basic background in estimation and detection theory, respectively. The key
lessons to be learnt from these examples is that it is useful to have algorithms that compute the average of
distributed quantities.

Following ideas from ( , ; , ), we aim to estimate an unknown
parameter § € R™ via the measurements taken by a sensor network. Each node i € {1,...,n} measures

yi = Bif + v,

where y; € R™, B; is a known matrix and v; is random measurement noise. We assume that

(A1) the noise vectors vy, ..., v, are independent jointly-Gaussian variables with zero-mean E[v;| = Oy,
and positive-definite covariance E[v;v, | = %; = X, fori € {1,...,n}; and
B
(A2) the measurement parameters satisfy the following two properties: >, m; > m and | : | is full
By,
rank.
Given the measurements ¥, . .., yp, it is of interest to compute a least-square estimate of 6, that is, an

estimate of § that minimizes a least-square error. Specifically, we aim to minimize the following weighted

least-square error:
n

min Y [lyi — Bib5 o =D (v — B:6) 'S (v — Bib).
o =1 '

=1

In this weighted least-square error, individual errors are weighted by their corresponding inverse covariance
matrices so that an accurate (respectively, inaccurate) measurement corresponds to a high (respectively,
low) error weight. With this particular choice of weights, the least-square estimate coincides with the
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10 Chapter 1. Motivating Problems and Systems

so-called maximum-likelihood estimate; see ( , ) for more details. Under assumptions (A1) and (A2),
the optimal solution is

o = (Zn: BJE;lBZ-)_l zn: BTy,
=1 =1

This formula is easy to implement by a single processor with all the information about the problem, i.e., the
parameters and the measurements.

To compute 6* in the sensor (and processor) network, we perform two steps:
[Step 1:] we run two distributed algorithms in parallel to compute the average of the quantities BZT Ei_lBi
and BiT X Ly
[Step 2:] we compute the optimal estimate via

~

-1
0" = average (BlTElel, e ,BIE;an> average (Bszl_lyl, cee BZZ;lyn)
Questions of interest are:

(i) How do we design algorithms to compute the average of distributed quantities?
(ii) What properties does the graph need to have in order for such an algorithm to exist?

(iif) How do we design an algorithm with fastest convergence?

1.5.2 Wireless sensor networks: distributed hypothesis testing

We consider a distributed hypothesis testing problem; these ideas appeared in ( ,
; , ). Let h, for v € I" in a finite set I, be a set of two or more hypotheses about
an uncertain event. For example, given a certain area of interest, we could have hy = “no target is present”,
hi = “one target is present” and he = “two or more targets are present”.
Suppose that we know the a priori probabilities p(h.,) of the hypotheses and that n nodes of a sensor
network take measurements y;, for i € {1,...,n}, related to the event. Independently of the type of
measurements, assume you can compute

p(yi|h~) = probability of measuring y; given that h., is the true hypothesis.

Also, assume that each observation is conditionally independent of all other observations, given any
hypothesis.

(i) We wish to compute the maximum a posteriori estimate, that is, we want to identify which one is the
most likely hypothesis, given the measurements. Note that, under the independence assumption,
Bayes’ Theorem implies that the a posteriori probabilities satisfy

n

plhy) [ 2(wilhy).

p(hylyrs .o syn) = —————=
K " p(yl’vyn) i—1
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(ii) Observe thatp(h.)isknown,and p(yi,...,y,)isaconstant normalization factor scaling all posteriori
probabilities equally. Therefore, for each hypothesis v € I, we need to compute

n

Hp(yi’hv)a

=1

or equivalently, we aim to exchange data among the sensors in order to compute:

exp <Zn: log(p(yi\hﬂ,))> = exp (n average <logp(y1\h7), . ,logp(yn]h7)> >

i=1

(iii) In summary, even in this hypothesis testing problem, we need algorithms to compute the average of
the n numbers log p(y1|hy), - . ., 1og p(yn|h~ ), for each hypothesis .

Questions of interest here are the same as in the previous section.

Historical notes and further reading

Numerous other examples of multi-agent systems and applications can be found in the recent texts (
, ; , ; , ; , ). Other, related,
and instructive examples are presented in recent surveys such as ( s ; S ;
, ; ; ; , ). Textbooks, monographs and surveys on the
broader and different theme of network science include ( , ; , ;
, 2009; , 2010; , ; : ; , 2017).

The opinion dynamics example in Section 1.1 is an illustration of the rich literature on social influence

networks, starting with the early works by ( ), ( ), ( ), and
( )- While the linear averaging model is by now known as the DeGroot model, the key ideas were already
present in (1956) and the main results (e.g., average consensus for doubly stochastic matrices) were

already obtained by ( , ). Empirical evidence in support of the averaging model (including its

variations) is described in ( , ; , ; , )-

An outstanding tutorial and survey on dynamic social networks is ( , ). We
postpone to Chapter 9 the literature review on compartmental systems.
The n-bugs problem is related to the study of pursuit curves and inquires about what the paths of n
bugs are when they chase one another. We refer to ( , ; , ;
, ; , ; , ) for some classic works, surveys, and recent
results.
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12 Chapter 1. Motivating Problems and Systems

1.7 Exercises

E1.1 Bounded evolution for averaging systems. Given a matrix A € R™*™ with non-negative entries and unit
row sums, consider the averaging model (1.2)

x(k+1) = Az(k).
Show that, for all initial conditions x(0) and times k,

min 2;(0) < minz;(k) < minz;(k + 1) < maxz;(k + 1) < maxz; (k) < maxx;(0),

where i takes values in {1,...,n}.

E1.2 Conservation of mass for compartmental systems. Given n compartments and flows among them,
consider the compartmental system (1.3)

4 = Z]_:L#i (Fjmi — Finsj) — Fino + ug,

and its linear version in equation (1.5): ¢ = Cq + u. Do the following tasks:

(i) show that, if there are no inflows, i.e., if u; = 0 for all ¢, then the total mass in the compartmental system
does not increase with time,

(ii) write a formula for the diagonal and off-diagonal entries of the compartmental matrix C' as a function
of the flow rate constants, and

(iii) show that the column sums of C' are non-positive.

E1.3 Simulating the averaging dynamics. Simulate in your favorite programming language and software pack-
age the linear averaging algorithm in equation (1.1). Set n = 5, select the initial state equal to (1, —1,1, -1, 1),
and use the following undirected unweighted graphs (depicted in figure):

(i) the complete graph,
(i) the cycle graph, and
(iii) the star graph with node 1 as center.

Which value do all nodes converge to? Is it equal to the average of the initial values? Turn in your code, a few
printouts (as few as possible), and your written responses.

o o o
Q O o @) o @)

c—oO o—oO © O
Complete graph Cycle graph Star graph

E14 Computing the bugs’ dynamics. Consider the cyclic pursuit and balancing dynamics described in Section 1.4.
Verify

(i) the cyclic pursuit closed-loop equation (1.6),
(ii) the cyclic balancing closed-loop equation (1.7), and

(iii) the counterclockwise order of the bugs is never violated.

Hint: Recall the distributive property of modular addition: mod(a + b, n) = mod(mod(a,n) + mod(b,n), n).
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E1.5 Continuous-time cyclic pursuit on the plane. Consider four mobile robots on a plane with positions
p; € C,i € {1,...,4}, and moving according to p; = u;, where u; € C are the velocity commands. The
task of the robots is rendezvous at a common point (while using only onboard sensors). A simple strategy
to achieve rendezvous is cyclic pursuit: each robot ¢ picks another robot, say ¢ + 1, and pursues it. (Here
4 41 = 1.) In other words, we set u; = p;+1 — p; and obtain the closed-loop system (see also corresponding
simulation below):

] [-1 1 0 0][m
p2| _ |0 1 1 0] |p
ps| [0 0 -1 1] |ps
P 10 0 -1 |ps

Prove that:
4
(i) the average robot position average(p(t)) = Y p;(t)/4 remains constant for all ¢ > 0;
i=1

(ii) the robots asymptotically rendezvous at the initial average robot position mass, that is,

lim p;(t) = average(p(0)) forie {1,...,4};

t—o0

(iii) if the robots are initially arranged in a square formation, then they remain in a square formation.

Hint: Given a matrix A with semisimple eigenvalues, the solution to & = Ax is given by the modal expansion
z(t) =Y i, e*tvw!z(0), where v; and w; are the right and left eigenvectors associated to the eigenvalue \;

and normalized to w] v; = 1. The modal decomposition will be reviewed in Sections 2.1 and 10.1.
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CHAPTER 2

Elements of Matrix Theory

In this chapter we review basic concepts from matrix theory with a special emphasis on the so-called
Perron-Frobenius theory. These concepts will be useful when analyzing the convergence of the linear
dynamical systems discussed in Chapter 1, graphs and averaging algorithms defined over graphs.

Notation

It is useful to start with some basic notations from matrix theory and linear algebra. Welet f : X — Y
denote a function from set X to set Y. We let R, N and Z denote respectively the set of real, natural and
integer numbers; also R>q and Zx are the set of non-negative real numbers and non-negative integer
numbers. For real numbers a < b, we let

[a,b) ={z €eR|a <z <b}, la,b] ={z € R |a <z <b},
[a,b] ={z € R|a <z <D}, Ja,b[={z € R|a <z < b}.

Given a complex number z € C, its norm (sometimes referred to as complex modulus) is denoted by |z|, its
real part by R(2) and its imaginary part by (). We let i denote the imaginary unit /—1.

We let 1,, € R" (respectively 0,, € R") be the column vector with all entries equal to 41 (respectively
0). Let ey, ..., e, be the standard basis vectors of R"”, that is, e; has all entries equal to zero except for the

ith entry equal to 1. The 1-norm, 2-norm, and co-norm of a vector x € R" are defined by, respectively,

lzlly = |zl + - +lanl, 2l =2t +-+2%,  [|2llee = max{|zi],..., |znl}

We let [,, denote the n-dimensional identity matrix and A € R™*™ denote a square n X n matrix with
real entries {a;;}, 4,5 € {1,...,n}. The matrix A is symmetric if AT = A.

For a matrix A, A € Cis an eigenvalue and v € C" is a right eigenvector, or simply an eigenvector, if
they together satisfy the eigenvalue equation Av = Av. Sometimes it will be convenient to refer to (A, v)
as an eigenpair. A left eigenvector of the eigenvalue )\ is a vector w € C" satisfying w' A = \w?.

A symmetric matrix is positive definite (resp. positive semidefinite) if all its eigenvalues are positive
(resp. non-negative). The kernel of A is the subspace kernel(A) = {z € R™ | Ax = 0,,}, the image of A is
image(A) = {y € R" | Az =y, for some z € R"}, and the rank of A is the dimension of its image. Given
vectors vy, ...,v; € R", their span is span(vy,...,v;) = {a1v1 + -+ -+ a;v; | a1,...,a; € R} CR"

15



16 Chapter 2. Elements of Matrix Theory
2.1 Linear systems and the Jordan normal form
In this section we introduce a prototypical model for dynamical systems and study its stabilities properties
via the so-called Jordan normal form, that is a key tool from matrix theory. We will later apply these results
to the averaging model (1.2).
2.1.1 Discrete-time linear systems

We start with a basic definition.

Definition 2.1 (Discrete-time linear system). A square matrix A defines a discrete-time linear system
by
z(k+1) = Az(k), x(0) = xo, (2.1)

or, equivalently by x(k) = AFxo, where the sequence {#(k)}rez, is called the solution, trajectory or

evolution of the system.

Sometimes it is convenient to adopt the shorthand ™+ = f(z) to denote the system z(k+1) = f(z(k)).
We are interested in understanding when a solution from an arbitrary initial condition has an asymptotic
limit as time diverges and to what value the solution converges. We formally define this property as follows.

Definition 2.2 (Semi-convergent and convergent matrices). A matrix A € R™*" is

(i) semi-convergent if limg_, 1 AF exists, and

(i) convergent if it is semi-convergent and limy,_, | oo A¥ = 0,5p.

It is immediate to see that, if A is semi-convergent with limiting matrix A, = limy_,, o A¥, then

lim z(k) = Asxxo.

k—+o00

In what follows we characterize the sets of semi-convergent and convergent matrices.

Remark 2.3 (Modal decomposition for symmetric matrices). Before treating the general analysis
method, we present the self-contained and instructive case of symmetric matrices. Recall that a symmetric
matrix A has real eigenvalues \y > Ao > --- > X\, and corresponding orthonormal (i.e., orthogonal and
unit-length) eigenvectors v1, . . . , vn. Because the eigenvectors are an orthonormal basis for R, we can write
the modal decomposition
z(k) = yi(k)vr + - - + yn(k)vn,

where the ith normal mode is defined by y; (k) = v, x(k). We then left-multiply the two equalities (2.1) by v
and exploit Av; = \;v; to obtain

itk +1) = Nigi(k), 4:(0) =vlzo, = wi(k) = A (v]0).
In short, the evolution of the linear system (2.1) is
z(k) = M (] zo)v1 + - - + M (0] ) vy,

Therefore, each evolution starting from an arbitrary initial condition satisfies
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(i) limg o0 z(k) = Oy, ifand only if |\;| < 1 foralli € {1,...,n}, and

(i) limg_o0 2(k) = (v] 20)v1 + -+ + (v} 20) v if and only if \y = --- = A\, = 1 and |\;| < 1 for all
ie{m+1,...,n}.

The Jordan normal form

In this section we review a very useful canonical decomposition of a square matrix. Recall that twon x n
matrices A and B are similar if B = TAT~" for some invertible matrix 7. Also recall that a similarity
transform does not change the eigenvalues of a matrix.

Theorem 2.4 (Jordan normal form). Each matrix A € C"*" is similar to a block diagonal matrix
J € C™*™, called the Jordan normal form of A, given by

Ji 0 0
P
0 -+ 0 J,

where each block J;, called a Jordan block, is a square matrix of size j; and of the form

g = o N - 0 c i 2
. ° . N . . 1
0 0 N
Clearly, m < nand ji1 + -+ jm = n.
We refer to ( , ) for a standard proof of this theorem. Note that the matrix J is

unique, modulo a re-ordering of the Jordan blocks.
Regarding the eigenvalues of A, we note the following. The eigenvalues of .J, and therefore also of A,
are the (not necessarily distinct) numbers Ay, ..., \;,. Given an eigenvalue A,

(i) the algebraic multiplicity of X is the sum of the sizes of all Jordan blocks with eigenvalue X (or,
equivalently, the multiplicity of A as a root of the characteristic polynomial of A), and
(ii) the geometric multiplicity of A is the number of Jordan blocks with eigenvalue A (or, equivalently, the
number of linearly-independent eigenvectors associated to \).
An eigenvalue is
(i) simple if it has algebraic and geometric multiplicity equal precisely to 1, that is, a single Jordan block
of size 1, and

(ii) semisimple if all its Jordan blocks have size 1, so that its algebraic and geometric multiplicity are
equal.
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18 Chapter 2. Elements of Matrix Theory

Regarding the eigenvectors of A, Theorem 2.4 implies there exists an invertible matrix 7" such that

A=TJT!
— AT =TJ (2.4)
— T 'A=JrL (2.5)
Lett1,...,t, and r1,...,7, denote the columns and rows of T'and T~! respectively. If all eigenvalues of

A are semisimple, then the equations (2.4) and (2.5) imply, for alli € {1,...,n},
At; = Nt; and A = Ny

In other words, the ith column of T is the right eigenvector (or simply eigenvector) of A corresponding to
the eigenvalue )\;, and the ith row of T~ ! is the corresponding left eigenvector of A.

If an eigenvalue is not semisimple, then it has larger algebraic than geometric multiplicity. For such
eigenvalues, the columns of the matrix 7" are the right eigenvectors and the generalized right eigenvectors
of A, whereas the rows of T~! are the left eigenvectors and the generalized left eigenvector of A. For more
details about generalized eigenvectors, we refer to reader to ( , )-

Example 2.5 (Revisiting the wireless sensor network example). As a numerical example, let us
reconsider the wireless sensor network discussed in Section 1.2 and the 4-dimensional row-stochastic
matrix Ay, which we report here for convenience:

1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3

Awsn =

With the aid of a symbolic mathematics program, we compute Aye, = T.JT ! where

1 0 0 0 1 0 —-242V73 —2-273
J— 0 0 0 0 T_ 1 0 —-11—-+73 —-11++73 and
{00 L(B-VT3) 0 ’ ! 8 8 ’
00 0 2 (5 +V73) 11 8 8
1 1 1 1
6 3 1 1
0 0 —5 5
7! = 1y 19 15 1 %3 P
96 " 96/73 48 4873 64 644/73 64 64,/73
_1 19 1y 1 1
96 96173 48 7 4873 64 " 64/73 64 " 6473

Therefore, the eigenvalues of A are 1, 0,55 (5 — v/73) &~ —0.14, and 5 (5 + v/73) ~ 0.56. Corresponding

to the eigenvalue 1, the right and left eigenvector equations are:

1 1 1/6]" 1/6]"
1 1 1/3 |13

Awen 11 = 11 and 1 / 4 Agyen = 1 / 4 . b
1 1 1/4 1/4
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Semi-convergence and convergence for discrete-time linear systems

We can now use the Jordan normal form to study the powers of the matrix A. We start by computing

JEo oo 0
k —1 -1 1 krp—1 0 J§ o 0
A=T1TJr—-rJr—. ... .°Jr-=TJT =T T,
k t;:nes : .0
o --- 0 Jk
so that, for a square matrix A with Jordan blocks J;,i € {1, ..., m}, the following statements are equivalent:

(i) A is semi-convergent (resp. convergent),
(if) J is semi-convergent (resp. convergent), and
(iii) each block J; is semi-convergent (resp. convergent).

Next, we compute the kth power of the generic Jordan block J; with eigenvalue )\; as a function of
block size 1,2, 3, ..., j;; they are, respectively,

@A G RN
M1 7 o A . : . ~ 7
o[y [ o ) S
00 A I
| 0 . .. 0 )\éc ]
(2.6)
where the binomial coefficient (:1) = k!/(m!(k — m)!) satisfies (:L) < k™ /ml. Note that, independently

of the size of J;, each entry of the kth power of J; is upper bounded by a constant times k" \¥ for some
non-negative integer h.

To study the limit as & — oo of the generic block J¥, we study the limit as k — oo of each term of the
form kh)\f . Because exponentially-decaying factors dominate polynomially-growing terms, we know

0, if [A\| <1,
Jim KPR =1, if \=1andh =0,
—00
non-existent or unbounded, if (J]A| =1with A # 1) or (|A| >1)or(A=1andh =1,2,...).

(2.7)
In summary, for each block J; with eigenvalues \;, we can infer that:

(i) ablock J; of size 1 is convergent if and only if | ;| < 1,
(ii) a block J; of size 1 is semi-convergent if and only if \; < 1, and

(iii) a block J; of size larger than 1 is semi-convergent and convergent if and only if |\;| < 1.
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2.2

YR

(a) The spectrum of a convergent matrix (b) The spectrum of a semi-convergent matrix, (c) The spectrum of a matrix that is not
provided the eigenvalue 1 is semisimple. semi-convergent.

Figure 2.1: Eigenvalues and convergence properties of discrete-time linear systems

Based on this discussion, we are now ready to present necessary and sufficient conditions for semi-
convergence and convergence of an arbitrary square matrix. We state these conditions using two two useful
definitions.

Definition 2.6 (Spectrum and spectral radius of a matrix). Given a square matrix A,
(i) the spectrum of A, denoted spec(A), is the set of eigenvalues of A; and
(ii) the spectral radius of A is the maximum norm of the eigenvalues of A, that is,

p(A) = max{|A| | A € spec(A)},

or, equivalently, the radius of the smallest disk in C centered at the origin and containing the spectrum

of A.
Theorem 2.7 (Convergence and spectral radius). For a square matrix A, the following statements hold:

(i) A is convergent if and only if p(A) < 1,

(ii) A is semi-convergent if and only if p(A) < 1, no eigenvalue has unit norm other than possibly the
number 1, and if 1 is an eigenvalue, then it is semisimple.

Row-stochastic matrices and their spectral radius

Motivated by the averaging model introduced in Chapter 1, we are now interested in discrete-time linear
systems defined by matrices with special properties. Specifically, we are interested in matrices with
non-negative entries and whose row-sums are all equal to 1.
The square matrix A € R"*" is
(i) non-negative (respectively positive) if a;; > 0 (respectively a;; > 0) for all ¢ and j in {1,...,n};

(ii) row-stochastic if non-negative and A1, = 1,;
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(iii) column-stochastic if non-negative and AT1, = 1,; and

(iv) doubly-stochastic if it is row- and column-stochastic.

In the following, we write A > 0 and v > 0 (respectively A > 0 and v > 0) for a positive (respectively
non-negative) matrix A and vector v.

Given a finite number of points p1, p2, ..., p, in R™, a convex combination of p1,p2, ..., pn is a point
of the form

mp1+ n2p2 + - - + Mnpn,

where the real numbers 7y, . .., 7y, satisfy g1 +---+mn, = landn; > Oforalli € {1,...,n}. (For example,
on the plane R?, the set of convex combinations of two distinct points is the segment connecting them and
the set of convex combinations of three distinct points is the triangle (including its interior) defined by
them.) The numbers 7y, . .., n, are called convex combination coefficients and each row of a row-stochastic
matrix consists of convex combination coefficients.

The spectral radius for row-stochastic matrices

To characterize the spectral radius of a row-stochastic matrix, we introduce a useful general method to
localize the spectrum of a matrix.

Theorem 2.8 (Gersgorin Disks Theorem). For any square matrix A € R™*",

spec(A) C Uz‘e{l,...,n} {z eC ‘ |z —ai;| < Z::L#i |aij|}

disk in the complex plane centered at a;; with radius 37_, i 1055

Proof. Consider the eigenvalue equation Ax = Az for the eigenpair (\, x), where A and z # 0, are
in general complex. Choose the index i € {1,...,n} so that |z;| = max;jc(; _ny|z;| > 0. The ith
component of the eigenvalue equation can be rewritten as A — a;; = Z;L:L i @ij T /x;. Now, take the
complex magnitude of this equality and upper-bound its right-hand side:

N—aul=| > ai | < > \%‘\ﬁﬁ > ail.
J=1j#i Yl =1 =1y

This inequality defines a set of the possible locations for the arbitrary eigenvalue A of A. The statement
follows by taking the union of such sets for each eigenvalue of A. |

Each disk in the theorem statement is referred to as a GerSgorin disks, or more accurately, as a Gersgorin
row disks; an analogous disk theorem can be stated for Gersgorin column disks. Exercise E2.17 showcases an
instructive application to distributed computing of numerous topics covered so far, including convergence
notions and the Gersgorin Disks Theorem.

Lemma 2.9 (Spectral properties of a row-stochastic matrix). For a row-stochastic matrix A,
(i) 1 is an eigenvalue, and

(ii) spec(A) is a subset of the unit disk and p(A) = 1.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



22

Chapter 2. Elements of Matrix Theory

2.3

2.3.1

Proof. First, recall that A being row-stochastic is equivalent to two facts: a;; > 0, 4,5 € {1,...,n},
and A1, = 1,. The second fact implies that 1,, is an eigenvector with eigenvalue 1. Therefore, by
definition of spectral radius, p(A) > 1. Next, we prove that p(A) < 1 by invoking the Ger$gorin Disks
Theorem 2.8 to show that spec(A) is contained in the unit disk centered at the origin. The Gersgorin disks
of a row-stochastic matrix as illustrated in Figure 2.2.

Figure 2.2: All Gersgorin disks of a row-stochastic matrix are contained in the unit disk.

Note that A being row-stochastic implies a;; € [0, 1] and a;; + > j+i @ij = 1. Hence, the center of the
1th Gersgorin disk belongs to the positive real axis between 0 and 1, and the right-most point in the disk is
at 1. |

Note: because 1 is an eigenvalue of each row-stochastic matrix A, clearly A is not convergent. But it is
possible for A to be semi-convergent.

Perron-Frobenius theory

We have seen how row-stochastic matrices are not convergent; we now focus on characterizing those that
are semi-convergent. To establish whether a row-stochastic matrix is semi-convergent, we introduce the
widely-established Perron-Frobenius theory for non-negative matrices.

Classification of non-negative matrices

In the previous section we already defined non-negative and positive matrices. In this section we are
interested in classifying non-negative matrices in terms of their zero/nonzero pattern and of the asymptotic
behavior of their powers.
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We start by introducing simple example non-negative matrices and related comments:

Ay = é [1) , spec(A;) = {1, 1}, the zero/nonzero pattern in A'f is constant, and klim Alf =1,
—00

Ay = (1) é , spec(Ag) = {1, —1}, the zero/nonzero pattern in Ag is periodic, and klim Ag does not exist,

—00
As = 01 , spec(Az) = {0,0}, AX =0forall k > 2,and lim A% =0,
-O 0- k—oo
L1 1] k o 121
= _ = _ > i
A= 2 0] spec(A) = {1, =1/2}, Af > Oforall k > 2,and lim A} =2 |5 || and

As = (1) 1 , spec(As) = {1, 1}, the zero/nonzero pattern in A'g is constant and klim Alg is unbounded.

—00

Based on these preliminary examples, we now introduce two sets of non-negative matrices with certain
characteristic properties.

Definition 2.10 (Irreducible and primitive matrices). Forn > 2, ann X n non-negative matrix A is

(i) irreducible if >_7—; A¥ is positive,

(ii) primitive if there exists k € N such that A positive.

A matrix that is not irreducible is said to be reducible.

Note that A1, A3 and A5 are reducible whereas Ay and Ay are irreducible. Moreover, note that Ay is
not primitive whereas A4 is. Additionally, note that a positive matrix is clearly primitive. Finally, if there
is k € N such that A* is positive, then (one can show that) all subsequent powers A*+1 A2 are
necessarily positive as well; see Exercise E2.5.

Note: In other words, A is irreducible if, for any (i,j) € {1,...,n}? thereisa k = k(i,j) < (n — 1)
such that (Ak)z-j > (. There are multiple equivalent ways to define irreducible matrices. We discuss four
equivalent characterizations later in Theorem 4.3.

We now state a useful result and postpone its proof to Exercise E4.5.

Lemma 2.11 (A primitive matrix is irreducible). If a non-negative matrix is primitive, then it is also
irreducible.

As a consequence of this lemma we can draw the set diagram in Figure 2.3 describing the set of non-
negative square matrices and its subsets of irreducible, primitive and positive matrices. Note that the
inclusions in the diagram are strict in the sense that:

(i) As is non-negative but not irreducible;
(ii) Ag is irreducible but not primitive; and

(iii) Ay is primitive but not positive.
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non-negative irreducible primitive positive
(A>0) ( Z;é Ak > 0) (there exists k (A>0)
such that AF > 0)

Figure 2.3: The set of non-negative square matrices and its subsets of irreducible, primitive and positive matrices.

2.3.2 Main results

We are now ready to state the main results in Perron-Frobenius theory and characterize the properties of
the spectral radius of a non-negative matrix as a function of the matrix properties.

Theorem 2.12 (Perron-Frobenius Theorem). Let A € R"*", n > 2. If A is non-negative, then

(i) there exists a real eigenvalue A > |u| > 0 for all other eigenvalues p,

(ii) the right and left eigenvectors v and w of A can be selected non-negative.
If additionally A is irreducible, then

(iii) the eigenvalue X is strictly positive and simple,

(iv) the right and left eigenvectors v and w of A are unique and positive, up to rescaling.
If additionally A is primitive, then
(v) the eigenvalue \ satisfies X > |p| for all other eigenvalues .

Some remarks and some additional statements are in order. For non-negative matrices, the real non-
negative eigenvalue A\ is the spectral radius p(A) of A. We refer to \ as the dominant eigenvalue of A; it is
also referred to as the Perron root. The dominant eigenvalue is equivalently defined by

p(A) =inf{\ € R| Au < Auforall u > 0}.

For irreducible matrices, the right and left eigenvectors v and w (unique up to rescaling and selected
non-negative) of the dominant eigenvalue A are called the right and left dominant eigenvector, respectively.
One can show that, up to rescaling, the right dominant eigenvector is the only positive right eigenvector of
a primitive matrix A (a similar statement holds for the left dominant eigenvector); see also Exercise E2.4.

We refer to Theorem 4.9 and Exercise E4.9 in Section 4.5 for some useful bounds on the dominant
eigenvalue and to Theorem 5.1 in Section 5.1 for a version of the Perron-Frobenius Theorem for reducible
matrices.

Remark 2.13 (Examples and counterexamples). The characterizations in the theorem are sharp in the
following sense:

. . |0
(i) the matrix Az = [0 0

} is non-negative and reducible, and, indeed, its dominant eigenvalue is 0;
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1
(ii) the matrix Ay = [(1) 0} is irreducible but not primitive and, indeed, its dominant eigenvalues +1 is not

stricly larger, in magnitude, than the other eigenvalues —1.

2.3.3 Applications to dynamical systems

Given a primitive non-negative matrix A, the Perron-Frobenius Theorem for primitive matrices has
immediate consequences for the behavior of A* as k — co. We start with a semiconvergence result that
applies to primitive matrices. We postponed the proof to Section 2.3.4.

Theorem 2.14 (Powers of nonnegative matrices with a simple and strictly dominant eigenvalue).

Consider a nonnegative matrix A whose dominant eigenvalue \ is simple and strictly larger, in magnitude,
than all other eigenvalues (e.g., assume A is primitive). Let v and w denote right and left dominant eigenvectors
normalized so thatv > 0 and vTw = 1. Then A/ is semi-convergent and
AF
lim — = vw'.
koo \F

The matrix vw '

Exercise E2.13.
We now apply this result to primitive row-stochastic matrices and to the averaging model z(k + 1) =
Az (k). For a row-stochastic A, the right eigenvector of the eigenvalue 1 is selected as 1,,.

is a rank-one projection matrix with numerous properties, which we discuss in

Corollary 2.15 (Consensus for primitive row-stochastic). For a primitive row-stochastic matrix A,
(i) the simple eigenvalue p(A) = 1 is strictly larger than the magnitude of all other eigenvalues, hence A is
semi-convergent;

(ii) limg_yoo A¥ = 1,wT, where w is the left dominant eigenvector of A with eigenvalue 1 satisfying
wy+ - twy =1

(iii) the solution to the averaging model z(k + 1) = Ax(k) satisfies
lim z(k) = (U)T:E(O))ln.

k—o00
In this case we say that the dynamical system achieves consensus,
(iv) if additionally A is doubly-stochastic, then w = %ln (because AT1,, = 1,, and %11171 = 1) so that

17 (0)

lim z(k) =

k—o0

1,, = average (2(0))1,.

In this case we say that the dynamical system achieves average consensus.

w’ Wy Wo - Wy wTz(0)
Note: L,w' = | : | =|: = | and (L,w")z(0) = (w'z(0))1, = :
w’ wy Wy v Wy w' z(0)
Note: the limiting vector is therefore a weighted average of the initial conditions. The relative weights
of the initial conditions are the convex combination coefficients w1, ..., w,. In a social influence network,

the coefficient wj is regarded as the “social influence” of agent i.
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Example 2.16 (Revisiting the wireless sensor network example). Finally, as a numerical example, let
us reconsider the wireless sensor network discussed in Section 1.2 and the 4-dimensional row-stochastic

matrix Ay, First, note that Ay, is primitive because A2 is positive:

1/2 1/2 0 0 3/8 3/8 1/8 1/8
/4 14 14 y4f 5 [3/16 17/48 11/48 11/48
0 1/3 1/3 1/3 wsn = 11/12 11/36 11/36 11/36
0 1/3 1/3 1/3 1/12 11/36 11/36 11/36

Awsn =

Therefore, the Perron-Frobenius Theorem 2.12 for primitive matrices applies to Ayg,. The four pairs of
eigenvalues and right eigenvectors of Ay, (as computed in Example 2.5) are:

—2—2/73 2(—1++/73) 0
1 —11++/73 1 —11 - /73 0

(1L11), | 556+ V73), i | 50— V), < S U
8 8 —1

Moreover, we know that Ay, is semi-convergent. To apply the convergence results in Corollary 2.15, we nu-
merically compute its left dominant eigenvector, normalized to have unit sum, tobe w = [1/6,1/3,1/4,1/4]7
so that we have:

1/6 1/3 1/4 1/4

16 1/3 1/4 1/4

1/6 1/3 1/4 1/4

1/6 1/3 1/4 1/4

: k T
o, Aven = Lo’ =

Therefore, each solution to the averaging system z(k + 1) = Ay (k) converges to a consensus vec-
tor (w'x(0))1y, that is, the value at each node of the wireless sensor network converges to w'z(0) =
(1/6)x1(0)4(1/3)z2(0)+(1/4)x3(0)+(1/4)x4(0). Note that Aysy is not doubly-stochastic and, therefore,
the averaging algorithm does not achieve average consensus and that node 2 has more influence than the
other nodes. o

Note: If A is reducible, then clearly it is not primitive. Yet, it is possible for an averaging algorithm
described by a reducible matrix to converge to consensus. In other words, Corollary 2.15 provides only
a sufficient condition for consensus. Here is a simple example of an averaging algorithm described by a
reducible matrix that converges to consensus:

331(16 + 1) = xl(k),
xg(k‘ + 1) = xl(k)

To fully understand what all phenomena are possible and what properties of A are necessary and sufficient
for convergence to consensus, we will study graph theory in the next two chapters.

Selected proofs

We conclude this section with the proof of some selected statements.
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Proof of Theorem 2.12. We start by establishing that a primitive A matrix satisfies p(A) > 0. By contradic-
tion, if spec(A) = {0}, then the Jordan normal form J of A is nilpotent, that is, there is a £* € N so that
JF = A¥ = 0 for all k > k*. But this is a contradiction because A being primitive implies that there is
k* € N so that A¥ > 0 for all k > k*.

Next, we prove that p(A) is a real positive eigenvalue with a positive right eigenvector v > 0. We first
focus on the case that A is a positive matrix, and later show how to generalize the proof to the case of
primitive matrices. Without loss of generality, assume p(A) = 1. If (A, x) is an eigenpair for A such that
IA| = p(A) = 1, then

x| = [Az] = Az = [Az| < [Al|lz] = Az| =[] < Al]. (2.8)

Here, we use the notation [z| = (|zil)icf1,....n}> [Al = {laijl}ijequ,.. .n)» and vector inequalities are
understood component-wise. In what follows, we show |z| = A|x|. With the shorthands z = A|z| and
y = z — |x|, equation (2.8) reads y > 0 and we aim to show y = 0. By contradiction, assume y has a
non-zero component. Therefore, Ay > 0. Independently, we also know z = A|z| > 0. Thus, there must
exist ¢ > 0 such that Ay > ez. Eliminating the variable y in the latter equation, we obtain A,z > z, where
we define A. = A/(1 + ¢). The inequality A.z > z implies A¥z > z for all £ > 0. Now, observe that
p(A:) < 1 so that limg_, A’g = 0,,xn and therefore 0 > z. Since we also knew z > 0, we now have a
contradiction. Therefore, we know y = 0.

So far, we have established that |x| = A|z|, so that (1, |z|) is an eigenpair for A. Also note that A > 0
and = # 0 together imply A|x| > 0. Therefore we have established that 1 is an eigenvalue of A with
eigenvector |z| > 0. Next, observe that the above reasoning is correct also for primitive matrices if one
replaces the first equality (2.8) by || = |\¥||z| and carries the exponent k throughout the proof.

In summary, we have established that there exists a real eigenvalue A > 0 such that A > |u| for all
other eigenvalues y, and that each right (and therefore also left) eigenvector of A can be selected positive
up to rescaling. It remains to prove that X is simple and is strictly greater than the magnitude of all other
eigenvalues. For the proof of these two points, we refer to ( , , Chapter 8). |

Proof of Theorem 2.14. Because A is simple, we write the Jordan normal form of A as

A O1x(n— _
A=T x(n=1) | =1 2.9
O(n—1)x1 B (29)

where the block-diagonal matrix B € R("~1)*(=1) ¢ontains the Jordan blocks of all eigenvalues of A
except for \. Because A is strictly dominant, we know that p(B/\) < 1, which in turn implies

lim  B* /A =04, 1)x (n-1)-

k—+o0

A0

k
-1
0 B] T~ so that

Recall A* =T [

. ANk . 1* 0 1 (1 0],
kEToo(X) _T(kgl—&r-loo[o (B/A)’fDT _T[o O}T ‘
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Next, we let vy, ..., v, (respectively, wi, . . ., wy) denote the columns of T" (respectively the rows of T_l),
thatis, T' = [vl e vn], and (T~H)T = [wl S wn]. Equation (2.9) is equivalently written as

0 B

Alor - vl =[o1 - o [A 0]

=T =T
The first column of the above matrix equation is Av; = Avy, that is, v; is the right dominant eigenvector of
A, up to rescaling. Recall that A is simple and right eigenvalue is unique up to rescaling. By analogous
arguments, we find that w is the left dominant eigenvector of A, up to rescaling. With this notation, some
bookkeeping leads to:

T
O |wy

) ANFK oo O |wd -
kEToo(*) =l v o Do S

00 ... 0f [w!

Finally, the (1, 1) entry of the matrix equality 77! = I,, gives precisely the normalization v] w; = 1. In
summary, v; and w; are the right and left dominant eigenvectors, up to rescaling, and they are known to
satisfy v{ w; = 1. Hence, vw = vw/ . This concludes the proof of Theorem 2.14. |

Historical notes and further reading

For comprehensive treatments on matrix theory we refer to the classic texts by ( ),
(1985), and (2001).

Regarding the main Perron-Frobenius Theorem 2.12, historically, ( ) established the original
result fo the case of positive matrices. (1912) provided the substantial extension to the settings of
primitive and irreducible matrices. More historical information is given in ( , , Chapter 8).

Theorem 2.14 is generalized as follows: an irreducible row-stochastic matrix A with left-dominant
eigenvector w satisfies limy o0 £ (I, + A+ - + A¥71) = 1,wT. We refer to ( , , Section 8.4)

for more details on this result and to ( , , Chapter 6) for the more general Ergodic Theorem.
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2.5 Exercises

E2.1 Simple properties of stochastic matrices. Let A;, Ao, ..., Ax be n X n matrices, let Ay Ay - -+ Ay, be their
product and let 71 Aq + - - - + i A, be their convex combination with arbitrary convex combination coefficients.
Show that
(i) if Ay, As,..., A are non-negative, then their product and all their convex combinations are non-
negative,
(i) if Ay, Ag, ..., Ay are row-stochastic, then their product and all their convex combinations are row-

stochastic, and

(iii) if A1, Ao, ..., Ay are doubly-stochastic, then their product and all their convex combinations are
doubly-stochastic.

E2.2 Semi-convergence and Jordan block decomposition. Consider a matrix A € C"*™, n > 2, with p(A) =
1. Show that the following statements are equivalent:

(i) A is semi-convergent,

(ii) either A = I,, or there exists a nonsingular matrix 7' € C"*" and a number m € {1,...,n — 1} such
that
I 0 -
A=T m mx(n—m) T717
O(nfm) xXm B

where B € C(»=m)*(n=m) s convergent, that is, p(B) < 1.

Note: If A is real, then it is possible to find real-valued matrices I' and B in statement (ii) by using the notion of
real Jordan normal form ( , ).

E2.3 Row-stochastic matrices after pairwise-difference similarity transform. For n > 2, let A € R"*" be
row stochastic. Define T € R™*" by

-1 1
T = :
-1 1
1/n 1/n ... 1/n
Perform the following tasks:
(i) forx = [xy,..., a:n]T, write Tz in components and show T is invertible,

(ii) show TAT ! = [Asct$ble 0"1_1} for some Agape € RP=DX(=1 and ¢ € R~ 1,

(iii) if A is doubly-stochastic, then ¢ = 0,
(iv) show that A primitive implies p(Astable) < 1, and

(v) compute TAT ! for A = [(1) (ﬂ

E2.4 Uniqueness of the non-negative eigenvector in irreducible non-negative matrices. Given a square
matrix A € R"*", show that:

(i) if vq is a right eigenvector of A corresponding to the eigenvalue A1, wo is a left eigenvector of A relative
to Ao, and \; # Ag, then vy | ws; and

(ii) if A is non-negative and irreducible and v € RZ, is a right non-negative eigenvector of A, then u is an
eigenvector corresponding to the eigenvalue p(A).
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E2.5

E2.6

E2.7

E2.8

E2.9

E2.10

E2.11

Powers of primitive matrices. Let A € R"*" be non-negative. Show that A¥ > 0, for some k € N, implies
A™ > 0forallm > k.

Sufficient condition for primitivity. Consider a non-negative matrix A € R"*". If there exists r €
{1,...,n} such that A,; > 0and A;, > Oforallz,j € {1,...,n}, thatis, if A has the sparsity pattern

*x ok k%

5N
|
* Ok b bk F ok

then the matrix A is primitive. (Here the symbol x denotes a strictly positive entry. The absence of a symbol
denotes a positive or zero entry.)

Reducibility fallacy. Consider the following statement:

Any non-negative square matrix A € R™*™ with a zero entry is reducible, because the zero entry
can be moved in position Ay, 1 via a permutation similarity transformation.

Is the statement true? If yes, explain why; if not, provide a counterexample.
Symmetric doubly-stochastic matrix. Let A € R™*" be doubly-stochastic. Show that:

(i) the matrix AT A is doubly-stochastic and symmetric,
(i) spec(ATA) C [0,1],
(iii) the eigenvalue 1 of AT A is not necessarily simple even if A is irreducible.

On some non-negative matrices. How many 2 X 2 matrices exist that are simultaneously doubly stochastic,
irreducible and not primitive? Justify your claim.

Discrete-time affine systems. Given A € R"*" and b € R", consider the discrete-time affine system
x(k+1) = Az(k) + b.

Assume A is convergent and show that
(i) the matrix (I, — A) is invertible,
(ii) the only equilibrium point of the system is (1, — A)~!b, and
(iii) limg oo (k) = (I, — A)~'b for all initial conditions z(0) € R™.
Hint: Define a new sequence y(k), k € Z>o, by y(k) = x(k) — z* for an appropriate x*.

An affine averaging system. Given a primitive doubly-stochastic matrix A and a vector b satisfying 176 = 0,
consider the dynamical system

x(k+1) = Az(k) + b.
Show that
(i) the quantity k ~ 1T x(k) is constant,

(ii) foreach v € R, there exists a unique equilibrium point 2, satisfying 1]z = « and satisfying generically
x¥ ¢ span{l,}, and

(iii) all solutions with initial condition x(0) satisfying 1] z(0) = « converge to z,.
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E2.12

E2.13

E2.14

Hint: First, use Exercise E2.2 and study the properties of the similarity transformation matrix T and its inverse
T, Second, definey(k) = T~ 'x(k), show the evolution of y1 (k) is decoupled from that of the other entries and
apply E2.10.

The Neumann series. For A € C"*", show that the following statements are equivalent:
@ p(4) <1,
(i) limp_eo A¥ = 0,,xp, and
(iii) the Neumann series Y ;- AF converges.
Additionally show that, if any and hence all of these conditions hold, then

(iv) the matrix (I,, — A) is invertible, and
W) > AP = (I, - A",
k=0

Hint: This statement, written in the style of ( ’ , Section 7.10), is an extension of Theorem 2.7 and a
generalization of the classic geometric series ﬁ =30 x®, convergent for all |x| < 1. For the proof, the hint
is to use the Jordan normal form.

The rank-one projection matrix defined by a primitive matrix. This exercise requires the following
notions from linear algebra: a square matrix B is a projection matrix if B> = B, a vector space V is the direct
sum of two subspaces U and W, written V = U @ W, if each v € V defines unique v € U and w € W such
that v = u 4+ w, and a subspace U is invariant under a linear map B if u € U implies Bu € U.

Let A be an n-dimensional primitive matrix with dominant eigenvalue A, right dominant eigenvector v > 0
and left dominant eigenvector w with the normalization v T
Show that:

(i) Ja = J3 is a projection matrix whose image is span{v},

(i) I, — Ja = (I, — J4)? is a projection matrix whose image is kernel(J4) = {g € R* | wTq = 0} =
span{w}+,

(iii) AJg = JaA = AJy,

(iv) R" = span{v} @ span{w}* and both subspaces span{v} and span{w}~ are invariant under A,

(v) if A is symmetric, then J4 is an orthogonal projection,

(vi) the restriction of A to span{w}~ has all its eigenvalues strictly less than \ in magnitude, and the
restriction of A to the span{v} is multiplication by A, and

(vil) p(A—AJy) <\
Permutation and orthogonal matrices. A set G with a binary operation mapping two elements of G into
another element of G, denoted by (a,b) — a * b, is a group if:
(G1) ax(bxc) = (a*b)*cforalla,b,c € G (associativity property);
(G2) there exists e € G such thata x e = e x a = a for all a € G (existence of an identity element); and
(G3) there exists a~! € G suchthataxa™' =a ! xa =eforall a € G (existence of inverse elements).
Recall that: a permutation matrix is an n X n binary (i.e., entries equal to 0 and 1) matrix with precisely one
entry equal to 1 in every row and every column; a permutation matrix acts on a vector by permuting its
entries. Also recall that an orthogonal matrix R is an n X n matrix whose columns and rows are orthonormal
vectors, i.e., RR" = I,,; an orthogonal matrix acts on a vector like a rotation and/or reflection. Prove that
(i) the set of n x n permutation matrices with the operation of matrix multiplication is a group;
(i) the set of n x n orthogonal matrices with the operation of matrix multiplication is a group;

(iii) each permutation matrix is orthogonal.
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E2.15

E2.16

E2.17

E2.18

On doubly-stochastic and permutation matrices. The following result is known as the Birkhoff - Von
Neumann Theorem. For a matrix A € R"*", the following statements are equivalent:

(i) A is doubly-stochastic; and

(if) A is a convex combination of permutation matrices.
Do the following:

« show that the set of doubly-stochastic matrices is convex (i.e., given any two doubly-stochastic matrices
A; and As, any matrix of the form AA; + (1 — A\) Az, for A € [0, 1], is again doubly-stochastic);

« show that (ii) = (i);

« find in the literature a proof of (i) = (ii) and sketch it in one or two paragraphs.

Determinants of block matrices ( S ). Given square matrices A, B,C, D € R"*", n > 1,
useful identities are

1 B det(D)det(A — BD™'C), if D is invertible, (E2.1a)

det {C’ D] = det(AD — B(C), if CD = DC, (E2.1b)

det(DA — BC), if BD = DB. (E2.1¢)

(i) Prove equality (E2.1a).
(ii) Prove equality (E2.1b) and (E2.1c) assuming D is invertible.

. A B I, Onxn| [A—BD™'C B
Hint: Show ¢ p|l|l-pc I, } = [ O Dl We refer to (. p ) for the complete
proofs and for the additional identities
det A B] [ det(AD —CB), if AC =CA, (E2.2a)
“lc D] T\ det(DA-CB), if AB = BA. (E2.2b)

The Jacobi relaxation in parallel computation. Consider n distributed processors that aim to collectively
solve the linear equation Az = b, where b € R™ and A € R™*" is invertible and its diagonal elements a;;
are nonzero. Each processor stores a variable x;(k) as the discrete-time variable k evolves and applies the
following iterative strategy termed Jacobi relaxation. At time step k € N each processor performs the local
computation

1 . ,
I,(k—‘—l):f(bz— Z aijccj(k)>, ’LE{l,...,ﬂ}.
ii .
Jj=1,5#i
Next, each processor i € {1,...,n} sends its value z;(k + 1) to all other processors j € {1,...,n} with
aj; # 0, and they iteratively repeat the previous computation. The initial values of the processors are arbitrary.
(i) Assume the Jacobi relaxation converges, i.e., assume limy_, o, (k) = 2*. Show that Ax* = b.
(ii) Give a necessary and sufficient condition for the Jacobi relaxation to converge.
(iii) Use Ger$gorin Disks Theorem 2.8 to show that the Jacobi relaxation converges if A is strictly row
diagonally dominant, that is, if |a;;| > E?:L#i la;;| foralli € {1,...,n}.

The Jacobi over-relaxation in parallel computation. We now consider a more sophisticated version of the
Jacobi relaxation presented in Exercise E2.17. Consider again n distributed processors that aim to collectively
solve the linear equation Az = b, where b € R™ and A € R"*" is invertible and its diagonal elements a;;
are nonzero. Each processor stores a variable x;(k) as the discrete-time variable k evolves and applies the
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following iterative strategy termed Jacobi over-relaxation. At time step k € N each processor performs the
local computation

Q?i(k/"i‘l) = (1—(&))1’1(]{7)4-&([)1— E aijscj(k)) s 1€ {1,...,n},
Qi T
Jj=1,j#i
where w € R is an adjustable parameter. Next, each processor ¢ € {1,...,n} sends its value z;(k + 1) to all

other processors j # i with aj; # 0, and they iteratively repeat the previous computation. The initial values
of the processors are arbitrary.

(i) Assume the Jacobi over-relaxation converges to 2* and show that Az* = bif w # 0.

(i) Find the expression governing the dynamics of the error variable e(k) := z(k) — z*.

(iii) Suppose that A is strictly row diagonally dominant, that is |a;;| > >, _; |a:;|. Use the Gersgorin Disks
Theorem 2.8 to discuss the convergence properties of the algorithm for all possible values of w € R.
Hint: Consider different thresholds for w.

E2.19 Simulation (cont’d). This is a followup to Exercise E1.3. Consider the linear averaging algorithm in equa-
tion (1.1): set n = 5, select the initial state equal to (1, —1,1, —1,1), and use (a) the complete graph (b) a cycle
graph, and (c) a star graph with node 1 as center.

(i) To which value do all nodes converge to?

(if) Compute the dominant left eigenvector of the averaging matrix associated to each of the three graphs

and verify that the result in Corollary 2.15(iii) is correct.

E2.20 Continuous- and discrete-time control control of mobile robots. Consider n robots moving on the line
with positions z1, 22, . . . 2z, € R. In order to gather at a common location (i.e., reach rendezvous), each robot
heads for the centroid of its neighbors, that is,

n

1
Z.i:nfl( Z Zj)_zi'

J=1,5#i

(i) Will the robots asymptotically rendezvous at a common location?
(ii) Consider the Euler discretization of the above closed-loop dynamics with sampling rate 7" > 0:

1 n
ik + 1) = zi(k) + T(ﬁ( > lzj(k‘)) - zi(k)).
J=1,j#i
For which values of the sampling period 7" will the robots rendezvous?

Hint: Use the modal decomposition in Remark 2.3 (and its extension to ordinary differential equations for part (i)).
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3.1

CHAPTER 3

Elements of Graph Theory

Graph theory provides key concepts to model, analyze and design network systems and distributed algo-
rithms; the language of graphs pervades modern science and technology and is therefore essential.

Graphs and digraphs

[Graphs] An undirected graph (in short, a graph) consists of a set ' of elements called vertices and of a set
E of unordered pairs of vertices, called edges. For u,v € V and u # v, the set {u, v} denotes an unordered
edge. We define and visualize some basic examples graphs in Figure 3.1.

[Neighbors and degrees in graphs] Two vertices u and v of a given graph are neighbors if {u,v} is an
undirected edge. Given a graph G, we let N (v) denote the set of neighbors of v.

The degree of v is the number of neighbors of v. A graph is regular if all the nodes have the same degree;
e.g., in Figure 3.1, the cycle graph is regular with degree 2 whereas the complete bipartite graph K (3, 3)
and the Petersen graph are regular with degree 3.

[Digraphs and self-loops] A directed graph (in short, a digraph) of order n is a pair G = (V, E), where V is a
set with n elements called vertices (or nodes) and FE is a set of ordered pairs of vertices called edges. In other
words, I C V' x V. As for graphs, V and E are the vertex set and edge set, respectively. For u,v € V, the
ordered pair (u, v) denotes an edge from u to v. A digraph is undirected if (v, u) € E anytime (u,v) € E. In
a digraph, a self-loop is an edge from a node to itself. Consistently with a customary convention, self-loops
are not allowed in graphs. We define and visualize some basic examples digraphs in Figure 3.2.
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e ) K

(a) Path graph with 6 (b) Cycle (ring) graph with 6 (c) Star graph with 6 nodes, de- (d) Complete graph with 6

nodes, denoted by Fs nodes, denoted by C noted by Se nodes, denoted by K
e) Complete bipartite graph with 3+ 3 f) A Cartesian grid graph (g) Petersen graph

nodes denoted by K33

Figure 3.1: Example graphs. Path graph: nodes are ordered in a sequence and edges connect subsequent nodes in the
sequence. Cycle (or ring) graph: all nodes and edges can be arranged as the vertices and edges of a regular polygon.
Star graph: edges connect a specific node, called the center, to all other nodes. Complete graph: every pair of nodes is
connected by an edge. Complete bipartite graph: nodes are divided into two sets and every node of the first set is
connected with every node of the second set.

Seve

(a) Cycle digraph with 6 nodes (b) Complete digraph with 6 nodes (c) A digraph with no directed cycles

Figure 3.2: Example digraphs

[Subgraphs] A digraph (V' E') is a subgraph of a digraph (V, E)if V! C V and E' C E. A digraph (V', E')
is a spanning subgraph of (V, E) if it is a subgraph and V' = V. The subgraph of (V, E) induced by V! C'V
is the digraph (V’, E'), where E’ contains all edges in F between two vertices in V.

[In- and out-neighbors] In a digraph G with an edge (u,v) € E, u is called an in-neighbor of v, and v is
called an out-neighbor of u. We let N™®(v) (resp., N°"*(v)) denote the set of in-neighbors, (resp. the set of
out-neighbors) of v. Given a digraph G = (V, E), an in-neighbor of a nonempty set of nodes U is a node
v € V' \ U for which there exists an edge (v, u) € E for some u € U.
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[In- and out-degree] The in-degree di,(v) and out-degree do,(v) of v are the number of in-neighbors and
out-neighbors of v, respectively. Note that a self-loop at a node v makes v both an in-neighbor as well as an
out-neighbor of itself. A digraph is topologically balanced if each vertex has the same in- and out-degrees
(even if distinct vertices have distinct degrees).

Paths and connectivity in undirected graphs

[Paths] A path in a graph is an ordered sequence of vertices such that any pair of consecutive vertices in
the sequence is an edge of the graph. A path is simple if no vertex appears more than once in it, except
possibly for the case in which the initial vertex is the same as the final vertex. (Note: some authors adopt
the term “walk” to refer to what we call here path.)

[Connectivity and connected components] A graph is connected if there exists a path between any two vertices.
If a graph is not connected, then it is composed of multiple connected components, that is, multiple connected
subgraphs.

[Cycles] A cycle is a simple path that starts and ends at the same vertex and has at least three distinct
vertices. A graph is acyclic if it contains no cycles. A connected acyclic graph is a tree.

@) @) @)
@) @) (@)

Figure 3.3: This graph has two connected components. The leftmost connected component is a tree, while the
rightmost connected component is a cycle.

Paths and connectivity in digraphs

[Directed paths] A directed path in a digraph is an ordered sequence of vertices such that any pair of
consecutive vertices in the sequence is a directed edge of the digraph. A directed path is simple if no vertex
appears more than once in it, except possibly for the initial and final vertex.

[Cycles in digraphs] A cycle in a digraph is a simple directed path that starts and ends at the same vertex. It
is customary to accept, as feasible cycles in digraphs, also cycles of length 1 (that is, a self-loop) and cycles
of length 2 (that is, composed of just 2 nodes). The set of cycles of a directed graph is finite. A digraph is
acyclic if it contains no cycles.
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[Sources and sinks] In a digraph, every vertex with in-degree 0 is called a source, and every vertex with
out-degree 0 is called a sink. Every acyclic digraph has at least one source and at least one sink; see Figure 3.4
and Exercise E3.1.

o——— >

(a) An acyclic digraph with one sink and two sources (b) A directed cycle

Figure 3.4: Examples of sources and sinks

[Directed trees] A directed tree (sometimes called a rooted tree) is an acyclic digraph with the following
property: there exists a vertex, called the root, such that any other vertex of the digraph can be reached
by one and only one directed path starting at the root. A directed spanning tree of a digraph is a spanning
subgraph that is a directed tree.

3.3.1 Connectivity properties of digraphs
Next, we present four useful connectivity notions for a digraph G-
(i) G is strongly connected if there exists a directed path from any node to any other node;

(ii) G is weakly connected if the undirected version of the digraph is connected;

(iii) G possesses a globally reachable node if one of its nodes can be reached from any other node by
traversing a directed path; and

(iv) G possesses a directed spanning tree if one of its nodes is the root of directed paths to every other

node.

These notions are illustrated in Figure 3.5.

@ - ﬂ

@ - @ -

(a) A strongly connected digraph (b) A weakly connected digraph with a globally reachable node

Figure 3.5: Connectivity examples for digraphs
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For a digraph G = (V, E), the reverse digraph G(rev) has vertex set V' and edge set E/(rev) composed
of all edges in F with reversed direction. Clearly, a digraph contains a directed spanning tree if and only if
the reverse digraph contains a globally reachable node.

Periodicity of strongly-connected digraphs

[Periodic and aperiodic digraphs] A strongly-connected directed graph is periodic if there exists a k > 1,
called the period, that divides the length of every cycle of the graph. In other words, a digraph is periodic if
the greatest common divisor of the lengths of all its cycles is larger than one. A digraph is aperiodic if it is
not periodic.

o
o o o © O O

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of  (c) An aperiodic digraph with cycles of
length 1 and 2. length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

Note: the definition of periodic digraph is well-posed because a digraph has only a finite number of
cycles (because of the assumptions that nodes are not repeated in simple paths). The notions of periodicity
and aperiodicity only apply to digraphs and not to undirected graphs (where the notion of a cycle is defined
differently). Any strongly-connected digraph with a self-loop is aperiodic.

Condensation digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if H is strongly
connected and any other subgraph of G strictly containing H is not strongly connected.

[Condensation digraph] The condensation digraph of a digraph G, denoted by C(G), is defined as follows:
the nodes of C'(G) are the strongly connected components of G, and there exists a directed edge in C'(G)
from node H; to node Hj if and only if there exists a directed edge in G from a node of H; to a node of
Hj. The condensation digraph has no self-loops.
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Co-s

(a) An example digraph G (b) The strongly connected components of G (c) The condensation C'(G)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.1 (Properties of the condensation digraph). For a digraph G and its condensation digraph
C(G),

(i) C(QG) is acyclic,
(ii) G is weakly connected if and only if C'(QG) is weakly connected, and

(iii) the following statement are equivalent:

a) G contains a globally reachable node,
b) C(G) contains a globally reachable node, and

¢) C(G) contains a unique sink.

Proof. We prove statement (i) by contradiction. If there exists a cycle (Hy, Ha, . .., Hy,, Hy) in C(G), then
the set of vertices Hy, ..., Hy, are strongly connected in C'(G). But this implies that also the subgraph
of G containing all node of Hy, ..., Hy, is strongly connected in G. But this is a contradiction with the
fact that any subgraph of G strictly containing any of the Hy, ..., H,, must be not strongly connected.
Statement (ii) is intuitive and simple to prove; we leave this task to the reader.

Regarding statement (iii), we start by proving that (iii)a => (iii)b. Let v be a a globally reachable node
in G and let H denote the node in C(G) containing v. Pick an arbitrary node H of C(G) and let ¥ be a
node of G in H. Since v is globally reachable, there exists a directed path from © to v in G. This directed
path induces naturally a directed path in C(G) from H to H. This shows that H is a globally reachable
node in C(G).

Regarding (iii)b = (iii)a, let H be a globally reachable node of C'(G) and pick a node v in H. We
claim v is globally reachable in . Indeed, pick any node v in G belonging to a strongly connected
component U of G. Because H is globally reachable in C(G), there exists a directed path of the form
H = Hy,Hy,...,Hy, H. 1 = H in C(G). One can now piece together a directed path in G from v to v,
by walking inside each of the strongly connected components H; and moving to the subsequent strongly
connected components H; 1, for i € {0, ..., k}.

The final equivalence between statement (iii)b and statement (iii)c is an immediate consequence of

C(QG) being acyclic. [ |
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Weighted digraphs
A weighted digraph is a triplet G = (V, E,{a.}ecr), where the pair (V, E) is a digraph with nodes
V ={v1,...,v,}, and where {a.}ccE is a collection of strictly positive weights for the edges F.
Note: for simplicity we let V' = {1,...,n}. It is therefore equivalent to write {a. }ecr or {ai;} j)ecp-
@ Lo @ The set of weights for this weighted digraph is
3.7 ajg = 3.7, aiz = 3.7, as] = 8.9,
$:9 3.7 23 44 aoy = 1.2, azq = 3.7, azs = 2.3,
as1 = 4.4, as4 = 2.3, as5 = 4.4.
@ 57 @ 9.3 @ 51 54 55
4.4

A digraph G = (V = {v1,...,v,}, E) can be regarded as a weighted digraph by defining its set of
weights to be all equal to 1, that is, setting a. = 1 for all e € E. A weighted digraph is undirected if
a;j = aj; foralli,j € {1,...,n}.

The notions of connectivity and definitions of in- and out-neighbors, introduced for digraphs, remain
equally valid for weighted digraphs. The notions of in- and out-degree are generalized to weighted digraphs
as follows. In a weighted digraph with V' = {v1, ..., v, }, the weighted out-degree and the weighted in-degree
of vertex v; are defined by, respectively,

n
dout (v;) = Z aij, (ie., dout(v;) is the sum of the weights of all the out-edges of v;) ,
j=1

din(v;) = Z aji, (i.e., din(v;) is the sum of the weights of all the in-edges of v;) .
j=1
The weighted digraph G is weight-balanced if doyt(v;) = din(v;) for all v; € V.

Appendix: Database collections and software libraries

Useful collections of example networks are freely available online; here are some examples:

(i) The Koblenz Network Collection, available at http://konect.uni-koblenz.de and described
in ( , ), contains model graphs in easily accessible Matlab format (as well as a Matlab
toolbox for network analysis and a compact overview the various computed statistics and plots for
the networks in the collection).

(ii) A broad range of example networks is available online at the Stanford Large Network Dataset
Collection, see http://snap.stanford.edu/data.

(iii) The The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix
Collection), available at http://suitesparse.com and described in ( , ), contains
alarge and growing set of sparse matrices and complex graphs arising in a broad range of applications;
e.g., see Figure 3.8.
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(iv) The UCI Network Data Repository, available at http://networkdata.ics.uci.edu, is an effort to
facilitate the scientific study of networks; see also ( , ).

(a) IEEE 118 bus system (b) Klavzar bibliography

Figure 3.8: Example networks from distinct domains: Figure 3.8a shows the standard IEEE 118 power grid testbed (118
nodes); Figure 3.8b shows the Klavzar bibliography network (86 nodes); Figure 3.8c shows the GD99c Pajek network
(105 nodes). Networks parameters are available at http://suitesparse.com.

Useful software libraries for network analysis and visualization are freely available online; here are
some examples:

(i) NetworkX, available at http://networkx.github.io, is a Python library for network analysis. For
example, one feature is the ability to compute condensation digraphs.

(ii) Gephi, available at https://gephi.org, is an interactive visualization and exploration platform for
all kinds of networks and complex systems, dynamic and hierarchical graphs.

(iii) Cytoscape, available at http://www.cytoscape.org, is an open-source software platform for visu-
alizing complex networks and integrating them with attribute data.

(iv) Mathematica provides functionality for modeling, analyzing, synthesizing, and visualizing graphs
and networks — beside the ability to simulate dynamical systems; see description at http://www.
wolfram.com/language/elementary-introduction/21-graphs-and-networks.html.

(v) Graphviz, available at http://www.graphviz.org/, is an open source graph visualization software
which is also compatible with Matlab:
http://www.mathworks.com/matlabcentral/fileexchange/4518-matlab-graphviz-interface.
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Historical notes and further reading

Paraphrasing from Chapter 1 “Discovery!” in the classic work by ( ),

( , ) became the father of graph theory as well as topology when he settled a famous
unsolved problem of his day called the Kénigsberg Bridge Problem.

Subsequent rediscoveries of graph theory by ( ) and ( ) also had
their roots in the physical world. ’s investigations of electric networks led to his
development of the basic concepts and theorems concerning trees in graphs, while
considered trees arising from the enumeration of organic chemical isomers.

For modern comprehensive treatments we refer the reader to standard books in graph theory such

as ( , ; 5 )-
A classic reference in graph drawing is ( , ), the layout of the three graphs in
Figure 3.8 is obtained via the algorithm proposed by Hu ( )-
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3.7 Exercises

E3.1  Acyclic digraphs. Let G be an acyclic digraph with nodes {1, .. ., n}. A topological sort of G is a re-numbering
of the vertices of G with the property that, if (u,v) is an edge of G, then u > v.

(i) Show that GG contains at least one sink, i.e., a vertex without out-neighbors and at least one source, i.e.,
a vertex without in-neighbors.
(if) Provide an algorithm to perform a topological sort of G. Is the topological sort unique?

Hint: Use high-level pseudo-code instructions such as “select a node satisfying property A” or “remove all
edges satisfying property B.”

(iii) Show that, after topologically sorting the vertices of G, the adjacency matrix of G is lower-triangular,
i.e., all its entries above the main diagonal are equal to zero.

E3.2 Condensation digraphs. Draw the condensation for each of the following digraphs.

o ° Q o (@] o (@) @) @)

o} @ @ @) @) @ (@)

E3.3 Directed spanning trees in the condensation digraph. For a digraph G and its condensation digraph
C(G), show that the following statements are equivalent:
(i) G contains a directed spanning tree, and
(ii) C(G) contains a directed spanning tree.
E3.4 Properties of trees. Consider an undirected graph G with n nodes and m edges (and without self-loops).
Show that the following statements are equivalent:
(i) Gisatree;
(i) G is connected and m =n — 1; and
(iii) G isacyclicandm =n — 1.

E3.5 Connectivity in topologically balanced digraphs. Prove the following statement: If a digraph G is
topologically balanced and contains either a globally reachable vertex or a directed spanning tree, then G is
strongly connected.

E3.6 Globally reachable nodes and disjoint closed subsets ( S ; S ). Consider a
digraph G = (V, E)) with at least two nodes. Prove that the following statements are equivalent:
(i) G has a globally reachable node, and

(if) for every pair S1, Sz of non-empty disjoint subsets of V, there exists a node that is an out-neighbor of

Sp or Ss.

E3.7 Swiss railroads. Consider the fictitious railroad map of Switzerland given in Figure E3.1.

(i) Can a passenger go from any station to any other?

(ii) Is the graph acyclic? Is it aperiodic? If not, what is its period?
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Figure E3.1: Fictitious railroad map connections in Switzerland
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CHAPTER 4

The Adjacency Matrix

In this chapter we present results on the adjacency matrices as part of the broader field of algebraic graph
theory. The key results in this area relate, through necessary and sufficient conditions, matrix properties
with graphical properties. For example, we will show how a matrix is primitive if and only if its associated
digraph is strongly connected and aperiodic.

4.1 The adjacency matrix

Given a weighted digraph G = (V, E, {ac}ecp), with V = {1,...,n}, the weighted adjacency matrix of G
is the n X n non-negative matrix A defined as follows: for each edge (i, j) € F, the entry (i, j) of A is equal
to the weight a; ;) of the edge (4, j), and all other entries of A are equal to zero. In other words, a;; > 0 if
and only if (7, j) is an edge of G, and a;; = 0 otherwise. Figure 4.1 shows a example of a weighted digraph.

@ @ 0 37 37 0 0

. 89 0 0 12 0

8.9 3.7 23 (44 A=1]10 0 0 37 23

0 0 0 0 0

@ 4(439 25— 44 0 0 23 44

Figure 4.1: A weighted digraph and its adjacency matrix

The binary adjacency matrix A € {0,1}"*" of a digraph G = (V = {1,...,n}, F) or of a weighted
digraph is defined by

(4.1)
0, otherwise.

1, if(i,j) € E
aij:{’ if (i,7) € E,

Here, a binary matrix is any matrix with entries taking values in 0, 1.
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Finally, the weighted out-degree matrix Doy and the weighted in-degree matrix Di, of a weighted digraph
are the diagonal matrices defined by

dowt(1) 0 0
Dout = dlag(Aln) = 0 T 0 , and Dy = diag(ATln),
0 0 dow(n)

where diag(z1, ..., 2z,) is the diagonal matrix with diagonal entries equal to z1, .. ., 2.
We conclude this section with some basic examples.

Example 4.1 (Basic graphs and their adjacency matrices). Recall the definitions of path, cycle, star,
complete and complete bipartite graph from Figure 3.1. Figure 4.2 illustrates their adjacency matrices.

{0 K E
el Ea

Figure 4.2: Path, cycle, star, complete and complete bipartite graph (from Figure 3.1) and their binary adjacency
matrices

Note that the adjacency matrices of path and cycle graphs have a particular structure. An n X n matrix T’

is Toeplitz (also called diagonal-constant) if there exist scalar numbers a_,,_1),...,a-1,a0,a1,...,an— 1)
such that
[ ag aq Ce c. an_l'
a_1 a al
T —
a_1 ag a1
_a_(n_l) o PSP ¢ | ap |

Two special cases are of interest, namely, those of tridiagonal Toeplitz and circulant matrices. For these
two cases it is possible to compute eigenvalues and eigenvectors; we refer to Exercises E4.16 and F4.17
for more information. For here instead, we conclude with a table containing the adjacency spectrum of the
basic graphs, i.e., the spectrum of their binary adjacency matrices.
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Graph Adjacency Matrix Adjacency Spectrum
path graph P, Toeplitz tridiagonal {2cos(mi/(n+1)) |ie{l,...,n}}
cycle graph C, circulant {2cos(2mi/n)) | i € {1,...,n}}
star graph S), eie_1 +e_je;,wheree_; =1, —¢; {vn—1,0,...,0,—/n—1}
path graph K, 1,17 -1, {(n-1),-1,...,—-1}

complete bipartite K, ,, [Onxn 1nxm] {/nm,0,...,0,—y/nm}

1m><n Ome

Table 4.1: Adjacency spectrum for basic graphs

We ask the reader to prove the statements in the table in Exercise E4.18. °

4.2 Algebraic graph theory: basic and prototypical results

In this section we review some basic and prototypical results that involve correspondences between graphs
and adjacency matrices.

In what follows we let G denote a weighted digraph and A its weighted adjacency matrix or, equivalently,
we let A be a non-negative matrix and G be its associated weighted digraph (i.e., the digraph with nodes
{1,...,n} and with weighted adjacency matrix A). We start with some straightforward statements:

(i) G isundirected if and only if A is symmetric and its diagonal entries are equal to 0;
(ii) G is weight-balanced if and only if A1, = AT1,,i.e., Doyt = Din;
(iii) in a digraph G without self-loops, the node 7 is a sink in G if and only if 7th row-sum of A is zero;

(iv) in a digraph G without self-loops, the node i is a source in G if and only if ith column-sum of A is
zero;

(v) A is row-stochastic if and only if each node of G has weighted out-degree equal to 1 (so that
Doy = I,); and

(vi) A is doubly-stochastic if and only if each node of G has weighted out-degree and weighted in-degree
equal to 1 (so that Doy = Dy, = I, and, in particular, G is weight-balanced).

Next, we relate the powers of the adjacency matrix with the existence of directed paths in the digraph.
We start with some simple observation. First, pick two nodes ¢ and j and note that there exists a directed
path from ¢ to j of length 1 (i.e., an edge) if and only if (A);; > 0. Next, consider the formula for the matrix
power:

(A?%);; = (ith row of A) - (jth column of A) = Z A Apj.
h=1
A directed path from i to j of length 2 exists if and only if there exists a node k such that (i, k) and (k, j)
are edges of G. In turn, (7, k) and (k, j) are edges if and only if A;; > 0 and Ay; > 0 and therefore

(A?);; > 0. In short, we know that a directed path from i to j of length 2 exists if and only if (42);; > 0.
These observations lead to the following result, whose proof we leave as Exercise E4.1.
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Lemma 4.2 (Directed paths and powers of the adjacency matrix). Let G be a weighted digraph withn
nodes, with weighted adjacency matrix A, with unweighted adjacency matrix Ap1 € {0,1}"*", and possibly
with self-loops. Foralli,j € {1,...,n} andk € N

(i) the (i,7) entry ofA’&1 equals the number of directed paths of length k (including paths with self-loops)

from node i to node j; and

(ii) the (i, ) entry of A¥ is positive if and only if there exists a directed path of length k (including paths
with self-loops) from node i to node j.

4.3 Graph theoretical characterization of irreducible matrices

In this section we provide three equivalent characterizations of the notion of irreducibility an we can now
characterize certain connectivity properties of digraphs based on the powers of the adjacency matrix.

Before proceeding, we introduce a few useful concepts. First, {Z, J} is a partition of the index set
{1,...,n}ifZUT ={1,...,n}, T #0,T # 0,and ZNJ = 0. Second, a permutation matrix is a square
binary matrix with precisely one entry equal to 1 in every row and every columns. (In other words, the
columns of a permutation matrix are a reordering of the basis vectors €y, . .., €,; a permutation matrix
acts on a vector by permuting its entries.) Finally, an n X n matrix A is block triangular if there exists

r € {1,...,n — 1} such that
B C
A= ,
|: o(nfr)xr D :|

where B € R"™", C' € R™("=") and D € R("=7)*("=7) are arbitrary.
We are now ready to state the main result of this section.

Theorem 4.3 (Connectivity properties of the digraph and positive powers of the adjacency ma-
trix). Let G be a weighted digraph withn > 2 nodes and with weighted adjacency matrix A. The following
statements are equivalent:

. - . . n—1 sk .
(i) A is irreducible, that is, Zk:o A% > 0;
(ii) there exists no permutation matrix P such that PT AP is block triangular;

(iii) G is strongly connected;

(iv) for all partitions {Z, J } of the index set {1, ... ,n}, there existsi € T and j € J such that (i,7) is a
directed edge in G.

Note: as the theorem establishes, there are four equivalent characterizations of irreducibility. In the
literature, it is common to define irreducibility through property (ii) or (iv). We next see two simple
examples.
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@ This digraph is strongly connected and, accordingly, its
adjacency matrix is irreducible:

= o O
—_ o
S = O

@ This digraph is not strongly connected (vertices 2 and 3
are globally reachable, but 1 is not) and, accordingly, its
adjacency matrix is reducible:

011
©) ® 00 1
010

Proof of Theorem 4.3. Regarding (iii) = (iv), pick a partition {Z, J } of the index set {1,...,n} and two
nodes ¢9 € Z and jp € J. By assumptions there exists a directed path from i to jg. Hence there must exist
an edge from a node in 7 to a node in J.

Regarding (iv) = (iii), pick a node i € {1,...,n} and let R; C {1,...,n} be the set of nodes
reachable from ¢, i.e., the set of nodes that belong to directed paths originating from node i. Denote the
unreachable nodes by U; = {1,...,n} \ R;. Second, by contradiction, assume Uj is not empty. Then
R; U Uj is a partition of the index set {1,...,n} and irreduciblity implies the existence of a non-zero entry
a;p with j € R; and h € U;. But then the node h is reachable. Therefore, U; = (@, and all nodes are
reachable from .

Regarding (iii) = (i), because G is strongly connected, there exists a directed path of length £’
connecting node ¢ to node j, for all ¢ and j. By removing any cycle from such a path (so that no intermediate
node is repeated), one can compute a path from ¢ to j of length k£ < n. Hence, by Lemma 4.2(ii), the entry
(AF);; is strictly positive and, in turn, so is the entire matrix sum ZZ;(I) Ak,

Regarding (i) = (iii), pick two nodes ¢ and j. Because Zz;é A* > 0, there must exists k such that
(Ak)ij > 0. Lemma 4.2(ii) implies the existence of a path of length k from ¢ to j. Hence, G is strongly
connected.

Regarding (ii) == (iv), by contradiction, assume there exists a partition (Z, J) of {1, ...,n} such that
a;j =0forall (i,j) € Z x J.Letw: {1,...,n} — {1,...,n} be the permutation that maps all entries of
7 into the first |Z| entries of {1, ..., n}. Here we let |Z| denote the number of elements of Z. Let P be the
corresponding permutation matrix. We now compute PAPT and block partition it as:

Azz AIJ:|
PAPT = ,
[AJI Agg

where Azr € REXIZI A7, € REIXITI A 77 € RVIXIZ and A 77 € RITIXIII By construction, A 77 =
0,7/ |z| so that PAPT is block triangular, which is in contradiction with the assumed statement (i).
Regarding (iv) = (ii), by contradiction, assume there exists a permutation matrix P and a number
r < n such that
PAPT = [ B C} :
O(n—r)xr D
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where the matrices B € R™", C' € R"™*("~") and D € R )*("=7") are arbitrary. The permutation

matrix P defines a unique permutation 7 : {1,...,n} — {1,... n} with the property that the columns of
Pareer(),...,exmn) Let J ={n(1),...,7(r)} and Z = {1,...,n} \ J. Then, by construction, for any
pair (i,7) € T x J, we know a;; = 0, which is in contradiction with the assumed statement (iv). |

Next we present two results, whose proof are analogous to those of the previous theorem and left to
the reader as an exercise.

Lemma 4.4 (Global reachability and powers of the adjacency matrix). Let G be a weighted digraph
with n > 2 nodes and weighted adjacency matrix A. For any j € {1,...,n}, the following statements are
equivalent:

(i) the jth node of G is globally reachable, and
(ii) the jth column ofzz;é AF is positive.
Next, we notice that if node j is reachable from node ¢ via a path of length k and at least one node

along that path has a self-loop, then node j is reachable from node ¢ via paths of length k, k + 1, k + 2, and
so on. This observation and the last lemma lead to the following corollary.

Corollary 4.5 (Connectivity properties of the digraph and positive powers of the adjacency ma-
trix: cont’d). Let G be a weighted digraph with n nodes, weighted adjacency matrix A and a self-loop at
each node. The following statements are equivalent:

(i) G is strongly connected; and
(ii) A"~ is positive, so that A is primitive.
Foranyj € {1,...,n}, the following two statements are equivalent:
(iii) the jth node of G is globally reachable; and
(iv) the jth column of A"~ has positive entries.

Finally, we conclude this section with a clarification.

Remark 4.6 (Similarity transformations defined by permutation matrices). Note that PT AP is the
similarity transformation of A defined by P because the permutation matrix P satisfies P~ = PT; see
Exercise E2.14. Moreover, note that PT AP is simply a reordering of rows and columns. For example, consider

0 01 010 1 3 1 2
P= |1 0 0| withPT={0 0 1|.NoteP |2| = |1| aswellas PT |2| = |3| and compute
010 1 00 3 2 3 1
a1l a2 a3 a22 a3 a21
A= la a2 azx —>  PTAP= |az a3 a3,
asr as2 as3 a2 ai3z a

so that the entries of the 1st, 2nd and 3rd rows of A are mapped respectively to the 3rd, 1st and 2nd rows of
PTAP — and, at the same time, — the entries of the 1st, 2nd and 3rd columns of A are mapped respectively to
the 3rd, 1st and 2nd columns of PT AP. °
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Graph theoretical characterization of primitive matrices

In this section we present the main result of this chapter, an immediate corollary and its proof; see also
Figure 4.3.

Theorem 4.7 (Strongly connected and aperiodic digraph and primitive adjacency matrix). Let G
be a weighted digraph with n > 2 nodes and with weighted adjacency matrix A. The following two statements
are equivalent:

(i) G is strongly connected and aperiodic; and
(ii) A is primitive, that is, there exists k € N such that AF s positive.

A3 At A®

Figure 4.3: Increasing powers of a non-negative matrix A € R?°*25. The digraph associated to A is strongly connected
and has self-loops at each node; as predicted by Theorem 4.7, there exists & = 5 such that A* > 0.

A

Before proving Theorem 4.7, we introduce a useful fact from number theory, whose proof we leave
as Exercise E4.13. First, we recall a useful notion: a set of integers are coprime if its elements share no
common positive factor except 1, that is, their greatest common divisor is 1. Loosely, the following lemma
states that coprime numbers generate, via linear combinations with non-negative integer coefficients, all
numbers larger than a given threshold.

Lemma 4.8 (Frobenius number). Given a finite set A = {a1,aq, ..., a,} of positive coprime integers, an
integer M is said to be representable by A if there exist non-negative integers {a1, g, . .., o} such that
M = aja; + - - - + anyan. The following statements are equivalent:

(i) there exists a finite largest unrepresentable integer, called the Frobenius number of A, and

(ii) the greatest common divisor of A is 1.

Proof of Theorem 4.7. Regarding (i) == (ii), pick any ordered pair (7, j). We claim that there exists a
number £(i, j) with the property that, for all m > k(i, j), we have (A™);; > 0, that is, there exists a
directed path from i to j of length m for all m > k(i, j). If this claim is correct, then the statement (ii) is
proved with k = max{k(i,7) | 4,7 € {1,...,n}}. To show this claim, let {cy, ..., cn} be the set of the
cycles of G and let {k1, ..., kn} be their lengths. Because G is aperiodic, the lengths {k1,...,ky} are
coprime and Lemma 4.8 implies the existence of a number h(ky, ..., ky) such that any number larger than
h(k1,...,kn) is alinear combination of k1, . . ., kx with non-negative integer as coefficients. Because G is
strongly connected, there exists a path ~ of arbitrary length I'(4, 7) that starts at 7, contains a vertex of each
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of the cycles ¢1, . .., ¢y, and terminates at j. Now, we claim that k(i, j) = T'(i, j) + h(k1,. .., kn) has the
desired property. Indeed, pick any number m > k(i, j) and write itas m = T'(,j) + S1k1 +- - - + Bnkn for
appropriate numbers 1, ..., Sy € N. A directed path from ¢ to j of length m is constructed by attaching
to the path ~y the following cycles: 31 times the cycle c;, B2 times the cycle ¢, . . ., Sy times the cycle cy.

Regarding (i) = (i), from Lemma 4.2 we know that A¥ > 0 means that there are paths of length
k from every node to every other node. Hence, the digraph G is strongly connected. Next, we prove
aperiodicity. Because G is strongly connected, each node of G has at least one outgoing edge, that is, for
all 4, there exists at least one index j such that a;; > 0. This fact implies that the matrix A*™! = AA* is
positive via the following simple calculation: (A**+1); = Sy ain(AF)p > a;j (AF) ji > 0. In summary, if
A¥ is positive for some k, then A™ is positive for all subsequent m > k (see also Exercise E2.5). Therefore,
there are closed paths in G of any sufficiently large length. This fact implies that GG is aperiodic; indeed,
by contradiction, if the cycle lengths were not coprimes, then G would not possess such closed paths of
arbitrary sufficiently large length. |

Elements of spectral graph theory

In this section we provide some elementary results on the spectral radius of a non-negative matrix A. (We
provide bounds on the eigenvalues of the Laplacian matrix in Section 6.1.2 and Exercise E6.3.) Recall that
ith entry of the vector A1,, contains the ith row-sum of the matrix A and the out-degree of the ith node of
the digraph associated to A. In other words, dow (i) = €] A1,,.

Theorem 4.9 (Bounds on the spectral radius of a non-negative matrix). For a non-negativen X n
matrix A with associated digraph G, the following statements hold:
(i) min(Al,) < p(A) < max(Al,);
(ii) ifmin(Al,) = max(Al,), then p(A) = max(Al,); and
(iii) ifmin(Al,) < max(A1,), then the following two statements are equivalent:
a) for each nodet with eiTAln = max(AL,), there exists a directed path in G from node i to a node j
with e}Aln < max(Al,); and
b) p(A) < max(Al,).

An illustration of this result is given in Figure 4.4. Before providing the proof, we introduce a useful
notion and establish a corollary.

Definition 4.10 (Row-substochastic matrix). A non-negative n x n matrix A is row-substochastic if its
row-sums are at most 1 and at least one row-sum is strictly less than 1, that is,

Al, <1,, and thereexistsi € {1,...,n} such that e,-TAln < 1.

Note that a row-substochastic matrix with at least one row-sum equal to 1 satisfies min(Al,) <
max (A1, ) and that any irreducible row-substochastic matrix satisfies condition (iii)a because the associated
digraph is strongly connected. These two observations lead immediately to the following rewriting of the
previous theorem.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



4.5. Elements of spectral graph theory

55

OO0 0 0 0 0 0

© © 0 06 0 0 0 0 0

© 0 © 0 0 0 0 0 O

O O] OO0 0 0 0 0 0

(a) Complete bipartite graph K (3, 3) with bi- (b) Cartesian grid graph with binary ad-
nary adjacency matrix A K(3,3) jacency matrix Agriq

Figure 4.4: lllustration of Theorem 4.9: by counting the number of neighbors of each node (i.e., by computing the row
sums of A) and observing that the grid graph is connected, we can establish that p(A (3 3)) = 3and 2 < p(Agra) < 4.

Corollary 4.11 (Convergent row-substochastic matrices). A row-substochastic matrix is convergent if
and only if its associated digraph contains directed paths from each node with out-degree 1 to a node with
out-degree less than 1. Specifically, an irreducible row-substochastic matrix is convergent.

We now present the proof of the main theorem in this section.

Proof of Theorem 4.9. Regarding statement (i), the Perron-Frobenius Theorem 2.12 applied to the non-
negative matrix A implies the existence of a vector = > 0,,, x # 0,,, such that

Az = p(A)z = p(A)z; = Zaz‘ﬂ?j foralli € {1,...,n}.
j=1

Let £ € argmax;cqy ,3{2;} be the index (or one of the indices) satisfying z, = max{z1,...,2,} > 0
and compute

p(A) = E:l agjx—i < Z:lagj < max(A1,).
j= j=

We leave the proof of the lower bound to the reader in Exercise E4.9.

Regarding statement (ii), note that 1,, is an eigenvector with eigenvalue max(A1,,) so that we know
p(A) > max(Al,). But we also know from statement (i) that p(A4) < max(ALl,).

Next, we establish that the condition (iii)a implies the bound (iii)b. It suffices to focus on row-
substochastic matrices (if max(A1l,) # 1, we consider the row-substochastic matrix A/p(A)). We now
claim that:

(1) ife] AL, < 1,thenel A%1, < 1,

(2) if i has an outneighbor j (that is, A;; > 0) with ejTAln < 1, then eiTA2 1, <1,
(3) there exists k such that A¥1,, < 1,,, and

() p(4) < 1.

Regarding statement (1), for a node ¢ satisfying eiTAln < 1, we compute

e]Al, <1 = efA%,=¢lA(AL,) <e]Al, <1,
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where we used the implication: if 0,, < v < 1, and w > 0, then wTv < w'l,. This proves statement (1).
Next, note that 0 < eJTAln < land A1, <1, together imply the useful inequality

Al, <1, — (1 — eJTAln)ej, because 1 — e;!—Aln > 0.
Therefore, we compute
el A1, = (e] A)(A1,)
< (e] A) (1n - (1- e]TAln)ej)
=e AL, — (1 —e] Al,)ef Ae; <1— (1 —ef Al,)A4; < 1.

This concludes the proof of statement (2).

Regarding statement (3), note that, if A is row-substochastic, then AF is row-substochastic for any
natural k& > 1. Let Sy, be the set of indices i such that the ith row-sum of A is strictly less than 1.
Statement (1) implies S, C Sy 1. Moreover, because of the existence of directed paths from every node
to nodes with row-sum less than 1, we know that there exists £* such that S} = {1,...,n}. This proves
statement (3).

Next, define the maximum row-sum at time k£* by

n
= max AR < 1.
7 i€{1,...,n} Z( )Zj
7j=1
Given any natural number k, we can write k = ak™ + b with a positive integer and b € {0, ..., k* — 1}.
Note that

AR, < A1, <41,

The last inequality implies that, as & — oo and therefore a — oo, the sequence A* converges to 0. This
fact proves statement (4) and, in turn, that the condition (iii)a implies the bound (iii)b.

Finally, we sketch the proof that the bound (iii)b implies the condition (iii)a. By contradiction, if
condition (iii)a does not hold, then the condensation of GG contains a sink whose corresponding row-sums
in A are all equal to max(A1,,). But to that sink corresponds an eigenvector of A whose eigenvalue is
therefore max(A1l,,). We refer to Theorem 5.2 for a brief review of the properties of reducible non-negative
matrix and leave to the reader the details of the proof. |

Historical notes and further reading

Standard books on algebraic graph theory are ( , ; , )-

The proof for Theorem 4.7 is taken from ( , ). For more information on the Frobenius
number we refer to ( , ) and Wikipedia:Coin_Problem.

More results on spectral graph theory and, specifically, a review and recent results on bounding the
spectral radius of an adjacency matrix are given, for example, by ( ) and
(2004).
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4.7 Exercises

E4.1 Directed paths and powers of the adjacency matrix. Prove Lemma 4.2.

E4.2 Edges and triangles in an undirected graph. Let A be the binary adjacency matrix for an undirected graph
G without self-loops. Recall that the trace of A is trace(A) = Y | aj;.
(i) Show trace(A4) = 0.
(ii) Show trace(A2) = 2|E
(iii) Show trace(A3) = 6|T
with three vertices.)

, where | E| is the number of edges of G.

, where |T'| is the number of triangles of G. (A triangle is a complete subgraph

(iv) Verify results (i)—(iii) on the matrix A =

)

11

0 1f.

10

E43 A sufficient condition for primitivity. Assume the square matrix A is non-negative and irreducible. Show

that

(i) if A has a positive diagonal element, then A is primitive,

(ii) if A is primitive, then it is false that A must have a positive diagonal element.

E44 Example row-stochastic matrices and associated digraph. Consider the row-stochastic matrices

Ay = Ay = , and As= -

N
i =)
N
= =0 O
N =

0
0
1
1

_ o = O
OO = =
O = O =
OO ==
OO ==
OO ==
— O = O
O = O =
= =0 O

(i) Draw the digraphs G'1, G2 and G3 associated with these three matrices.

Using only the original definitions and without relying on the characterizations in Theorems 4.3 and 4.7, show
that:

(if) the matrices A1, A and Ajz are irreducible and primitive,
(iii) the digraphs G1, G5 and G5 are strongly connected and aperiodic, and

(iv) the averaging algorithm defined by A5 converges in a finite number of steps.

E4.5 Primitive matrices are irreducible. Prove Lemma 2.11, that is, show that a primitive matrix is irreducible.
Hint: You are allowed to use Theorem 4.3.

E4.6 Yet another equivalent definition of irreducibility. Consider a non-negative matrix A of dimension n.
From Theorem 4.3, we know that A is irreducible if and only if

(i) there does not exist a permutation P € {0,1}"*™ and 1 < r < n — 1 such that

PAPT _ B,y ‘ Crx(n—'r')
O(nfr)xr ‘ D(nfr)x(nfr)
Consider now the following property of A:

(ii) for any non-negative vector y € RZ, with 0 < k < n strictly positive components, the vector (I, + A)y
has at least k£ + 1 strictly positive components.

Prove that statement (i) implies statement (ii).
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E4.7

E4.8

E4.9

E4.10

E4.11

E4.12

E4.13

An example reducible or irreducible matrix. Consider the binary matrix:

000 11
1 01 1 1
A=11 1 0 1 1
1 0 0 01
1 0 010
Prove that A is irreducible or prove that A is reducible by providing a permutation matrix P that transforms
A into an upper block-triangular matrix, i.e., PTAP = S *

The exponent of a primitive matrix.

(i) Let G be the digraph with nodes {1, ...,3} and edges {(1, 2), (2,1), (2, 3), (3, 1) }. Explain if and why
G is strongly connected and aperiodic.

(ii) Recall a non-negative matrix A is primitive if there exists a number k such that A* > 0; the smallest
such number £ is called the exponent of the primitive matrix A. Do one of the following:

a) prove that the exponent of a primitive matrix A € R™*"™ is less than or equal to n, or
b) provide a counterexample.

Bounds on the spectral radius of irreducible non-negative matrices. For a non-negative matrix A,
complete the proof of Theorem 4.9(i), that is, show that

(i) min(Al,) < p(A) and, therefore,
min(Al,) < p(4) < max(41,).

Next, show that
(ii) if A is irreducible and min(Al,) < max(Al,), then

min(Al,) < p(A) < max(Al,).

Eigenvalue shifting for stochastic matrices. Let A € R™*" be an irreducible row-stochastic matrix. Let
E be a diagonal matrix with diagonal elements E;; € {0, 1}, with at least one diagonal element equal to zero.
Show that AF and F A are convergent.

Normalization of non-negative irreducible matrices. Consider a strongly connected weighted digraph
G with n nodes and with an irreducible adjacency matrix A € R™*". The matrix A is not necessarily
row-stochastic. Find a positive vector v € R™ so that the normalized matrix

1
P = —(diag(v)) "' A diag(v)
gy diog(0) 1A ding(
is non-negative, irreducible, and row-stochastic.

Characterization of indecomposable matrices. Following ( , ), We say a non-negative matrix
A is indecomposable if its associated digraph contains a globally reachable node. Generalizing the proof of
Theorem 4.7, show that the following statements are equivalent:

(i) A is indecomposable and the subgraph of globally reachable nodes is aperiodic, and
(ii) there exists an index h € N such that A" has a positive column.

The Frobenius number. Prove Lemma 4.8.
Hint: Read up on the Frobenius number in ( , ).
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E4.14 Leslie population model. The Leslie model is used in population ecology to model the changes in a
population of organisms over a period of time; see the original reference ( , ) and a comprehensive
text ( , ). In this model, the population is divided into n groups based on age classes; the indices
i are ordered increasingly with the age, so that ¢ = 1 is the class of the newborns. The variable z;(k),
i € {1,...,n}, denotes the number of individuals in the age class 7 at time k; at every time step k the x;(k)
individuals

« produce a number «o;x; (k) of offsprings (i.e., individuals belonging to the first age class), where o; > 0
is a fecundity rate, and

« progress to the next age class with a survival rate 3; € [0, 1].

If (k) denotes the vector of individuals at time k, the Leslie population model reads

a1 Qo ... Op_1 QOp
61 0 ... 0 0

r(k+1)=Az(k)=|0 B2 . . 0| z(k), (E4.1)
0 0 ... Buy O

where A is referred to as the Leslie matrix. Consider the following two independent sets of questions. First,
assume o; > Oforalli € {1,...,n}and 0 < f; < 1lforalli e {1,...,n—1}.

(i) Prove that the matrix A is primitive.

(i) Letp;(k) = % denote the percentage of the total population in class i at time k. Call p(k) the

population distribution at time k. Compute limy,_, ; - p(k) as a function of the spectral radius p(A) and
the parameters (o, ;). ¢ € {1,...,n}.

Hint: Obtain a recursive expression for the components of the right dominant eigenvector of A

(iii) Assume 3; = > 0and o; = g fori € {1,...,n}. What percentage of the total population belongs to
the eldest class asymptotically, that is, what is limg_, o0 pp (k)?

(iv) Find a sufficient condition on the parameters («;, 5;), ¢ € {1,...,n}, so that the population will
eventually become extinct.
Second, assume «; > O0fori € {1,...,n}and0 < 3; < 1lforallie {1,...,n—1}.
(v) Find a necessary and sufficient condition on the parameters aq, ..., oy, and 51, ..., Bn—1, so that the
Leslie matrix A is irreducible.

(vi) For anirreducible Leslie matrix (as in the previous point (v)), find a sufficient condition on the parameters
(i, B), 7 € {1,...,n}, that ensures that the population will not go extinct.

E4.15 Swiss railroads: continued. From Exercise E3.7, consider the fictitious railroad map of Switzerland given in
Figure E3.1. Write the unweighted adjacency matrix A of this transportation network and, relying upon A
and its powers, answer the following questions:

(i) what is the number of links of the shortest path connecting St. Gallen to Zermatt?
(if) is it possible to go from Bern to Chur using 4 links? And 5?

(iii) how many different routes, with strictly less then 9 links and possibly visiting the same station more
than once, start from Ziirich and end in Lausanne?
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60 Chapter 4. The Adjacency Matrix

E4.16 Tridiagonal Toeplitz matrices. An n x n matrix A is tridiagonal Toeplitz if there exist scalar numbers a, b,
and ¢, with a # 0 and ¢ # 0 such that

b a O 0
c b a 0
A = : . .. .. :
0 ... ¢ b a
0 ... 0 ¢ b
Show that the eigenvalues and right eigenvectors of a tridiagonal Toeplitz A are, for j € {1,...,n},

(c/a)"/2 sin(Ljr/(n + 1))

(c/a)*?sin(2jm/(n + 1))
)\j:b+2a\/c/acos< I ), and v; = .
n—+1 :
(¢/a)""?sin(njm/(n +1))
E4.17 Circulant matrices. A matrix C' € C"*"™ is circulant if there exists scalar numbers ¢y, . . . , ¢,_1 such that
Co C1 ... Cp—1
c Cp—1 Co .. Cp_—2
C1 C2 . Co

In other words, a circulant matrix is fully specified by its first row; the remaining row of C' are cyclic
permutations of the first row. A circulant matrix is Toeplitz. Show that

(i) the eigenvalues and eigenvectors C are, for j € {0,...,n — 1},
1
2 1 i
Aj =co+cwj+owi+ - tepmwiT T, and vy = : ,
w?fl
2jmiy .
where w; = exp(7>, j €{0,...,n — 1}, are the nth complex roots of the number 1, and i = v/—1.
(i) for n even, £ € R, and (co,¢1,...,6n-1) = (1 — 2k,K,0,...,0,k), the eigenvalues are, for j €
{1,...,n},
27(g —1
Aj = 2K cos ROl + (1 -2k).
n

Note: Circulant matrices enjoy numerous properties; e.g., if C1 and Cy are circulant, so are C, C; 4+ Cy and
C1Cs. Additional properties are discussed for example by (1979).

E4.18 Adjacency spectrum of basic graphs. Given the basic graphs in Example 4.1 and the properties of tridiagonal
Toeplitz and circulant matrices in Exercises E4.16 and E4.17, prove the statements in Table 4.1. In other words,
show that, for n > 2,

(i) for the path graph P,, the adjacency matrix is Toeplitz tridiagonal and the adjacency spectrum is
{2cos(mi/(n+1)) |ie{l,...,n}t}h
(ii) forthe cycle graph C,,, the adjacency matrix is circulant and the adjacency spectrum is {2 cos(27i/n)) | i €

{1,...,n}}
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(iii) for the star graph S,, the adjacency matrix is €;e_; + €_1€1, where e_; = 1,, — €;, and the adjacency
spectrum is {v/n — 1,0,...,0, —/n — 1};

(iv) for the complete graph K, the adjacency matrix is 1,1} — I,,, and the adjacency spectrum is {(n —
1),—1,...,—1};and

(v) for the complete bipartite graph K, ., the adjacency matrix is Onxn Lnxm and the adjacency
1m><7l Ome
spectrum {y/nm,0,...,0,—y/nm}.
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5.1

CHAPTER 5

Discrete-time Averaging Systems

After discussing matrix and graph theory, we are ready to go back to the averaging model
introduced in Chapter 1. Recall that the discrete-time averaging
systems, as given in equation (1.2), is

x(k+1) = Az(k), (5.1)

where the matrix A = [a;;] is row-stochastic. Also recall from
Chapter 1 the study of (i) opinion dynamics in social influence net-
works (given an arbitrary stochastic matrix, what do its powers
converge to?) and (ii) averaging algorithms in wireless sensor net-
works (design an algor.ithm to compute the average of a collection Figure 5.1: Opinion averaging is believed
numbers located at distinct nodes). Other related examples from the "} . key mechanism in social influence
appendices of Chapter 1 include the study of robotic networks in  petwork.

cyclic pursuit and balancing and of more general design problems

in wireless sensor networks.

This chapter presents some convergence results for the averaging model 5.1 defined by stochastic
matrices; we discuss primitive matrices and reducible matrices with a single or multiple sinks. We then the
equal-neighbor and the Metropolis-Hastings models of row-stochastic matrices. Finally, we present some
centrality notions from network science.

Averaging systems achieving consensus

We now bring together Perron-Frobenius theory with algebraic graph theory to provide necessary and
sufficient conditions for an averaging system to achieve consensus.

Recall that a sufficient condition for convergence of the averaging model (5.1) is given in Corollary 2.15:
if A is primitive, then each solution converges to consensus asymptotically. The following result is
more general and also amounts to an extension to a class of reducible matrices of the Perron-Frobenius
Theorem 2.12.
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64 Chapter 5. Discrete-time Averaging Systems

Theorem 5.1 (Consensus for row-stochastic matrices with a globally-reachable aperiodic strong-
ly-connected component). Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:
(A1) the eigenvalue 1 is simple and all other eigenvalues  satisfy |p| < 1,
(A2) A is semi-convergent and limy,_,oo A¥ = 1,w", for somew € R™, w > 0, and lzw =1,
(A3) G contains a globally reachable node and the subgraph of globally reachable nodes is aperiodic.
If any, and therefore all, of the previous conditions are satisfied, then the matrix A is said to be indecomposable
and the following properties hold:
(i) w > 0 is the left dominant eigenvector of A and w; > 0 if and only if node i is globally reachable;
(ii) the solution to the averaging model (5.1) x(k + 1) = Ax(k) satisfies

lim z(k) = (wTCC(O))lm

k—o0
(iii) if additionally A is doubly-stochastic, then w = %ln (because AT1,, = 1,, and %111,1 = 1) so that

172(0)

n

lim z(k) =

k—o0 n

1,, = average(z(0))1,.

An example indecomposable row-stochastic matrix with its associated digraph and spectrum is illus-
trated in Figure 5.2.

-.:f O> -

N

(a) A row-stochastic matrix; each row  (b) The corresponding digraph has an (c) The spectrum of the adjacency matrix
contains equal entries summing to 1. aperiodic subgraph of globally reachable includes a dominant eigenvalue.
nodes.

Figure 5.2: An example indecomposable row-stochastic matrix, its associated digraph consistent with Theorem 5.1(A2),
and its spectrum consistent with Theorem 5.1(A1)

Note: The implication (A3) = (ii) amounts to a result in which the structure of the network determines
its function, i.e., the asymptotic behavior of the averaging system.
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Note: as discussed in Section 2.3, statement (ii) implies that the limiting value is a weighted average
of the initial conditions with relative weights given by the convex combination coefficients wy, . .., wy.
Note that w > 0 if and only if the digraph associated to A is strongly connected. In digraphs that are not
strongly connected, the initial values x;(0) of all nodes 7 which are not globally reachable have no effect
on the final convergence value. In a social influence network, the coefficient w; is regarded as the “social
influence” of agent i. We illustrate this concept for the famous Krackhardt’s advice network ( ,

); see Figure 5.3.

O O O
O Q 9 ® i
=" ) O
O o 0] @

Figure 5.3: Krackhardt’s advice network ( , ) describing the interactions among 21 individuals. The
social influence of each node is illustrated by its gray level. the adjacency matrix of this digraph is indecomposable,
i.e., the digraph contains a subgraph of globally reachable nodes that is aperiodic.

Note: to clarify statement (A3) it is useful to review some properties of globally reachable nodes. We
first recall a useful property from Lemma 3.1: GG has a globally reachable node if and only if its condensation
digraph has a globally reachable node (i.e., the condensation of GG has a single sink). Second, it is easy to
see that the set of globally reachable nodes induces a strongly connected component of G.

Proof of Theorem 5.1. The statement (A1) = (A2) is precisely Theorem 2.14 with A = 1 (whose proof is
given in Section 2.3.4).

Next, we prove that (A2) = (A3). The assumption 1] w = 1 implies that at least one element, say the
jth element, of w is positive. Because limy_, AF = 1,w7, we know that the jth column of limy,_,, A*
has all-positive elements. Thus, for sufficiently large K, the jth column of AX has all-positive elements, so
there is a path of length K from every node to the j** node. Thus, the j!* node is globally reachable.

Now, we prove by contradiction that the strongly-connected component of globally reachable nodes is
aperiodic: suppose this component is periodic with period p > 1. Pick j and K as in the previous paragraph
so that there is a path of length K from the j** node to itself (a cycle of length K). Similarly, there must
also be a path of length K + 1 from the j* node to itself (a cycle of length K -+ 1). Both cycles belong to
the sub-graph of globally reachable nodes, since all the nodes on the cycles are globally reachable via the
4% node. From the definition of period, both K and K + 1 must be divisible by p. This is not possible if
p > 1, and is a contradiction. Hence, (A2) = (A3).

Finally, we prove the implications (A3) = (A1) and (A2). By assumption the condensation digraph
of A contains a sink that is globally reachable, hence it is unique. Assuming 0 < n; < n nodes are
globally reachable, a permutation of rows and columns (see Exercise E3.1), brings the matrix A into the
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5.2

lower-triangular form

All On Xn :|
A= Xz | 5.2
[Am Ao 5-2)

where Aj; € R™*™M | Ayy € R™*™2 with ny 4+ ng = n. The state vector z is correspondingly partitioned
into z1 € R™ and x5 € R™ so that

$1(k‘ + 1) - Alll‘l(k’), .
zo(k + 1) = Ag121(k) + Aoz (). (5.4)

In other words, z1 and A1 are the variables and the matrix corresponding to the sink. Because the sink,
as a subgraph of G, is strongly connected and aperiodic, A;; is primitive and row-stochastic and, by

Corollary 2.15,
T

lim AY, =1, w/,
k—o0
where w; > 0 is the left eigenvector with eigenvalue 1 for A;; normalized so that 111101 =1
We next analyze the matrix Ago as follows. Recall from Corollary 4.11 that an irreducible row-
substochastic matrix has spectral radius less than 1. Now, because Ay cannot be zero (otherwise the
sink would not be globally reachable), the matrix Ag is row-substochastic. Moreover, (after appropriately
permuting rows and columns of Ag9) it can be observed that Ay is a lower-triangular matrix such that
each diagonal block is row-substochastic and irreducible (corresponding to each node in the condensation
digraph). Therefore, we know p(Ag2) < 1 and, in turn, I,,, — Agg is invertible. Because A is primitive and
p(Ag22) < 1, A is semi-convergent and limy_, x2(k) exists. This establishes that (A3) = (A1). Taking
the limit as £ — oo in equation (5.4), some straightforward algebra shows that

lim xg(k:) = (]nz — A22)71A21 ( lim xl(k)) = (In2 — A22)71A21 (1n1w1r) xl(O)

k—o0 k—o0
From the row-stochasticity of A, we know A1, + As1,, = 1,, and hence (I,,, — Ags) "1 A1 1,, = 1,,.
Collecting these results, we write

lim
k—o0

k T
|:A11 0n1 ><n2:| _ |:1n1w1r On1 Xn2:| -1 |:w1:|
A21 A22 1n2w1r OTLQ Xng " O’ng '

This establishes that (A3) = (A2) and (A1) = (i). The implications (A2) = (ii) and (A2) = (iii) are
straightforward. |

Averaging with reducible matrices with multiple sinks

In this section we now consider the general case of digraphs that do not contain globally reachable nodes,
that is, digraphs whose condensation digraph has multiple sinks. Such an example digraph is the famous
Sampson Monastery network ( , ); see Figure 5.4.

In the following statement we say that a node is connected with a sink of a digraph if there exists a
directed path from the node to any node in the sink.
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Figure 5.4: This image illustrates the Sampson Monastery dataset (Sampson, 1969). This dataset describes the of social
relations among a set of 18 monk-novitiates in an isolated contemporary American monastery. This digraph contains
two sinks in its condensation.

Theorem 5.2 (Convergence for row-stochastic matrices with multiple aperiodic sinks). Let A be a
row-stochastic matrix, let G be its associated digraph, and let M > 2 be the number of sinks in the condensation

digraph C(QG). If each of the M sinks is aperiodic, then

(i)

(ii)

(iii)

the semi-simple eigenvalue p(A) = 1 has multiplicity equal M and is strictly larger than the magnitude
of all other eigenvalues, hence A is semi-convergent,

there exist M left eigenvectors of A, denoted by w™ € R", form € {1,..., M}, with the properties
that: w™ > 0, wi* + - -- +w,* = 1 and w}" is positive if and only if node i belongs to the m-th sink,

the solution to the averaging model x(k + 1) = Ax (k) with initial condition x:(0) satisfies

)T2(0), if node i belongs to the m-th sink,

(w™
. (w™)Tz(0), if node i is connected with the m-th sink and no other sink,
lim z;(k) =<
k—o0 T .
Z Zim ((w™)"'2(0)), ifnodei is connected to more than one sink,
m=1

where, for each node i connected to more than one sink, the coefficients z; y,, m € {1,...,S}, are convex
combination coefficients and are strictly positive if and only if there exists a directed path from node i to
the sink m.

Proof. Rather than treating the general case with heavy notation, we work out a significant example with
the key ideas of the general proof, and refer the reader to (DeMarzo et al., 2003, Theorem 10) for the details.
Assume the condensation digraph of A is composed of three nodes, two of which are sinks, as in the side

figure.

xs3

1 @ O X2
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68 Chapter 5. Discrete-time Averaging Systems
Therefore, after a permutation of rows and columns (see Exercise E3.1), A can be written as
A 0 0
A= 0 Agg 0
Az Az As
and the state vector x is correspondingly partitioned into the vectors z;, x2 and x3. The state equations are:
r1(k+1) = Anzi(k), (5.5)
zo(k + 1) = Agxa(k), (5.6)
xg(k + 1) = Aglml(k) + A32l’2(/€) + A33$3(l€). (5.7)
By the properties of the condensation digraph and the assumption of aperiodicity of the sinks, the
digraphs associated to the row-stochastic matrices Aj; and Ags are strongly connected and aperiodic.
Therefore, we immediately conclude that
lim z1(k) = (wal(O))lm and lim zy(k) = (U};-CCQ(O))].”Q,
k—o0 k—o0
where wy (resp. ws) is the left eigenvector of the eigenvalue 1 for matrix A (resp. Ago) with the usual
normalization 1;1101 = 112102 =1
Regarding the matrix A33, the same discussion as in the previous proof leads to p(Ass) < 1 and, in
turn, to the statement that I,,, — A33 is nonsingular. By taking the limit as k¥ — oo in equation (5.7), some
straightforward algebra shows that
lim x3(k) = (Ing — Agg)_l (A31 lim x1(k) + A3 lim {L‘Q(k?))
k—o0 k—oo k—o0
= (w] 21(0)) ((Ins — A33) " As11n,) + (w3 22(0)) ((Ing — As3) ™" As21y, ).
Moreover, because A is row-stochastic, we know
Ag1lpn, + Asoly, + Azslyy = 1y,
and, using again the fact that I,,, — Ags is nonsingular,
Ly = (Ing — As3) " As11n, + (Ing — Asz) ' Agal,,.
This concludes our proof of Theorem 5.2 for the simplified case C'(G) having three nodes and two sinks. W
Note that: convergence does not occur to consensus (not all components of the state are equal) and
the final value of all nodes is independent of the initial values at nodes which are not in the sinks of the
condensation digraph.
We conclude this section with a figure providing a summary of the asymptotic behavior of discrete-time
averaging systems and its relationships with properties of matrices and graphs; see Figure 5.5.
5.3 Appendix: Design of graphs weights

In this section we describe two widely-adopted algorithms to design weights for unweighted graphs.
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. = < ( N B Strongly connected, Strongly connected
Converges to consensus | Does not converge Doubly stochastic Irreducible aperiodic and and periodic
on the average and primitive but not primitive weight-balanced
—_
<
—_ Strongly connected
Converges to consensus Primitive el ppeniotliy

depending on all nodes

N
>

A

Y
A

—_— One aperiodic
Converges to consensus Indecomposable sink component
that does not depend
on all the nodes <
—
_ Multiple aperiodic
Converges sink components
not to consensus
. 2 J
. 2 7
. 2 J
Properties of z(k + 1) = Az(k) Properties of row-stochastic matrix A Properties of associated digraph

Figure 5.5: Corresponding properties for the discrete-time averaging dynamical system x(k + 1) = Ax(k), the
row-stochastic matrix A and the associated weighted digraph.

5.3.1 The equal-neighbor model

Let G be a connected undirected graph, binary adjacency matrix A, and degree matrix D = diag(dy, . .., d,),
where dy, ..., d, are the node degrees. Define the equal-neighbor matrix

Aequal—neighbor =D A (5.8)
For example, consider the graph in Figure 5.6, for which we have:

0100 1 0 00 o 1 0 0

o1t los o 3 o0 13 13
A=1lo 10 1] P= o0 2 of = Aeawnagbor=1| g 155 o 1yl 69
01 10 00 0 2 0 12 1/2 0

® O® @=—.=0
1/3

O ® OO

1/2 13

Figure 5.6: The equal-neighbor matrix
The following result is for the more general setting of weighted undirected graphs.

Lemma 5.3 (The equal-neighbor row-stochastic matrix). Let G be a connected weighted graph with
weighted adjacency matrix A and weighted degrees d1, . . ., d,,. For the equal-neighbor matrix Aequal—neighbor
defined as in (5.8),
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70 Chapter 5. Discrete-time Averaging Systems

(i) Acqual-neighbor is well-defined, row-stochastic, and irreducible;

(ii) the left dominant eigenvector of Acqual-neighbor, normalized to have unit sum, is

di
1 :

Wegqual-neighbor = 2?71 d; S E
= d.

so that, assuming G is aperiodic, the solution to the averaging model (5.1) z(k + 1) = Ax(k) satisfies
lim (k) = ;id- (0); (5.10)
kl}ﬂgo xI; — 2?21 dz - Ly 9 .

(iii) Aequal-neighbor i doubly-stochastic if and only if G is regular (i.e., all nodes have the same degree).

For example, for the equal-neighbor matrix in equation (5.9) and Figure 5.6, one can easily verify that
the dominant eigenvector is [1 3 2 2]T /8.

Proof of Lemma 5.3. Because G is connected, each node degree is strictly positive, the degree matrix is
invertible, and Acqual-neighbor is Well-defined. Because G is connected and because the zero/positive pattern
of Acqual-neighbor 1S the same as that of A, we know Aequalneighbor is irreducible. Next, we note a simple fact:
any v € R" with non-zero entries satisfies diag(v)~'v = 1,. Let d = Al, denote the vector of node
degrees so that D = diag(d). Statement (i) follows from

Aequal-neighborln = dlag(d)_l(Aln) = diag(d)_ld = 1n

Statement (ii) follows from

1 1 1
T : -1
Aequal—neighborwequal-neighbor =A dlag(d) <11dd) = lldAln = 1Idd = Wequal-neighbor

where we used the fact that A is symmetric. Statement (iii) is an immediate consequence of (ii). |

We conclude this section by reviewing the distributed averaging algorithm introduced in Section 1.2.

Example 5.4 (Averaging in wireless sensor networks). As in equation (1.1), assume each node of a
wireless sensor network contains a value x; and repeatedly executes:

z;i(k + 1) := average(w;(k), {x;(k), for all neighbor nodes j}), (5.11)
or, more explicitely, z;(k + 1) = ﬁ(mz(k) + 2 jeni) %j(k)). Algorithm (5.11) can be written as:

1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3

z(k+1)= z(k) =: Awsnx(k),
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where the matrix Ay, is defined as in Section 1.2 and where it is easy to verify that
Awsn = (D + L)) 1 (A + Iy).

Clearly, A + I is the adjacency matrix of a graph that is equal to the graph in figure with the addition
of a self-loop at each node; this new graph has degree matrix D + I4. Therefore, the matrix Aysy is an
equal-neighbor matrix for the graph with added self-loops. We illustrate this observation in Figure 5.7.
From Lemma 5.3 we know that the left dominant eigenvector of Ay, is

1/3
1/3
® 0 (o S0
1/3 1/3

1/2 1/4
1/4 1/4

© @ OESGy=0)

Figure 5.7: The equal-neighbor matrix for an undirected graph with added self-loops

dy+1 1/6

. , 1/3
l-neighbor+selfl =TT 7 : = )

equal-neighbor+selfloops n+ Zz d; . 1/4

dn +1 1/4

because (d1, dz,ds,ds) = (1,3,2,2) and n = 4. This result is consistent with the numerically-computed
eigenvector in Example 2.5. °

The Metropolis—Hastings model

Next, we suggest a second way of assigning weights to a graph for the purpose of designing an averaging
algorithm (that achieves average consensus). Given an undirected unweighted graph G with with edge set
E and degrees dy, . . ., dy, define the weighted adjacency matrix Apetropolis-Hastings: called the Metropolis—
Hastings matrix, by

1
1 + max{d;,d;}’

if {i,j} € Eandi # j,

(AMetropolis-Hastings ) W= \1- E (AMetropolis—Hastings ) ihs if i = .7 )
{i,h}€E
0, otherwise.

\
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In our example,

0100 1000 3/4 1/4 0 0
C{t o1 o300 |14 14 1/4 1/4
A= 010 1 7D* 00 2 0 == AMetropohs—Hastmgs* 0 1/4 5/12 1/3
0110 000 2 0 1/4 1/3 5/12
5/12
® O OO

3/4 1/4 1/4

1/4

® @ O—w»—=0Q

Figure 5.8: The Metropolis—Hastings model
One can verify that the Metropolis-Hastings weights have the following properties:

(i) (AMetropolis—Hastings)ij > 0 if {Z,]} S E, (AMetropolis—Hastings)ii > O foralli € {1, c. ,’I’L}, and
(AMetropolis—Hastings)ij = 0 else;

(i) AMetropolis-Hastings 1S symmetric and doubly-stochastic;
(iii) AMetropolis-Hastings i primitive if and only if G is connected; and

(iv) the averaging model (5.1) z(k + 1) = Ax(k) achieves average consensus.

5.4 Appendix: Design and computation of centrality measures

In network science it is of interest to determine the relative importance of a node in a network. There
are many ways to do so and they are referred to as centrality measures or centrality scores. This section
presents six centrality notions based on the adjacency matrix. We treat the general case of a weighted
digraph G with weighted adjacency matrix A (warning: many articles in the literature deal with undirected
graphs only.) The matrix A is non-negative, but not necessarily row stochastic. From the Perron-Frobenius
theory, recall the following facts:

(i) if G is strongly connected, then the spectral radius p(A) is an eigenvalue of maximum magnitude
and its corresponding left eigenvector can be selected to be strictly positive and with unit sum (see
Theorem 2.12); and

(i) if G contains a globally reachable node, then the spectral radius p(A) is an eigenvalue of maxi-
mum magnitude and its corresponding left eigenvector is non-negative and has positive entries
corresponding to each globally reachable node (see Theorem 5.1).
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Degree centrality For an arbitrary weighted digraph G, the degree centrality cgegree (i) of node i is its
in-degree:

Cdegree(i) = din(i) = Z Qjis (5-12)
j=1

that is, the number of in-neighbors (if G is unweighted) or the sum of the weights of the incoming edges.
Degree centrality is relevant, for example, in (typically unweighted) citation networks whereby articles are
ranked on the basis of their citation records. (Warning: the notion that a high citation count is an indicator
of quality is clearly a fallacy.)

Eigenvector centrality One problem with degree centrality is that each in-edge has unit count, even
if the in-neighbor has negligible importance. To remedy this potential drawback, one could define the
importance of a node to be proportional to the weighted sum of the importance of its in-neighbors
(see ( , ) for an early reference). This line of reasoning leads to the following definition.

For a weighted digraph GG with globally reachable nodes (or for an undirected graph that is connected),
define the eigenvector centrality vector, denoted by cey, to be the left dominant eigenvector of the adjacency
matrix A associated with the dominant eigenvalue and normalized to satisfy 1] ce, = 1.

Note that the eigenvector centrality satisfies

1

n
ATy = - Cev = (i) = Z ajicev(])- (5.13)
j=1

where a = %A) is the only possible choice of scalar coefficient in equation (5.13) ensuring that there exists
a unique solution and that the solution, denoted c.y, is strictly positive in a strongly connected digraph
and non-negative in a digraph with globally reachable nodes. Note that this connectivity property may be
restrictive in some cases.

0 ©

(OX©}
o
o
o

%0

Figure 5.9: Comparing degree centrality versus eigenvector centrality: the node with maximum in-degree has zero
eigenvector centrality in this graph

Katz centrality For a weighted digraph G, pick an attenuation factor « < 1/p(A) and define the Katz

centrality vector (see (Katz, )), denoted by cx, by the following equivalent formulations:
k(i) = a Y aji(ex(f) + 1), (5.14)
j=1
or

k(i) =D (AR (5.15)

k=1 j=1
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Katz centrality has therefore two interpretations:

(i) the importance of a node is an attenuated sum of the importance and of the number of the in-neighbors
- note indeed how equation (5.14) is a combination of equations (5.12) and (5.13), and

(ii) the importance of a node is av times number of length-1 paths into i (i.e., the in-degree) plus o® times
the number of length-2 paths into 4, etc. (From Lemma 4.2, recall that, for an unweighted digraph,
(A¥);; is equal to the number of directed paths of length k from j to i.)

Note how, for o < 1/p(A), equation (5.14) is well-posed and equivalent to

cx = aAT(cK +1,)
— cx+1,= aAT(cK +1,)+1,
—= (I, —aA")(x+1,) =1,
—= cx=I,—aAn) 11, -1, (5.16)
[e.9]
= =) oA,
k=1
where we used the identity (I, — A)~! = 372 A* valid for any matrix A with p(A) < 1; see Exer-
cise E2.12.
There are two simple ways to compute the Katz centrality. According to equation (5.16), for limited size

problems, one can invert the matrix (1, — «AT). Alternatively, one can show that the following iteration
converges to the correct value: ¢if := aAT(cx + 1,,).

L »3

Figure 5.10: The pattern in figure displays the so-called 54,
hyperlink matrix, i.e., the transpose of the adjacency ma-
trix, for a collection of websites at the Lincoln University
in New Zealand from the year 2006. Light blue points are
nonzero entries of the adjacency matrix; dark blue points 2000
are outgoing links toward dangling nodes. Each empty

column corresponds to a webpage without any outgoing

link, that is, to a so-called dangling node. This network A
has 3756 nodes with 31,718 links. A fairly large portion  1g9gg Eii
of the nodes are dangling nodes: in this example, there :
are 3255 dangling nodes, which is over 85% of the total. ot

Image courtesy of Roberto Tempo from data described - Sﬁ :
in ( , ). 0 1000 2000 3000
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PageRank centrality For a weighted digraph G with row-stochastic adjacency matrix (i.e., unit out-
degree for each node), pick a convex combination coefficient a € ]0, 1] and define the PageRank centrality
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vector, denoted by c,;, as the unique positive solution to

n
. . 11—«
(i) = @Y ajice(§) + : (5.17)
j=1

n
or, equivalently, to
1 _
Cor = Mep, ey =1, where M =aAT +=—— 21,17, (5.18)
n

(To establish the equivalence between these two definitions, the only non-trivial step is to notice that if ¢,
solves equation (5.17), then it must satisfy 110pr =1.)

Note that, for arbitrary unweighted digraphs and binary adjacency matrices Ay 1, it is natural to compute
the PageRank vector with A = D} Ap,1. We refer to ( , ; , ) for the important
interpretation of the PageRank score as the stationary distribution of the so-called random surfer of an
hyperlinked document network — it is under this disguise that the PageRank score was conceived by the
Google co-founders and a corresponding algorithm led to the establishment of the Google search engine. In

the Google problem it is customary to set a ~ .85.

Closeness and betweenness centrality (based on shortest paths) Degree, eigenvector, Katz and
PageRank centrality are presented using the adjacency matrix. Next we present two centrality measures
based on the notions of shortest path and geodesic distance; these two notions belong to the class of radial
and medial centrality measures ( , ).

We start by introducing some additional graph theory. For a weighted digraph with n nodes, the length
of a directed path is the sum of the weights of edges in the directed path. For i,j € {1,...,n}, a shortest
path from a node ¢ to a node j is a directed path of smallest length. Note: it is easy to construct examples
with multiple shortest paths, so that the shortest path is not unique. The geodesic distance d;_, ; from node i
to node j is the length of a shortest path from node ¢ to node j; we also stipulate that the geodesic distance
d;—j takes the value zero if i = j and is infinite if there is no path from i to j. Note: in general d;_,; # d;_;.
Finally, for 7, j,k € {1,...,n}, welet g;_,;—,; denote the number of shortest paths from a node i to a node
J that pass through node k.

For a strongly-connected weighted digraph, the closeness of node i € {1,...,n} is the inverse sum
over the geodesic distances d;_, ; from node i to all other nodes j € {1,...,n}, thatis:
, 1
Ccloseness(l) = m (5.19)
For a strongly-connected weighted digraph, the betweenness of node i € {1,...,n} is the fraction of

all shortest paths g_,; ,; from any node k to any other node j passing through node ¢, that is:

c (i) Z?ng1 Gk—i—j
betweenness = ) ) .
Zh:1 Zj k=1 9k—h—j

(5.20)
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Summary To conclude this section, in Table 5.1, we summarize the various centrality definitions for a
weighted directed graph.

Measure Definition Assumptions
degree centrality Cdegree = AT,
1
eigenvector centrality Coy = Q@A Coy a = m G has a
p
globally reachable node
11—«
PageRank centrality Cpr = aATCpr + Tln a<l AL, =1,
1
Katz centrality cx = aAT (ex + 1) a < (A
p
1
closeness centrality Celoseness(1) = =7———— G strongly connected
Zj:l diﬁj
. i k=1 9k—i—j
betweenness centrality Chetweenness (1) = nzj .k nl A G strongly connected
Zh:1 Zj7k:1 Gk—h—j
Table 5.1: Definitions of centrality measures for a weighted digraph G with adjacency matrix A
Figure 5.11 illustrates some centrality notions on a small instructive example due to ( )-
Note that a different node is the most central one in each metric; this variability is naturally expected and
highlights the need to select a centrality notion relevant to the specific application of interest.
O @ O ®) @) O O @ ©) @)
@) O O O O ®) @) O O O O ©)
(a) degree centrality (b) eigenvector centrality
O O O ®) @) O O O ©) @)
@) O @ O O ®) @) O O @ O ©)
(c) closeness centrality (d) betweenness centrality
Figure 5.11: Degree, eigenvector, closeness, and betweenness centrality for an undirected unweighted graph. The
dark node is the most central node in the respective metric; a different node is the most central one in each metric.
5.5 Historical notes and further reading

For references on social influence networks and opinion dynamics we refer to Chapter 1. An early reference
for Theorem 5.2 is ( , , Appendix C and, specifically, Theorem 10). An early reference to

the study of indecomposable stochastic matrices is (

, 1963).
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On the topic of computing row-stochastic matrices, we postpone to Chapter 10 the study of related
optimization problems.
A standard modern treatment of centrality notions is ( , , Chapter 7); see also (
, , Chapter 14) for an introductory discussion. We also refer to ( ,
) for a comprehensive review of network analysis metrics and related computational algorithms,
beyond centrality measures. Historically, centrality measures were originally studied in sociology, An

incomplete list of early references and historical reviews in sociology includes ( , ) on closeness
centrality, ( , ) on Katz centrality, ( , ) on betweeness centrality, and ( , ,b)
on eigenvector centrality. ( ) generalizes centrality notions to networks with hubs and

authorities; see Exercise E5.15.

PageRank is a centrality measure that has received tremendous recent attention due to the success of
the Google search engines; this notion was popularized by ( , ; , ), but see also
the previous work ( , ) on total effective centrality and its relationship with PageRank (

, ). We refer to ( , : , ; , ) for recent works on
PageRank and its multiple extentions and applications; we refer to ( , ; , )
for randomized distributed algorithms for PageRank computation.
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5.6 Exercises

E5.1

E5.2

E5.3

E5.4

A sample DeGroot panel. A conversation between 5 panelists is modeled according to the DeGroot model
by an averaging system 2t = A2, where

0.15 0.15 01 0.2 04

0 055 0 0 045

Apaner = | 0.3 0.05 0.05 0 06
0 04 01 05 O

0 0.3 0 0 0.7

Assuming that the panel has sufficiently long deliberations, answer the following:

(i) Draw the condensation of the associated digraph.
(ii) Do the panelists finally agree on a common decision?
(iii) In the event of agreement, does the initial opinion of any panelists get rejected? If so, which ones?
(iv) Assume the panelists’ initial opinions are their self-appraisals (i.e., the self-weights a11, ..., as55) and
compute the final opinion via elementary calculations.

Three DeGroot panels. Recall the DeGroot model introduced in Chapter 1. Denote by x;(0) the initial
opinion of each individual, and z;(k) its updated opinion after £ communications with its neighbors. Then
the vector of opinions evolves over time according to z(k 4+ 1) = Ax(k) where the coefficient a;; € [0,1] is
the influence of the opinion of individual j on the update of the opinion of agent 7, subject to the constraint
> ; @ij = 1. Consider the following three scenarios:

(i) Everybody gives the same weight to the opinion of everybody else.

(ii) There is a distinct agent (suppose the agent with index ¢ = 1) that weights equally the opinion of all the
others, and the remaining agents compute the mean between their opinion and the one of first agent.

(iii) All the agents compute the mean between their opinion and the one of the first agent. Agent 1 does not
change her opinion.

In each case, derive the averaging matrix A, show that the opinions converge asymptotically to a final opinion
vector, and characterize this final opinion vector.

The equal-neighbor row-stochastic matrix for weighted directed graphs. Let G be a weighted digraph
with n nodes, weighted adjacency matrix A and weighted out-degree matrix D,y Define the equal-neighbor
matrix

Aequal—neighbor = (In + Dout)_l(In + A)

Show that

(i) Acqual-neighbor 18 row-stochastic;
(i) Aequal-neighbor is primitive if and only if (7 is strongly connected; and
(i) Aecqual-neighbor is doubly-stochastic if G is weight-balanced and the weighted degree is constant for all
nodes (i.e., Doy = Dj, = dI,, for some d € R<).

Reversible primitive row-stochastic matrices. Let A be a primitive row-stochastic n x n matrix and w
be its left dominant eigenvector. The matrix A is reversible if

w;Ai; = Ajw;y, foralli,j e {1,...,n}, (E5.1)

or, equivalently,
diag(w)A = AT diag(w).

Prove the following statements:
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E5.5

E5.6

E5.7

(i) if A is reversible, then its associated digraph is undirected, that is, if (¢, j) is an edge, then so is (j, 1),

(i) if A is reversible, then diag(w)'/? A diag(w)~'/? is symmetric and, hence, A has n real eigenvalues
and n eigenvectors, and

(iii) if A is an equal-neighbor matrix for an unweighted undirected graph, then A is reversible.
Recall that, for w = (w1, ..., w,) > 0, the following definitions hold: diag(w)/? = diag(\/wr, .. ., /W)
and diag(w) =2 = diag(1/\/wy, ..., 1/\/wy).

A stubborn agent. Pick « € ]0, 1], and consider the discrete-time averaging algorithm

w1k +1) = o1(k),
zo(k+ 1) = azq1(k) + (1 — @)z (k).

Perform the following tasks:

(i) compute the matrix A representing this algorithm and verify it is row-stochastic,

(ii) compute the eigenvalues and eigenvectors of A,
(iii) draw the directed graph G representing this algorithm and discuss its connectivity properties,
(iv) compute the condensation digraph of G,

(v) compute the final value of this algorithm as a function of the initial values in two alternate ways:

a) invoking Exercise E2.10, and
b) invoking Theorem 5.1.

Agents with self-confidence levels. Consider 2 agents, labeled +1 and —1, described by the self-confidence
levels s;1 and s_;. Assume s41 > 0,s_1 > 0,and sy1 + s_1 = 1. For i € {+1, —1}, define
+ .

x] = sz + (1 —s;)z_y.

Perform the following tasks:

(i) compute the matrix A representating this algorithm and verify it is row-stochastic,
(ii) compute A2,
(iii) compute the eigenvalues, the right eigenvectors, and the left eigenvectors of A,

(iv) compute the final value of this algorithm as a function of the initial values and of the self-confidence
levels. Is it true that an agent with higher self-confidence makes a larger contribution to the final value?

Persistent disagreement and the Friedkin-Johnsen model of opinion dynamics (
)- Let A be a row-stochastic matrix whose associated digraph describes an interpersonal influence network.
Let each individual possess an openness level A; € [0,1],4i € {1,...,n}, descring how open is the individual to
changing her initial opinion about a subject; set A = diag(A1, ..., A,,). Consider the Friedkin-Johnsen model
of opinion dynamics
z(k+1) = Az(k) + (I, — A)=z(0). (E5.2)
In other words, in this model, each individual ¢ exhibits an attachment (1 — \;) to its initial opinion z;(0),

x;(k) represents the current opinion and z;(0) represents a prejudice by individual i. Consider the following
two assumptions:

(A1) at least one individual has a strictly positive attachment to its initial opinion, that is, A; < 1 for at least
one individual 7; and

(A2) the interpersonal influence network contains directed paths from each individual with openness level
equal to 1 to an individual with openness level less than 1.
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E5.8

E5.9

Note that, if Assumption (A1) is not satisfied and therefore A = I,,, then we recover the DeGroot opinion

dynamics model introduced in Section 1.1 and analyzed in this chapter. In what follows, let Assumption (A1)
hold.

(i) Show that the matrix A A is convergent if and only if Assumption (A2) holds.
Hint: Recall Corollary 4.11

Next, under Assumption (A2), perform the following tasks:

(ii) show that the matrix V = (I,, — AA)~1(I,, — A) is well-defined and row-stochastic,
Hint: Review Exercises E2.10 and E2.12
(ili) show that the limiting opinions satisfy limy_, o (k) = Vz(0),
(iv) write the n-dimensional Friedkin-Johnsen model (E5.2) as a 2n-dimensional averaging model Z(k+1) =
AZ(k), for an appropriate row-stochastic matrix A € R?7*?n,
(v) show that A and V have the same left dominant eigenvector when A = AL, for0 < A < 1,

(vi) compute the matrix V and state whether two agents will achieve consensus or mantain persistent
disagreement for the following pairs of matrices:

Ay = Eg }g} ,and A, — diag(1/2,1),
Ay = Eg %;} , and Ag — diag(1/4,3/4).

Note: (1999, ) make the additional assumption that \; = 1 — ay;, fori € {1,...,n};
this assumption couples the openness level with the interpersonal influences and has the effect of enhancing
stubborness of the individuals. This assumption is not needed here. The model (E5.2) is also referred to the
averaging model with stubborn agents. Other properties of this model are studied in ( , 5

, 2016; , 2015).

Necessary and sufficient conditions for semi-convergence. Theorem 5.2 provides a sufficient condition
for a row-stochastic matrix to be semi-convergent. We now provide a necessary a sufficient counterpart.

Let A be a row-stochastic matrix with M consended sinks. Prove that the following statements are
equivalent:

(i) the eigenvalue 1 is semi-simple with multiplicity M and all other eigenvalues have magnitude strictly
smaller than 1,
(if) A is semi-convergent,
(iii) each sink in the condensation digraph associated to A is aperiodic.

Note: (1959) calls "regular" the semi-convergent row-stochastic matrices and "fully regular” the semi-
convergent row-stochastic matrices whose limiting matrix has rank one, i.e., the indecomposable row-stochastic
matrices.

Average consensus via the parallel averaging algorithm. Let G be a weighted graph with weighted
adjacency matrix A and weighted degrees dy, . .., d,. Assume G is connected and aperiodic and consider the
equal-neighbor matrix A, = diag(dy, .. .,d,) ' A. Assign a value x; € R to each node i and consider the
parallel averaging algorithm:

1: each node i sets y;(0) = 1/d; and 2;(0) = x;/d;

2: the nodes run the averaging algorithms y(k + 1) = Aeay(k) and z(k + 1) = Aenz(k) for k € Z>

3: each node i sets x; (k) = z;(k)/y:(k) at each k € Z>¢

Show that the parallel averaging algorithm
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E5.10

E5.11

E5.12

E5.13

E5.14

(i) is well posed, i.e., y;(k) does not vanish for any i € {1,...,n} and k € Z>¢, and
(ii) achieves average consensus, that is, limy_, o, (k) = average(z1, ..., 2n)1,.

Note: This algorithm is also referred to as the push sum iteration, because it may implemented over directional
communication by “summing the pushed variables.” This algorithm was originally introduced by

(2003) and later studied in ( ) 5 , ).

Computing centrality. Write in your favorite programming language algorithms to compute degree, eigen-
vector, Katz and pagerank centralities. Compute these four centralities for the following undirected unweighted
graphs (without self-loops):
(i) the cycle graph with 5 nodes;

(ii) the star graph with 5 nodes;

(iii) the line graph with 5 nodes; and

(iv) the Zachary karate club network dataset. This dataset can be downloaded for example from: http:

//konect.uni-koblenz.de/networks/ucidata-zachary

To compute Katz centrality of a matrix A, select « = 1/(2p(A)). For pagerank, use o = 1/2.
Hint: Recall that pagerank centrality is well-defined for a row-stochastic matrix.

Central nodes in example graph. For the unweighted undirected graph in Figure 5.11, verify (with the aid
of a computational package) that the dark nodes have indeed the largest degree, eigenvector, closeness and
betweenness centrality as stated in the figure caption.

Iterative computation of Katz centrality. Given a graph with adjacency matrix A, show that the solution
to the iteration z(k + 1) := aAT(z(k) + 1,,) with o < 1/p(A) converges to the Katz centrality vector cx,
for all initial conditions x(0).

Move away from your nearest neighbor and reducible averaging. Consider n > 3 robots with positions
p; € Ryi e {l,...,n}, dynamics p;(t + 1) = wu;(t), where u; € R is a steering control input. For simplicity,
assume that the robots are indexed according to their initial position: p;(0) < p2(0) < p3(0) < --- < p,(0).
Consider two walls at the positions py < p1(0) and p,,+1 > p(0) so that all robots are contained between
the walls. The walls are stationary, that is, po(t + 1) = po(t) = po and pp+1(t + 1) = ppy1(t) = Pry1-

Consider the following coordination law: robots i € {2,...,n — 1} (each having two neighbors) move to
the centroid of the local subset {p;_1, p;, pi+1}. The robots {1,n} (each having one robotic neighbor and one
neighboring wall) move to the centroid of the local subsets {pg, p1, p2} and {pn—1, Pn, Pn+1} respectively.
Hence, the closed-loop robot dynamics are

pilt+1) = 31 () + pilt) + pica (), i€ {1,.cm)

Show that the robots become uniformly spaced on the interval [pg, p,+1] using Theorem 5.2.
The role of the nodal degree in averaging systems. Let G be an connected undirected graph without
self-loops. Consider the averaging dynamics:

x(k+1) = Ax(k),

where A = D71 Ag;, D is the degree matrix, and Ag; is the binary adjacency matrix of G.

(i) Under which conditions on G will the system converge to a final consensus state, i.e., an element of
span{1,}?
(if) Assuming each state converges to a final consensus value, what is this steady state value?

(iti) Let e(k) = x(k) — limg—, 00 (k) be the disagreement error at time instant k. Show that the error
dynamics is linear, that is, of the form e(k + 1) = Be(k) and determine the matrix B.
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(iv) Find a function f(k, A2, ..., A\n,d1,...,d,) depending on the time step k, the eigenvalues Ao, ..., A,
of A, and the degrees of the nodes dy, . . . , d;, such that

He(k)”g < f(k/’, )‘27 ey )"rudla .. 7dn)||e(0)”2

E5.15 Hubs and authorities ( ) ). Let G be a digraph with vertex set V' = {1,...,n} and edge set
E. Assume G has a globally reachable node and the subgraph of globally reachable nodes is aperiodic.
We define two scores for each vertex j € {1,...,n}: the hub score h; € R and the authority score a; € R.
We initialize these scores with positive values and updated them simultaneously for all vertices according to
the following mutually reinforcing relation: the hub score of vertex j is set equal to the sum of the authority
scores of all vertices pointed to by j, and, similarly, the authority score of vertex j is set equal to the sum of
the hub scores of all vertices pointing to j. In concise formulas, for k € N,

{hj(k? +1) =20 (jiyer %

(E5.3)
aj(k+1) =3 ijer -

(i) Letz(k) = [h(k)" a(k)T] " denote the stacked vector of hub and authority scores. Provide an update
equation for the hub and authority scores of the form

z(k+1) = Mz(k),
for some matrix M € R2nx2n,
(i) Will the sequence x(k) converge as k — 00?
In what follows, we consider the modified iteration

My(k)

R VST

where M is defined as in statement (i) above.

(iii) Will the sequence y(k) converge as k — 00?

(iv) Show that the two subsequences of even and odd iterates, k — y(2k) and k — y(2k + 1), converge,
that is,

lim y(2k) = Yeven(¥0),  1lim y(2k + 1) = yoda(v0),
k— o0 k— o0

where yo = x(0) is the stacked vector of initial hub and authority scores.
(v) Provide expressions for Yeven(yo) and yoda(yo)-

E5.16 Maximum entropy random walk ( , ). Let G be an unweighted connected graph with
binary adjacency matrix A € {0,1}". Let (\,v) be the dominant eigenpair, i.e, Av = \v and 1Jv = 1.
Similarly to E4.11, define the square matrix P by

Dij = %Z—Zaij, fori,j e {1,...,n}.
Perform the following tasks:
(i) show that P is well defined, row stochastic, and irreducible,
(i) picki,j € {1,...,n} and k > 1. Assuming there exists a path of length k from i to j, let cy;] denote
the product of the edge weights along the path and show that

K _ L v
cij = ﬁa,
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(iii) let w > 0 be the left dominant eigenvector of P, normalized so that 1Iw = 1, and show that

Lo

W; = ——=5V;.
ERE
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CHAPTER 6

The Laplacian Matrix

The previous chapters studied adjacency matrices and their application to discrete-time averaging dynamics.
This chapter introduces and characterizes a second relevant matrix associated to a digraph, called the
Laplacian matrix. Laplacian matrices appear in numerous applications and enjoy numerous useful properties.

6.1 The Laplacian matrix

Definition 6.1 (Laplacian matrix of a digraph). Given a weighted digraph G with adjacency matrix A
and out-degree matrix Doy, the Laplacian matrix of G is

L = Doy — A.
In components L = ({ij); je{1,....n}
—aij, le 7& j7
0. — i
) Z aih? le e j7
h=1,h#i

or, for an unweighted undirected graph,

—1, if {7, 7} is an edge and not self-loop,
lij = d(i), ifi=j,

0, otherwise.

An example is illustrated in Figure 6.1.
Note:

(i) the sign pattern of L is important — diagonal elements are non-negative (zero or positive) and
off-diagonal elements are non-positive (zero or negative);

(ii) the Laplacian matrix L of a digraph G does not depend upon the existence and values of self-loops in

G;
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74 =37 =37 0 0
—-8.9 10.1 0 -12 0

L=1] 0 0 6.0 =37 =23
0 0 0 0 0

—44 0 0 =23 6.7

Figure 6.1: A weighted digraph and its Laplacian matrix

(iii) the graph G is undirected (i.e., symmetric adjacency matrix) if and only if L is symmetric. In this
case, Doyt = Dyy = D and A = AT,

iv) in a directed graph, ¢;; = 0 (instead of ¢;; > 0) if and only if node ¢ has zero out-degree;
(iv) d d h, ¢ 0 ( dof? 0) if and only if node ¢ h d
(v) L is said to be irreducible if G is strongly connected.

We conclude this section with some useful equalities. By the way, obviously

n
(Ax); = Z Q5T (6.1)

i=1

First, for x € R"™,
n n
(Lx); = ZEU:UJ = l;;x; + Z lijr; = ( Z aij)xi + Z (—aij)x;
=1, =1, =1,
n
= Y ayl@m—z) = ) aylwi— ) (6.2)
J=1j#i JENOU(4)

for unit weights

= dout(7) (:1:Z — average({x;, for all out-neighbors j}))

Second, assume L = LT (i.e., ajj = aj;;) and compute:

'L = ixz(lfx>z = i:%( zn: aij (i — %))

i=1 i=1 j=1,j#i

n
= E aijxi(z; — xj) —( ) E azjx g Qi T %

3,j=1 4,j=1 ,j=1

by syrimetry
= aU:U + amx Q5 T;T

5,5=1 3,j=1 3,j=1

% 3 e (6.3)

i,5=1

Z aij(x; — ;)% (6.4)

{i,j}€E
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These equalities are useful because it is common to encounter the “array of differences” Lz and the
quadratic “error” or “disagreement” function 2" Lz. They provide the correct intuition for the definition of
the Laplacian matrix. In some literature, the function = — x ' Lz is referred to as the Laplacian potential
function, because of the energy and power interpetation we present in the next two examples.

6.1.1 The Laplacian in mechanical networks of springs

0 RN —]
O O (ONO) O O =T

Let z; € R denote the displacement of the ith rigid body. Assume that each spring is ideal linear-elastic
and let a;; be the spring constant for the spring connecting the 7th and jth bodies.

Define a graph as follows: the nodes are the rigid bodies {1, ..., n} with locations z1, ..., z,, and the
edges are the springs with weights a;;. Each node ¢ is subject to a force

Fi =Y aij(zj — ;) = —(La);,
i
where L is the Laplacian for the network of springs (modeled as an undirected weighted graph). Moreover,
recalling that the spring {4, j} stores the quadratic energy $a;;(z; — x;)% the total elastic energy is

Eelastic = 5 Z aij(xi - xj) = 51’ Lzx.
{ijlek
In this role, the Laplacian matrix is referred to as the stiffness matrix. Stiffness matrices can be defined
for spring networks in arbitrary dimensions (not only on the line) and with arbitrary topology (not only

a chain graph, or line graph, as in figure). More complex spring networks can be found, for example, in
finite-element discretization of flexible bodies and finite-difference discretization of diffusive media.

6.1.2 The Laplacian in electrical networks of resistors

I

+

Suppose the graph is an electrical network with only pure resistors and ideal voltage sources: (i) each
graph vertex ¢ € {1,...,n} is possibly connected to an ideal voltage source, (ii) each edge is a resistor, say
with resistance r;; between nodes i and j. (This is an undirected weighted graph.)
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Ohm’s law along each edge {4, j} gives the current flowing from i to j as

Cisj = (Vi - Vj)/n‘j = Clz‘j(Vi - Vj)a

where v; is the voltage at node ¢ and a;; is the inverse resistance, called conductance. We set a;; = 0
whenever two nodes are not connected by a resistance and let L denote the Laplacian matrix of conductances.
Kirchhoff’s current law says that at each node i:

n n
Cinjected at i — E Ci—sj = E AV ( - VJ)
J=1,j#i J=Llj#i

Hence, the vector of injected currents cjyjected and the vector of voltages at the nodes v satisfy
Cinjected = Lv.

Moreover, the power dissipated on resistor {i, j} is ¢;—;(v; — v;), so that the total dissipated power is
Paissipated = Z aij(vi —v;)? =v'Lv.
{ij}eE

6.2 Properties of the Laplacian matrix

Lemma 6.2 (Zero row-sums). Let G be a weighted digraph with Laplacian L and n nodes. Then

L1, =0,.
In equivalent words, 0 is an eigenvalue of L with eigenvector 1,,.
Proof. For all rows i, the ¢th row-sum is zero:

Z@Z]—Zu-i- Z i = ( Z aw>+ Z —ajj)

J=1,j#i J=1,j#i J=L1j#i

Equivalently, in vector format (remembering the weighted out-degree matrix Dy, is diagonal and contains
the row-sums of A):

dout(l) dout<1)
L1, = Dywl, — Al, = — =0,.

dout (TL) dout (TL)
|

Based on this lemma, we now extend the notion of Laplacian matrix to a setting in which there is no
digraph to start with.

Definition 6.3 (Laplacian matrix). A matrix L € R"*", n > 2, is Laplacian if
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(i) its row-sums are zero,
(ii) its diagonal entries are non-negative, and

(iii) its non-diagonal entries are non-positive.

A Laplacian matrix L induces a weighted digraph G without self-loops in the natural way, that is, by
letting (i, j) be an edge of G if and only if ¢;; > 0. With this definition, L is the Laplacian matrix of G.

Lemma 6.4 (Zero column-sums). Let G be a weighted digraph with Laplacian L andn nodes. The following
statements are equivalent:

(i) G is weight-balanced,i.e., Doy = Djyn; and

(i) 1TL =0].
Proof. Pick j € {1,...,n} and compute

(11L); = (LT1,); = Z&‘j = Ljj + Z lij = dow(j) — din(J),
i=1 i=1,j#i
where the last equality follows from
Ejj = dout(j) — Qajj and Z Eij = —(din(j) — ajj).
i=1,j7#i

In summary, we know that 1;5 L= OZ if and only if Doy = Dip. |

Lemma 6.5 (Spectrum of the Laplacian matrix). Given a weighted digraph G with Laplacian L, the
eigenvalues of L different from 0 have strictly-positive real part.

Proof. Recall {;; = Z;L:Lj?éi a;j > 0and /;; = —a;; < 0for i # j. By the Gersgorin Disks Theorem 2.8,
we know that each eigenvalue of L belongs to at least one of the disks
n
{Z ecC } |Z—€m| < Z |£z]|} = {Z eC | |Z—£m < fu}
J=1,j#1

4
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6.3

These disks, with radius equal to the center, contain the origin and complex numbers with positive real
part. |

For an undirected graph without self-loops and with symmetric adjacency matrix A = AT, we know
that L is symmetric and positive semidefinite, i.e., all eigenvalues of L are real and non-negative and that
d(i) = ¢;. In this case, by convention, we write these eigenvalues as

0=XA <A< < Ay
Note:

« the second smallest eigenvalue \; is called the Fiedler eigenvalue or the algebraic connectivity, due to
the early work by ( ); and

+ we refer the reader to Exercise E6.3 for a lower bound and an upper bound on \,, based on the
maximum degree.

Graph connectivity and the rank of the Laplacian

Theorem 6.6 (Rank of the Laplacian). Let L be the Laplacian matrix of a weighted digraph G with n
nodes. Let d be the number of sinks in the condensation digraph of G. Then

rank(L) =n —d.
This theorem has the following immediate consequences:

(i) a digraph G contains a globally reachable vertex if and only if rank(L) = n — 1 (also recall the
properties of C(G) from Lemma 3.1); and

(ii) for the case of undirected graphs, we have the following two results: the rank of L is equal to n
minus the number of connected components of G and an undirected graph G is connected if and
only if A > 0.

Proof. We start by simplifying the problem. Define a new weighted digraph G by modifying G as follows:
at each node, add a self-loop with unit weight if no self-loop is present, or increase the weight of the
self-loop by 1 if a self-loop is present. Also, define another weighted digraph GG by modyfing G as follows:
for each node, divide the weights of its out-going edges by its out-degree, so that the out-degree of each
node is 1. In other words, define A = A + I and L = L, and define A = DylAand L =D, L =1, - A
Clearly, the rank of L is equal to the rank of L. Therefore, without loss of generality, we consider in what
follows only digraphs with row-stochastic adjacency matrices.

Because the condensation digraph C'(G) has d sinks, after a renumbering of the nodes, that is, a

permutation of rows and columns (see Exercise E3.1), the adjacency matrix A can be written in block lower
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tridiagonal form as

[A1;7 O o --- 0 0 7
0 Ay 0 AR 0
A= 0 0 e R™™,
0
0 . . 0 Add 0
_Alo A20 trtoot e Ado Aothers_

where the state vector x is correspondingly partitioned into the vectors x1, . . . , £q and Zothers 0f dimensions
ni,...,ngand n — (ny + - - - + ng) respectively, corresponding to the d sinks and all other nodes.

Each sink of C'(G) is a strongly connected and, therefore, the non-negative square matrices A11, ..., Agq
are irreducible. The Perron-Frobenius Theorem for irreducible matrices 2.12 implies that the number 1 is a
simple eigenvalue for each of them.

The square matrix Aghers is non-negative and it can itself be written as a block lower triangular
matrix, whose diagonal block matrices, say (Aothers)1s - - - , (Aothers) N are non-negative and irreducible.
Moreover, each of these diagonal block matrices must be row-substochastic because (1) each row-sum for
each of these matrices is at most 1, and (2) at least one of the row-sums of each of these matrices must
be smaller than 1, otherwise that matrix would correspond to a sink of C'(G). In summary, because the
matrices (Aothers)1; - - - » (Aothers) v are irreducible and row-substochastic, the matrix Aqpers has spectral
radius p(Aothers) < 1.

We now write the Laplacian matrix L = I,, — A with the same block lower triangular structure:

[ L1 0 o - 0 0
0 L22 0 . . 0
=" 0 , (6.5)
0
0 . 0 Laq 0
_*Alo 7A20 *Ado Lothers_

where, for example, L1; = I,,, — A11. Because the number 1 is a simple eigenvalue of A;;, the number 0 is a
simple eigenvalue of L. Therefore, rank(L;;) = n; — 1. This same argument establishes that the rank of
L is at most n — d because each one of the matrices L1y, ..., Lgq is of rank ny — 1,...,ng — 1, respectively.
Finally, we note that the rank of Lohers is maximal, because Lothers = I — Aothers and p(Aothers) < 1 together
imply that 0 is not an eigenvalue for Lyers. [ |

Appendix: Community detection via algebraic connectivity

As just presented, the algebraic connectivity Ay of an undirected and weighted graph G is positive if and
only if G is connected. We build on this insight and show that the algebraic connectivity does not only
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provide a binary connectivity measure, but it also quantifies the “bottleneck” of the graph. To develop this
intuition, we study the problem of community detection in a large-scale undirected graph. This problem
arises, for example, when identifying group of friends in a social network by means of the interaction graph.

Specifically, we consider the problem of partitioning the vertices V' of an undirected connected graph
G in two sets V7 and V5 so that

ViuVa=V, VinVa =0, and Vi, Vs # 0.

Of course, there are many such partitions. We measure the quality of a partition by the sum of the weights
of all edges that need to be cut to separate the vertices V; and V5 into two disconnected components.
Formally, the size of the cut separating V7 and V5 is

J = Z aij.

i€Vi,jeVn

We are interested in finding the cut with minimal size that identifies the two groups of nodes that are most
loosely connected. The problem of minimizing the cut size J is combinatorial and computationally hard
since we need to consider all possible partitions of the vertex set V. We present here a tractable approach
based on a so-called relaxation step. First, define a vector x € {—1,+1}" with entries z; = 1 fori € V}

and x; = —1 for ¢ € V5. Then the cut size J can be rewritten via the Laplacian potential as
1 < 1
J = 1 AZI aij(zi — x;)* = §JJTL1‘
1,j=

and the minimum cut size problem is:

minimize a" L.
ze{-1,1}"\{-1,,1,}
(Here we exclude the cases x € {—1,,1,} because they correspond to one of the two groups being
empty.) Second, since this problem is still computationally hard, we relax the problem from binary decision
variables z; € {—1,+1} to continuous decision variables y; € [—1,1] (or ||y||cc < 1), where we exclude
y € span(l,) (corresponding to one of the two groups being empty). Then the minimization problem
becomes
. T
minimize y' Ly.
yER™y L1y, [lylloo=1
As a third and final step, we consider a 2-norm constraint ||y|[2 = 1 instead of an co-norm constraint
lylloo = 1 (recall that ||y|lco < [l¥ll2 < v/1||y|loo) to obtain the following heuristic:

minimize yTLy.
yER™y L1y, llyll2=1
Notice that y " Ly > As||y||? and this inequality holds true with equality whenever i = v3, the normalized
eigenvector associated to A2. Thus, the unique minimum of the relaxed optimization problem is A> and the

minimizer is y = vo. We can then use as a heuristic = sign(v2) to find the desired partition {V;, V5 }.
Hence, the algebraic connectivity )9 is an estimate for the size of the minimum cut, and the signs of the
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entries of vy identify the associated partition in the graph. For these reasons A2 and v can be interpreted
as the size and the location of a “bottleneck” in a graph.

To illustrate the above concepts, we borrow an example problem with the corresponding Matlab code
from ( , ). we construct a randomly generated graph as follows. First, we partition n = 1000
nodes in two groups V; and V5 of sizes 450 and 550 nodes, respectively. Second, we connect any pair of
nodes in the set V; (respectively V2) with probability 0.3 (respectively 0.2). Third and finally, any two
nodes in distinct groups, ¢ € V] and j € V5, are connected with a probability of 0.1. The sparsity pattern
of the associated adjacency matrix is shown in the left panel of Figure 6.2. No obvious partition is visible
at first glance since the indices are not necessarily sorted, that is, V] is not necessarily {1, ...,450}. The
second panel displays the entries of the eigenvector v, sorted according to their magnitude showing a
sharp transition between positive and negative entries. Finally, the third panel displays the correspondingly
sorted adjacency matrix A clearly indicating the partition V' = V; U Va.

The Matlab code to generate Figure 6.2 can be found below. For additional analysis of this problem, we
refer the reader to ( , ).

0 100 200 300 400 500 600 700 800 900 1000

V9

Figure 6.2: The first panel shows a randomly-generated sparse adjacency matrix A for a graph with 1000 nodes. The
second panel displays the eigenvector 02 which is identical to the normalized eigenvector v; after sorting the entries
according to their magnitude, and the third panel displays the correspondingly sorted adjacency matrix A.

1 % choose a graph size

2 n = 1000;

3

4 % randomly assign the nodes to two grous
5 x = randperm(n);

6 group_size = 450;

7 groupl = x(l:group_size);

8 group2 = x(group_size+l:end);

9

—_
o

% assign probabilities of connecting nodes
p_groupl = 0.3;

p_group2 = 0.2;

p_between_groups = 0.1;

e
T

)

% construct adjacency matrix

—_
o
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16 A(groupl, groupl) = rand(group_size,group_size) < p_groupl;
17 A(group2, group2) = rand(n—group_size,n—group_size) < p_group?2;
18 A(groupl, group2) = rand(group_size, n—group_size) < p_between_groups;
19 A = triu(A,1); A = A + A';
20
21 % can you see the groups?
22 subplot(1,3,1); spy(A);
23 xlabel ('SAS', 'Interpreter', 'latex', 'FontSize',28);
24
25 % construct Laplacian and its spectrum
26 L = diag(sum(A))—A;
27 [V D] = eigs(L, 2, 'SA'");
28
29 % plot the components of the algebraic connectivity sorted by magnitude
30 subplot(1,3,2); plot(sort(V(:,2)), '.—'");
31 xlabel ('$\tilde v_2$', 'Interpreter', 'latex','FontSize',28);
32
33 % partition the matrix accordingly and spot the communities
3¢ [ignore p] = sort(V(:,2));
35 subplot(1l,3,3); spy(A(p,p));
36 xlabel ('$\tilde AS', 'Interpreter', 'latex',6 'FontSize',28);

6.5 Appendix: Control design for clock synchronization

In this section we consider an idealized network of heterogeneous clocks and design a control strategy to
ensure they achieve synchronization.

Consider n simplified clocks modeled as discrete-time integrators: x;(k + 1) = x;(k) + d;. The initial
value x;(0) is called the initial offset and d; is called the clock speed (or skew); see Figure 6.3. Assume that
we can control each clock according to

z(k+1)=x(k) +d+ u(k). (6.6)

Define the average clock speed by duy. = average(d) = 1} d/n.

w A

+ ’,’

%‘3 x;, ith cloc'k//

= I d;, clock speed

£ e

= o T
7;(0) ¢ P '/xj,jth clock
2004

> k

Figure 6.3: Two clocks with different initial offset z;(0) # x;(0) and speeds d; # d;.

The clock synchronization problem is to design a control law u such that, for all clocks for all j and 7,

lim x;(k) — x;(k) = 0.

k—o0
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Proportional/averaging control Suppose the clocks are interconnected by an connected undirected
graph so that that each node i can measure the errors (x;(k) — x;(k)) for some neighbors j. For each edge
{i,7},1et k;j = Kj; > 0 be a control gain (and set x,,; = 0 whenever {p, ¢} is not an edge), and select the
proportional/averaging control law

zi(k +1) = zi(k) + di + Z kij (2 (k) — zi(k)).

To analyse this control design, we proceed as follows. First, if L = LT denotes the Laplacian matrix
defined by these control gains, then the control is u(k) = — Lz (k) and the closed-loop system is

x(k+1) = (I, — L)xz(k) + d.

For max;c(1,. n) 2?21 kij < 1, the matrix I), — L is non-negative and therefore row-stochastic.

Note: we now see that the closed-loop system is an averaging system with a forcing term; this is the
reason we call this control action proportional/averaging.

Second, we define y(k) = x(k) — kdayely,. One can show that y(k + 1) = (I, — L)y(k) + (d — davely)
and that this system is precisely an affine averaging system as studied in Exercise E2.11. According to
Exercise E2.11(iii), we know that, generically, y(k) — ygna & span{1,} so that

T (k) — (k) = Tim yi(k) — g5(k) £0.

In other words, proportional control keeps the errors bounded (they would naturally diverge without it),
but does not achieve vanishing errors and therefore does not solve the clocks synchronization problem.

Proportional/averaging and integral control We now introduce a so-called integrator state w; at each
node, pick an integral control gain -, and design the proportional/averaging integral control as

u(k) = —Lxz(k) — w(k),
w(k+1) = w(k) +yLx(k),

so that the closed-loop system dynamics is

x(k+1)= (I, — L)x(k) —w(k) +d,

w(k +1) = w(k) +vyLx(k). (©7)

The rationale for integral control is that, when in steady state with w(k 4+ 1) = w(k), the integral equation
in (6.7) enforces 0,, = Lz (k). Hence, if the closed loop (6.7) admits a steady state, then necessarily all clocks
must be synchronized. It is natural to assume a zero initial state for the initial integral state w(0) = 0,,.

Lemma 6.7 (Asymptotic clock synchronization). Consider n clocks (6.6) with heterogeneous initial
offsets z;(0), speeds d;, and average speed daye = average(d). Assume the undirected communication graph
among them is connected. Select proportional/averaging gains k;; for all edges {i, j} and an integral control

gain vy satisfying

n
max Zmij <1, and 0<~vy<l1. (6.8)

ieq1,...
ZE{ ) 7n} ]:1
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Then the proportional/averaging integral control ensures that, in the closed loop, the clocks synchronize and

lim (x(k:) — (davek + :zave(O))ln) = 0p,.
k—o00
In other words, the clocks asymptotically synchronizes and their time grows linearly with a speed equal
to the average clock speed.

Proof. We start by studying the evolution of the affine dynamical system (6.7) using the modal decomposition
as illustrated in Section 2.1. Being a symmetric Laplacian matrix, L has real eigenvalues 0 = A; < Ag <

- < A\, with corresponding orthonormal eigenvectors v1 = 1,,/v/n, va, ..., v,. By left-multiplying
the closed-loop system dynamics (6.7) by v}, o € {1,...,n}, we obtain the following n decoupled 2-
dimensional systems:

ol =L Rl (] eetem e

where 2, (k) = vlz(k), wo (k) = v]w(k), and d,, = v} d. From this decomposition, the full state can be
reconstructed by

2(k) = a(k)va = Tawe(k)1n + Y 2a(k)va,
a=1 a=2

w(k) = Z Wa (k) Vo = Waye (k)1 + Z We, (k) v
a=1 a=2

where x,y. (k) = average(z(k)) and waye (k) = average(w(k)).
For o = 1, after a simple rescaling, equation (6.9) reads

|:$ave(k + 1):| |:1 _1:| |:$ave(k):| |:dave:|
= + )

Wave(k + 1) 0 1| |wave(k) 0

Because w(0) = 0,,, we compute w(k) = 0,, and Zaye (k) = davek + ZTave(0).

It now suffices to show that the solutions to the n — 1 equations (6.9), for « € {2,...,n}, satisfy
limg 00 o (k) = 0. Simple calculations show that the only equilibrium solutions to the n—1 equations (6.9),
fora € {2,...,n}, are 2}, = 0 and w}, = —d,. Hence, it suffices to show that all eigenvalues of the n — 1
matrices of dimension 2 x 2 have magnitude strictly less than 1. For & € {2,...,n}, the n — 1 characteristic

equations are
(z=1)2 4+ Xa(z—147)=0.

We claim that these polynomials have both roots strictly inside the unit circle if and only if, for all
aec{2,...,n},
0<y<1l, and 0< M\, <4/(2v). (6.10)

Recall from the proof of, and the discussion following, Lemma 6.5 that

n
AN <A <2 max Kij-
ie{1,...,n} =
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But by the assumption (6.8) we know max;e (i, .. n} 2?21 kij < 1,hence A\, <2 x1<4/(2—) forall
0 < v < 1. Hence, the inequalities (6.10) are satisfied.

To verify that the inequalities (6.10) imply that all roots have magnitude less than 1, we use the so-called
bilinear transform method. This method is based on the equivalence between the following two properties:
the original polynomial has roots strictly inside the unit disk and the transformed polynomial has roots
with strictly negative real part. We proceed as follows: we take z = (1 + s)/(1 — s) and substitute it into
the polynomial (z — 1)2 + A\ (2 — 1 + 7) so that, removing the denominator, we obtain the polynomial
(4 — 2o + AaY)5? — Ao (27 — 2)s + Ay7y. By the Routh-Hurwitz stability criterion, this polynomial has
roots with negative real part if and only if all three coefficients are strictly positive or strictly negative.
Some elementary calculations show that all three coefficients may never be negative and that all three
coeflicients are positive if and only if the inequalities (6.10) hold. |

Historical notes and further reading

Standard books on algebraic graph theory with extensive characterizations of adjacency and Laplacian ma-
trices include ( , ) and ( , )- Two surveys about Laplacian matrices are ( ,
; , ). Of particular interest for further reading is Kirchhoff’s Matrix Tree Theorem.
The rank of the Laplacian, as characterized in Theorem 6.6, was studied as early as in (Fife, ;
, ). A mathematical approach is given in ( , ) which features the
first necessary and sufficient characterization. We also refer to the more recent ( , ;
, ) for the specific case of rank(L) = n — 1.
The generalized inverse of the Laplacian matrix appears in some applications and is studied in

(2004).

The ground-breaking work in ( , ) established the use of the eigenvalues of the Laplacian
matrix for example as a way to quantify graph connectivity and to perform clustering, as illustrated in
Section 6.4. For surveys on community detection we refer to ( , ; , ).

The example on clock synchronization via proportional/averaging and integral control in Section 6.5 is
taken from ( , ). More realistic settings are studied in ( , ;

, )- Surveys include ( , ; ; ; ,
)-
Complex-valued graphs, adjacency and Laplacian matrices are studied in (Reff, ); see also ( ,

; , ) for some related applications.
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6.7 Exercises

E6.1

E6.2

E6.3

E6.4

The spectra of Laplacian and row-stochastic adjacency matrices. Consider a row-stochastic matrix
A € R™ "™, Let L be the Laplacian matrix of the digraph associated to A. Compute the spectrum of L as a
function of the spectrum spec(A) of A.

Basic properties of a symmetric Laplacian matrix. Let G be a weighted undirected graph with symmetric
Laplacian matrix L € R™*™.

i) Prove, without relying on the GerSgorin Disks Theorem 2.8, that L is symmetric positive semidefinite.
ying g Y p
(Note that the proof of Lemma 6.5 relies on Gersgorin Disks Theorem 2.8).

Assume G is connected. Let A2 be the smallest non-zero eigenvalue of L with eigenvector v (unique up to
rescaling). Show that

(i) v L 1, andv"Lv = X||v
(iii) for any z € R™,

%, and

2

)

1
' La > )\QHx - —(12)1,
n

with equality only when x is parallel to v.

Upper and lower bound on largest Laplacian eigenvalue. Let G be an undirected graph with symmetric
Laplacian matrix L = LT € Rnxn, Laplacian eigenvalues 0 = Ay < A9 < --- < A, and maximum degree
dmax = MaX;e(y, .. n} di- Show that the maximum eigenvalue A,, satisfies:

dmax S /\n S 2dmax-

Hint: For the upper bound review the proof of Lemma 6.5.

Examples in spectral graph theory. Let G* be a graph with 8 nodes and with Laplacian matrix L(G*) €
R8*®, For i = v/—1, assume the spectrum of L(G*) is

spec(L(G*)) = {0,0,0.5104, 1.6301, 2, 2.2045 — 1.0038i, 2.2045 + 1.0038i, 2.8646} .

Consider the graphs G1, G2, and G3 shown below. Argue why the following statements are true:

(i) G1 cannot be G*,
(ii) G2 cannot be G*, and
(ili) G3 cannot be G*.

Q. Q

o

¢ @ © 0 -0 © 00 ®
O 0 © O -0 000

Figure E6.1: Example graphs and digraphs with 8 noses
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E6.5 The Laplacian matrix plus its transpose. Let G be a weighted digraph with Laplacian matrix L. Prove the
following statements are equivalent:

(i) G is weight-balanced,
(ii) L+ LT is positive semidefinite.
Next, assume G is weight-balanced with adjacency matrix A, show that

(iii) L + LT is the Laplacian matrix of the digraph associated to the symmetric adjacency matrix A + AT,
and

(iv) (L+L")1, =0,,

E6.6 Scaled Laplacian matrices. Let L = LT € R™*" be the Laplacian matrix of a connected, undirected, and
symmetrically weighted graph. Given scalars dy, . . ., d,,, define the matrices A and B by

A :=diag{dy,...,d,}L and B := Ldiag{d,...,d,}.

(i) Give necessary and sufficient conditions on {ds,...,d,} for A to be a Laplacian matrix.
(ii)
)

)

(i
(iv) Assumingd; # 0,7 € {1,...,n}, do A and B possess a zero eigenvalue? If so, what are the correspond-
ing right and left eigenvectors for A and B?

Give necessary and sufficient conditions on {dy,...,d, } for B to be a Laplacian matrix.
Give a sufficient condition on {dy, ..., d,} for A and B to be symmetric.

E6.7 The disagreement function in a directed graph ( , ). Recall that the quadratic form associ-
ated with a symmatric matrix B € R™*" is the function = + 2" Bx. Let G be a weighted digraph G with n
nodes and define the quadratic disagreement function @ : R™ — R by

1 n
(pg(l’) = 5 Z aij(:cj — l‘i)z.
7,7=1

Show that:
(i) ®¢ is the quadratic form associated with the symmetric positive-semidefinite matrix

1
pP= 5(1)0ut + Dy —A—AT),

(i) P = 1(L+ L(rev)), where the Laplacian of the reverse digraph is L(rev) = D;, — AT.
E6.8 The pseudoinverse Laplacian matrix. The Moore-Penrose pseudoinverse (or simply the pseudoinverse) of an
n x m matrix M is the unique m x n matrix M T with the following properties:
(i) MMM = M,
(i) MTMM?'T = MT, and
(iii) MM is symmetric and MM is symmetric.
Now, let L be the Laplacian matrix of a weighted connected undirected graph with n nodes. Let U € R™*"
be an orthonormal matrix of eigenvectors of L such that

00 ... 0
0 X2 ... 0
L=U|. . Ut
0 0 ... M

Show that
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0 0 0

0 1/\ 0
oroov| o Y

0 0 ... 1/\

1

(i) LLT =L'L =1, — =1,1T, and
n

(iii) L1, =0,.

E6.9 The regularized Laplacian matrix. Let L be the Laplacian matrix of a weighted connected undirected
graph with n nodes. Given a scalar § € R, define the regularized Laplacian matrix Liegg = L + §1n1§. Show
that

(i) Lreg,p is nonsingular for 5 # 0,
(i) Lreg, is positive definite for 5 > 0, and

(iii) the inverse of L,y 5 satisfies

-1
-1 B, a1 1 T
Q%B:<L+n%LJ :LV+EE%LV
Hint: Make use of the singular value decomposition in Exercise E6.8.

E6.10 The Green matrix of a Laplacian matrix. Assume L is the Laplacian matrix of a weighted connected
undirected graph with n nodes. Show that

(i) the matrix L + %1n11 is positive definite,

(ii) the so-called Green matrix

1 -1 1
_X:<L+ELJD - ~1,1] (E6.1)

is the unique solution to the system of equations:

17x =0

n’

{LX:]n—iLJL

(iii) X = LT, where L' is defined in Exercise E6.8. In other words, the Green matrix formula (E6.1) is an
alternative definition of the pseudoinverse Laplacian matrix.

E6.11 Monotonicity of Laplacian eigenvalues. Consider a symmetric Laplacian matrix L € R™*"™ associated to
a weighted and undirected graph G = {V, E/, A}. Assume G is connected and let A\2(G) > 0 be its algebraic
connectivity, i.e., the second-smallest eigenvalue of L. Show that

(i) A2(G) is a monotonically non-decreasing function of each weight a;;, {, j} € E; and
(i) A2(G) is monotonically non-decreasing function in the edge set in the following sense: A2 (G) < A2(G’)
for any graph G" = (V, £, A’) with £ C E' and a;; = aj; for all {i, j} € E.
Hint: Use the disagreement function.

E6.12 Gaussian elimination and Laplacian matrices. Consider an undirected and connected graph and its
associated Laplacian matrix L € R™*". Consider the associated linear Laplacian equation y = Lx, where
x € R™ is unknown and y € R" is a given vector. Verify that an elimination of ,, from the last row of this
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E6.13

E6.14

equation yields the following reduced set of equations:

Y1 _Lln/Lnn . T
. . Lin-Ljn .
Yn—1 _Lnfl,n/Lnn . Tn—1
—_—— :
=A
=Lred

where the (¢, j)-element of Lyq is given by L;; — Ly, - Ljn /L. Show that the matrices A € R 1x1 and
L € Rm=1x(n=1) gbtained after Gaussian elimination have the following properties:

(i) A is non-negative and column-stochastic matrix with at least one strictly positive element; and
(if) Lyeq is a symmetric and irreducible Laplacian matrix.

Hint: To show the irreducibility of L,.q, verify the following property regarding the fill-in of the matrix Lyeq: The
graph associated to the Laplacian Leq has an edge between nodes i and j if and only if (i) either {i, j} was an
edge in the original graph associated to L, (ii) or {i,n} and {j, n} were edges in the original graph associated to
L.

Thomson’s principle and energy routing. Consider a connected and undirected resistive electrical network
with n nodes, with external nodal current injections ¢ € R™ satisfying the balance condition 1c = 0, and
with resistances R;; > 0 for every undirected edge {3, j} € E. For simplicity, we set R;; = oo if there is no
edge connecting ¢ and j. As shown earlier in this chapter, Kirchhoff’s and Ohm’s laws lead to the network

equations
n

1
Cinjected at i — E Cj—i = E R.. (Vi - Vj) ’

JEN(3) JeEN(G) Y

where v; is the potential at node ¢ and ¢;,; = 1/R;; - (v; — v;) is the current flow from node 7 to node
j. Consider now a more general set of current flows f;_,; (for all 4, j € R™) “routing energy through the
network” and compatible with the following basic assumptions:

(i) Skew-symmetry: f;,; = —fj_; forall4,j € R™;
(i) Consistency: f;—,; =0if {i,j} & E;
(iii) Conservation: Cinjected ati = Zje/\/(i) fj—i foralli € R™.

Show that among all possible current flows f;_, ;, the physical current flow f;,; = ¢;—; = 1/R;; - (v; — v4)
uniquely minimizes the energy dissipation:

e 1 o 9
minimize , J = 5 Z Ry

Fimrjs i:3E{Tsrm e

subjectto  fi; = —fj- foralli,j € R™,

fisj =0 forall {i,7} ¢ F,

Cinjected at i — Z fj—>i foralli € R™.

JEN(4)
Hint: The solution requires knowledge of the Karush-Kuhn-Tucker (KKT) conditions for optimality; this is a
classic topic in nonlinear constrained optimization discussed in numerous textbooks, e.g., in ( 3
).

Linear spring networks with loads. Consider the two (connected) spring networks with n moving masses
in figure. For the right network, assume one of the masses is connected with a single stationary object with a
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spring. Refer to the left spring network as free and to the right network as grounded. Let Fiyq be a load force
applied to the n moving masses.

For the left network, let Lgee », be the n x n Laplacian matrix describing the free spring network among the
n moving masses, as defined in Section 6.1.1. For the right network, let Lgee,, 1 be the (n 4+ 1) X (n 4 1)
Laplacian matrix for the spring network among the n masses and the stationary object. Let Lgrounded be
the n x n grounded Laplacian of the n masses constructed by removing the row and column of Lgeern + 1
corresponding to the stationary object.

For the free spring network subject to Fiyag,

(i) do equilibrium displacements exist for arbitrary loads?
(ii) if the load force Fjoaq is balanced in the sense that 1ZF1(,ad = 0, is the resulting equilibrium displacement
unique?
(iii) compute the equilibrium displacement if unique, or the set of equilibrium displacements otherwise,
assuming a balanced force profile is applied.

For the grounded spring network,

(iv) derive an expression relating Lgrounded t0 Lfree,ns
(v) show that Lgounded is invertible,
(vi) compute the displacement for the “grounded” spring network for arbitrary load forces.

We refer to Exercise E9.10 for a comprehensive treatment of grounded Laplacian matrices.

E6.15 From algebraic to vertex connectivity. Consider an unweighted undirected graph G = (V, E') with second
smallest eigenvalue \2(G). Given a subset of nodes S C V, we define a graph G’ = (V’, E’) by deleting the
nodes in S from G as follows: we let V/ = V\\S and E’ contain all the edges in F except for those connected
to a node in S. The vertex connectivity k(G) of G is defined by

K(G) = {O, if G is disconnected,

minimum number of nodes whose deletion disconnects (G, otherwise.
Show that
(i) 0 < A (G) < X (G)+ S
(i) A2(G) < K(G).

Hint: Let z € RIV'l || z|| = 1, denote the eigenvector of the Laplacian L(G') associated with \3(G'). You may
find it useful to define ¢ € RIV| such that q; = z; for everyi € V' and ¢; = 0 for everyi € S.

, where | S| is the cardinality of S,

E6.16 Maximum power dissipation. As in Subsection 6.1.2, consider an electrical network composed by three
voltage sources (v1, v, v3) connected by three resistors (each with unit resistance in an undirected ring
topology. Let L be the Laplacian matrix of conductances. Recall that the total power dissipated by the circuit is

T
Pdissipated =v Lv.

What is the maximum dissipated power if the voltages v are such that ||v||s = 1?
Hint: Recall the notion of induced 2-norm.
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E6.17 Distributed averaging-based PI control. Consider a set of n controllable agents governed by the second-
order dynamics

Ty =y, (E6.2a)
Ui =ui +1;, (E6.2b)
where i € {1,...,n} is the index set, u; € R is a control input to agent i, and n; € R is an unknown

disturbance affecting agent i. Given an undirected, connected, and weighted graph G = (V, E, A) with node
set V. ={1,...,n},edgeset E C V x V, and adjacency matrix A = AT € R"*", we assume each agent can
measure its velocity y; € R as well as the relative position z; — x; for each neighbor {4, j} € E. Based on
these measurements, consider now the distributed averaging-based proportional-integral (PI) controller

n
n
¢ =Yi — Zj:l aij(a — ¢;) » (E6.3b)
where ¢; € R is a dynamic control state for each agent i € {1,...,n}. Your tasks are as follows:

(i) show that the average state + "7 2;(¢) is bounded for all ¢ > 0,
g n =1

(i) characterize the set of equilibria (x*, y*, ¢*) of the closed-loop system (E6.2)-(E6.3), and
(iii) show that all trajectories converge to these closed-loop equilibria.
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CHAPTER 7

Continuous-time Averaging Systems

In this chapter we consider averaging algorithms in which the variables evolve in continuous time, instead
of discrete time. In other words, we consider a certain class of differential equations and show when their
asymptotic behavior is the emergence of consensus.

7.1 Example systems

We present here some simple examples of continuous-time averaging systems.

7.1.1 Example #1: Continuous-time opinion dynamics

This example is a continuous-time version of the discrete-time averaging models we have studied in details,
starting from Section 1.1. We start by considering the opinion change of individual ¢ from time k to time
k + 1 in the discrete-time averaging model (1.2):

Ai(k) = ik + 1) = i(k) = (D ayas (k) = wilh) = 3 ag(a (k) — 2i(k)),
j=1 j=1
where the last step follows from the equality Z?Zl a;; = 1. Using the equality (6.2), we can obtain
Az(k) = —Lx(k),

where L = I, — A is the Laplacian of the adjacency matrix A. We now assume that the opinion change
occurs infinitesimally slowly. Specifically, we assume there exists a time period At < 1 such that the
time indexes k and k + 1 correspond to real times ¢ and ¢ + At respectively, and that L = LA, for an
appropriate Laplacian matrix L. In summary, this assumption implies

Ax(t) —
= —Lax(t
= L),
and, taking the limit as At — 0T, we obtain the ’s continous-time opinion dynamics model:
i(t) = —La(t)
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We refer to this equation as to the Laplacian flow. In this model, the edge weights @;; of the Laplacian L are
contact rates between the individuals.

Note: As this dynamics models continuous-time averaging, we expect to see consensus value emerge
for certain classes of digraphs.

7.1.2 Example #2: Flocking behavior for a group of animals

Next, we are interested in swarming and flocking behavior that many animal species exhibit from decentral-
ized interactions, e.g., see Figure 7.1. To model this behavior we consider a simple “alignment rule” for each

(b) A flock of snow geese (Chen caerulescens). Public domain
domain image from the U.S. National Oceanic and Atmospheric ~ image from the U.S. Fish and Wildlife Service.
Administration.

Figure 7.1: Examples of animal flocking behaviors

agent to steer towards the average heading of its neighbors; see Figure 7.2. This alignment rule amounts to

o~

Figure 7.2: Alignment rule: the center fish rotates clockwise to align itself with the average heading of its neighbors.

a “spring-like” attractive force, described as follows:

(0 —0;), if ith agent has one neighbor
0; = %(le —0;)+ %(0]-2 -0, if ith agent has two neighbors
L, —0;)+ -+ L(05,, — 6:), if ith agent has m neighbors

= average({6;, for all neighbors j}) — 6;.

This interaction law can be written as
0 =—L60
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where L is the Laplacian of an appropriate weighted digraph G: each bird is a node and each directed edge
(i,7) has weight 1/dqy (7). Here it is useful to recall the interpretation of —(Lx); as a force perceived by
node ¢ in a network of springs.

Note: it is mathematically ill-posed to compute averages on a circle, but we will not worry about this
matter in this chapter.

Note: this incomplete model does not concern itself with positions. In other words, we do not discuss
collision avoidance and formation/cohesion maintenance. Moreover, note that the graph G should be really
state dependent. For example, we may assume that two birds see each other and interact if and only if their
pairwise Euclidean distance is below a certain threshold.

Example #3: A simple RC circuit

N
+

Finally, we consider an electrical network with only pure resistors and with pure capacitors connecting
each node to ground. From the previous chapter, we know the vector of injected currents cipjectea and the
vector of voltages at the nodes v satisfy

Cinjected = LV;

where L is the Laplacian for the graph with coefficients a;; = 1/r;;. Additionally, assuming C; is the
capacitance at node ¢, and keeping proper track of the current into each capacitor, we have

d
Ci —vi= —Cinjected at 4

dt
so that, with the shorthand C' = diag(C1,...,C,),

d -1
—v=— Lv. 1
dtv C v (7.1)

Note: C 1L is again a Laplacian matrix (for a directed weighted graph).

Note: it is physically intuitive that after some transient all nodes will have the same potential. This
intuition will be proved later in the chapter.
Example #4: Discretization of partial differential equations
The name Laplacian matrix is inherited from the Laplacian operator in the diffusion partial differential

equation (PDEs) named after the French mathematician Pierre-Simon Laplace.
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‘i,j+l) ®

Li=1.4)_fi.d)

e

RIS

Y J
T 7
(a) Spatial domain (b) Discretization through a mesh grid

Consider a closed bounded spatial domain €2 C R? and a spatio-temporal function u(t, z,y) denoting
the temperature at a point (z,y) € Q at time ¢t € R>(. The evolution of the temperature u(t, z,y) in time
and space is governed by the heat equation

du

5 +cAu=0, (7.2)
where ¢ > 0 is the thermal diffusivity (which we assume constant) and the Laplacian differential operator is
2 2
u 0 u
A’U,(t, L, y) = @(ta €L, y) + aiyg(ta Ly y)

To approximately solve this PDE, we introduce a finite-difference approximation of (7.2). First, we discretize
the spatial domain {2 through a mesh grid (specifically, a Cartesian grid) with discrete coordinates indexed
by (4,j) and where neighboring grid points are a distance 2 > 0 apart. Second, we approximate the
Laplacian operator via the finite-difference approximation:

. 4u(t7 Li, yj) — u(t7 Li-1, yj) — u(t, Ti+1, yj) — u(tv Ly, yj—l) — u(tv Ly, yj-‘rl)
h2

(This is the correct expansion for an interior point; similar approximations can be written for boundary

points, assuming the boundary conditions are free.) Now, the key observation is that the finite-difference

approximation renders the heat equation to a Laplacian flow. Specifically, if ugiscrete denotes the vector of

values of u at the nodes, we have

Au(t, z;,y5) =

%udiscrete + Ludiscrete =0 )

where L is the Laplacian matrix of the mesh grid with weights ¢/h?.
Another standard PDE involving the Laplacian operator is the wave equation

Pu

— +c"Au=0, 7.3

92 (7.3)
modeling the displacement u(t, z, y) of an elastic surface on €2 with wave propagation speed ¢ > 0. In this
case, a finite-difference approximation gives rise to the second-order Laplacian flow

2
ﬁudiscrete + Ludiscrete = 0.

We study both first and second-order Laplacian flows in this chapter.
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Continuous-time linear systems and their convergence properties

In Section 2.1 we presented discrete-time linear systems and their convergence properties; here we present
their continuous-time analogous.
A continuous-time linear system is

(t) = Ax(t). (7.4)

Its solution t — x(t),t € R>q from an initial confition x(0) satisfies 2(t) = e“? x(0), where the matrix
exponential of a square matrix A is defined by

(o]
=3
k=0

The matrix exponential is a remarkable operation with numerous properties; we ask the reader to review a
few basic ones in Exercise E7.1. A matrix A € R"*" is

| —

k
!A.

x>

(i) continuous-time semi-convergent if lim;_, | et exists, and

(ii) continuous-time convergent (Hurwitz) if limy_, | o et = 0,,xn.
The spectral abscissa of a square matrix A is the maximum of the real parts of the eigenvalues of A, that is,
pu(A) = max{R(A) | A € spec(A)}.
Theorem 7.1 (Convergence and spectral abscissa). For a square matrix A, the following statements hold:

(i) A is continuous-time convergent (Hurwitz) <= u(A) <0,

(ii) A is continuous-time semi-convergent <= p(A) < 0, no eigenvalue has zero real part other than
possibly the number 0, and if 0 is an eigenvalue, then it is semisimple.

We leave the proof of this theorem to the reader and mention that most required steps are similar to
the dicussion in Section 2.1 and are discussed later in this chapter.

The Laplacian flow

Let G be a weighted directed graph with n nodes and Laplacian matrix L. The Laplacian flow on R" is the
dynamical system

&= —Lux, (7.5)
or, equivalently in components,
n
i‘i = Zaij(xj — xz) = Z aij(a:j — 1‘1)
Jj=l1 JENCU(i)
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7.3.1 Matrix exponential of a Laplacian matrix

Before analyzing the Laplacian flow, we provide some results on the matrix exponential of (minus) a
Laplacian matrix. We show how such an exponential matrix is row-stochastic and has properties analogous
to those for adjacency matrices studied in Section 4.2.

Theorem 7.2 (The matrix exponential of a Laplacian matrix). Let L be ann X n Laplacian matrix
with associated digraph G and with maximum diagonal entry l,, = max{{11,...,lnn}. Then

(i) exp(—L) > e [, >0,  forany digraph G,

(ii) exp(—L)1, =1, for any digraph G,
(iii) 1) exp(—L) = 1], for a weight-balanced G (i.e, 1T L =0Q),

(iv) exp(—L)e; > 0, for a digraph G' whose j-th node is globally reachable, and
(v) exp(—L) > 0, for a strongly connected digraph G (i.e., for an irreducible L).

Note that properties (i) and (ii) together imply that exp(—L) is row-stochastic.

Proof. From the equality L1, = 0O,, and the definition of matrix exponential, we compute

o~ (1)
exp(—L)1, = (In > Lk) 1, = 1,.
k=1 )
Similarly, if 1T L = 0, we compute
T oy 1T (=D* & 4T
Lyexp(—=L) =1} (In+ > L) =17,
These calculations establish statements (ii) and (iii).
Next, we define a non-negative matrix Ay, by
Ap = —L 4+ lpaxIn < —L = —lpady, + AL
Because A I, = I,,Ar, we know

exp(—L) = exp(—lmaxIn) exp(Ar) = o~ fmax exp(Ar).

Here we used the following properties of the matrix exponential operation: exp(A + B) = exp(A) exp(B)
if AB = BA and exp(al,) = € I,,. Next, because A7, > 0, we know that exp(Ay) = Y 3o, A¥ /klis
lower bounded by the first n — 1 terms of the series so that

exp(—L) = e mx exp(Ay) > e fm Z k'Ak (7.6)

Next, we derive two useful lower bounds on exp(—L) based on the inequality (7.6). First, by keeping just
the first term, we establish statement (i):

exp(—L) > e mx [ > 0.
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Second, we lower bound the coefficients 1/k! and write:

— 1 _gmax n—1
exp(—L maxzkf > 771_ 0! ZAk.
k= k=0

Notice now that the digraph G associated to L is the same as that associated to A, (we do not need to
worry about self-loops here). Hence, if node j is globally reachable in G, then Lemma 4.4 implies that the

jth column of ZZ;é AP is positive and, by inequality (7.6), also the jth column of exp(—L) is positive.

This statement establishes (iv). Moreover, if L irreducible, then Ay, is irreducible, that is, Ay, satisfies
ZZ;(I) A¥ > 0 so that also exp(—L) > 0. This establishes statement (v). |

Equilibria and convergence of the Laplacian flow

We can now focus on the Laplacian flow dynamics.

Lemma 7.3 (Equilibrium points). If G contains a globally reachable node, then the set of equilibrium
points of the Laplacian flow (7.5) is {al, | « € R}.

Proof. A point z is an equilibrium for the Laplacian flow if Lx = 0,,. Hence, any point in the kernel of the

matrix L is an equilibrium. From Theorem 6.6, if G contains a globally reachable node, then rank(L) = n—1.

Hence, the dimension of the kernel space is 1. The lemma follows by recalling that L1,, = 0,,. |

We are now interested in characterizing the solution of the Laplacian flow (7.5). To build some intuition,

we first consider an undirected graph GG and write the modal decomposition of the solution as in Remark 2.3
for a discrete-time linear system. We proceed in two steps. First, because G is undirected, the matrix L

is symmetric and has real eigenvalues 0 = A\ < Ay < --- < )\, with corresponding orthonormal (i.e.,

orthogonal and unit-length) eigenvectors vy, . . . , v,,. Define y;(t) = v} x(t) and left-multiply & = — Lz by

%yz(t) = _)\iyi(t), yl(o) — ’U;I-SL‘(O)

These n decoupled ordinary differential equations are immediately solved to give

z(t) = y1(t)vr + y2()va + -+ + yn(t) vy
e M 2(0)vr + e 2t (v 2(0))vg + - - - + e (W] 2(0))v,.

Second, recall that A\; = 0 and v; = 1,,/y/n because L is a symmetric Laplacian matrix (L1, = 0,).

Therefore, we compute (v] 2(0))v; = average(z(0))1,, and substitute
z(t) = average(z(0))1, 4+ e 2! (vd 2(0))vg + - - - + e (v, 2(0))v,.

Now, let us assume that G is connected so that its second smallest eigenvalue A is strictly positive. In this
case, we can infer that

lim z(t) = average(x(0))1,,

t—o00
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or, defining a disagreement vector 6(t) = x(t) — average(z(0))1,, we infer
5(t) = e (vg 2(0))va + - - + € " (v 2(0) ).

In summary, we discovered that, for a connected undirected graph, the disagreement vector converges
to zero with an exponential rate As. In what follows, we state a more general convergence to consensus
result for the continuous-time Laplacian flow. This result is parallel to Theorem 5.1.

Theorem 7.4 (Consensus for Laplacian matrices with globally reachable node). If a Laplacian ma-
trix L has associated digraph G with a globally reachable node, then
(i) the eigenvalue 0 of —L is simple and all other eigenvalues of — L have negative real part,
(ii) limy_yo0 e 2t = 1, w7, where w is the left eigenvector of L with eigenvalue 0 satisfying 1T w = 1,
(iii) w; > 0 for all nodes ¢ and w; > 0 if and only if node i is globally reachable,
(iv) the solution to %x(t) = —Lax(t) satisfies

lim z(t) = (le'(O))ln,

t—o0
(v) if additionally G is weight-balanced, then G is strongly connected, 1} L. = 0], w = %ln, and

1T
lim z(t) = n(0)
t—o0 n

1,, = average(z(0))1,.

Note: as a corollary to the statement (iii), the left eigenvector w € R™ associated to the 0 eigenvalue
has strictly positive entries if and only if GG is strongly connected.

Proof. Because the associated digraph has a globally reachable node, Theorem 6.6 establishes that L has
rank n — 1 and that all eigenvalues of L have non-negative real part. Therefore, also remembering the
property L1, = 0, we conclude that 0 is a simple eigenvalue with right eigenvector 1,, and that all other
eigenvalues of L have positive real part. This concludes the proof of (i). In what follows we let w denote
the left eigenvector associated to the eigenvalue 0, that is, wl'l = 07TL, normalized so that l,Iw =1.

To prove statement (ii), we proceed in three steps. First, we write the Laplacian matrix in its Jordan
normal form:

0 0 0

L—pjpt_pl|d 2 0 Pt (7.7)
P (|
0 -+ 0 Jn

where m < n is the number of Jordan blocks, the first block is the scalar 0 (being the only eigenvalue we
know), the other Jordan blocks Js, . . ., Jy, (unique up to re-ordering) are associated with eigenvalues with
strictly positive real part, and where the columns of P are the generalized eigenvectors of L (unique up to
rescaling).

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



7.4

7.4. Second-order Laplacian flows

Second, using some properties from Exercise E7.1, we compute the limit ast — oo of e = Pe~/t p~1
as

1 0 0
Lt o Jt p1 0 0 0 o1 Tp-1
lime ™ =Plime "*P " =P P~ = (Pey)(e; P ) =cm,
t—o0 t—o00 : . . 0
0O --- 0 0
where ¢; is the first column of P and 7 is the first row of P~!. The contributions of the Jordan blocks
Ja, ..., Jm vanish because their eigenvalues have negative real part; e.g., for more details see ( ,
)-

Third and final, we characterize ¢; and r;. By definition, the first column of P (unique up to rescaling)
is a right eigenvector of the eigenvalue 0 for the matrix L, that is, c; = al,, for some scalar « since we
know L1, = 0,. Of course, it is convenient to define ¢; = 1,,. Next, equation (7.7) can be rewritten as
P~L = JP~!, whose first row is 1 L = O[. This equality implies 7; = Sw" for some scalar /3. Finally,
we note that P~'P = I, implies r1¢; = 1, that is, Blen = 1. Since we know w'1,, = 1, we infer that
f =1 and that r; = w". This concludes the proof of statement (ii).

Next, we prove statement (iii). Pick a positive constant € < 1/dp,x, where the maximum out-degree
is dypax = max{dout(1),...,dout(n)}. Define B = I,, — cL. It is easy to show that B is non-negative,
row-stochastic, and has strictly positive diagonal elements. Moreover, w' L = 0] implies w'B = w'
so that w is the left eigenvector with unit eigenvalue for B. Now, note that the digraph G(L) associated
to L (without self-loops) is identical to the digraph G(B) associated to B, except for the fact that B has
self-loops at each node. By assumption G(L) has a globally reachable node and therefore so does G(B),
where the subgraph induced by the set of globally reachable nodes is aperiodic (due to the self-loops).
Therefore, statement (iii) is now an immediate transcription of the same statement for row-stochastic
matrices established in Theorem 5.1 (statement (i)).

Statements (iv) and (v) are straightforward and left as Exercise E7.3. |

Second-order Laplacian flows

In this section we assume each node of the network obeys a so-called double-integrator dynamic (also
referred to as second-order dynamic):
. . . xz = vy,
T = U, or, in first-order equivalent form, )
Vi = Uy,

(7.8)

where u; is an appropriate control input signal to be designed.

We assume a weighted digraph describes the sensing and/or communication interactions among the
agents with adjacency matrix A and Laplacian L. We also introduce constants k;,, k4 > 0 describing a
so-called spring and damping coefficients respectively, as well as constants 7;,, 74 > 0 describing position-
averaging and velocity-averaging coefficients. Given the following law:

n
U; = —kpxi — k‘di'i =+ Z Q5 (’yp(:nj — xz) =+ *yd(i:j — xz)),
j=1
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the corresponding closed-loop systems, called the second-order Laplacian flow, is
&(t) + (kaly + vaL)@(t) + (kpln + YpL)z(t) = 0,. (7.9)

By introducing the second-order Laplacian matrix £ € R*"*2" we write the system in first-order form:

[ﬁg] - [—kp%zx—npr —/-chnLl— fydL] [igﬂ =L [igﬂ

Name Dynamics References

Second-order consensus protocol (t)+La(t)+ypLa(t) =0, ( , ; Ren,
(kPdeZO,’yd=1,’yp>0) 5 s )
Harmonic oscillators coupled via velocity i(t) + Li(t) + kpx(t) =0, (Ren, )

averaging (kg = v = 0,74 =1, k, > 0)

Position-averaging with absoluted velocity % (t) + kq#(t) + Lx(t) = 0,, Exercise E7.12
damping (k, =74 = 0,7, = 1, kg > 0)

Arbitrary-sign gains and digraphs (possibly equation (7.9) ( , ).
with L # LT) See ( ,
) for discrete-time

setting.

Table 7.1: Classification of second-order Laplacian flows

It turns out that it is possible to compute the eigenvalues of the second-order Laplacian matrix; we refer
to Exercise E7.11 for its eigenvectors.

Theorem 7.5 (Eigenvalues of second-order Laplacian matrices). Given a Laplacian matrix L and
coefficients kp, kq,Vp,Va € R,

(i) the characteristic polynomial of L is

det(nlon, — £) = det(n*I, + n(kaln + vaL) + (kpln + 7 L));

(ii) given the eigenvalues \;,i € {1,...,n}, of L, the2n eigenvaluesn; +,i € {1,...,n}, of L are solutions
to
1° + (ka +vad)n + (kp +9pAi) =0, ie{l,...,n}. (7.10)

Proof. Regarding statement (i), we recall equality (E2.1b) from Exercise E2.16 and compute the characteristic
polynomial of £ as:

nl, -1,
kan + 7pL (77 + kd)In +vaL
= det ((n1n)((n + ka)In +vaL) — (=In) (kpln + L))
= det(n*In + n(kaln + vaL) + (kpln + L))

det(nly, — L) = det

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



7.4. Second-order Laplacian flows

115

Regarding statement (ii), let .J;, be the Jordan normal form of L, i.e., let L = T'.J, T~" for an appropriate
invertible T, and note

det(nls, — £) = det(n?L, + n(kaly + vaJr) + (kplp + v J1))
= H (7% + (ka + vaXi)n + (kp + i)
i=1

Therefore, the 2n solutions to the characteristic equation det(nlz, — L) = 0 are n pairs of solutions 72; 2;—i,
i € {1,...,n}, for the second-order equations (7.10). This concludes task (ii). |

Next, we provide a necessary and sufficient characterization of a so-called asymptotic second-order
consensus concept.

Theorem 7.6 (Asymptotic second-order consensus). Consider the second-order Laplacian flow (7.9).
The following statements are equivalent:

(i) the second-order Laplacian flow achieves asymptotic second-order consensus, that is, |z; — ;| — 0

and |&; — &;| = 0ast — oo foralli,j € {1,...,n}, and

(ii) the 2(n — 1) eigenvalues n; 4,1 € {2,...,n}, of the second-order Laplacian matrix L have strictly
negative real part.

Proof. We introduce the following change of coordinates: T'x(t) = [:Ugv(et()t)} , where T (t) = average(x(t)),
1/n 1/n ... 1/n
-1 1
§(t) € R", and, from Exercise E2.3, T' = ) ) . Correspondingly, we also have
-1 1

x"a.ve (t)

it = |5

] . To write the system in the new coordinates, we observe 7'1,, = e; and compute

TLT ‘e, = TLT Y(T1,) =TL1, = 0,,
where the last equality follows from L1,, = 0,. This implies that the first column of TLT'is0,, that is,

0 e’

TLT ! =
|:On1 Lieq

} , for Lyeg € R®DX(=1D and ¢ € R* 1, (7.11)

so that spec(L) = {0} Uspec(Lyed). Next, we compute

T Onxn Onxn I, T Onxn
0n><n T _kan - ’VpL _kdIn - VdL 0n><n T_l

_ 0n><n T T_l On><n _ 0n><n In
" |=kyT —TL —kqT —~aTL| |Opxn T7'|  |—kpln —wTLT' —kql, —vaTLT']"
(7.12)
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Based on equations (7.11) and (7.12), we write the system in these new coordinates as

Tave 0 OI,1 1 0 Lave
Ao 01 Openxo1)  Ono In— 0
dt |Zave| _kp _prCT —kq _'YdCT Tave

5 On—l _kp-[n—l - ’Yered On—l _kdIn—l - VdLred 5

We reorder the variables to obtain a block-diagonal matrix, whose eigenvalues are the eigenvalues of the
diagonal blocks:

Tave 0 1 0r 4 0 Tave

i Tave o _kp _kd _’YpCT _'YdCT Tave
dt | o On—1 On—1 Op—nx(n-1)) L1 0
o O0n-1 Op1 —kplnfl - ’Yered —kaln—1 — Yalred o

We are now ready to conclude the proof: asymptotic second-order consensus is achieved if and only if § —
0 In—l
_k’plnfl - 'Yered —kalpn—1 — YaLred
have strictly negative real part. But these eigenvalues are precisely the 2(n — 1) eigenvalues 7; 1, i €
{2,...,n}, of the second-order Laplacian matrix L. [ |

0,,—1 and 5 — 0,,—1 ast — oo if and only if all eigenvalues of

Finally, we restrict out attention to undirected graphs and positive gains and present convergence
results for this setting.

Theorem 7.7 (Asymptotic convergence of second-order Laplacian flows). Consider the second-order
Laplacian flow (7.9). Assume L is symmetric and irreducible (i.e., its associated digraph is undirected and
connected). Define the state average and its time derivative by: Taye(t) = average(z(t)) and &ave(t) =
average ((t)). Then the state averages satisfy

d xave(t) _ 0 1 mave(t)
dt |:j3ave(t):| B {—kp —k:d] [d;ave(t)} ’ (7.13)
and, moreover,

i) for the second-order consensus protocol (k, = kq = 0,74 = 1, v, > 0), asymptotic consensus on a ram
P ! T ymp p
signal is achieved, that is, ast — oo,

(1) — (:cave(()) n :eave(())t) 1,

(ii) for the harmonic oscillators coupled via velocity averaging (kqa = v, = 0, 74 = 1, ky > 0), asymptotic
synchronization on an harmonic signal with frequency \/ky, is achieved, that is, ast — oo,

z(t) — (mave(O) cos(\/k:t) + \/1@3':3%(0) sin(\/k:t)>ln;
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(iii) for the position-averaging flow with absolute velocity damping (k, = v¢ = 0, % = 1, kg > 0),
asymptotic consensus on a weighted average value is achieved, that is, ast — o0

2(t) =+ (2use(0) + e (0) k) 1.

Proof. First, we show that, in the similarity transformation (7.11), if L is symmetric, then ¢ = 0,,_;. To do
this, we observe ] 7' = (1/n)1} and compute

eJTLT ' =117 =0/,

where the last equality follows from LT1, =0,. This implies that the first row of TLT-'is0, and, in
turn, that equation (7.13) are correct. Second, for the index range i € {2,...,n}, in all three cases the
second-order polynomial (7.10) has strictly positive coefficients, which implies that the 2(n — 1) eigenvalues
Mi+, 1 € {2,...,n}, of the second-order Laplacian matrix £ have strictly negative real part. Therefore,
by Theorem 7.6, the second-order Laplacian flow achieves asymptotic second-order consensus and, more
specifically, x;(t) — (ave(t)); — 0 and () — (Zave(t)); — Oforalli € {1,...,n}. Third and finally , the
specific values for z,y(t) follow from explicitely solving the state average dynamics (7.13). We leave the
details to the reader. |

The three scenarios discussed in Theorem 7.7 are illustrated in Figure 7.3. Case (i) with relative position
and velocity coupling, 74 = 1, 7, > 0, leads to consensus on a ramp, which is relevant in car platooning
problems. Case (ii) with relative velocity and absolute position feedback, v¢ = 1, k, > 0, leads to a
consensus on harmonic oscillations, which can be found in the synchronization of electronic oscillators,
where the states correspond to voltages and currents of resistively resonant (parallel LC) circuits. Finally,
case (iii) with relative position and absolute velocity feedback, v, = 1, kg > 0, leads to a consensus in
positions, and it can be found in robotic consensus problems or in power network swing dynamics.

Appendix: Design of weight-balanced digraphs

Problem: Given a directed graph G that is strongly connected, but not weight-balanced, how do we choose
the weights in order to obtain a weight-balanced digraph and a Laplacian satisfying 1] L. = 0,,? (Note that
an undirected graph is automatically weight-balanced.)

Answer: As usual, let w > 0 be the left eigenvector of L with eigenvalue 0 satisfying w; +- - - +w, = 1.
In other words, w is a vector of convex combination coefficients, and the Laplacian L satisfies

L1,=0,, and w'L=0.

Define now a new matrix:

Liescaled = dlag(’w)L

It is immediate to see that
Lirescatealn = diag(w)L1, = O, 1) Lyescaled = 1, diag(w)L = w'L =07,

Note that:
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& a(t) kp =07 =1L ka=0,7a=1 x(t) kp=1,7p = 0,ka = 0,74 =1

I
1 2 3 4 10 20 30

(a) Case (i): asymptotic consensus on a ramp signal (b) Case (ii): asymptotic synchronization on an harmonic signal

kp:07wp:17kd:177d:0

t

I I I I ~
2 4 6 8

(c) Case (iii): asymptotic consensus on a weighted average

Figure 7.3: Representative trajectories of the second-order Laplacian flow (7.9) for a randomly-generated undirected
graph with n = 20 nodes, random initial conditions, and the three choices of gains discussed in Theorem 7.7.

o Liescaled 1S again a Laplacian matrix because (i) its row-sums are zero, (ii) its diagonal entries are
positive, and (iii) its non-diagonal entries are non-positive;

o Liescaled is the Laplacian matrix for a new digraph G'escaled With the same nodes and directed edges
as G, but whose weights are rescaled as follows: a;; — w;a;;. In other words, the weight of each
out-edge of node i is rescaled by w;.

7.6 Appendix: Distributed optimization using the Laplacian flow

In the following, we present a computational application of the Laplacian flow in distributed optimization.
The materials in this section are inspired by ( , ; , ; ,

; , ), and we present them here in a self-contained way. As only preliminaries notions,
we introduce the following two definitions: A function f : R™ — R is said be convex if f(ax + By) <
af(z) + Bf(y) for all x and y in R™ and for all convex combination coefficients « and f3, i.e., coefficients
satisfying o, 5 > 0 and o + 3 = 1. A function is said to be strictly convex if the previous inequality holds
strictly.

Consider a network of n processors that can perform local computation and communicate with another.
The communication architecture is modeled by an undirected, connected, and weighted graph with n
nodes and symmetric Laplacian L = LT € R™ ™, The objective of the processor network is to solve the
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optimization problem
n
minimize ycg f(z) = Z fi(x), (7.14)
i=1

where f; : R — R is a strictly convex and twice continuously differentiable cost function known only
to processor i € {1,...,n}. In a centralized setup, the decision variable x is globally available and the
minimizers z* € R of the optimization problem (7.14) can be found by solving for the critical points of f(x)

0 0
00 = (@) = 2 g o)

A centralized continuous-time algorithm converging to the set of critical points is the negative gradient flow
0

To find a distributed approach to solving the optimization problem (7.14), we associate a local estimate
yi € R of the global variable x € R to every processor and solve the equivalent problem

T =

n
~ 1
minimize yegrn f(y) = Z fily:) + inLy subject to Ly = 0,,, (7.15)
i=1
where the consistency constraint Ly = 0,, assures that y; = y; forall ¢, j € {1,...,n}, that is, the local

estimates of all processors coincide. We also augmented the cost function with the term 3" Ly, which clearly
has no effect on the minimizers of (7.15) (due to the consistency constraint), but it provides supplementary
damping and favorable convergence properties for our algorithm. The minimizers of the optimization
problems (7.14) and (7.15) are then related by y* = x*1,,.

Without any further motivation, consider the function £ : R” x R™ — R given by

1
L(y,2) = fly)+ QyTLy + 2" Ly.

In the literature on convex optimization this function is known as (augmented) Lagrangian function and
z € R" is referred to as Lagrange multiplier. What is important for us is that the augmented Lagrangian
function is strictly convex in y and linear (and hence! concave) in z. Hence, the augmented Lagrangian
function admits a set of saddle points (y*, z*) € R™ x R"™, that is points satisfying

L(y*,z) < L(y", 2") < L(y, ") forall (y,z) € R" x R™.

Since L(y, z) is differentiable in y and z, the saddle points can be obtained as solutions to the equations

0 0

0, = @L(y’ z) = @f(y) + Ly + Lz,
0

0, = @E(yw) = Ly.

Our motivation for introducing the Lagrangian is the following lemma.

'A function f : R™ — R is said to be concave (resp. strictly concave) if — f(x) is a convex (resp. strictly convex) function.
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Lemma 7.8 (Properties of saddle points). Let L = LT € R™*" be a symmetric Laplacian associated to
an undirected, connected, and weighted graph, and consider the Lagrangian function L, where each f; is strictly
convex and twice continuously differentiable for alli € {1,...,n}. Then

(i) if (y*, z*) € R™ x R" is a saddle point of L, then so is (y*, z* + al,,) for any a € R;
(ii) if (y*, 2*) € R™ x R™ is a saddle point of L, then y* = x*1,, where x* € R is a solution of the original
optimization problem (7.14); and
(iti) ifz* € R is a solution of the original optimization problem (7.14), then there are z* € R" andy* = z*1,
satisfying Lz* + a%f(y*) = 0, so that (y*, z*) is a saddle point of L.

We leave the proof to the reader in Exercise E7.15. Since the Lagrangian function is convex in y and
concave in z, we can compute its saddle points by following the so-called saddle-point dynamics, consisting
of a positive and negative gradient:

0 0
)= ——L = —— —Ly—L 7.16
=5, W2 = =g fy) — Ly — Lz, (7.16a)
0
= — = Ly. 7.16b
i=5 Lly2) =Ly (7.16b)
For processor i € {1,...,n}, the saddle-point dynamics (7.16) read component-wise as

] a n n
Yi = —@fi(yz‘) = ai(yi =) = Y aij(zi — 7).,
! j=1 j=1

. 0 -
Gi=pLy,2) = > aijlyi — y)).
i =

Hence, the saddle-point dynamics can be implemented in a distributed processor network using only local
knowledge of f;(y;), local computation, nearest-neighbor communication and—of course—after discretizing
the continuous-time dynamics; see Exercise E7.18. As shown in ( , ;

, ; , ; , ), this distributed optimization setup is very versatile
and robust and extends to directed graphs and non-differentiable convex objective functions. We will later
establish using a powerful tool termed Krasovskii-LaSalle Invariance Principle to show that the saddle-point
dynamics (7.16) always converge to the set of saddle points; see Exercise E14.4.

For now we restrict our analysis to the case of quadratic cost functions f;(z) = Pi(x — x;)%, where
P; > 0 and x; € R. Thus, the cost function reads, up to a constant scalar, as

n n

f@)=) (e —x) Pz —x) =) (¢—2") Pz —2")+0(1),

i=1 =1

where 2* is the weighted average z* = (3.7, P;)”' ™| Pix;, which is the global minimizer of f (as
obtained by 0f(x)/0x = 0,,); see Exercise E7.17. In this case, the saddle-point dynamics (7.16) reduce to

the linear system '
gl _|-P—-L —L ||y

=A
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where y =y — z*1,, and P = diag({Pi}ie{L_“’n}). In what follows, we will establish the convergence of
the dynamics (7.17) to the set of saddle points. First, observe that 0 is an eigenvalue of .4 with multiplicity
1 and the corresponding eigenvector, given by [OZ lﬂ i corresponds to the set of saddle points:

0, L Onxn] |2

— §j' Pjj = 0, obtained by multiplying (P + L)j 4+ Lz = 0, by 4"
0

= ¢y=0,andz=1,.

Next, note that for any 21, z0 € R",

[zl]T [_P_L —L] [21} — [ A [(—P—L)zl—LzQ

= |z
Z9 L O'n,><n Z9 1 2 Lzl

e ZI(—P — L)Zl — ZILZ2 +Z;LZ1 g —ZI(P_{_L)Zl S O’

because L is symmetric and both P and L are positive semidefinite. This inequality implies that A is
negative semidefinite. Since there is a unique zero eigenvalue associated with the set of saddle points, it
remains to show that the matrix .4 has no purely imaginary eigenvalues. This is established in the following
lemma whose proof is left to the reader in Exercise E7.16:

Lemma 7.9 (Absence of imaginary eigenvalues in saddle matrices ( s )). Given a
negative semidefinite matrix B € R"*™ and a not necessarily square matrix C € R™*™, define the saddle
matrix A € R(Hm)x(ntm) py,
B C
A=l o)

_CT Om><m

Ifkernel(B) Nimage(C) = {0,,}, then the saddle matrix A has no eigenvalues on the imaginary axis except
for 0.

It follows that the saddle point dynamics (7.17) converge to the set of saddle points [ng ZT] T e
span ([OZ lﬂT). Since 1) 2 = 0, it follows that average(z(t)) = average(zq), we can further conclude

that the dynamics converge to a unique saddle point satisfying lim; o y(t) = 2*1,, and lim;_,~ 2(t) =
20 1n-

Historical notes and further reading

Section 7.1.1 “Example #1: Continuous-time opinion dynamics” presents the continuous-time averaging
model by ( , ) and its relationship with the discrete-time averaging model by ( , ;
, ; , ). ’s work is one of the earliest on what we now call the Laplacian flow.
Regarding Example #2: “Flocking behavior for a group of animals” in Section 7.1.2, a classic early
reference on this topic is ( , )- In that model, flocking behavior is controlled by three simple
rules: Separation - avoid crowding neighbors (short range repulsion) Alignment - steer towards average
heading of neighbors, and Cohesion - steer towards average position of neighbors (long range attraction).
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The RC circuit example in Section 7.1.3 is taken from (Mesbahi and Egerstedt, 2010; Ren et al., 2007).

An early reference to Theorem 7.4 is the work by Abelson (1964) in mathematical sociology; more
recent references with rigorous proofs in the control literature include (Lin et al., 2005; Ren and Beard,
2005).

Second-order Laplacian flows are widely studied. Early references are the works by Chow (1982) and
Chow and Kokotovi¢ (1985) on slow coherency and area aggregation of power networks, modelled as first
and second-order Laplacian flows; see also (Avramovic et al,, 1980; Chow et al., 1984; Saksena et al., 1984)
among others.

In the consensus literature, an early reference to second-order Laplacian flows is (Ren and Atkins, 2005).
Relevant references include (Ren, 2008a,b; Zhu et al,, 2009; Zhang and Tian, 2009; Yu et al,, 2010). A proof
of Theorem 7.6 based on the Jordan normal form is given in (Ren and Atkins, 2005; Ren, 2008b). We refer
to (Zhu et al., 2009) for convergence results for general digraphs and gains with arbitrary signs.

For historical and additional results on diffusively-coupled identical linear systems (as described in
Exercise E7.21, we refer to (Wu and Chua, 1995; Scardovi and Sepulchre, 2009; Li et al., 2010; Yang et al,,
2011; Jafarpour et al., 2017).

A reference for the construction in Section 7.5 is (Ren et al., 2007).
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7.8 Exercises

E7.1 Properties of the matrix exponential. Recall the definition of e = >"77 7 A" for any square matrix A.

Complete the following tasks:
(i) show that 3_;° ) & A" converges absolutely for all square matrices A,

Hint: Recall that a matrix series y ;- | Ay, is said to converge absolutely if > ;- | || Ay | converges, where
| - || is @ matrix norm. Introduce a sub-multiplicative matrix norm || - || and show || e || < ellAll.

(ii) show that, if A = diag(ay, ..., a,), then e? = diag(e®,...e™),
(iii) show that AB = BA implies 48 = ¢4 eB,
(iv) show that eTAT™" = TeAT—1 for any invertible 7', and
(v) compute the matrix exponential of e’/ where .J is a Jordan block of arbitrary size and ¢ € R.
E7.2 Continuous-time affine systems. Given A € R"*" and b € R", consider the continuous-time affine

systems
i(t) = Ax(t) +b.
Assume A is Hurwitz and, similarly to Exercise E2.10, show that
(i) the matrix A is invertible,
(ii) the only equilibrium point of the system is —A~1b, and
(i) lim;_, o 2(t) = —A~1b for all initial conditions z(0) € R™.
E7.3 Consensus for Laplacian matrices: missing proofs. Complete the proof of Theorem 7.4, that is, prove

statements (iv) and (v).

E7.4 Laplacian average consensus in directed networks. Consider the directed network in figure below with
arbitrary positive weights and its associated Laplacian flow @(t) = —L(x(¢).

(@) (©) @

®

(i) Can the network reach consensus, that is, as t — oo does z(t) converge to a limiting point in span{1,, }?
(ii) Does xz(t) achieve average consensus, that is, lim;_, o, 2(t) = average(z)1,?

(iii) Will your answers change if you smartly add one directed edge and adapt the weights?

E7.5 Convergence of discrete-time and continuous-time averaging. Consider the following two weighted
digraphs and their associated non-negative adjacency matrices A and Laplacian matrices L of appropriate
dimensions. Consider the associated discrete-time iterations = (¢ + 1) = Axz(t) and continuous-time Laplacian
flows 4(t) = —La(¢). For each of these two digraphs, argue about whether the discrete and/or continuous-time
systems converge as t — 0o. If they converge, what do they converge to? Please justify your answers.

E7.6 Euler discretization of the Laplacian. Given a weighted digraph G with Laplacian matrix L and maximum
out-degree diay = max{dou(1),...,douw(n)}. Show that:

(i) if e < 1/dmax, then the matrix I,, — L is row-stochastic,
(ii) if & < 1/dmax and G is weight-balanced, then the matrix I,, — €L is doubly-stochastic, and
(ili) if e < 1/dmax and G is strongly connected, then I,, — ¢ is primitive.

Given these results, note that (no additional assignment in what follows)
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0.95 —>

Digraph 1 Digraph 2 .<"‘° 9 o.os
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Figure E7.1: Two example weighted digraphs

+ I, — €L is the one-step Euler discretization of the continuous-time Laplacian flow and is a discrete-time
consensus algorithm; and

« I, — eL is a possible choice of weights for an undirected unweighted graph (which is therefore also
weight-balanced) in the design of a doubly-stochastic matrix (as we did in the discussion about Metropolis-
Hastings).

E7.7 Doubly-stochastic matrices on strongly-connected digraphs. Given a strongly-connected unweighted
digraph G, design weights along the edges of G (and possibly add self-loops) so that the weighted adjacency
matrix is doubly-stochastic.

E7.8 Constants of motion. In the study of mechanics, energy and momentum are two constants of motion, that
is, these quantities are constant along each evolution of the mechanical system. Show that

(i) If A is a row stochastic matrix with w' A = w7, then w'z (k) = w'z(0) for all times k € Zx( where
x(k+1) = Ax(k).

(ii) If L is a Laplacian matrix with with w'L = 0], then w"z(t) = wTx(0) for all times t € R>o where
#(t) = —Lx(t).

E7.9 Weight-balanced digraphs with a globally reachable node. Given a weighted directed graph G, show
that if G is weight-balanced and has a globally reachable node, then G is strongly connected.

E7.10 The Lyapunov inequality for the Laplacian matrix of a strongly-connected digraph. Let L be the
Laplacian matrix of a strongly-connected weighted digraph. Find a positive-definite matrix P such that

(i) PL+ LT P is positive semidefinite (this is the so-called Lyapunov inequality), and
(i) (PL+ LTP)1, =0,.

E7.11 Eigenvectors of the second-order Laplacian matrix. Consider a Laplacian matrix L, scalar coefficients
kp,kd,7p,74 € R and the induced second-order Laplacian matrix £. Let v;; and v, ; be the left and right
eigenvectors of L corresponding to the eigenvalue \;, show that

(i) the right eigenvectors of £ corresponding to the eigenvalues 7; 1 are

Ur,i
Mi,+Vr5
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(ii) for k, > 0, the left eigenvectors of £ corresponding to the eigenvalues 7); 1 are

Ui
— i+
kp + /Vp)\i

1,4

E7.12 Laplacian oscillators. Given the Laplacian matrix L = LT € R™*" of an undirected, weighted, and
connected graph with edge weights a;;, i, j € {1,...,n}, define the Laplacian oscillator flow by

Z(t) + Lx(t) = 0,. (E7.1)
This flow is written as first-order differential equation as
)P )<k
£(t) —L  Opxn| |2(2) z(t)
(i) Write the second-order Laplacian flow in components.

(ii) Write the characteristic polynomial of the matrix £ using only the determinant of an n X n matrix.
(iii) Given the eigenvalues A\; = 0, Ag, ..., A, of L, show that the eigenvalues 1, . . ., 72y, of A satisfy

m =1 = 0, 12i,2i—1 = :|:\/ )\717 fori € {2, e ,TL},

where i is the imaginary unit.

(iv) Show that the solution is the superposition of a ramp signal and of n — 1 harmonics, that is,
z(t) = (average(z(0)) + average(i(0))t)1, + Z a; sin(\/ it + &;)v;,
i=2

where {1,,/\/n, va, ..., v, } are the orthonormal eigenvectors of L and where the amplitudes a; and
phases ¢; are determined by the initial conditions (z(0),4(0)).

E7.13 Delayed Laplacian flow. Define the delayed Laplacian flow dynamics over a connected, weighted, and graph
G by:
x;(t) = ZjeN aij(z;j(t —7) —z;(t — 7)), ie{l,...,n},

where a;; > 0 is the weight on the edge {3, j} € E, and 7 > 0 is a positive scalar delay term. The Laplace
domain representation of the system is X (s) = G(s)z(0) where G(s) is associated transfer function

G(s) = (s, + e*STL)*l,

and L = LT € R™ " is the network Laplacian matrix. Show that the transfer function G(s) admits poles
on the imaginary axis if the following resonance condition is true for an eigenvalue A;, i € {1,...,n}, of the
Laplacian matrix:

T
T = .
2\
E7.14 Robotic coordination and geometric optimization on the real line. Consider n > 3 robots with dynam-
ics p; = u;, where i € {1,...,n} is an index labeling each robot, p; € R is the position of robot ¢, and u; € R

is a steering control input. For simplicity, assume that the robots are indexed according to their initial position:
p1(0) < pa(0) < --- < p,(0). We consider the following distributed control laws to achieve some geometric
configuration:
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E7.15
E7.16
E7.17

(i) Move towards the centroid of your neighbors: Each robot i € {2,...,n — 1} (having two neighbors)
moves to the centroid of the local subset {p;_1, p;, pi+1}:

1 :
Pz‘:g(iﬂiﬂ +pi +piy1) —pi, 1€{2,...,n—1}. (E7.2)

The robots {1, n} (each having one neighbor) move to the centroid of the local subsets {p1, p2} and
{Pn—1,pn}, respectively:

1

) . 1
P = i(pl +p2)—p1 and p, = §(pn_1 +Pn) = Dn - (E7.3)

Show that, by using the coordination laws (E7.2) and (E7.3), the robots asymptotically rendezvous.

(ii) Move towards the centroid of your neighbors or walls: Consider two walls at the positions py < p;
and p,4+1 > Py, so that all robots are contained between the walls. The walls are stationary, that is,
po = 0 and p,41 = 0. Again, the robots i € {2,...,n — 1} (each having two neighbors) move to
the centroid of the local subset {p;_1, p;, Pi+1}. The robots {1, n} (each having one robotic neighbor
and one neighboring wall) move to the centroid of the local subsets {po, p1, p2} and {pn—1, P, Pn+1}>
respectively. Hence, the closed-loop robot dynamics are

. 1 .
Pi:§(pi—1 +pi+pit1) —pi, i€{l,...,n}. (E7.4)
Show that, by using coordination law (E7.4), the robots become uniformly spaced on the interval

[P0, Prt]-

(iii) Move away from the centroid of your neighbors or walls: Again consider two stationary walls at py < p;
and p,, 41 > py, containing the positions of all robots. We partition the interval [pg, p,+1] into regions
of interest, whereby each robot is assigned the territory containing all points closer to itself than to
other robots. In other words, robot i € {2,...,n — 1} (having two neighbors) is assigned the region
Vi = [(pi + pi=1)/2, (Dix1 + pi)/2], robot 1 is assigned the region V1 = [po, (p1 + p2)/2], and robot n
is assigned the region V,, = [(pn—1 + Pn)/2, Pn+1]- We aim to design a distributed algorithm such that
the robots are assigned aymptotically equal-sized regions. (This territory partition is called a Voronoi
partition; see ( , ) for further detail.) We consider the following simple coordination
law, where each robot ¢ heads for the midpoint ¢;(V;(p)) of its partition V;:

pi = ci(Vi(p)) — pi - (E7.5)

Show that, by using the coordination law (E7.5), the robots’ assigned regions asymptotically become
equally large.

Properties of saddle points. Prove Lemma 7.8.
Absence of imaginary eigenvalues in saddle matrices. Prove Lemma 7.9.

Centralized formulation of sum-of-squares cost. Consider a distributed optimization problem with n
agents, where the cost function f;(x) of each agent i € {1,...,n} is defined by f;(z) = P;(z — x})?, where
P; > 0 and z7 € R. Consider the joint sum-of-squares cost function

fosl@) =3 Pilw—ai)?.

(i) Calculate the global minimizer x* of f,s(z), and

(ii) show that the sum-of-squares cost fsos() is, up to a constant term, equal to the centralized cost function

feentralized (¥) = (Zn ) Pi> (x —x*)2.

i=
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E7.18 Discrete saddle-point algorithm for distributed optimization. Consider the centralized optimization

E7.19

problem
* . : 1 - 2
2" = argmin,ep o lel(z — )7, (E7.6)
1=
where p; > 0 and r; € R are fixed scalar quantities for each ¢ € {1,...,n}. Our aim is to solve this

optimization problem in a distributed fashion, that is, distributing the computation among a group of n agents.
Each agent ¢ has access only to p; and r; and can communicate with the other agents via a network defined
by the Laplacian matrix L. We assume that this network is undirected and connected.

(i) Show that solving the optimization problem (E7.6) is equivalent to solving

. 1 =
r = argmin cgn 5 2}]31(1’1 - ’ri)Q’ (E77)
i=

subjectto Lx = 0,

where r = [x1,...,2,]". In other words, show that 2* = 2*1,,.

(ii) Write the KKT conditions of the optimization problem (E7.7), using the notation P := diag{p1,...,pn} €
R™™ ¢ = [ry,...,7] . Let (Z, A) be a solution of such KKT system. Show that a generic pair (Z, \) is
a solution of the KKT system if and only if 7 = & = 2* and A = X 4+ al,, for some o € R.

Hint: The solution requires knowledge of the Karush-Kuhn-Tucker (KKT) conditions for optimality; this is
a classic topic in nonlinear constrained optimization discussed in numerous textbooks, e.g., in (.
, ).
(iii) Recall the definition of the saddle-point dynamics (7.16) and consider the discrete-time distributed saddle
point algorithm

ai(k+1) = ai(k) — 7 (pi(zi(k) — ri) + Zjej\/‘"(i) Ljixi(k)), (E7.8a)
Ai(k+1) = X(k) +7(D

where 7 > 0 is a sufficiently small step size. Show that, if the algorithm (E7.8) converges, then it
converges to a solution of the optimization problem (E7.7).

e (5]

Find the error dynamics of the algorithm (E7.8), that is, the matrix G such that e(k + 1) = Ge(k).
(v) Show that, for 7 > 0 small enough, if y is an eigenvalue of G, then either u = 1 or |u| < 1 and that

JENo (i) Lijxj (k)) y (E78b)

(iv) Define the error vector by

0. . . . . .
{1"] is, modulo rescaling, the only eigenvector relative to the eigenvalue ;4 = 1. Use these results to
n

study the convergence properties of the distributed algorithm (E7.8). Will z(k) — z* as k — oo?
Hint: Use Lemma 7.8.

Synchronization of inductor/capacitor storage circuits. Consider a circuit composed of n identical
resonant inductor/capacitor storage nodes (i.e., a parallel interconnection of a capacitor and an inductor)
coupled through a connected and undirected graph whose edges are identical resistors; see Figure E7.2. The
parameters /, ¢, r take identical values on each inductor, capacitor and resistors, respectively.

(i) Write a state-space model of the resistively-coupled inductor/capacitor storage nodes in terms of the
time constant 7 = 1/r¢, the resonant frequency wy = 1/v/£c, and the unweighted Laplacian matrix L
of the resistive network.
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W
T
r
r r YA —-—c
Wh— W

Figure E7.2: A circuit of identical inductor/capacitor storage nodes coupled through identical resistors.

(ii) Characterize the asymptotic behavior of this system.

E7.20 Formation control and affine Laplacian flow. Consider a group of n vehicles moving in the plane. Each
vehicle ¢ € {1,...,n} is described by its kinematics ©; = u;, where z; € C is the vehicle’s position in the
complex plane and u; € C is a steering command. The vehicle initial position in the complex plane is a square

formation: z(0) = [1 i -1 —i] T, where i is the imaginary unit. We aim to move the vehicles to the final
configuration:
Jim 2(t) = g = (054051 —05+051 —05-05 05— 0.51] . (E7.9)
—00

To achieve this goal, you will investigate a class of distributed control laws described by the affine Laplacian
flow
z(t) = —L(az(t) + B), (E7.10)

where o > 0 is a constant scalar gain, 3 € C" is a constant vector offset, and L is a Laplacian matrix of a
strongly connected and weight-balanced digraph. Your tasks are the following:

(i) Show that the affine Laplacian flow (E7.10) converges for any choice of « > 0 and g € C™.

(ii) Characterize all the values for @ > 0 and 5 € C™such that the desired final configuration xgy, is
achieved by the affine Laplacian flow (E7.10).

E7.21 Synchronization and stabilization of diffusively-coupled identical linear systems. In this exercise we
study a generalization and variation of the first and second-order Laplacian flows. We start by recalling that
the Kronecker product of A € R™"*™ and B € R7*" is the ng x mr matrix A ® B given by

anB NN almB
A®B=| : c . (E7.11)
anlB i ant
( ) reviews many useful properties of the Kronecker product, including, for example
AB+A®C =A(B+C), (E7.12)
(A® B)(C® D) = (AC) ®(BD). (E7.13)
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Now, consider n identical linear single-input single-output dynamical systems

yi(t) = Cay(t),

with z; : R>g — RF, A € R¥** B € R¥*! and C € R'**. Given an undirected symmetric graph with
Laplacian L with eigenvalues 0 = A; < --- < A, consider the diffusive coupling law

u(t) = _LY(t)7
where x = [xf, . ,xZ]T e R u = [ul, . ,un]T €eR", andy = [yl, .. ,yn}T € R™. Show that
(i) the closed-loop system obeys
x=(I,®A—- L®BCO)x; (E7.14)

(ii) if each matrix A — \;BC, i € {2,...,n}, is Hurwitz, then the linear systems become asymptotically
synchronized in the sense that, for each i, j € {1,...,n},

lim :L‘Z(t) — .”L'j(t) = 0,

t—o0

zi(t) = et (% Zx](O)) + hi(t), where lim h;(t) = Oy,
j=1

t—o0

lim Ly(t) = 0y;

t—o00
(ili) the system (E7.14) is exponentially stable if and only each matrix A — X\; BC, i € {1,...,n}, is Hurwitz;

(iv) given kp,kq > 0 and 7y, v > 0, assume A = [ (L lk ],B = ﬁ] ,and C = ['yp ’yd]. Show that
—ky —ka

a) equation (E7.14) is the same as equation (7.9),
b) if Ao > 0, kp + 7, > 0and kg + 7g > 0, then each matrix A — \; BC, i € {2,...,n}, is Hurwitz.

Note: The result in this exercise is a special case of ( : , Theorem 1).
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CHAPTER 8

The Incidence Matrix and its Applications

After studying adjacency and Laplacian matrices, in this chapter we introduce one final matrix associated
with a graph: the incidence matrix. We study the properties of incidence matrices and their application to a
class of estimation problems with relative measurements and to the study of cycles and cutset spaces. For
simplicity we restrict our attention to undirected graphs.

The incidence matrix

Let G be an undirected unweighted graph with n nodes and m edges (and no self-loops, as by convention).
Assign to each edge of G a unique identifier e € {1,...,m} and an arbitrary direction. The (oriented)
incidence matrix B € R™*™ of the graph G is defined component-wise by

+1, ifnode i is the source node of edge e,
Bie = ¢ —1, ifnode i is the sink node of edge e, (8.1)

0, otherwise.

Here, we adopt the convention that an edge (i, j) has the source i and the sink j.
It is useful to consider the following example graph, as depicted in figure.

® O @ =@

€9 €3

©) @ Q. +0

Figure 8.1: How to number and orient the edges of a graph

As depicted on the right, we add an orientation to all edges, we order them and label them as follows:

131



132 Chapter 8. The Incidence Matrix and its Applications
e1=(1,2),ea =1(2,3),e3 = (4,2), and eq4 = (3,4). Accordingly, the incidence matrix is
+1 0 0 O
-1 +1 -1 0
B=1o 21 0 11
0 0 +1 -1
Note: 1T B = 0 since each column of B contains precisely one element equal to +1, one element
equal to —1 and all other zeros.
Note: assume the edge e € {1,...,m} is oriented from i to j, then for any x € R",
(B™2), = z; — ;.
8.2 Properties of the incidence matrix

Given an undirected weighted graph G with edge set {1,...,m} and adjacency matrix A, recall
L=D—-A, where D is the degree matrix.

Lemma 8.1 (From the incidence to the Laplacian matrix). Let G be an undirected graph with n nodes,
m edges, and incidence matrix B. If diag({ac }ee(1,... m}) is the diagonal matrix of edge weights, then

L=B diag({ae}ee{L...,m})BT'

Note: In the right-hand side, the matrix dimensions are (n X m) X (m x m) x (m x n) =n X n. Also
note that, while the incidence matrix B depends upon the selected direction and numbering of each edge,
the Laplacian matrix is independent of that.

Proof. Recall that, for matrices O, P and @) of appropriate dimensions, we have (OPQ);; = > koh O Prn Q-
Moreover, if the matrix P is diagonal, then (OPQ)i; = > Oir P Q-
For i # j, we compute
. m
(B dlag({ae}ee{lv__ﬂm})BT),;J- = Zezl Bicae(BT)e;
= Zm . BicBjeae (e-th term = 0 unless e is oriented {i, j})
e=
= (+1) - (=1) - aij = Lij,

where L = {{;;}; je{1,...n}» and along the diagonal of B we compute

m n
. m
(B diag({ac}eeqt,..n) B )i = ) _| Bloae = > a= )
e=1, e=(%,%) or e=(,7) j=1,j#1

where, in the last equality, we counted each edge precisely once and we noted that self-loops are not
allowed. [
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Lemma 8.2 (Rank of the incidence matrix). Let G be an undirected graph with n nodes, m edges, and
incidence matrix B. Let d be the number of connected components of G. Then

rank(B) =n — d.

Proof. We prove this result for a connected graph with d = 1, but the proof strategy easily extends to d > 1.
Recall that the rank of the Laplacian matrix L equals n — d = n — 1. Since the Laplacian matrix can be
factorized as L = B diag({ae}ee{l,_._vm})BT, where diag({ac}eeq1,..,my) has full rank m (and m > n — 1
due to connectivity), we have that necessarily rank(B) > n — 1. On the other hand rank(B) < n — 1 since

BT1, =0, It follows that B has rank n — 1. |
The factorization of the Laplacian matrix as L = B diag({ae }e {1,_._7m})BT plays an important role of
relative sensing networks. For example, we can decompose, the Laplacian flow & = — Lz into
open-loop plant: Ti = U, ie{l,...,n}, or T=u,
measurements: Yij = i — T, {i,j} € E, or y=DB'z,
control gains: Zij = QiYij {i,jr e B, or z=diag({ae}ecq, .m})¥,
control inputs: U; = — Z Zij ie{l,...,n}, or u=—DBz.
{i.j}eE

Indeed, this control structure, illustrated as a block-diagram in Figure 8.2, is required to implement flocking-
type behavior as in Example 7.1.2. The control structure in Figure 8.2 has emerged as a canonical control
structure in many relative sensing and flow network problems also for more complicated open-loop
dynamics and possibly nonlinear control gains; e.g., see ( , )-

<
<

Figure 8.2: Illustration of the canonical control structure for a relative sensing network.

Cuts and cycles

Given an undirected unweighted graph with n nodes and m edges, its oriented incidence matrix naturally
defines two useful vector subspaces of R". With the customary convention to refer to R™ as the edge space,
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the incidence matrix induces a direct sum decomposition of the edge space based on the concepts of cycles
and graph cuts. We illustrate these concepts in what follows.

We start with some simple preliminary definitions. A cut x of the graph G is a strict non-empty subset
of the nodes {1,...,n}. A cut and its complement x° define a partition {x, x“} of {1,...,n} in the sense
that x # 0, x° # 0, xNx® =0, and {1,...,n} = xUX". Given a cut Y, the set of edges that have one
endpoint in each subset of the partition is called the cutset of x.

We are now ready to introduce the main concepts of this section.

Definition 8.3 (Cutset orientation vectors and cutset space). Let G be an undirected graph with n
nodes, m edges, and with an arbitrary enumeration and orientation of its.

(i) Given a cut x C {1,...,n} of G, the cutset orientation vector v, € {—1,0,+1}" of x is defined

component-wise, for each edgee € {1,...,m},
+1, if e has its source in x and sink in x°,
(vy)e = S —1, if e has its source in x© and sink in x,
0, otherwise.

Here the source (resp. sink) of a directed edge (i, j) is the node i (resp j).
(ii) The cutset space of G is subspace of R™ spanned by the cutset orientation vectors corresponding to all
cuts of the nodes of G, that is, span{v, € R™ | x is a cut of G}.

Definition 8.4 (Signed path vectors and cycle space). Let G be an undirected graph with n nodes, m
edges, and with an arbitrary enumeration and orientation of its edges. Let -y be a simple undirected path in G.

(i) The signed path vector w, € {—1,0,+1}" of v is defined component-wise, for each edge e €
{1,...,m},

+1, if e is traversed positively by =,
(wy)e = q —1, if e is traversed negatively by -,
0, otherwise.

(ii) The cycle space of G is the subspace of R™ spanned by the signed path vectors corresponding to all
simple undirected cycles in G, that is, span{w~ € R™ | v is a simple cycle in G}.

Next, we illustrate the notions of cutset orientation vector and signed path vector (for a path that is a
simple cycle) for a low-dimensional example. Figure 8.3 shows three possible cuts and the only possible
cycle in a cycle digraph with 3 nodes. It is a simple exercise to write

+1 -1 0 +1
vy = +1 s U2} = 0 yU{3} = -1, wy = | =11,
0 +1 -1 +1

and to verify that vy} +v(9y+vy3) = O3, thatspan{vyy, vgay, vg3y } L span{w, }, and that {vy1y, viay, vy}
are the rows of
+1 +1 0
B=|-1 0 +1
0o -1 -1
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@ @ @

@
1{1} 2 1 2 1 2 1 N 2
o ‘0 o ‘o o o 6 e

Figure 8.3: Three possible cuts and the only simple cycle in a cycle digraph.

With these conventions we are now in a position to state the main result of this section.

Theorem 8.5 (Cycle and cutset spaces). Let G be an undirected graph with n nodes, m edges, and incidence
matrix B. The following statements hold:

(i) the cycle space is kernel(B) and has dimensionm — n + 1,
(ii) the cutset space is image(B ) and has dimensionn — 1, and
(iii) kernel(B) L image(BT) and kernel(B) @ image(BT) = R™.

Statement (iii) is known as a statement in the fundamental theorem of linear algebra ( , ).

Proof of Theorem 8.5. The proof of statement (i) is given in Exercise E8.2.

Statement (ii) is proved as follows. For a cut x, let e, € {0,1}" be the cut indicator vector defined by
(ey)i = 1if i € x and zero otherwise. Then, using the definitions, the cutset orientation vector for the cut
X is

Uy = BTeX.
This equality implies that v, € image(BT) for all . Next, note that there are n — 1 independent cutset
orientation vectors corresponding to the cuts {{i} | € {1,...,n — 1}}. Hence these n — 1 vectors are a
basis of image(B ) and the statement is established.

Finally, statement (iii) is proved in two steps. First, for any subspace V C R, we have the direct sum
decomposition of orthogonal subspaces V' @ V+ = R™. Second, for any matrix B,

w € kernel(B) <= Yv € R™ (Bw)"v=0 <= YWweR™ w'(B™w)=0 <= w € (image(B")*.
Hence, we know kernel(B) = (image(BT)! and the statement follows. [
From the proof of the previous theorem and a bit more work, one can state the following result.

Lemma 8.6 (Bases for the cutset space and the cycle space). Let G be a connected unweighted undirected
graph with nodes {1, ...,n} and m edges.

(i) Foreachnodei € {1,...,n — 1}, letvg;y € {—1,0,+1}"™ denote the cutset orientation vector for the
cut {i}, that is, let v(;y be the transpose of the i-th row of B. Then {v(1y,...,Vn_1}} is a basis of the
cutset space image(BT).

(ii) Given a spanning tree T of G, for each edge e € V' \ T, define the fundamental cycle associated to T’

and e, denoted by 1, to be the cycle consisting of e and the path on T connecting the endpoints of e.
Let wr . be the associated signed path vector. Then
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a) the fundamental cycle of each edge e € V' \ T exists unique and is simple, and
b) the set of signed path vectors {wr. | e € V '\ T} is a basis of the cycle space kernel(B).

We illustrate this lemma with the graph and the incidence matrix given in Figure 8.4.

’\2\,> 6/9. +1 41 0 0 0 0 7

-1 0 41 0 0 O

|0 -1 0 +1 41 41
V; t \ B=10 0 -1 -1 0 0 +1
47 7/7. 0 0 0 0 -1 0 -1

0 0

@ I 0O 0 0 -1 0]

Figure 8.4: An undirected graph with arbitrary edge orientation and its associated incidence matrix B € R6*7.

o O O

Regarding a basis for the cutset space image(BT), it is immediate to state that (the transpose of) any 5
of the 6 rows of B form a basis of image(BT). Indeed, since rank(B) = n — 1, any n — 1 columns of the
matrix BT form a basis for the cutset space. Figure 8.5 illustrates the 5 cuts and a corresponding basis for
the cutset space.

%\M +1 -1 0 0 0]
+1 0 -1 0 0
2 0 +1 0 -1 0
\Kgﬁ lopy vy vy vy vml={ 0 0 4L -1 0.
0 0 +1 0 -1
0 0
0 0

0 +1 —1]

Figure 8.5: Five cuts, corresponding to the first 5 nodes, and their cutset orientation vectors generating image(BT).

In the proof of Theorem 8.5, we also stated that, for a cut x, e, € {0,1}" is the cut indicator vector
defined by (e, ); = 1if i € x and zero otherwise, and that the cutset orientation vector for x is given by

v, = BTe,. (8.2)

Indeed, one can show the following statement for the example in Figure 8.5: the cut separating nodes
{1,2, 3} from {4, 5,6} has cut indicator vector [1 1100 O]T and cutset vector vy} + v(9y + v(3)
is equal to the sum of the first three columns of BT.

Next, regarding a basis for the cutset space image(BT), the spanning tree 7' composed of the edges
{1,2,4,5,6} and the two fundamental cycles associated to edges 3 and 7 are illustrated in Figure 8.6.
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Figure 8.6: A graph with 6 nodes, 7 edges, and hence 2 independent cycles. A spanning tree 7" and the two resulting
fundamental cycles.

The corresponding signed path vectors are

[+17 0
-1 0
+1 0
wrz = |—1| ,wr7= |+1|, and kernel(B) = span{wr3s,wry}.
0 -1
0 0
0] 1]

Note that the cycle traversing the edges (1, 3,7, 5, 2) in counter-clockwise orientation has a signed path
vector given by the linear combination wr 3 + wr 7.

Example 8.7 (Kirchhoff’s and Ohm’s laws revisited). In the following, we revisit the electrical resistor
network from Section 6.1.2, and re-derive its governing equations via the incidence matrix; we refer
to ( , ) for a more detailed treatment. Recall that with each node i € {1,...,n} of the
network, we associate an external current injection Cipjected at ;- With each edge {i,j} € E we associate a
positive conductance (i.e., the inverse of the resistance) a;; > 0 and (after introducing an arbitrary direction
for each edge) a current flow c¢;_,; and a voltage drop u;;.

Kirchhoff’s voltage law states that the sum of all voltage drops around each cycle must be zero. In
other words, for each cycle in the network, the corresponding signed path vector w € {—1,0, 1} satisfies
w'u = 0. Equivalently, by Theorem 8.5, there exists a vector v € R™ such that u = BTv, where B € R"*™
is the incidence matrix of (oriented) network. In Chapter 6 we referred to v as the vector of nodal voltages
or potentials.

Kirchhoff’s current law states that the sum of all current injections at every node must be zero. In
other words, for each node i € {1,...,n} in the network, we have that cinjected at i = Z?Zl ¢i—;. Consider
now the cut isolating node i and its corresponding cutset orientation vector given by the ith column b
of BT; see Figure 8.5. Then, we have that cipjectedati = Z;”:l Cisj = b;rc. Equivalently, we have that
Cinjected = Be.

Finally, Ohm’s law states that the current c;_,; and the voltage drop u;; over a resistor with resistance
1/a;j; are related as ¢;—,; = a;ju;j. By combining Kirchhoff’s and Ohm’s laws, we arrive at

Cinjected = Bc = B diag(a;j)u = B diag(aij)BTv = Lv,

where we used Lemma 8.1 to recover the conductance matrix L. °
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8.4

8.4.1

Appendix: Distributed estimation from relative measurements

In Chapter 1 we considered estimation problems for wireless sensor networks in which each node measures
a scalar “absolute” quantity (expressing some environmental variable such as temperature, vibrations, etc).
In this section, we consider a second class of examples in which meaurements are “relative,” i.e., pairs
of nodes measure the difference between their corresponding variables. Estimation problems involving
relative measurements are numerous. For example, imagine a group of robots (or sensors) where no robot
can sense its position in an absolute reference frame, but a robot can measure other robot’s relative positions
by means of on-board sensors. Similar problems arise in study of clock synchronization in networks of
processors.

Problem statement

The optimal estimation based on relative measurement problem is stated as follows. As illustrated in
Figure 8.7, we are given an undirected graph G = ({1, ..., n}, F) with the following properties. First, each
node i € {1,...,n} of the network is associated with an unknown scalar quantity x; (the z-coordinate of
node 7 in figure). Second, the m undirected edges are given an orientation and, for each edge e = (i, j),

absolute reference
frame
xr
Lj
: T — T

Ty

Figure 8.7: A wireless sensor network in which sensors can measure each other’s relative distance and bearing. We
assume that, for each link between node ¢ and node j, the relative distance along the x-axis x; — x; is available,
where z; is the z-coordinate of node 1.

e € E, the following scalar measurements are available:
T
YGig) = @i~ 85+ g = (B a)e +v0),

where B is the graph incidence matrix and the measurement noises v(; ;, (4,7j) € E, are independent
jointly-Gaussian variables with zero-mean E[v; ;)] = 0 and variance E[U(QM)] = 0(21. 5 > 0. The joint
matrix covariance is the diagonal matrix ¥ = diag({o(QZ.J) }ij)er) € R™*™. (For later use, it is convenient
to define also y(; ) = —Y(j4) = Tj — Ti — V(i j)-)

The optimal estimate Z* of the unknown vector x € R" via the relative measurements y € R™ is the
solution to

min | BTE - |3
X

Since no absolute information is available about =, we add the additional constraint that the optimal estimate
should have zero mean and summarize this discussion as follows.
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Definition 8.8 (Optimal estimation based on relative measurements). Given an incidence matrix B,
a set of relative measurements y with covariance ¥, find T satisfying

in [|BT2 — y||2_,. 8.3
gfﬁll T—yll5 (8.3)

Optimal estimation via centralized computation

From the theory of least square estimation, the optimal solution to problem 8.3 is obtained as by differenti-
ating the quadratic cost function with respect to the unknown variable  and setting the derivative to zero.
Specifically:

d T . _
0= yHBT —yl3-. =2BX71BT2* —2Bn 1y,
X

The optimal solution is therefore obtained as the unique vector * € R" satisfying

By 'B"#*=Bxly «— L7 =BYly,

~ (8.4)
1)7* =0,

where the Laplacian matrix L is defined by L = BX~'BT. This matrix is the Laplacian for the weighted
graph whose weights are the noise covariances associated to each relative measurement edge.
Before proceeding we review the definition and properties of the pseudoinverse Laplacian matrix given
in Exercise E6.8. Recall that the Moore-Penrose pseudoinverse of an n x m matrix M is the unique m x n
matrix M with the following properties:
(i) MMM = M,
(i) MTMMT = M, and

(iii) MM is symmetric and MTM is symmetric.

For our Laplacian matrix L, let U € R™*" be an orthonormal matrix of eigenvectors of L. It is known that

00 ... 0 0 0 ... 0
0 Ao ... 0 0 1/A2 ... 0
L=uvl|. .  |U'" = rLf=Uu|. .7 o loT.
0 0 ... M 0 0 ... 1/x\

1
Moreover, it is known that LLT = LTL = I, — =1,1T and Lf1,, = 0,,.
n
Lemma 8.9 (Unique optimal estimate). If the undirected graph G is connected, then

(i) there exists a unique solution to equations (8.4) solving the optimization problem in equation (8.3); and

(ii) this unique solution is given by
T =LTBx 1.
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8.4.3

Proof. We claim there exists a unique solution to equation (8.4) and prove it as follows. Since G is connected,
the rank of L is n — 1. Moreover, since L is symmetric and since L1, = 0,, the image of L is the
(n — 1)-dimensional vector subspace orthogonal to the subspace spanned by the vector 1,. The vector
BE_ly belongs to the image of L because the column-sums of B are zero, that is, 1IB = OZ, so that
1'BY 'y = 0. Finally, the requirement that 17 2* = 0 ensures Z* is perpendicular to the kernel of L.
The expression z* = LT BX. 1y follows from left-multiplying left and right hand side of equation (8.4)
by the pseudoinverse Laplacian matrix L' and using the property LTL = I,, — %1,11; One can also verify
that 1ILTBE_1y = 0, because LT1,, = 0,,. |

Optimal estimation via decentralized computation

To compute Z* in a distributed way, we propose the following distributed algorithm. Pick a small o > 0
and let each node implement the affine averaging algorithm:

R R 1 /. -
Tk +1)=3ik)—a > - (m(k) —zj(k) - y(m)>,
JEN () (6:) (8.5)

7:(0) = 0.

There are two interpretations of this algorithm. First, note that the estimate at node i is adjusted at each
iteration as a function of edge errors: each edge error (difference between estimated and measured edge
difference) contributes to a weighted small correction in the node value. Second, note that the affine
Laplacian flow

i =—Li+ BY Yy (8.6)

results in a steady-state satisfying L& = BY. "'y, which readily delivers the optimal estimate 7* =
L BY.~ 1y for appropriately chosen initial conditions. The algorithm (8.5) results from an Euler discretization
of the affine Laplacian flow (8.6) with step size «.

Lemma 8.10. Given a graph G describing a relative measurement problem for the unknown variables x € R",
with measurements y € R™, and measurement covariance matrix . = diag({aé j)}(i,j)eE) € R™*"™ The
following statements hold:

(i) the affine averaging algorithm can be written as

Z(k+1) = (I, — aL)Z(k) + aBX ™1y,

(0) = 0,. ®7)

(ii) if G is connected and if o« < 1/dmax where dpay is the maximum weighted out-degree of G, then the
solution k — Z(k) of the affine averaging algorithm (8.5) converges to the unique solution T* of the
optimization problem 8.3.

Proof. To show fact (i), note that the algorithm can be written in vector form as
Z(k+1) =2(k) — aBY Y (B Z(k) — y),

and, using L = BY "' BT, as equation (8.7).
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A~

To show fact (ii), define the error signal (k) = 2*—z(k). Note that 7(0) = z* and that average(n(0)) =
0 because 1] 7* = 0. Compute

n(k+1) = (I, —aL +aL)z* — (I, — aL)Z(k) — aBX 1y
= (I, — aL)n(k) + a(Lz* — BX™1y)
= (I, — aL)n(k).
Now, according to Exercise E7.6, « is sufficiently small so that I,, — aL is non-negative. Moreover, (I,, — aL)

is doubly-stochastic and symmetric, and its corresponding undirected graph is connected and aperiodic.
Therefore, Theorem 5.1 implies that (k) — average(n(0))1, = Oy,. [

Historical notes and further reading

Standard references on incidence matrices include texts on algebraic graph theory such as ( , ;
, ; , )- An extensive discussion about algebraic potential theory on graphs

is given by ( )-

The algorithm in Section 8.4.3 is taken from ( , ). For the notion of edge Laplacian
and its properties, we refer to ( , ; , ; , ). Additional
references on distributed estimation for relative sensing networks include ( , ,

; , 2010; , 2013).
A recent survey on cycle bases, their rich structure, and related algorithms is given by

(2009).
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8.6 Exercises

E8.1

E8.2

E8.3

E8.4

E8.5

Incidence matrix, cutset and cycle spaces for basic graphs. Recall Example 4.1, and consider the following
unweighted undirected graphs with node set {1,...,4}:
(i) the path graph Py;

(ii) the cycle graph Cy;

(iii) the star graph S4; and

(iv) the complete graph K.
For each graph, select an arbitrary orientation of the edges, compute the incidence matrix, compute a basis for
the cutset space, and compute a basis for the cycle space.

Incidence matrix and signed path vectors. Given an undirected graph G, consider an arbitrary orientation
of its edges, its incidence matrix B € R™*™, and a simple path ~ with distinct initial and final nodes described
by a signed path vector w” € R™.

(i) Show that the vector y = Bw” € R™ has components

+1, if node i is the initial node of ~,
yi = { —1, ifnode i is the final node of v,

0, otherwise.

(ii) Prove statement (i) in Theorem 8.5.

Continuous distributed estimation from relative measurements. Consider the continuous distributed
estimation algorithm given by the affine Laplacian flow (8.6). Show that for an undirected and connected
graph G and appropriately initial conditions #(0) = 0,,, the affine Laplacian flow (8.6) converges to the unique
solution &* of the estimation problem given in Lemma 8.9.

The edge Laplacian matrix ( , ). For an unweighted undirected graph with n
nodes and m edges, introduce an arbitrary orientation for the edges. Recall the notions of incidence matrix
B € R™*™ and Laplacian matrix L. = BBT € R"*" and define the edge Laplacian matrix by

Ledge _ BTB c RMXm
(Note that, in general, the edge Laplacian matrix is not a Laplacian matrix.) Select an edge orientation and

compute B, L and Leg, for

(i) aline graph with three nodes, and

(ii) for the graph with four nodes in Figure 8.1.
Show that, for an arbitrary undirected graph,

(iii) kernel(Ledge) = kernel(B);

(iv) rank(L) = rank(Ledge);

(v) for an acyclic graph Legg. is nonsingular; and

(vi) the non-zero eigenvalues of L.4g. are equal to the non-zero eigenvalues of L.
Evolution of the local disagreement error ( , )- Consider the Laplacian flow
& = — Lz, defined over an undirected and connected graph with n nodes and m edges. Beside the absolute

disagreement error §(t) = x(t) — average(z(t))1,, € R™ considered thus far, we can also analyze the relative
disagreement error e;;(t) = z;(t) — z;(t), for {1, j} € E.

(i) Write a differential equation for the relative disagreement errors ¢ — e(t) € R™.
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(if) Based on Exercise E8.4, show that the relative disagreement errors converge to zero with exponential
convergence rate given by the algebraic connectivity A\y(L).

E8.6 Averaging with distributed integral control. Consider a Laplacian flow implemented as a relative sensing
network over a connected and undirected graph with n nodes, m edges, incidence matrix B € R"*™ and
weights a;; > 0 for 4,5 € {1,...,n}, and subject to a constant disturbance term 7 € R™, as shown in
Figure E8.1.

Figure E8.1: A relative sensing network with a constant disturbance input n € R™.

(i) Derive the dynamic closed-loop equations describing the model in Figure E8.1.

(ii) Show that the state x(¢) converges asymptotically to some constant vector * € R™ depending on the
value of the disturbance 7 and that 2* is not necessarily a consensus state.

Consider the system in Figure E8.1 with a distributed integral controller forcing convergence to consensus,
as shown in Figure E8.2. Recall that 1 is the the Laplace symbol for the integrator.

Figure E8.2: Relative sensing network with a disturbance 7 € R™ and distributed integral action.

(iii) Derive the dynamic closed-loop equations describing the model in Figure E8.2.
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E8.7

E8.8

(iv) Show that the distributed integral controller in Figure E8.2 asymptotically stabilizes the set of steady
states (x*, p*), with 2* € span{1,,} corresponding to consensus.

Hint: To show stability, use Lemma 7.9.

Sensitivity of Laplacian eigenvalues. Consider an unweighted undirected graph G = (V, E) with incidence
matrix B € R"*™, and Laplacian matrix L = BBT € R"*". Define a undirected graph G’ by adding one
unweighted edge ¢ ¢ E to G, thatis, G’ = (V, E U ¢). Show that

/\maX(LG> S )\max(LG’) S )\max(LG) + 2.

Hint: You may want to take a detour via the edge Laplacian matrix Legge = BTB € R™*™ (see Exercise
E8.4) and use the following fact ( , , Theorem 4.3.17): if A is a symmetric matrix with
eigenvalues ordered as A1 < Ao < ... < \,,, and B is a principal submatrix of A with eigenvalues ordered as
w1 < po < ... < ln_1, then the eigenvalues of A and B interlace, that is, \1 < 1 < Ao < ..o < i1 < Ay

The orthogonal projection onto the cutset space ( , )- Recall the following
well-known facts from linear algebra: a square matrix P € R™*™ is an orthogonal projection if P = P and
P? = P; given a full-rank matrix X € R™*", n < m, the matrix P = X (X' X)"!XT is the orthogonal
projection onto the image(X). Prove that

(i) I, = I, — 1,17 /n is the orthogonal projection onto 1+, and

(i) if X is not full rank (i.e., it has a trivial kernel), the matrix P = X (XTX)'XT is the orthogonal
projection onto image(X ), where (X7 X)' is the pseudoinverse of X T X.
Hint: Recall the defining properties of the pseudoinverse in Exercise E6.8.

Given an unweighted undirected graph with an oriented incidence matrix B, Laplacian matrix L =
BBT, and pseudoinverse Laplacian matrix LT, recall that R™ = image(B ") @ kernel(B) is the orthogonal
decomposition into cutset space and cycle space. Show that

(iii) P = BTL'B is an orthogonal projection matrix, and
(iv) P = BTL'B is the orthogonal projection onto the cutset space image(BT).
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CHAPTER 9

Positive and Compartmental Systems

In this chapter we study various positive systems, that is, dynamical systems with state variables that
are non-negative for all times. For simplicity we focus on continuous-time models, though a comparable
theory exists for discrete-time systems. We are particularly interested in compartmental systems, that is,
models of dynamical processes characterized by conservation laws (e.g., mass, fluid, energy) and by the flow
of material between units known as compartments. Example compartmental systems are transportation
networks, queueing networks, communication networks, epidemic propagation models in social contact
networks, as well as ecological and biological networks. Linear compartmental and positive systems are
described by so-called Metzler matrices; we define and study such matrices in this chapter.

Example systems

In this section we review some examples of compartmental systems.

Ecological and environmental systems The flow of energy and nutrients (water, nitrates, phosphates,
etc) in ecosystems is typically studied using compartmental modelling. For example, Figure 9.1 illustrates a
widely-cited water flow model for a desert ecosystem ( , ). Other classic ecological network
systems include models for dissolved oxygen in stream, nutrient flow in forest growth and biomass flow in

fisheries ( , ).

precipitation——|  soil | ———————evaporation, drainage, runoff ——
uptake plants |———transpiration———

drinking herbivory
animals |—————evaporation————

Figure 9.1: Water flow model for a desert ecosystem. The blue line denotes an inflow from the outside environment.
The red lines denote outflows into the outside environment.
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9.2

Epidemiology of infectious deseases To study the propagation of infectious deseases, the population at
risk is typically divided into compartments consisting of individiduals who are susceptible (S), infected
(D), and, possibly, recovered and no longer susceptible (R). As illustrated in Figure 9.2, the three basic
epidemiological models are ( , ) called SI, SIS, SIR, depending upon how the desease spreads. A
detailed discussion is postponed until Chapter 16.

Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 9.2: The three basic models SI, SIS and SIR for the propagation of an infectious desease

Drug and chemical kinetics in biomedical systems Compartmental model are also widely adopted to
characterize the kinetics of drugs and chemicals in biomedical systems. Here is a classic example (

, ) from nuclear medicine: bone scintigraphy (also called bone scan) is a medical test in which
the patient is injected with a small amount of radioactive material and then scanned with an appropriate
radiation camera.

rest of the body

radioactive_> blood kidneys

material

urine=—=_>

bone ECF bone

Figure 9.3: The kinetics of a radioactive isotope through the human body (ECF = extra-cellular fluid).

Positive systems and Metzler matrices

Motivated by the examples in the previous sections, we start our study by characterizing the class of positive
systems.

Definition 9.1 (Positive systems). A dynamical system &(t) = f(x(t),t), z € R™, is positive if z(0) >
0,, implies x(t) > 0,, for all t.

We are especially interested in linear and affine systems, described by

z(t) = Ax(t), and z(t) = Az(t) + b.
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Note that the set of affine systems includes the set of linear systems (each linear system is affine with
b=0p,).

It is now convenient to introduce a second useful definition.
Definition 9.2 (Metzler matrix). For a matrix A € R"*", n > 2,

(i) A is Metzler if all its off-diagonal elements are non-negative;

(ii) if A is Metzler, its associated digraph is a weighted digraph defined as follows: {1, ..., n} are the nodes,
there are no self-loops, (i,7), i # j is an edge with weight a;; if and only if a;; > 0; and

(iii) if A is Metzler, A is irreducible if its induced digraph is strongly connected.
In other words, A is Metzler if and only if there exists a scalar & > 0 such that A + «[,, is non-negative.
For example, if GG is a weighted digraph with Laplacian matrix L, then —L is a Metzler matrix with zero
row-sums.

Metzler matrices are sometimes also referred to as quasi-positive or essentially non-negative.
We are now ready to classify which affine systems are positive.

Theorem 9.3 (Positive affine systems and Metzler matrices). For the affine system i:(t) = Az(t) + b,
the following statements are equivalent:

(i) the system is positive, that is, x(t) > 0, for allt and all z(0) > 0,,

(ii) A is Metzler and b > 0,,.
Proof. We start by showing that statement (i) implies statement (ii). If 2(0) = 0,,, then & cannot have any
negative components, hence b > 0,,. If any off-diagonal entry (i, j), i # j, of A is strictly negative, then
consider an initial condition x(0) with all zero entries except for z(j) > b;/|a;;|. It is easy to see that
#;(0) < 0 which is a contradiction.

Next, we show that statement (ii) implies statement (i). It suffices to note that, anytime there exists ¢ such

that z;(t) = 0, the conditions z(t) > 0,,, A Metzlerand b > 0, together imply &;(t) = 3, ,; a;;z;(t)+b; >
0. |

This results motivates the importance of Metzler matrices. Therefore we now study their properties in
two theorems. We start by writing a version of Perron-Frobenius Theorem 2.12 for non-negative matrices.

Theorem 9.4 (Perron-Frobenius Theorem for Metzler matrices). If A € R"*™, n > 2, is Metzler,
then

(i) there exists a real eigenvalue \ such that A > R(u) for all other eigenvalues i, and

(ii) the right and left eigenvectors of A can be selected non-negative.
If additionally A is irreducible, then

(iii) there exists a real simple eigenvalue \ such that X > R(u) for all other eigenvalues i, and

(iv) the right and left eigenvectors of A are unique and positive (up to rescaling).
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As for non-negative matrices, we refer to A as to the dominant eigenvalue. We invite the reader to
work out the details of the proof in Exercise E9.2. Next, we give necessary and sufficient conditions for the
dominant eigenvalue of a Metzler matrix to be strictly negative.

Theorem 9.5 (Properties of Hurwitz Metzler matrices). Fora Metzler matrix A, the following statements
are equivalent:
(i) A is Hurwitz,
(ii) A is invertible and —A~' > 0, and
(iii) for allb > 0O, there exists x* > 0,, solving Ax* + b = 0,,.

Moreover, if A is Metzler, Hurwitz and irreducible, then —A1>o.

Proof. We start by showing that (i) implies (ii). Clearly, if A is Hurwitz, then it is also invertible. So it suffices
to show that —A~! is non-negative. Pick ¢ > 0 and define Az a =1 + €A, thatis, (—eA) = (I, — Ac 4).
Because A is Metzler, € can be selected small enough so that A, 4 > 0. Moreover, because the spectrum
of A is strictly in the left half plane, one can verify that, for ¢ small enough, spec(cA) is inside the disk
of unit radius centered at the point —1; as illustrated in Figure 9.4. In turn, this last property implies

X

-1

Figure 9.4: For any A € C with strictly negative real part, there exists € such that the segment from the origin to e is
inside the disk of unit radius centered at the point —1.

that spec(I,, + €A) is strictly inside the disk of unit radius centered at the origin, that is, p(A; 4) < 1.
We now adopt the Neumann series as defined in Exercise E2.12: because p(A; 4) < 1, we know that
(I, — Ac 4) = (—€A) is invertible and that

(—eA) ' = (I, — A )t =) AL (9.1)
k=0

Note now that the right-hand side is non-negative because it is the sum of non-negative matrices. In
summary, we have shown that A is invertible and that —A~! > 0. This statement proves that (i) implies (ii).

Next we show that (ii) implies (i). We know A is Metzler, invertible and satisfies —A~! > 0. By the
Perron-Frobenius Theorem 9.4 for Metzler matrices, we know there exists v > 0, v # 0,, satisfying
AV = AMetzerV, Where Apietzler = max{R(A) | A € spec(A)}. Clearly, A invertible implies Ayets1er 7 0
and, moreover, v = Ayetzer A 10. Now, we know v is non-negative and A1y is non-positive. Hence,
AMetzler Must be negative and, in turn, A is Hurwitz. This statement establishes the equivalence between (ii)
implies (i)
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Finally, regarding the equivalence between statement (ii) and statement (iii), note that, if —A=* > 0
and b > 0, then clearly z* = —A~1b > 0,, solves Az* 4+ b = 0,,. This proves that (ii) implies (iii). Vice

versa, if statement (iii) holds, then let 2} be the non-negative solution of Az} = —e; and let X be the
non-negative matrix with columns z7, ..., x;,. Therefore, we know AX = —I,, so that A is invertible, — X
is its inverse, and —A~! = —(—X) = X is non-negative. This statement proves that (iii) implies (ii).

Finally, the statement that — A1 > 0 for each Metzler, Hurwitz and irreducible matrix A is proved as
follows. Because A is irreducible, the matrix A, 4 = I,, + €A is non-negative (for ¢ sufficiently small) and
primitive. Therefore, the right-hand side of equation (9.1) is strictly positive. |

This theorem about Metzler matrices immediately leads to the following corollary about positive affine
systems, which extends the results in Exercise E7.2.

Corollary 9.6 (Existence, positivity and stability of equilibria for positive affine systems). Con-
sider a continuous-time positive affine system © = Ax + b, where A is Metzler and b is non-negative. If the
matrix A is Hurwitz, then

(i) the system has a unique equilibrium point x* € R", that is, a unique solution to Ax* + b = Oy,

(ii) the equilibrium point x* is non-negative, and

(iii) all trajectories converge asymptotically to x*.

We will provide an extension of Theorem 9.5 after introducing Lyapunov theory in Chapter 14.

Compartmental systems

In this section, motivated by the examples in Section 9.1, we study an important class of positive affine
systems.

A compartmental system is a dynamical system in which material is stored at individual locations and
is transferred along the edges of directed graph, called the compartmental digraph; see Figure 9.5b. The

—Ug=—P>| g3 Fy .3 | qa F—F,_,o—b>
—u=>| & —Fio—p>
F3 o Fy s
—
Fisjp' Fy .3
j—i
—u—> ¢ Fi2 | g F—F_ o>

Figure 9.5: A compartment and a compartmental system

“storage” nodes are referred to as compartments; each compartment contains a time-varying quantity ¢; ().
Each directed arc (4, j) represents a mass flow (or flux), denoted F;_,;, from compartment i to compartment
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j. The compartmental system interacts with its surrounding environment via inputs and output flows,
denoted in figure by blue and red arcs respectively: the inflow from the environment into compartment i is
denoted by u; and the outflow from compartment ¢ into the environment is denoted by F;_,.

In summary, a (nonlinear) compartmental system is described by a directed graph G'r, by maps F;_, ;
for all edges (i, j) of G, and by inflow and outflow maps. (The compartmental digraph has no self-loops.)
The dynamic equations of the compartmental system are obtained by the instantaneous flow balance at each
compartment. In other words, asking that the rate of accumulation at each compartment equals the net

inflow rate we obtain:
n

Gi(t) = Z (Fjmi — Finsj) — Fiso + us. (9-2)
i=Lj#i
In general, the flow along (4, j) is a function of the entire system state ¢ = (q1,. .., ¢, ) and of time ¢, so
that Fi—)j = Z'_m'(q, t).
Remarks 9.7 (Basic properties). (i) The mass in each of the compartments as well as the mass flowing

along each of the edges must be non-negative at all times (recall we assume u; > 0). Specifically, we
require the mass flow functions to satisfy

Fi;(q,t) >0 forall (q,t), and Fi;(q,t) =0 forall (q,t) such that ¢; = 0. (9.3)

Under these conditions, if at some time to one of the compartments has no mass, that is, ¢;(to) = 0 and
q(to) € R, it follows that §;(to) = Z?:L#i F;i(q(to), to) + u; > 0 so that ¢; does not become

negative. The compartmental system (9.2) is therefore a positive system, as introduced in Definition 9.1.

(i) If M (q) = Y., i = 17 q denotes the total mass in the system, then along the solutions of (9.2)

iM( () = 1Tt Z Fioo(q(t),t) + Z;ui . (9.4)

outflow into environment inflow from environment

This equality implies that the total masst — M (q(t)) is constant in systems without inflows and
outflows. °

Remark 9.8 (Symmetric physical flow systems). Many physical compartmental systems are described
by symmetric flows that depend upon effort variables and energy stored at nodes. For an insightful treatment
of physical and port-Hamiltonian network systems we refer to ( , ; ,
). We here present a brief introduction without outflows and inflows, for simplicity.
Following ( , ), we let G be an undirected graph with n nodes and m edges and with
oriented incidence matrix B € R"*"™ and proceed as follows:

(i) for an oriented edge (i, j), let u;; denote the total flow from i to j (that is, u;j = F;_,; — Fj_;) so that
the flow vector is u € R™. Given storage q; at each node i, mass conservation implies § = Bu € R"; (if
instead the nodes have no storage, then mass conservation implies Bu = 0,,, which is consistent with
Kirchhoff’s current law as stated in Exercise 8.7.)

(ii) typically, the flow through an edge u;; is proportional to an “effort on the edge”e;;, that is, u;; = —c;je;;,
or a “conductance constant” c;; > 0. In vector form, u = —Ce € R™;
J
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(iii) typically, the ege effort e;; is the difference of node effort variables, that is, e = BT epodes € R™, for
nodal effort variables epodes € R™;

(iv) finally, node efforts are determined by the storage variables according to:

€nodes = TQ(Q) S Rn’ (9-5)

where H (q) is the total stored energy. Typically, H(q) = >_i"_| H;(q;), where H;(q;) denotes the energy
stored at node 1.

In summary, the symmetric physical compartmental system obeys

G=Bu=—BCe=—BCB endes = —BCBTa—H(q) = —L%I;

94 (), (9.6)

where L is the conductance-weighted Laplacian matrix of the compartmental graph.

For example, consider a hydraulic flow network among n fluid reservoirs. The liquid stored at the reservoirs
is given by a vector ¢ € RY,. Assume there exists an energy function H; (possibly the same function at all
locations) such that %{iﬁ (q;) is the pressure at reservoir i. Assume that the liquid flow along the pipe from head
reservoir i to tail reservoir j is proportional to the difference between the pressure at i and the pressure at j.

Then equation (9.6) describes the mass balance equation among the reservoirs. .

Linear compartmental systems

Loosely speaking, a compartmental system is linear if it has (i) constant non-negative inflow from the
environment and (ii) all other flows depend linearly upon the mass in the originating compartment.

Definition 9.9 (Linear compartmental systems). A linear compartmental system with n compartments
is a triplet (F, fo,u) consisting of

(i) anon-negativen x n matrix F' = (fij); jeq1,...n} With zero diagonal, called the flow rate matrix,

(ii) a vector fy > O,, called the outflow rates vector, and

(iii) a vector u > 0,,, called the inflow vector.

The flow rate matrix F' is the adjacency matrix of the compartmental digraph G (a weighted digraph without
self-loops).

The flow rate matrix F' encodes the following information: the nodes are the compartments {1,...,n},
there is an edge (i, j) if there is a flow from compartment ¢ to compartment j, and the weight f;; of the
(i,7) edge is the corresponding flow rate constant. In a linear compartmental system,

F’z—m(qvt):fmql: fOI'j € {L"'an}?
Fio0(q,t) = foiq;, and
ui(q,t) = u;.
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Indeed, this model is also referred to as donor-controlled flow. Note that this model satisfies the physically-
meaningful contraints (9.3). The affine dynamics describing a linear compartmental system is

Gi(t) = _(fOi + ) fij)%’(t) + ) fiigi(t) + i (9.7)
J=1j#i J=1,j#i

Definition 9.10 (Compartmental matrix). The compartmental matrix C' = (c;j); je{1,....n} Of @ com-
partmental system (F, fo,u) is defined by

i = {fﬂ" A
—foi = b1t fins ifi = j.
Equivalently, if L = diag(F'1,)) — F' is the Laplacian matrix of the compartmental digraph,
C = —L} — diag(fy) = F' — diag(F1, + fo). (9.8)
In what follows it is convenient to call compartmental any matrix C' with the following properties:

(i) Cis Metzler, that is, ¢;; > 0, for ¢ # j,
(ii) C has non-positive diagonal entries, that is, ¢;; < 0 for all ¢, and

(iii) C'is column diagonally dominant, that is,

Cii| = D=1, Chi for alld.

With the notion of compartmental matrix, the dynamics of the linear compartmental system (9.7) can
be written as

q(t) = Cq(t) + u. (9.9)
Moreover, since Lgl,, = 0,, we know 1,TlC = — fOT and, consistently with equation (9.4), we know

EM(q(t)) = —fd q(t) + 1] u.

Remark 9.11 (Symmetric flows). The donor-controlled model entails a flow f;;q; from i to j and a flow
fjiq; from j toi. If the flow rates are equal f;; = fj;, then the resultant flow as measured from i to j is
fij (¢ — qj), i.e., proportional to the difference in stored quantities. The flow rate matrix F is often symmetric
in physical networks. °

Algebraic and graphical properties of linear compartmental systems

In this section we present useful properties of compartmental matrices, that are related to those enjoyed by
Laplacian and Metzler matrices.

Lemma 9.12 (Spectral properties of compartmental matrices). For a compartmental system (F, fo,u)
with compartmental matrix C,

(i) if A € spec(C), then either A\ = 0 or R(\) < 0, and
(ii) C is invertible if and only if C' is Hurwitz (i.e, ®(\) < 0 for all A € spec(C)).
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Proof. Statement (i) is akin the result in Lemma 6.5 and can be proved by an application of the Ger§gorin
Disks Theorem 2.8. We invite the reader to fill out the details in Exercise E9.5. Statement (i) immediately
implies statement (ii). |

Next, we introduce some useful graph-theoretical notions, illustrated in Figure 9.6. In the compartmental
digraph, a set of compartments S is

(i) outflow-connected if there exists a directed path from every compartment in .S to the environment,
that is, to a compartment j with a positive flow rate constant fy; > 0,

(ii) inflow-connected if there exists a directed path from the environment to every compartment in .S,
that is, from a compartment ¢ with a positive inflow u; > 0,

(iii) a trap if there is no directed path from any of the compartments in S to the environment or to any
compartment outside S, and

(iv) a simple trap is a trap that has no traps inside it.

It is immediate to realize the following equivalence: the system is outflow connected (i.e., all compartments
are outflow-connected) if and only if the system contains no trap.

(a) An example compartmental system and its strongly connected components: (b) This compartmental system is not
this system is outflow-connected because its two sinks in the condensation digraph outflow-connected because one of its sink
are outflow-connected. strongly-connected components is a trap.

Figure 9.6: Outflow-connectivity and traps in compartmental system

Theorem 9.13 (Algebraic graph theory of compartmental systems). Consider the linear compartmen-
tal system (F, fo,w) with dynamics (9.9) with compartmental matrix C' and compartmental digraph G . The
following statements are equivalent:
(i) the system is outflow-connected,
(ii) each sink of the condensation of G r is outflow-connected, and
(iii) the compartmental matrix C' is Hurwitz.

Moreover, the sinks of the condensation of G that are not outflow-connected are precisely the simple traps of
the system and their number equals the multiplicity of 0 as a semisimple eigenvalue of C.
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Proof. The equivalence between statements (i) and (ii) is immediate.

To establish the equivalence between (ii) and (iii), we first consider the case in which G is strongly
connected and at least one compartment has a strictly positive outflow rate. Therefore, the Laplacian matrix
Lr of G and the compartmental matrix C = — LI — diag(fo) are irreducible. Pick 0 < ¢ < 1/ max; |¢;],
and define A = I,, + eCT. Because of the definition of , the matrix A is non-negative and irreducible. We
compute its row-sums as follows:

Aln = 1n + 5(_LF - dlag(fO))ln = ln - 5f0-

Therefore, A is row-substochastic, i.e., all its row-sums are at most 1 and one row-sum is strictly less than
1. Moreover, because A is irreducible, Corollary 4.11 implies that p(A) < 1. Now, let Aq, ..., A,, denote the
eigenvalues of A. Because A = I, +cC'T, we know that the eigenvalues 7, . . . , 1, of C satisfy \; = 1+¢em;
so that max; R(\;) = 1 + ¢ max; R(n;). Finally, we note that p(A) < 1 implies max; R(\;) < 1 so that

max R(n;) = %(mzax R(N) — 1) < 0.

This concludes the proof that if GG is strongly connected, then F' has eigenvalues with strictly negative real
part. The converse is easy to prove by contradiction: if fy = O, then the matrix C' has zero row-sums, but
this is a contradiction with the assumption that C' is invertible.

Next, to prove the equivalence between (ii) and (iii) for a graph G whose condensation digraph has an
arbitrary number of sinks, we proceed as in the proof of Theorem 6.6: we reorder the compartments as
described in Exercise E3.1 so that the Laplacian matrix L is block lower-triangular as in equation (6.5).
We then define an appropriately small £ and the matrix A = I,, — eCT as above. We leave the remaining
details to the reader.

An alternative clever proof strategy for the equivalence between (ii) and (iii) is given as follows. Define
the matrix

C’augmented = |:C On:| S R(n+1)x(n+1) ,

fo 0
and consider the augmented linear system & = Cyugmentea® With z € R™*1. Note that Laugmented =
—C;lgmeme 4 is the Laplacian matrix of the augmented graph G ugmented> Whose nodes {1,...,n,n + 1}

include the n compartments and the environment as (n + 1)st node, and whose edges are the edges of the
compartmental graph G as well as the outflow edges to the environment node. Note that the environment
node n + 1 in the digraph Gaugmented is the only globally reachable node of G augmented if and only if the
compartmental digraph G is outflow connected. Assume now that statement (ii) is true. Then, Theorem 7.4
implies

A e Favgmentedt — 1, 1ol

which, taking a transpose operation, immediately implies lim;_, o, ¢~

easily compute

ugmentedt = en+1 114_1 We now can

= tliglo q(t) =0, tliglo Tny1(t) = 17 q(0) + 2,41(0).
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In other words, all mass in the system reaches asymptotically the environment and the mass in all compart-
ments converge exponentially fast to zero. This occurs for all initial conditions if and only if the matrix C
is Hurwitz. Hence we have established that statement (ii) implies statement (iii). We leave the converse to
the reader. |

Dynamic properties of linear compartmental systems

Consider a linear compartmental system (F, fo, u) with compartmental matrix C' and compartmental
digraph Gr. Assuming the system has at least one trap, we define the reduced compartmental system
(Fid, ford, urq) as follows: remove all traps from G'r and regard the edges into the trapping compartments
as outflow edges into the environment, e.g., see Figure 9.7.

m m )
~m-— I ~@-—a
(a) A compartmental system that is not (b) The corresponding reduced compart-
outflow-connected mental system

Figure 9.7: An example reduced compartmental system

We now state our main result about the asymptotic behavior of linear compartmental systems.

Theorem 9.14 (Asymptotic behavior of compartmental systems). The linear compartmental system
(F, fo,uw) with compartmental matrix C' and compartmental digraph G has the following possible asymptotic
behaviors:

(i) if the system is outflow-connected, then the compartmental matrix C' is invertible, every solution tends
exponentially to the unique equilibrium ¢* = —C~'u > 0, and in the ith compartment g; > 0 if and
only if the ith compartment is inflow-connected to a positive inflow;

(ii) if the system contains one or more simple traps, then:

a) the reduced compartmental system (Fy4, ford, Urd) is outflow-connected and all its solutions con-
verge exponentially fast to the unique non-negative equilibrium —erjlurd, for Coq = E§ —
diag(Frdln + fO,rd);

b) any simple trap H contains non-decreasing mass along time. If H is inflow-connected to a positive
inflow, then the mass inside H goes to infinity. Otherwise, the mass inside H converges to a scalar
multiple of the right eigenvector corresponding to the eigenvalue 0 of the compartmental submatrix

for H.
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Proof. Statement (i) is an immediate consequence of Corollary 9.6. We leave the proof of statement (ii) to

the reader.

9.4 Table of asymptotic behaviors for averaging and positive systems

Dynamics

Assumptions & Asymptotic Behavior

References

averaging system
z(k+1) = Az(k)

A row-stochastic

the associated digraph has a globally reachable node

limy, 00 (k) = (wT2(0))1, where w > 0 is the left
eigenvector of A with eigenvalue 1 satisfying 17w = 1

Convergence  properties:
Theorem 5.1.

Examples: opinion dynamics
& averaging in Chapter 1

affine system
z(k+1) = Ax(k)+b

A convergent (that is, its spectral radius is less than 1)
limg 00 2(k) = (I, — A)~ b

Convergence properties: Ex-
ercise E2.10.

Examples: Friedkin-Johnsen
system in Exercise E5.7

positive affine system
z(k+1) = Az(k)+0b
A>00>0,

Dynamics

z(0) >0, = z(k) >0, forall k, and

A convergent (that is, || < 1 for all A € spec(A4))
limg o0 2(k) = (I, — A)~16 >0,

Table 9.1: Discrete-time systems

Assumptions & Asymptotic Behavior

Positivity properties: Exer-
cise E9.9

Examples: Leslie population
model in Exercise E4.14

References

averaging system
z(t) = —Lx(t)
L Laplacian matrix

the associated digraph has a globally reachable node

(wTx(0))1, where w > 0 is the left
eigenvector of L with eigenvalue 0 satisfying 1w = 1

limy 00 ()

Convergence  properties:
Theorem 7.4.

Examples: Flocking system
in Section 7.1.2

affine system
z(t) = Az(t) + b

A Hurwitz (that is, its spectral abscissa is negative)
limg oo 2(t) = —A71b

Convergence properties: Ex-
ercise E7.2

positive affine system
z(t) = Az(t) + b
A Metzler, b > 0,

z(0) >0, = z(t) >0, forall ¢, and

A Hurwitz (that is, R(A\) < 0 for all X € spec(A))

limg o0 2(t) = —A710 >0,

Table 9.2: Continuous-time systems

Positivity properties: Theo-
rem 9.3 and Corollary 9.6.
Example:  compartmental
systems in Section 9.1.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



9.5

9.6

9.5. Appendix: A static nonlinear flow problem

157

Appendix: A static nonlinear flow problem

In this appendix, we consider a static compartmental flow system, where a commodity (e.g., power or
water) is transported through a network (e.g., a power grid or a piping system). We model this scenario
with an undirected and connected graph with n nodes and m edges. With each node we associate an
external supply/demand variable (positive for a source and negative for a sink) y; and assume that the
overall network is balanced: )" ; y; = 0. We also associate a potential variable z; with every node (e.g.,
voltage or pressure), and assume the flow of commodity between two connected nodes i and j depends on
the potential difference as f;;(x; — x;), where f;; is a strictly increasing function satisfying f;;(0) = 0. For
example, for piping systems and power grids these functions f;; are given by the rational Hazen-Williams
flow and the trigonometric power flow, which are both monotone in the region of interest. By balancing
the flow at each node (akin to the Kirchhoff’s current law), we obtain at node ¢

n
yi =Y aijfij(wi—x;), i€{l,...,n},
=1

where a;; € {0,1} is the (7, ) element of the network adjacency matrix. In vector notation, the flow
balance is

y=Bf(B'xz),

where the map f : R™ — R™ has components f;;. Consider also the associated linearized problem
y = BBT2 = La, where L is the network Laplacian matrix, where we implicitly assumed i’j (0) = 1. The
flows in the linear problem are obtained as

B2 = BTLTy,

where LT is the Moore-Pennrose pseudoinverse of L; see Exercises E6.8 and E6.10.

In what follows, we restrict ourselves to an acyclic network and show that the nonlinear solution can
be obtained from the solution of the linear problem. We formally replace the flow f(BTz) by a new edge
variable v := f(BTx) € R™ and arrive at

y = Bv, (9.10a)
v=f(B"z). (9.10b)

In the acyclic case, kernel(B) = {0,,} and necessarily v € image(BT), or v = BTw for some w € R".
Thus, equation (9.10a) reads as y = Bv = BBTw = Lw and its solution is w = L'y. Equation (9.10b) then
reads as f(BT2) = v = BTw = BT Ly, and its unique solution (due to monotonicity) is

BTz* = f~Y(BTLTy).

Historical notes and further reading

This chapter is inspired by the excellent text ( , ) and the tutorial treatment
in ( , ); see also the texts ( , ; , ; ,
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2010). Additional results on Metzler matrices are available in (Berman and Plemmons, 1994; Santesso and
Valcher, 2007). For nonlinear extensions of the material in this chapter, including recent studies of traffic
networks, we refer to (Como et al., 2013; Coogan and Arcak, 2015).

Several other properties of positive affine systems and Metzler matrices are reviewed in (Berman and
Plemmons, 1994).
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9.7 Exercises

E9.1

E9.2
E9.3

E9.4

E9.5

E9.6

E9.7

The matrix exponential of a Metzler matrix. In this exercise we extend and adapt Theorem 7.2 about the
matrix exponential of a Laplacian matrix to the setting of Metzler matrices.

Let M be an n x n Metzler matrix with minimum diagonal entry m,;, = min{mi, ..., My, }. As usual,
associate to M a digraph G without self-loops in the natural way, that is, (i, j) is an edge if and only if
m;; > 0. Prove that

(i) exp(M) > e™min [, >0, for any digraph G,
(il) exp(M)e; >0, for a digraph G whose j-th node is globally reachable,
(ili) exp(M) > 0, for a strongly connected digraph G (i.e., for an irreducible M).

Morever, prove that, for any square matrix A,
(iv) exp(At) > 0forallt > 0 if and only if A is Metzler.
Proof of the Perron-Frobenius Theorem for Metzler matrices. Prove Theorem 9.4.

Metzler invariance under non-negative change of basis. Consider a positive system with Metzler matrix
A and constant input b > 0:
T = Az +0.

Show that, under the change of basis
z=T 1z,

with T invertible and T—! > 0, the transformed matrix T—! AT is also Metzler.

Monotonicity properties of positive systems. Consider the continuous-time positive affine system
T =Ax+0b,

where A is Metzler and b is non-negative.

i) Let x(t, zo) denote the solution from initial condition zy € RZ, at time 0. Show that
>0

0,<zg<z4 = a(t,z) <z(tz;) foralltimet > 0.

(ii) Letz = Az + b be a second continuous-time positive affine system. Assume that A and A are Hurwitz
and, by Corollary 9.6, let * and Z* denote the equilibrium points of the two systems. Show that

A>A and bzg = I*>7"
Establishing the spectral properties of compartmental matrices. Prove Lemma 9.12 about the spectral

properties of compartmental matrices.

Simple traps and strong connectivity. Show that a compartmental system that has no outflows and that is
a simple trap, is strongly connected.

Sufficient condition for a Metzler matrix to be Hurwitz. For n > 2, given a Metzler matrix M € R"*"™,
let v = M1,, € R" denote its vector of row sums. Show that

(i) M — diag(v) is a Metzler matrix with zero row sums,

(i) if M is irreducible and v is nonpositive with at least one entry strictly negative, then M is Hurwitz, and

(iti) if S is a symmetric irreducible Metzler matrix with S1,, = 0, then, forany ¢ € {1,...,n}ande > 0,
all eigenvalues of A — ee;e] are negative.
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160 Chapter 9. Positive and Compartmental Systems

E9.8 On Metzler matrices and compartmental systems with growth and decay. Let M be an n xn symmetric
Metzler matrix. Recall Lemma 9.12 and define v € R” by M = —L + diag(v), where L is a symmetric
Laplacian matrix. Show that:

(i) if M is Hurwitz, then 1] v < 0.

Next, assume n = 2 and assume v has both non-negative and non-positive entries. (If v is non-negative,
lack of stability can be established from statement (i); if v is non-positive, stability can be established via
Theorem 9.13.) Show that

(ii) there exist non-negative numbers f, d and ¢ such that, modulo a permutation, M can be written in the

form: ( )
__ e~ g 0] _|lg—Ff f
e s B A i
(iii) M is Hurwitz if and only if
d>g and f>ﬂ.
d—g

Note: The inequality d > g (forn = 2) is equivalent to the inequality 1Tv < 0 in statement (i). In the
interpretation of compartmental systems with growth and decay rates, f is a flow rate, d is a decay rate and g is a
growth rate. With this interpretation, the statement (iii) is then interpreted as follows: M is Hurwitz if and only if
the decay rate is larger than the growth rate and the flow rate is sufficiently large.

E9.9 Non-negative inverse. Let A be a non-negative square matrix and show that the following statements are
equivalent:

(i) A > p(A), and
(i) the matrix (Al — A) is invertible and its inverse (\I,, — A)~! is non-negative.
Moreover, show that
(iii) if A is irreducible and A > p(A), then (\I,, — A)~1 is positive.
(Given a square matrix A, the map A — (A,, — A)~! is sometimes referred to as the resolvent of A.)

E9.10 Grounded Laplacian matrices. Let G be a weighted undirected graph with Laplacian L € R™*". Select
aset S of s > 1 nodes and call them grounded nodes. Given S, the grounded Laplacian matrix Lgounded €
R(=#)x(n=5) js the principal submatrix of L obtained by removing the s rows and columns corresponding to

the grounded nodes. In other words, if the grounded nodes are nodes {n — s+ 1,...,n} and L is partitioned
in block matrix form
L = L-ll-l Laz , with Ly, € RO™9)X(=5) and oy € R#*5,
Lis Lo

then Lgrounded = L11. Show the following statements:
(i) If G is connected, then

a) Lgrounded is positive definite,

b) Lg:;unde 4 is non-negative, and

c) the eigenvector associated with the smallest eigenvalue of Lgrounded can be selected non-negative.
(i) If additionally the graph obtained by removing from G the nodes in .S and all the corresponding edges

is connected, then

d) Lg:;unded is positive, and

e) the eigenvector associated with the smallest eigenvalue of Lg;unded is unique and positive (up to
rescaling).
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E9.11

E9.12

E9.13

Hint: Show that — Lgrounded is a compartmental matrix.
Note: For more information on grounded Laplacian matrices we refer to ( X 5

] ] £l )'

Mean Residence Time for a particle in a compartmental system. Consider an outflow-connected com-
partmental system with irreducible matrix C' and p(C') < 0. Let v is the dominant eigenvector of C, that is,
Cv = pu(C)v,1Jv=1,and v > 0.

Assume a tagged particle is randomly located inside the compartmental system at time 0 with probability
mass function v. The mean residence time (mrt) of the tagged particle is the expected time that the particle
remains inside the compartmental system.

Using the definition of expectation, the mean residence time is

o0
mrt = / t P[particle leaves at time ¢] dt.
0
Let us also take for granted that:

d
P[particle leaves at time t] = — (ap[particle inside at time t]) .

Show that
1

mrt = ————.
u(C)
Resistive circuits as compartmental systems ( s ). Consider a resistive circuit with
shunt capacitors at each node as in figure below (see also in Section 7.1.3). Assume that the circuit is connected.
Attach to at least one node j € {1,...,n} a current source generating an injected current Cigjected at j > 0, and
connect to at least one node i € {1,...,n} a positive resistor to ground.

(i) Model the resulting system as a compartmental system, i.e., identify the conserved quantity and write
the compartmental matrix, the inflow vector and the outflow rate vector, and

(ii) show that there exists a unique steady state that is positive and globally-asymptotically stable.

f current
— source
= -
Solutions of partial differential equations ( , , Chapter 6). The electric potential V'

within a two-dimensional domain is governed by the Laplace’s partial differential equation:

0*V  9*V
Frel + Tyz =0, (E9.1)

combined with the value of V" along the boundary of the enclosure; see the left image in Figure E9.1. (A similar
setup with a time-varying spatial quantity and free boundary conditions was described in Section 7.1.4.)
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o |
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— by bio bir bio

Figure E9.1: Laplace’s equation over a rectangular enclosure and a regular Cartesian grid.

For arbitrary enclosures and boundary conditions, it is impossible to solve the Laplace’s equation in closed
form. An approximate solution is computed by (i) introducing a regular Cartesian grid of points with spacing
h, e.g., see the right image in Figure E9.1, and (ii) approximating the second-order derivatives by second-order
finite differences. Specifically, at node 2 of the grid, we have along the = direction

o?V 1 1 1
o2 (‘/2) ~ ﬁ(Vi - V2) - ﬁ(‘é - Vl) - ﬁ(v‘g + V2 - 2‘/2),
so that equation (E9.1) is approximated as follows:
9*V o*V 1

This approximation translates into the matrix equation:
4V = Agridv + C(glrid-boundaryba (E92)

where V' € R” is the vector of unknown potentials, b € R™ is the vector of boundary conditions, Agia €
{0,1}™*™ is the binary adjacency matrix of the (interior) grid graph (that is, (Agiq)i; = 1 if and only if
the interior nodes i and j are connected), and Cgid-boundary € {0, 1}™*™ is the connection matrix between
interior and boundary nodes (that is, (Cgrid,boundary)m = 1 if and only if grid interior node 7 is connected with
boundary node «). Show that
(i) Agriq is irreducible but not primitive,
(i) p(Agia) <4,
Hint: Recall Theorem 4.9.
(iii) there exists a unique solution V* to equation (E9.2),
(iv) the unique solution V* satisfies V* > 0,, if b > O,,,, and
(v) each solution to the following iteration converges to V*:

4V(l€ + 1) = Agridv(k) + C(gric.i-boundarybv

whereby, at each step, the value of V' at each node is updated to be equal to the average of its neighboring
nodes.

E9.14 Irreducible Metzler matrices and positive vectors. Let M/ € R™*™ be an irreducible Metzler matrix, let
(M) be its spectral abscissa (i.e., its dominant eigenvalue), and let > 0,, be a positive vector. Show that

(i) if Mz < nz for some n € R, then u(M) < n;
(i) if Mz = na for some n € R, then (M) = n; and
(iil) if Ma > na for some n € R, then u(M) > 1.
Hint: Read Section 2.1 in ( , ).
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E9.15 Discrete-time compartmental systems. Perform the following steps.

(i) Provide a proper definition of a discrete-time compartmental system without inflows or outflows.
(ii) Show that the system dynamics takes the form z(k + 1) = ATz(k), where A is row stochastic.

(iii) Show that the system admits a globally exponentially stable equilibrium if each sink of the digraph
associated to A is aperiodic.
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CHAPTER ] O

Convergence Rates, Scalability and
Optimization

In this chapter we discuss the convergence rate of averaging algorithms. We focus on discrete-time systems
and their convergence factors. The study of continuous-time systems is analogous. We also perform a
scalability analysis for an example system and discuss some interesting optimization problems.

Before proceeding, we recall a few basic facts. Given a square matrix A,

(i) the spectral radius of A is p(A) = max{|\| | A € spec(A)};
(ii) the p-induced norm of A, for p € NU{co}, is

A
|All, = max{HA:ch | z € R" and ||z||, = 1} = max I pr,
e#0n || zlp

and, specifically, the induced 2-norm of A is || A||2 = max{v/A | A € spec(ATA)};
(iii) for any p, p(A) < ||A||p; and
(iv) if A= AT, then ||A||2 = p(A).

Definition 10.1 (Essential spectral radius). The essential spectral radius of a row-stochastic matrix A is

Pess(A) = {0’ UCSpecFA) ={1,...,1},
max{|A| | A € spec(A) \ {1}}, otherwise.

10.1 Some preliminary calculations and observations

The convergence factor for symmetric row-stochastic matrices To build some intuition about the
general case, we start with a weighted undirected graph GG with adjacency matrix A that is row-stochastic
and primitive (i.e., the graph G, viewed as a digraph, is strongly connected and aperiodic). We consider the
corresponding discrete-time averaging algorithm

x(k+1) = Az (k).
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Note that G undirected implies that A is symmetric. Therefore, A has real eigenvalues A\; > Ao > -+ > ),
and corresponding orthonormal eigenvectors vy, . .., v,. Because A is row-stochastic, \; = 1 and v} =
1,,/+/n. Next, along the same lines of the modal decomposion given in Section 2.1, we know that the
solution can be decoupled into n independent evolution equations as

x(k) = average(z(0))1,, + /\g(v;m(O))vg + -+ /\Q(UTTLJ:(O))vn.

Moreover, A being primitive implies that max{|\a],...,|A\n|} < 1. Specifically, for a symmetric and
primitive A, we have pess(A) = max{|Az2|, |[A\n|} < 1. Therefore, as predicted by Corollary 2.15

lim z(k) = 1,17 2(0)/n = average(z(0))1,.

k—o0

To upper bound the error, since the vectors vy, . . ., v, are orthonormal, we compute

Hx(k:) — average(z(0))1,,

=T, = | S ez
2 j=2

< Pess(A)F z": H(U;rl'(()))v]Hz = pess(A)kHaf(O) — average(z(0))1, . (10.1)
j=2

where the second and last equalities are Pythagoras Theorem.

In summary, we have learned that, for symmetric matrices, the essential spectral radius pess(A) < 1 is
the convergence factor to average consensus, i.e., the factor determining the exponential convergence of
the error to zero. (The wording “convergence factor” is for discrete-time systems, whereas the wording
“convergence rate” is for continuous-time systems.)

A note on convergence factors for asymmetric matrices

The behavior of asymmetric row-stochastic matrices is more complex than of symmetric ones. For large
even n, consider the asymmetric positive matrix

1 1
Alarge—gain = %1111; + 5(11:71/26-{ + 1n/2:nel)a

where 1,.,,/5 (resp. 1,,/5.,) is the vector whose first (resp. second) n/2 entries are equal to 1 and whose
second (resp. first) n/2 entries are equal to 0. We visualize the digraph associated to this matrix in Figure 10.1.

The matrix Ajarge-gain is row-stochastic because, given 11171 = n and e]Tln = 1 for all j, we compute

1 1
Alarge—gainln = 5171 + 5(11:71/2 + 1n/2:n)1 = 1,.

Therefore, Corollary 2.15 implies that every solution to 2(k + 1) = Alsrge-gain (k) converges to consensus
and Exercise E1.1 implies that & — Vijax-min(2(k)) is non-increasing. Nevertheless, the 2-norm of the
deviation from consensus can easily increase. For example, take x(0) = €; — e,, and compute

1

1
z(1) = Alarge-gainx(o) = §1lzn/2 - iln/2:n'
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Figure 10.1: The unweighted digraph associated to the matrix 11m/261— + 1n/2:nel, for n = 6. This digraph is the
union of two disjoint stars. The weighted digraph associated to Ajarge-gain is the superposition of these two stars with
a complete digraph.

Because average(x(0)) = average(z(1)) = 0, we compute

1
SV

In other words, the 2-norm of x(k) — average(x(k)) along the averaging system defined by Alsrge-gain
grows to be at least of order /n (starting from O(1)).! The problem is that the eigenvalues (alone) of a
non-symmetric matrix do not fully describe the state amplification that may take place during a transient
period of time.

1
|12(0) — average(z(0))1n]l> = V2 and [(1) — average(z(1))ll2 = 5111072 = Lnj2nll2 =

Convergence factors for row-stochastic matrices

Consider a discrete-time averaging algorithm (distributed linear averaging)
x(k+1) = Az(k),

where A is doubly-stochastic and not necessarily symmetric. If A is primitive (i.e., the associated digraph is
aperiodic and strongly connected), we know

lim x(k) = average(z(0))1, = (1,1} /n)x(0).

k—o0

We now define two possible notions of convergence factors. The per-step convergence factor is

k+1) — 2gna
raep(A) = sup lz(k + 1) — Zfinall2
x(k)7éxﬁnal ||x(k) - xﬁnalH2

where g = average(z(0))1, = average(x(k))1,, and where the supremum is taken over any possible
sequence. Moreover, the asymptotic convergence factor is

i 1/k
Tasym(A) = sup  lim N[ (k) = Zfnail2 .
2(0) £apng #o0 \ 17(0) — Zgna |2

Given these definitions the preliminary calculations in the previous Section 10.1, we can now state our
main results.

"Here and in what follows, O(z) is a scalar function upper bounded by a constant times .
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Theorem 10.2 (Convergence factor and solution bounds). Let A be doubly-stochastic and primitive.
(i) The convergence factors of A satisfy

Tstep(A) =||A- 1n1-rl;/n||2y

. (10.2)
rasym(A) = pess(A) = ,O(A — lnln/n) < 1.
Moreover, Tasym(A) < Tstep(A), and rstep(A) = Tasym(A) if A is symmetric.
(ii) For any initial condition x(0) with corresponding xgn, = average(z(0))1,,
HJ,‘(]C) - xﬁnalH2 < Tstep(A)ka(O) - xﬁnal“y (10.3)
[2(k) = final]y < cerasym(A) + €)F[|2(0) = Zanall|s (10.4)

where e > 0 is an arbitrarily small constant and c. is a sufficiently large constant independent of x(0).

Note: A sufficient condition for 7gep(A) < 1 is given in Exercise E10.1.
Before proving Theorem 10.2, we introduce an interesting intermediate result. For 24, = average(z(0))1,,
the disagreement vector is the error signal

5(k) = :U(k) — Zfinal- (10.5)

Lemma 10.3 (Disagreement or error dynamics). Given a doubly-stochastic matrix A, the disagreement
vector §(k) satisfies

(i) 6(k) L 1, forallk,
(i) 5(k+1) = (A — 1,1} /n)d(k),

(iii) the following properties are equivalent:

a) limy,_,oo A = 1,,1) /n, (that is, the averaging algorithm achieves average consensus)
b) A is primitive, (that is, the digraph is aperiodic and strongly connected)
¢) p(A—1,11/n) < 1. (that is, the error dynamics is convergent)

Proof. To study the error dynamics, note that 1] z(k + 1) = 1T Az(k) and, in turn, that 17z (k) = 1} 2(0);
see also Exercise E7.8. Therefore, average(z(0)) = average(x(k)) and 6(k) L 1,, for all k. This completes
the proof of statement (i). To prove statement (ii), we compute

5(k +1) = Ax(k) — Tna = Azx(k) — (L,1) /n)x(k) = (A — 1,1) /n)x(k),

and the equation in statement (ii) follows from (A -1, lz / n) 1, =0,.

Next, let us prove the equivalence among the three properties. From Perron-Frobenius Theorem 2.12
for primitive matrices in Chapter 2 and from Corollary 2.15, we know that A primitive (statement (iii)b)
implies average consensus (statement (iii)a). The converse is true because 1,1} /n is a positive matrix and,
by the definition of limit, there must exist k such that each entry of A* becomes positive.
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Finally, we prove the equivalence between statement (iii)a and (iii)c. First, note that P = I,, — 1,17 /n
is a projection matrix, that is, P = P2. This can be easily verified by expanding the matrix power P2
Second, let us prove a useful identity:

AR — 1,17 /n = A*(1, — 1,17 /n) (because A row-stochastic)
= A¥(I, — 1,1 /n)* (because I,, — 1,1 /n is a projection)

— (A(L, — 1,17 /n))" = (A= 1,17 /n)".

The statement follows from taking the limit as & — oo in this identity and by recalling that a matrix is
convergent if and only if its spectral radius is less then one. |

We are now ready to prove the main theorem in this section.

Proof of Theorem 10.2. Regarding the equalities (10.2), the formula for 7 is an consequence of the defini-
tion of induced 2-norm:

|2(k + 1) — Zpnal|2
Tsen(A) = sup
)= S o) — Zamall
_ T _ T
o 1D A= 1A ms ) A= L )yl
5(k) L1, 16(%)][2 5(k) L1, [6(K) |2 y#0n [yll2

where the last equality follows from (A — 1,17 /n)1, = 0,.

The equality 7sym(A) = p(A — 1,1 /n) is a consequence of the error dynamics in Lemma 10.3,
statement (ii).

Next, note that p(A) = 1 is a simple eigenvalue and A is semi-convergent. Hence, by Exercise E2.2 on
the Jordan normal form of A, there exists a nonsingular 7" such that

— 107 4]
a=tlpl O

where B € R("=D*("=1) js convergent, that is, p(B) < 1. Moreover we know pess(A4) = p(B).
Usual properties of similarity transformations imply

1 071

T
O0n-1 O(n—l) x(n—1)

ab—r| b O] = lim A* =T
Because A is doubly-stochastic and primitive, we know lim_,, A¥ = 1,,1T /n so that A can be decomposed

as
A=1,1"/n+T [ 0 01—1] T
" 0,1 B ’

and conclude with pess(A) = p(B) = p(A — 1,1} /n). This concludes the proof of the equalities (10.2).

The bound (10.3) is an immediate consequence of the definition of induced norm.

Finally, we leave to the reader the proof of the bound (10.4) in Exercise E10.3. Note that the arbitrarily-
small positive parameter ¢ is required because the eigenvalue corresponding to the essential spectral radius
may have an algebraic multiplicity strictly larger than its geometric multiplicity. |
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Note: the matrix 1,1 is studied in Exercise E2.13 as the rank-one projection matrix .J4 associated to a
primitive matrix A. Using methods and results from that exercise one can generalize the treatment in this
section to row-stochastic instead of doubly-stochastic matrices.
10.3 Cumulative quadratic disagreement for symmetric matrices

The previous convergence metrics (per-step convergence factor and asymptotic convergence factor) are
worst-case convergence metrics (both are defined with a supremum operation) that are achieved only for
particular initial conditions, e.g., the performance predicted by the asymptotic metric rysym(A) is achieved
when 2(0) — g is aligned with the eigenvector associated to pess(A) = p(A — 1,1} /n).

In what follows we study and appropriate average and transient performance We consider an averaging
algorithm

x(k+1) = Az(k),
defined by a row-stochastic matrix A and subject to random initial conditions x( satisfying
E[zg] = 0,, and E[zozl] = I,.
Recall the disagreement vector §(k) defined in (10.5) and the associated disagreement dynamics
§(k+1) = (A-1,1}/n)é(k),

and observe that the initial conditions of the disagreement vector §(0) satisfy

E[§(0)] =0, and E[§(0)§(0)"] =1, — 1,17 /n.

To define an average transient and asymptotic performance of this averaging algorithm, we define the
cumulative quadratic disagreement of the matrix A by

1 K
Jem(A) = Jim — kZ:OE[H&k)H%] : (10.6)

Theorem 10.4 (Cumulative quadratic disagreement for symmetric matrices). The cumulative quadratic
disagreement (10.6) of a row-stochastic, primitive, and symmetric matrix A satisfies

1 1
Jeum(A) = — > (TR
Aeéspec(A)\{1}

Proof. Pick a terminal time K € N and define Jx (A) = Zszo E[||6(k)||3]. From the definition (10.6)
and the disagreement dynamics, we compute

Tr(A) = % Z trace (E [5(k)5(k)TD
k;o T
= Ztrace( (A - 17111/”) E[é(O)é(O)T] <(A - 1”1:‘—/”) > )
k=0
- iitrace( (A - 1n11/”>k ((A - 1”17-5/n)k>-r> '
k=0
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Because A is symmetric, also the matrix A—1,, 1 /n is symmetric and can be diagonalized as A—1,1) /n =
QAQT, where @ is orthonormal and A is a diagonal matrix whose diagonal entries are the elements of
spec(A — 1,1 /n) = {0} Uspec(A) \ {1}. It follows that

K
Ik (A) = % Z trace (QAkQT (QAkQT)T)
k=0

K
_ 1 Z trace (Ak . Ak) (because trace(AB) = trace(BA))
n

k=0

K
1 2
=~ DD D
k=0 \espec(A)\{1}
1 3 1Ny

Y (because of the geometric series)
" Nespec(AN{1} N

The formula for Joym follows from taking the limit as X' — oo and recalling that A primitive implies
Pess(A) < 1. [ |

Note: All eigenvalues of A appear in the computation of the cumulative quadratic disagreement (10.6),
not only the dominant eigenvalue as in the asymptotic convergence factor.

10.4 Circulant network examples and scalability analysis

In general it is difficult to compute explicitly the second largest eigenvalue magnitude for an arbitrary
matrix. There are some graphs with constant essential spectral radius, independent of the network size n.
For example, a complete graph with identical weights and doubly stochastic adjacency matrix A = 1,17 /n
has pess(A) = 0. In this case, the associated averaging algorithm converges in a single step.

Next, we present an interesting family of examples where all eigenvalues are known. Recall the cyclic
balancing problem from Section 1.4, where each bug feels an attraction towards the closest counterclockwise
and clockwise neighbors and Exercise E4.17 on circulant matrices. Given the angular distances between
bugs d; = 0,41 — 0;, fori € {1,...,n} (with the usual convention that d,,11 = d; and dy = d,,), the
closed-loop system is d(k + 1) = Ay, xd(k), where k € [0,1/2[, and

1 — 2k I 0 0 Kk ]
K 1—-2k K 0
0 K 1 -2k
ATL,K,:
0
0 . k 1-—2k K
L K 0 0 K 1—2k]

This matrix is circulant, that is, each row-vector is equal to the preceding row-vector rotated one element
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o
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9%
Figure 10.2: Digraph associated to the circulant matrix A, ,, for n = 6.
to the right. The associated digraph is illustrated in the Figure 10.2. From Exercise E4.17, the eigenvalues of

A, . can be computed to be (not ordered in magnitude)

27(i — 1)

Ai = 2K cos +(1—-2k), forie{l,...,n}. (10.7)

An illustration is given in Figure 10.3. For n even (similar results hold for n odd), plotting the eigenvalues

ASr(z) =2k cos(2mz) + (1 — 2K)
1 AN =f.(t-1)/n)ie{l,....,n},n="5

A3 =N\

Figure 10.3: The eigenvalues of A,, , as given in equation (10.7). The left figure illustrate also the case of k = .5, even
if that value is strictly outside the allowed range s € [0, .5].

on the segment [—1, 1] shows that
pess(An,N) = max{’)‘le ‘)‘n/2+1‘}7

where )
Aoy = 2% cos 2L + (1 - 2k), and A, 941 = 1 — 4k.
n

If we fix x € ]0,1/2[ and consider sufficiently large values of n, then [A2| > |, /21| In the limit of large
graphs n — oo, the Taylor expansion cos(x) = 1 — 22/2 + O(z*) leads to

1 1
Pess(Anrx) =1 — 47r2mﬁ + O(H)' (10.8)

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



10.5

10.5. Appendix: Accelerated consensus algorithm

175

Note that pess(An, ) < 1 for any n, but the separation from pess(Ap ) to 1, called the spectral gap, shrinks
with 1/n2.

In summary, this discussion leads to the broad statement that certain large-scale graphs have slow
convergence factors.

Appendix: Accelerated consensus algorithm

The averaging algorithm z(k + 1) = Az (k) may converge slowly as seen in Section 10.4 due to a large
Pess(A). In this section we propose a simple modification of averaging that is known to be faster. The
accelerated consensus algorithm is defined by

z(k+1)=pAx(k)+ (1 -pB)xz(k—1), for k € Z>, (10.9)

where the initial conditions are x(0) = z(—1) := x(, the matrix A € R"*" is symmetric, primitive, and
row-stochastic, and § € R is a parameter to be chosen.
This iteration has some basic properties. We define the iteration matrix

- BA (1_B)In 2nx2n
TB = |:1n 0, eR .

One can show that Tgly, = 1y, for all 5, and that T is semiconvergent if and only if pess(7) < 1.
Moreover, similar to the result in (10.4) one can show that, for an appropriate value of 3, the asymptotic
convergence factor for this accelerated iteration is equal to pess(7j3). Accordingly, in what follows, we
optimize the convergence speed of the algorithm by minimizing pegs(73) with respect to 5. We formally
state these results and more in the following theorem.

Theorem 10.5 (Convergence and optimization of the accelerated consensus algorithm). Consider
the accelerated consensus algorithm (10.9) with x(0) = x(—1) = xo, A € R™*"™ symmetric, primitive, and
row-stochastic matrix, and 3 € R. The following statements hold:

(i) for all B € R, the set of fixed points of T is {aday, | o € R} and, if limy_,o (k) exists, then it is
equal to average(xg)l,;

(ii) the following conditions are equivalent:

a) Tg is semi-convergent,
b) pess(13) < 1, and
c) B€(0,2);

(iii) for 8 € (0,2), along the accelerated consensus iteration (10.9)

(k) — average(0)La]|, < - (pess(T5) + £)]|(0) — average(wo) 1|

27

where e > 0 is an arbitrarily small constant and c. is a sufficiently large constant independent of z¢;
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(iv) the optimal convergence rate of the accelerated consensus algorithm is

ess A
min  pess(T3) = Pess(4) , (10.10)
Be(0,2) 1+ V1 — pess(A)?
which is obtained at
2
B* = argminge g o) Pess(13) = € (1,2). (10.11)
66( ) ) 1 + /1 o peSS(A)2

Note: A key advantage of the accelerated consensus algorithm is it is faster than standard averaging in

two senses: First, it is immediate to see that pess(Tjg+) = % < pess(A). Second, Exercise E10.10

shows that performance improves also in its asymptotic order; for example, for averaging algorithms over
circulant matrices, the spectral gap of order 1/n instead of order 1/n?. One important drawback of the
accelerated consensus algorithm is that computation of optimal gain requires knowledge of the essential
spectral radius of A.

Proof of Theorem 10.5. Regarding statement (i), we let 2* = limy_,, (k) and take the limit in both left
and right hand side of the accelerated consensus algorithm (10.9) to obtain x* = SAz* + (1 — 3)x*, that is,
after simple manipulations x* = Axz*. Under the given assumptions on the matrix A and by employing the
Perron-Frobenius Theorem, we obtain that * = al,, for some « € R. Observe also that z(t) = al,, isa
conserved quantity for the accelerated consensus algorithm (10.9). Thus, when left-multiplying z(¢t) = al,
by 1! and evaluating the result for t = 0, we obtain o = average(zg). This concludes the proof of
statement (i).

Next, we prove statement (ii). We start by analyzing the matrix 73 with methods similar to those
adopted for the second-order Laplacian flow in Section 7.4. The symmetric matrix A can be expressed as
A =UAUT, where U is a unitary matrix and A = diag({\;}";) collects the eigenvalues of the matrix A.
A similarity transformation with the matrix U leads us to

g N A A [ A B

By appropriately permuting the entries of this matrix, we arrive at

ry o ... 0
0 I's ... O . _

L TR (LY P B
o o0 ... I,

Note that the similarity transformation via the matrix U and the permutation (which is itself a similarity
transformation) the spectra of I" and T}3 are identical. We can, hence, analyze the matrix I" to investigate
the convergence rates. For a given index ¢ € {1,...,n}, the eigenvalues of I'; are the roots of

vl = (BAvi+B-1=0, (10.12)
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which are given by

BN £1/B202 — 4B +4
5 .
For the system to converge to steady-state consensus, all eigenvalues v1 2,7 € {1,...,n}, should lie within

the unit disc, with only one eigenvalue on the unit circle. For I';, with A;; = 1, we note that the eigenvalues
are {1, 5 — 1}. Therefore, a necessary convergence condition for 5 € R is

V1,2, = (10.13)

—1<p—-1<1 or 0<pB<2. (10.14)

For the other block matrices I';, i € {2,...,n}, the eigenvalues are given by equation (10.13), the sum
of the roots by (v1, + v2, = 5 \;), and the product of the roots by (vy, - vo, = 8 — 1). We consider the
following cases:

a) Assume I'; has real-valued roots: For the roots to lie within the unit circle, we require |vy,| < 1,
lvai| < 1,and v, +v3, < 2foralli € {1,...,n}. Regarding the latter:

Uﬁ +U§i = (vy, +Uzi)2 — 2wy, - U9, <2
— BN -28+2<2
— pB2-28<0 (as | \;| < 1)
— pB(B—-2)<0o0rpe(0,2). (10.15)

We now verify |vy,| < 1,
and thus |vy,, | < 1,
that |vy,| < 1,

v2;] < 1. For Iy, with A,, = 1, the eigenvalues are {v1,,, v, } = {1, 5 —1}
von| < 1.ForIy, i e {l,...,n— 1}, with |A\;| < 1, it can explicitly calculated
<1if g €(0,2).

b) Assume I'; has complex conjugate roots: As the coeflicients of equation (10.12) are all real ({3 is real
and J; is real as the matrix A is symmetric), the complex-conjugate roots have the same magnitude.
We require the magnitudes to be strictly less than 1:

o] = v, | =v/B-1<1 = 0<(B—-1)<lorfe(0,2). (10.16)

vV,

Equations (10.14), (10.15), and (10.16) together imply that the iteration converges for values of 8 € (0, 2).
This concludes the proof of statement (ii).

Regarding statement (iii), it is an immediate consequence of Exercise E10.3 and some ad-hoc bounds.
We leave it to the reader to fill out the details.

Finally, we prove statement (iv). In order to minimize the modulus of the eigenvalues of I';, we choose
B such that the discriminant in the expression (10.13) becomes zero:

B2 —4B+4=0. (10.17)

Let us keep the index i € {1,...,n — 1} fixed. Two possible values of 3 arise from equation (10.17):

2 2
ﬁe Y Y
14 4/1=22 1—,/1-)?
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Because the second root may lead to a value of 3 outside the existence interval (0, 2), we restrict ourselves
to the optimal selection (for the index 7) of the gain 3 as

2

14+ 4/1— X2

Among all choices of 3 for different indices i € {1,...,n—1}, we note that 5* = 2/(1 + /1 — pess(A)?) as
in equation (10.11) is the optimal choice to minimize the maximum magnitude of |vq o, | fori € {1,...,n—1}.
Furthermore, since 1 > pess(A) > 0, we have 2 > 5* > 1, and thus the magnitudes of all eigenvalues of I'
is strictly less than 1, except for the the eigenvalue at 1. The magnitudes of the other eigenvalues of I" for

B = [* are
{17 8" =11}, {IVB* =11, [V B* =11}, {[v1, o (B, [2,s (BY)], - s {Jon, (87, |U21(ﬁ*)|}-

Fn Fn—l Fn_g l—‘1

8=

(10.18)
Furthermore, it can be verified that for 5 = * we have identical magnitudes |vi,(8%)| = |vo,(8%)| =

Vp* —1foralli € {1,...,n — 2}. Finally, note that \/3* — 1 > |f* — 1| = * — 1 so that

_ — A1 — Pess(A)
pess(Tﬁ*) - pess(r) - /8 1 1 N m < pess(A)‘

Appendix: Design of fastest distributed averaging

We are interested in optimization problems of the form:

minimize 7asym(A) or Tstep (A)

subject to A compatible with a digraph G, doubly-stochastic and primitive

where A is compatible with G if its only non-zero entries correspond to the edges F of the graph. In
other words, if F;; = eiejT is the matrix with entry (7, j) equal to one and all other entries equal to zero,
then A = Z(i’ jer %ijEij for arbitrary weights a;; € R. We refer to such problems as fastest distributed
averaging (FDAs) problems.

Note: In what follows, we remove the constraint A > 0 to widen the set of matrices of interest. Accord-
ingly, we remove the constraint of A being primitive. Convergence to average consensus is guaranteed by
(1) achieving convergence factors less than 1, (2) subject to row-sums and column-sums equal to 1.

Problem 10.6 (Asymmetric FDA with asymptotic convergence factor).
minimize p(A — 1n1£/n)

subject to A = Z a;jFij, Al, =1,, 1IA = 11

The asymmetric FDA is a hard optimization problem. Even though the constraints are linear, the objective
function, i.e., the spectral radius of a matrix, is not convex (and, additionally, not even Lipschitz continuous).
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Problem 10.7 (Asymmetric FDA with per-step convergence factor).

minimize HA - 1nll/nH2

subject to A = Z a;jFij, Al, =1,, 1IA = ll
(.)€l

Problem 10.8 (Symmetric FDA problem).

minimize p(A — 1nll/n)

subject to A= Z aijEij, A= AT, Al, =1,
(ig)ekE

Recall here that A = AT implies p(A) = || Al|2.

Both Problems 10.7 and 10.8 are convex and can be rewritten as so-called semi-definite programs (SDPs);
see ( , ). An SDP is an optimization problem where (1) the variable is a positive semidefinite
matrix, (2) the objective function is linear, and (3) the constraints are affine equations. SDPs can be efficiently
solved by software tools such as CVX; see ( , ).

Historical notes and further reading

The main ideas in Sections 10.1 and 10.2 are taken from ( , ; ,

; , )-

A recent breakthrough in achieving linear time average consensus on fixed graphs (not reviewed here)
is given by ( )-

The cumulative quadratic disagreement in Section 10.3 is taken from ( , ). Theorem 10.4
may be extended to the setting of normal matrices, as opposed to symmetric, as illustrated in ( ,

); it is not known how to compute the cumulative quadratic disagreement for arbitrary doubly-stochastic
primitive matrices.

Regarding Section 10.4, for more results on the study of circulant matrices and on the elegant settings
of Cayley graphs we refer to ( , ; , ).

The accelerated consensus algorithm (10.9) is rooted in momentum methods for optimization ( ,

), and it has been applied to averaging algorithms for example in ( , ; ,

)
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10.8

Exercises

E10.1

E10.2

E10.3

E10.4

E10.5

E10.6

Induced norm of certain doubly stochastic matrices. Assume A is doubly stochastic, primitive and has
a strictly-positive diagonal. Show that

Tsiep(A) = [|A = 1,1) /nlla < 1.

Spectrum of A — 1,17 /n. Consider a matrix A doubly stochastic, primitive and symmetric. Assume
A1 > -+ > A\, are its real eigenvalue with corresponding orthonormal eigenvectors vy, . .., v,. Show that
the matrix A — lnll/n has eigenvalues 0, Ay > - -- > \,, with eigenvectors vy, ..., v,.

Bounds on the norm of a matrix power. Given a matrix B € R”*" and an index k € N, show that
(i) there exists ¢ > 0 such that
IB*|l2 < k™ *p(B)",
(i) for all € > 0, there exists ¢ > 0 such that
[B*]l2 < ce(p(B) + ).
Hint: Adopt the Jordan normal form

Spectral gap of regular cycle graphs. A k-regular cycle graph is an undirected cycle graph with n-nodes
each connected to itself and its 2k nearest neighbors with a uniform weight equal to 1/(2k + 1). The
associated doubly-stochastic adjacency matrix A,, j, is a circulant matrix with first row given by

N [_L 1 1 1
Ank(1,:) = [2k+1 g O 0 2k+1} ’
Using the results in Exercise E4.17, compute

(i) the eigenvalues of A,, ;, as a function of n and k;
(ii) the limit of the spectral gap for fixed k as n — co; and
(iii) the limit of the spectral gap for 2k =n — lasn — oo .

Properties of the spectral radius. For any A € C"*" and any matrix norm, show
(@) p(A) < All,and

(ii) p(A) < ||A*||*/* for all k,

(iii) p(A) = limy o0 | A*[|1/5.
Next, for any A € C"*™, let | A| denote the matrix with entries |a;;|, and for any real matrices B, C, let
B < C mean b;; < ¢;; for each i and j. Show

(iv) if | 4] < B, then p(A) < p(|A]) < p(B).
Hint: Peruse ( g , Chapter 7).

‘Hs performance of balanced averaging in continuous time. Consider the continuous-time averaging
dynamics with disturbance

z(t) = —La(t) + w(t),
where L = L7 is the Laplacian matrix of an undirected and connected graph and w(t) is an exogenous
disturbance input signal. Pick a matrix () € RP*" satisfying Q1,, = 0, and define the output signal
y(t) = Qx(t) € RP as the solution from zero initial conditions z:(0) = 0,,. Define the system Hy norm from
w to y by

1= [ s vt = [ o) QT Qule)dt = trace ( . H(t)THa)dt) |

where H(t) = Qe ** is the so-called impulse response matrix.
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(i) Show ||H||2 = y/trace(P), where P is the solution to the so-called Lyapunov equation

LP+PL=Q'Q. (E10.1)

(ii) Show ||H|2 = \/trace (LTQTQ) /2, where L' is the pseudoinverse of L.

(iii) Define short-range and long-range output matrices s, and Q); by Q;';er = Land QIer =1I,— %ln 1;';,
respectively. Show:

n— la for Q = era

1413 = En: 1
) for Q = er'
— Xi(L)

Hint: The Hy norm has several interesting interpretations, including the total output signal energy in response
to a unit impulse input or the root mean square of the output signal in response to a white noise input with
identity covariance. You may find useful Theorem 7.4 and Exercise E6.8.

E10.7 Convergence rate for the Laplacian flow. Consider a weight-balanced, strongly connected digraph G
with self-loops, degree matrices Doy = Dy, = I,,, doubly-stochastic adjacency matrix A, and Laplacian
matrix L. Consider the associated Laplacian flow

i(t) = —La(t).

.
For Zaye := 171%,(0)’ define the disagreement vector by 0(t) = x(t) — Zayeln.

(i) Show that the average t — Luo(®) is conserved and that, consequently, 17 §(t) = 0 for all ¢ > 0.

n
(ii) Derive the matrix E describing the disagreeement dynamics

§(t) = Bs(t).

(iil) Describe the spectrum spec(E) of E as a function of the spectrum spec(A) of the doubly-stochastic
adjacency matrix A associated with G. Show that spec(E) has a simple eigenvalue at A = 0 with
corresponding normalized eigenvector vy := 1, //n.

(iv) The Jordan form J of E can be described as follows

00 0 0
0 J, 0 0 0 ol
_ 1 ) [
E=r 0 0 . 0 pr=ila {0 J} {R}’
00 0 J,

where ¢; is the first column of P and r; is the first row of P!, Show that
5(t) = C exp(Jt)RS(0).
(v) Use statements (iii) and (iv) to show that, for all € > 0, there exists C. > 0 satisfying
[6()]| < Ce(e” + ) [[5(0)]l,
where 1 = max{R()\) — 1 | A € spec(A)\{1}} < 0. Show that, if A = AT, then y1 < pess(A) — 1.

Hint: Use arguments similar to those in Exercise E10.3 and in the proof of Theorem 7.4.
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E10.8 Convergence factors in digraphs with equal out-degree. Consider the unweighted digraphs in the
figure below with their associated discrete-time averaging systems 2:(t+1) = Az(t) and z(t+1) = Asx(t).
For which digraph is the worst-case discrete-time consensus protocol (i.e., the evolution starting from the
worst-case initial condition) guaranteed to converge faster? Assign to each edge the same weight equal to %

©) ©) @ @

® ® @ ®

(a) Digraph 1 (b) Digraph 2

E10.9 Convergence estimates. Consider a discrete-time averaging system with 4 agents, state variable z € R*,
dynamics z(k + 1) = Az(k), and averaging matrix A = Z?:l avv] € R with

1 0 1

1 1 1 111 1 1 170
ar=lae=-,a3=-, v = Vg = —= v —

1 Q2 = 5,03 = o, 12172\/5073 7 -1

1 -1 0

(i) Verify A is row-stochastic, symmetric and primitive.
(ii) Suppose x(0) = [0,8,2,2]T. It is possible that z(3) = [4,3,2, 3]T?
E10.10 Scalability of accelerated consensus.

(i) Prove the following series expansion around z = 0:

1—z
f(I):1+m:1—ﬁ\/E+o(x).

Next, consider a sequence of increasing dimension row-stochastic matrices {A,, € R"*"}, cn, and the
corresponding accelerated consensus algorithms with sequence of optimal iteration matrices {Tg~ , €

R2n><2n
}nGN-
(ii) Prove that, if pess(An) = 1 — g(n) with g(n) = o(n) as n — oo, then the following series expansion

holds as n — oo:
pess(TB*,n) =1- \/i\/m+ 0(9(”))

(iii) Show that, for circulant matrices { 4, },, with spectral radius given in equation (10.8) in Section 10.4,
there exists a constant ¢ such that the accelerated consensus algorithm satisfies

1 1
essT*n =1—c— O(7>
Pess(Tp+n) e +0(
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CHAPTER ] 1

Time-varying Averaging Algorithms

In this chapter we discuss time-varying averaging systems, that is, systems in which the row-stochastic
matrix is a function of time. We provide sufficient conditions on the sequence of digraphs associated to the
sequence of row-stochastic matrices for consensus to be achieved. We focus mainly on the discrete-time
setting, but present the main result also for continuous-time systems.

11.1 Examples and models of time-varying discrete-time algorithms

In time-varying or time-varying algorithms the averaging row-stochastic matrix is not constant throughout
time, but instead changes values and, possibly, switches among a finite number of values. Here are examples
of discrete-time averaging algorithms with switching matrices.

Example 11.1 (Shared Communication Channel). Given a communication digraph Ggpared-comm, at
each communication round, only one node can transmit to all its out-neighbors over a common bus and
every receiving node will implement a single averaging step. For example, if agent j receives the message
from agent 7, then agent j will implement:
1
+._

zi = i(xz—i—a:]) (11.1)
Each node is allocated a communication slot in a periodic deterministic fashion, e.g., in a round-robin
scheduling, where the n agents are numbered and, for each i, agent ¢ talks only at times ¢,n + ¢,2n +
i,...,kn +ifor k € Z>¢. For example, in Figure 11.1 we illustrate the communication digraph and in
Figure 11.2 the resulting round-robin communication protocol.

Gshared-comm

® 0
@@

Figure 11.1: Example communication digraph
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11.2

®@ O ® O @ -0 @—0
@ +-@ @@ @ O @ @

time =1,5,9,... time = 2,6, 10, ... time = 3,7,11, ... time =4,8,12,...

Figure 11.2: Round-robin communication protocol.

Formally, let A; denote the averaging matrix corresponding to the transmission by agent i to its
out-neighbors. With round robin scheduling, we have

ar(n+1) :AnAn_l---Alx(l). °

Example 11.2 (Asynchronous Execution). Imagine each node has a different clock, so that there is no
common time schedule. Suppose that messages are safely delivered even if transmitting and receiving
agents are not synchronized. Each time an agent wakes up, the available information from its neighbors
varies. At an iteration instant for agent ¢, assuming agent ¢ has new messages/information from agents
i1y, tm, agent ¢ will implement:

+. 1 1

; -=m+1$i+m+1(:ﬁil+---+xim)-

Given arbitrary clocks, one can consider the set of times at which one of the n agents performs an
iteration. Then the system is a discrete-time averaging algorithm. It is possible to carefully characterize all
possible sequences of events (who transmitted to agent ¢ when it wakes up). .

Models of time-varying averaging algorithms

Consider a sequence of row-stochastic matrices { A(k)} ycz. ,, or equivalently a time-varying row-stochastic
matrix k — A(k). The associated time-varying averaging algorithm is the discrete-time dynamical system

x(k+1)=A(k)x(k), ke L. (11.2)

We let {G(k)}rez-, be the sequence of weighted digraphs associated to the matrices { A(k) }rez. -
Note that (1, 1,,) is an eigenpair for each matrix A(k). Hence, all points in the consensus set {al,, | o €
R} are equilibria for the algorithm. We aim to provide conditions under which each solution converges to
consensus.
We start with a useful definition, for two digraphs G = (V, E) and G’ = (V', E’), union of G and G’ is
defined by
GUG' = (VUV' EUE).

In what follows, we will need to compute only the union of digraphs with the same set of vertices; in
that case, the graph union is essentially defined by the union of the edge sets. Some useful properties of
the product of multiple row-stochastic matrices and of the unions of multiple digraphs are presented in
Exercise E11.1.
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Convergence over time-varying graphs connected at all times

Let us first consider the case when A(k) induces an undirected, connected, and aperiodic graph G(k) at
each time k.

Theorem 11.3 (Convergence under connectivity at all times). Let {A(k)}rez., be a sequence of
symmetric and doubly-stochastic matrices with associated digraphs {G(k) }rez.., so that

(AC1) each non-zero edge weight a;j(k), including the self-loops weights a;;(k), is larger than a constante > 0;
and

(AC2) each graph G(k) is connected.
Then the solution to z(k + 1) = A(k)x(k) converges exponentially fast to average(z(0))1,.

Note: Assumption (AC1) prevents the weights from becoming arbitrarily close to zero as kK — oo and,
as we show below, ensures that pess(A(k)) is upper bounded by a number strictly lower than 1 at every
time & € Z>(. To gain some intuition into what can go wrong, consider a sequence of symmetric and
doubly-stochastic averaging matrices { A(k) }rez., with entries given by

Ay = | e@CYEFDT) 1= exp(=1/(k +1)%)
1—exp(—=1/(k+1)%)  exp(-=1/(k+1)%)

for k € Z>o and exponent o > 1. These matrices fail to satisfy Assumption (AC1). For any o > 1 and for
k, we know the pess(A(k) < 1. For any o > 1 and for k — oo, this matrix converges to A, = [ }] with
spectrum spec(As ) = {—1,+1} and essential spectral radius pess(Ao) = 1. One can show that,

(i) for o = 1, the convergence of A(k) to A is so slow that {x(k)}, converges to average(z(0))1,,
(ii) for o > 1, the convergence of A(k) to A is so fast that {z(k)} oscillates indefinitely. '

Proof of Theorem 11.3. At fixed n, there exist only a finite number of possible connected unweighted graphs
and, for each given graph, the set of matrices with edge weights in the interval [, 1] is compact. It is known
that the following maps are continuous: the function from a matrix to its eigenvalues, the function from a
complex number to its magnitude, and the function from n — 1 non-negative numbers to their maximum.
Hence, by composition, the essential spectral radius pess is a continuous function of the matrix entries
defined over a compact set and, therefore, it attains its maximum value. Because each essential spectral
radius of each possible weighted graph is strictly less than 1, so is its maximum value. In summary, we
now know that, under assumptions (AC1) and (AC2), there exists a ¢ € [0, 1] so that pess(A(k)) < c < 1
for all k € Z>¢. Recall the notion of the disagreement vector §(k) = z(k) — average(x(0))1,, and define
V(8) = ||6]|3. It is immediate to compute

V(3(k +1)) = V(A(K)(K)) = |AR)S(K)II3 < pess(A(R))?[6(R)IIZ < 2V (8(K)).

It follows that V (§(k)) < ¢?*V(6(0)) or [|6(k)||2 < c¥[|6(0)]|2, that is, (k) converges to zero exponentially
fast. Equivalently, as k — oo, z(k) converges exponentially fast to average(z(0))1p. [

'A simplified version of this example is the scalar iteration z(k + 1) = exp(—1/(k + 1)*)z(k) whose solution satisfies
log(z(k)) = — Zﬁ;é W + log(zo). For @ = 1, limp_, o log(x(k)) diverges to —oo, and limy_, o (k) converges to zero.
Instead, for o > 1, limg o log(x(k)) exists finite, and thus limg_, o (k) does not converge to zero.
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This proof is based on a positive “energy function” that decreases along the system’s evolutions (we
postpone a careful discussion of Lyapunov theory to Chapter 14). The same quadratic function is useful also
for sequences of primitive row-stochastic matrices { A(k) }rez., with a common dominant left eigenvector,
see Exercise E11.5. More general cases require a different type (not quadratic) of “decreasing energy”
fuctions.

Convergence over time-varying digraphs connected over time
We are now ready to state the main result in this chapter.

Theorem 11.4 (Consensus for time-varying algorithms ( , ). Let {A(k)}rez., be a se-
quence of row-stochastic matrices with associated digraphs {G(k)}kezzo- Assume that

(A1) each digraph G(k) has a self-loop at each node;

(A2) each non-zero edge weight a;;(k), including the self-loops weights a;;(k), is larger than a constant e > 0;
and

(A3) there exists a duration 6 € N such that, for all times k € Z>o, the digraph G(k)U---UG(k+d — 1)
contains a globally reachable node.

Then

(i) there exists a non-negative w € R™ normalized to wy + - - - + wy, = 1 such that limy_,, A(k)-A(k —
1) -A0)=1Lw';

(ii) the solution to x(k + 1) = A(k)z(k) converges exponentially fast to (w'(0))1,;

(iii) if additionally each matrix in the sequence is doubly-stochastic, then w = %ln so that

lim z(k) = average(z(0))1,.

k—o00

Note: In a sequence with property (A2), edges can appear and disappear, but the weight of each edge
(that appears an infinite number of times) does not go to zero as k — oo.

Note: This result is analogous to the time-invariant result that we saw in Chapter 5. The existence of a
globally reachable node is the connectivity requirement in both cases.

Note: Assumption (A3) is a uniform connectivity requirement, that is, any interval of length § must
have the connectivity property. In equivalent words, the connectivity property holds for any contiguous
interval of duration J.

Example 11.5 (Shared communication channel with round robin scheduling). Consider the shared
communication channel model with round-robin scheduling. Assume the algorithm is implemented over a
communication graph Gghared-comm that is strongly connected.

Consider now the assumptions in Theorem 11.4. Assumption (A1) is satisfied because in equation (11.1)
the self-loop weight is equal to 1/2. Similarly, Assumption (A2) is satisfied because the edge weight is equal
to 1/2. Finally, Assumption (A3) is satisfied with duration J selected equal to n, because after n rounds
each node has transmitted precisely once and so all edges of the communication graph Gshared-comm are
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present in the union graph. Therefore, the algorithm converges to consensus. However, the algorithm does
not converge to average consensus since it is false that the averaging matrices are doubly-stochastic.
Note: round robin is not necessarily the only scheduling protocol with convergence guarantees. Indeed,
consensus is achieved so long as each node is guaranteed a transmission slot once every bounded period of
time. °

Next, we provide a second theorem on convergence over time-varying averaging systems, whereby we
assume the matrix to be symmetric and the corresponding graphs to be connected over time.

Theorem 11.6 (Consensus for symmetric time-varying algorithms). Let { A(k)}xez., be a sequence
of symmetric row-stochastic matrices with associated undirected graphs {G(k)} keZs,- Let the matrix sequence
{A(k) }rezs, satisfy Assumptions (A1) and (A2) in Theorem 11.4 as well as

(A4) forallk € Z>o, the graph U,>i, G(T) is connected.
Then

(i) im0 AGR)-A(k = 1)« - - A(0) = 11,17
(ii) each solution to x(k + 1) = A(k)x(k) converges exponentially fast to average(z(0))L,.

Note: this result is analogous to the time-invariant result that we saw in Chapter 5. For symmetric
row-stochastic matrices and undirected graphs, the connectivity of an appropriate graph is the requirement
in both cases.

Note: Assumption (A3) in Theorem 11.4 requires the existence of a finite time-interval of duration §
so that the union graph Ug<,<k15—1 G(7) contains a globally reachable node for all times k£ > 0. This
assumption is weakened in the symmetric case in Theorem 11.6 to Assumption (A4) requiring that the
union graph U;>, G(7) is connected for all times k£ > 0.

Finally, we conclude this section with an instructive example.

Example 11.7 (Uniform connectivity is required for non-symmetric matrices). We have learned
that, for asymmetric matrices, a uniform connectivity property (A3) is required, whereas for symmetric
matrices, uniform connectivity is not required (see (A4)). Here is a counter-example from ( , )
showing that Assumption (A3) cannot be relaxed for asymmetric graphs. Initialize a group of n = 3 agents
to

r1 < —1, xa<—1, x3>+4+1.

Step 1: Perform ﬂ:f = (21 +x3)/2, x; = T9, x;; := 3 a number of times §; until
1> +1, x9< -1, z3>+1.

Step 2: Perform ﬂ:f =T, x; = To, x;: := (x2 + x3)/2 a number of times d2 until
1> +1, a2 < -1, z3<-—1.

Step 3: Perform 2 := z1, 73 := (z1 + 22)/2, x5 := 3 a number of times J3 until

1> +1, x9>+41, x3<-—1.
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And repeat this process.
Q Q Q
U o U =
0] ® @ ©) ©) ® @ ©
Step 1 Step 2 Step 3 union
Observe that on steps 1,7, 15, . .., the variable 1 is made to become larger than +1 by computing averages
with 23 > 41. Note that every time this happens the variable x5 > +1 is increasingly smaller and closer
to +1. Hence, §; < d7 < d15 < ..., that is, it takes more steps for z; to become larger than +1. Indeed,
one can formally show the following:
(i) The agents do not converge to consensus.
(if) Hence, one of the assumptions of Theorem 11.4 must be violated.
(iii) It is easy to see that (A1) and (A2) are satisfied.
(iv) Regarding connectivity, note that, for all & € Zx¢, the digraph U;>;, G(7) contains a globally
reachable node. However, this property is not quite equivalent to Assumption (A3).
(v) Assumption (A3) in Theorem 11.4 must be violated: there does not exist a duration § € N such that,
for all k € Z>, the digraph G(k)U---UG(k + 6 — 1) contains a globally reachable node.
(vi) Indeed, one can show that limy_,, dx = 0o so that, as we keep iterating Steps 1+2+3, their duration
grows unbounded. °
11.5 A new analysis method for convergence to consensus
It is well known that, for time-varying systems, the analysis of eigenvalues is not appropriate anymore. In
the following example, two matrices with spectral radius equal to 1/2 are multiplied to obtain a spectral
radius larger than 1:
1 1 5
3 M|z O _ |1 O
0 0][1 O 0 0
This example explains how it is not possible to predict the convergence of arbitrary products of matrices,
just based on their spectral radii. In other words, we need to work harder and with sharper tools.
11.5.1 The max-min function and row-stochastic matrices

In what follows we present a new analysis method for the convergence to consensus for the discrete-time
averaging system. Before establishing the results for time-varying averaging systems, it is instructive to
rederive the convergence results for time-invariant averaging systems.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



11.5. A new analysis method for convergence to consensus 189

We start our analysis by defining the max-min function Vijax-min : R — R>¢ by

Viax-min () = max(z1,...,x,) —min(zy, ..., x,)
= max x; — min x;.
ie{1,...,n} i€{1,...,n}

Note that:

@) Vmax—min(x) > 0, and

(i) Vinax-min(z) = 0 if an only if = «1,, for some « € R.
The following result is a generalization of Exercise E1.1.
Lemma 11.8 (Monotonicity and bounded evolutions). If A is row-stochastic, then for allz € R"
Vinax-min (AZ) < Vinax-min (Z)-

For any sequence of row-stochastic matrices, the solution x(k) of the corresponding time-varying averaging
algorithm satisfies, from any initial condition x(0) and at any time k,

Vmax—min(x(k)) < Vmax—min(JU(O))v and
minz(0) < minz(k) < minz(k + 1) < maxz(k + 1) < maxz(k) < maxz(0).

Proof. For the maximum, let us compute:

n n n
max(Az); = max E a;jr; < max g aij(m}?x a:h) = (max g aij> (m}zllx xh) = 1-maxx;.
7 7 7 3 7
j=1 j=1 j=1

Similarly, for the minimum,

n n n

min(Az); = min g a;jr; > min E aij(mhin xh) = (min g ai]) (mhin xh) =1 min x;.
(] (] (2 (2 (]
Jj=1 Jj=1 Jj=1

Next, given an n-dimensional row-stochastic matrix A, we define its column-maximum row-minimum

entry, denoted y(A), by
A) = max min _a;; € (0, 1]. 11.3
’7( ) je{l,...,n}ie{l,...,n} " [ ’ ] ( )

It is useful to clarify this definition and explain how to compute this quantity: for each column j the
quantity b; = min; a;; is the smallest entry over the n rows, and then (A) = max; b; is the largest of
these entries over the n columns.

The next lemma provides an alternative proof method for the convergence to consensus of row stochastic
matrices.

Lemma 11.9 (Alternative convergence analysis for discrete-time averaging). Given ann-dimensional
row-stochastic matrix A, the following statements hold:

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.
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(i) forallx € R™, the max-min function satisfies
Vmax—min(Al') < (1 - 'Y(A))Vmax—min(aj);

(ii) v(A) > 0 if and only if A has a strictly positive column;
(iii) the following properties of A are equivalent:

a) the digraph associated to A contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic,

b) there exists an index h € N such that A" has a positive column, and

c¢) A is semiconvergent to a rank-one matrix.

The lemma immediately implies the following statement: if A satisfies any (and therefore all) of the
properties in statement (iii), then k& — Vipax-min(2(k)) converges exponentially fast to zero in the sense
that, for all time k£ € N and for an index A as in statement (iii)b,

Vmax‘min(x(k)) < (1 - 'Y(Ah)) Le/n] Vinax-min («73(0))
<1

Proof of Lemma 11.9. Statement (i) is trivial if max;cgq . ) mineqy .,y aij = 0; e.g., see Exercise E1.1.
Hence, let us prove the statement when max;e(y . ) Minie(1,. 5} @ij = az; > 0. We compute

n n
Vinax-min (Az) = max E Ty — min E  QipTp
i p=1 i p=1
n

n
= max < E QipTp + aijzcj) — min ( E ipTp + aijx])
1

K3
p=1,p#] p=1,p#]
n n
< min [max ( g QipTmax + aijxj) — min ( E QipTmin + aijxj)},
J i . i .
p=1,p#] p=1,p#]
where, after using the bounds T iy < 2, < Zmax, We minimize the right hand side as a function of j. From

the latter equation we obtain

Vinax-min (Az) = min max <(1 — ) Tmax + aijxj> — max min ((1 — ) Tmin + aija:j>
J ? J 7

and, noting that min; max;(1 — a;;) = 1 — max; min; a;; = 1 — az,

= ((1 — G7)Tmax + aiﬂj) - ((1 — Gg7)Tmin + aij%*)
= (1 - aij) (xmax - xmin) = (1 - aij)vmax—min(x)-

Statement (ii) is an immediate consequence of the definition of 7y(A). Indeed, if each column j has an
entry equal to zero, then the quantity b; = min; a;; = 0 for all j and, and in turn, y(A) = max; b; = 0.

Regarding statement (iii), the equivalence between (iii)a and (iii)b is a generalization of Theorem 4.7
(given as Exercise E4.12) and the equivalence between (iii)a and (iii)c is given in Theorem 5.1. |
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11.5.2 Connectivity over time

Before presenting the convergence to consensus proof for time-varying averaging systems, we provide one
more useful result. This result allows us to manipulate our assumption of connectivity over time.

Lemma 11.10 (Global reachability over time). Given a sequence of digraphs {G(k)} ez, such that
each digraph G (k) has a self-loop at each node, the following two properties are equivalent:

(i) there exists a duration 6 € N such that, for all times k € Z>, the digraph G(k)U---UG(k+ 6 — 1)
contains a directed spanning tree;

(ii) there exists a duration A € N such that, for all times k € Z>, there exists a node j = j(k) that reaches
all nodesi € {1,...,n} over the interval {k,k + A — 1} in the following sense: there exists a sequence
of nodes {j, hi,...,ha_1,1} such that (j, h1) is an edge at time k, (h1, ha) is an edge at time k + 1,
..oy (ha—2,ha_1) is an edge at time k + A — 2, and (ha_1,1) is an edge at timek + A — 1;

or, equivalently, for the reverse digraph,

(iii) there exists a duration 6 € N such that, for all times k € Z>¢, the digraph G(k)U---UG(k+d — 1)

contains a globally reachable node;

(iv) there exists a duration A € N such that, for all times k € Z>, there exists a node j reachable from all
nodesi € {1,...,n} overthe interval {k,k + A — 1} in the following sense: there exists a sequence of
nodes {j, h1,...,ha_1,1} such that (hy,j) is an edge at time k, (ho, h1) is an edge at time k + 1, ...,
(ha—1,ha—2) is an edge at time k + A — 2, and (i, ha_1) is an edge at time k + A — 1.

Note: It is sometimes easy to see if a sequence of digraphs satisfies properties (i) and (iii). Property (iv)
is directly useful in the analysis later in the chapter. Regarding the proof of the lemma, it is easy to check
that (ii) implies (i) and that (iv) implies (iii) with § = A. The converse is left as Exercise E11.3.

11.5.3 Proof of Theorem 11.4: the max-min function is exponentially decreasing

We are finally ready to prove Theorem 11.4. We start by noting that Assumptions (A1) and (A3) imply
property Lemma 11.10(iv) about the existence of a duration A with certain properties. Next, without loss of
generality, we assume that at some time hA, for some h € N, the solution z(hA) is not equal to a multiple
of 1,, and, therefore, satisfies Vipax-min(z(RA)) > 0. Clearly,

z(h+1)A)=A((h+1)A—-1)--- A(hRA+1) - A(hA) z(hA)
=: Az(hA).

By Assumption (A3), we know that there exists a node j reachable from all nodes ¢ over the interval
{hA,(h + 1)A — 1} in the following sense: there exists a sequence of nodes {j, h1,...,ha_1,i} such
that all following edges exist in the sequence of digraphs: (h1, j) at time hA, (hg, h1) at time hA + 1, ...,
(i,ha—1) at time (h + 1)A — 1. Therefore, Assumption (A2) implies

an, j (hA) > €, Qhyhy (hA + 1) > & oy Qiha ((h +1)A - 1) >e,
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and therefore their product satisfies
i ha_y ((h +1)A — 1) “Ohp_1 hAs ((h + 1)A — 2) © e Qhg kg (hA + 1) “Ohy g (hA) > B,

Remarkably, this product is one term in the (7, j) entry of the row-stochastic matrix A = A((h + 1)A —
1)--- A(hA). In other words, Assumption (A3) implies A;; > 2.
Hence, for all nodes 4, given globally reachable node j during interval {hA, (h + 1)A}, we compute
zi((h+1)A) = A jz;(hA) + Z;ﬁj’p:l Ai pxp(hA) (by definition)
< A jai(hA) + (1 — A; j) max (z(hA)) (because zp,(hA) < max(z(hA)))
< r;r‘lin <Ai7jxj(hA) +(1—A; ) max(m(hA))) (because zj(hA) < max(z(hA)))
i
< ePxj(hA) + (1 — %) max(z(hA)).
A similar argument leads to
2i((h+1)A) > e22;(hA) + (1 — %) min(2(hA)),
so that
Vinax-min (2((h 4+ 1)A)) = max z; ((h + 1)A) — minz; ((h + 1)A)

< <€ij(hA) +(1—€2) max(x(hA))) — (Eij(hA) +(1-¢€%) min(m(hA)))
< (1 = €®) Vinaxemin (2(hA) ).

This final inequality, together with Lemma 11.8, proves exponential convergence of the cost function
k — Vinax-min (2 (k)) to zero and convergence of z(k) to a multiple of 1,,. We leave the other statements in
Theorem 11.4 to the reader and refer to ( , ; , ) for further details.

11.6 Time-varying algorithms in continuous-time

We now briefly consider the continuous-time linear time-varying system

We associate a time-varying graph G(t) (without self loops) to the time-varying Laplacian L(t) in the usual
manner.

For example, in Chapter 7, we discussed how the heading in some flocking models is described by the
continuous-time Laplacian flow:

6=—L9,

where each 0 is the heading of a bird, and where L is the Laplacian of an appropriate weighted digraph
G': each bird is a node and each directed edge (i, j) has weight 1/dqu (7). We discussed also the need to
consider time-varying graphs: birds average their heading only with other birds within sensing range, but
this sensing relationship may change with time.
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Recall that the solution to a continuous-time time-varying system can be given in terms of the state
transition matrix:

z(t) = ©(¢,0)x(0),
We refer to ( , ) for the proper definition and study of the state transition matrix.
Theorem 11.11 (Consensus for time-varying algorithms in continuous time). Lett — A(t) be a
time-varying adjacency matrix with associated time-varying digrapht — G(t),t € R>. Assume
(A1) each non-zero edge weight a;;(t) is larger than a constant e > 0,

(A2) there exists a duration T’ > 0 such that, for allt € R>, the digraph associated to the adjancency matrix

/t L

contains a globally reachable node.
Then

(i) there exists a non-negative w € R™ normalized to wy + - - - + wy, = 1 such that the state transition
matrix ®(t,0) associated to —L(t) satisfies limy_, ®(t,0) = 1,wT,

(ii) the solution to &:(t) = —L(t)x(t) converges exponentially fast to (w'x(0))1,,
(iii) if additionally, the 1T L(t) = O} for almost all times t (that is, the digraph is weight-balanced at all
times, except a set of measure zero), then w = %1n so that

lim z(t) = average(z(0))1,.

t—o00

Historical notes and further reading

The main theorem in this chapter is due to ( )- Note that Theorem 11.4 provides only suffi-
cient condition for consensus in time-varying averaging systems. For results on necessary and sufficient
conditions we refer the reader to the recent works ( , ; , )
and references therein. The proof of Theorem 11.4 is inspired by the presentation in ( , ,
Theorem 9.2).

In the context of time-varying averaging systems, other relevant references on first and second order,
discrete and continuous time systems include ( , ; , ; , , ;

, ; , )-

For references on time-varying continuous-time averaging systems we refer to ( , ; ,

; ; )
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11.8

Exercises

E11.1

E11.2

E11.3

E11.4

E11.5

On the product of stochastic matrices ( R ). Let k > 2 and A4, Ao, ..., Ai be non-
negative n X n matrices with positive diagonal entries. Let i, (resp. amax) be the smallest (resp. largest)
diagonal entry of Ay, As, ..., Ay and let Gy, . .., G} be the digraphs associated with Ay, ..., A.

Show that

(12

k—1
mm) (A1—|—A2—|—~-~+Ak),and

amax

@ Audaee >
(ii) if the digraph G U. ..U G}, is strongly connected, then the matrix A; - - - Ay is irreducible.
Hint: Set A; = aminly, + B; for a non-negative B;, and show statement (i) by induction on k.

Products of primitive matrices with positive diagonal. Let A;, A,,..., A, _1 be primitive n X n ma-
trices with positive diagonal entries. Show that A; A5 --- A, > 0.

A simple proof. Prove Lemma 11.10.
Hint: You will want to use Exercise E3.6.

Alternative sufficient condition. As in Theorem 11.4, let { A(k) }rez., be a sequence of row-stochastic
matrices with associated digraphs {G/(k) }xez.,- Prove that the same asymptotic properties in Theorem 11.4
hold true under the following Assumption (A5), instead of Assumptions (A1), (A2), and (A3):

(A5) there exists a node j such that, for all times k € Zx, each edge weight a;;(k), i € {1,...,n},is larger
than a constant ¢ > 0.

In other words, Assumption (A5) requires that all digraphs G (k) contain all edges a;;(k), i € {1,...,n},
and that all these edges have weights larger than a strictly positive constant.
Hint: Modify the proof of Theorem 11.4.

Convergence over digraphs strongly-connected at all times. Consider a sequence {A(k)}rez., of
row-stochastic matrices with associated digraphs {G (k) }xez., so that

(A1) each non-zero edge weight a;;(k), including the self-loops weights a;;(k), is larger than a constant
e >0

(A2) each digraph G(k) is strongly connected and aperiodic point-wise in time; and

(A3) there is a positive vector w € R satisfying 17w = 1 and w" A(k) = w for all k € Z>o.

Without relying on Theorem 11.4, show that the solution to z(k+1) = A(k)x (k) satisfies to limg_, o z(k) =

(wTz(0))1,,.

Hint: Search for a non-negative cost function decreasing along the dynamics, as in the proof of Theorem 11.3.

Lectures on Network Systems, F. Bullo, Version v0.96(a) (Jan 3, 2018). Draft not for circulation. Copyright © 2012-18.



CHAPTER 1 2

Randomized Averaging Algorithms

In this chapter we discuss averaging algorithms defined by sequences of random stochastic matrices. In
other words, we imagine that at each discrete instant, the averaging matrix is selected randomly according
to some stochastic model. We refer to such algorithms as randomized averaging algorithms. Randomized
averaging algorithms are well behaved and easy to study in the sense that much information can be learned
simply from the expectation of the averaging matrix.

12.1 Examples of randomized averaging algorithms

Consider the following models of randomized averaging algorithms.

Uniform Symmetric Gossip. Given an undirected graph G, at each iteration, select uniformly likely one

of the graph edges, say agents i and j talk, and they both perform (1/2,1/2) averaging, that is:
1
QZZU{ + 1) = .’L’j(k) + 1) = i(x,(k) + x](k))

Packet Loss in Communication Network. Given a strongly connected and aperiodic digraph, at each
communication round, packets travel over directed edges and, with some likelihood, each edge may
drop the packet. (If information is not received, then the receiving node can either do no update
whatsoever, or adjust its averaging weights to compensate for the packet loss).

Broadcast Wireless Communication. Given a digraph, at each communication round, a randomly-
selected node transmits to all its out-neighbors. (Here we imagine that simultaneous transmissions
are prohibited by wireless interference.)

Opinion Dynamics with Stochastic Interactions and Prominent Agents. (Somehow similar to uni-
form gossip) Given an undirected graph and a probability 0 < p < 1, at each iteration, select
uniformly likely one of the graph edges and perform: with probability p both agents perform the
(1/2,1/2) update, and with probability (1 —p) only one agent performs the update and the “prominent
agent” does not.

Note that, in the second, third and fourth example models, the row-stochastic matrices at each iteration
are not symmetric in general, even if the original digraph was undirected.
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12.2 A brief review of probability theory

We briefly review a few basic concepts from probability theory and refer the reader for example to ( ,
)-
+ Loosely speaking, a random variable X : {2 — FE is a measurable function from the set of possible
outcomes €} to some set I/ which is typically a subset of R.

« The probability of an event (i.e., a subset of possible outcomes) is the measure of the likelihood that
the event will occur. An event occurs almost surely if it occurs with probability equal to 1.

+ The random variable X is called discrete if its image is finite or countably infinite. In this case, X is
described by a probability mass function assigning a probability to each value in the image of X.

Specifically, if X takesvaluein{z1,...,za} C R, then the probability mass functionp : {z1,...,zp} —
[0, 1] satisfies px (z;) > 0and " | px(2;) = 1, and determines the probability of X being equal to
x; by P[X = ;] = px ().

+ The random variable X is called continuous if its image is uncountably infinite. If X is an absolutely
continuous function, X is described by a probability density function assigning a probability to
intervals in the image of X.

Specifically, if X takes value in R, then the probability density function fx : R — [0, 1] satisfies
f(z) > 0and [, f(x)dx = 1, and determines the probability of X taking value in the interval [a, b]

by Pla < X <] = f(f f(x)dx.
« The expected value of a discrete variable is E[X] = S @;px (z;).
The expected value of a continuous variable is E[X] = [*_x fx(x)dz.

« A (finite or infinite) sequence of random variables is independent and identically distributed (i.i.d.) if
each random variable has the same probability mass/distribution as the others and all are mutually
independent.

12.3 Randomized averaging algorithms

In this section we consider random sequences of row stochastic sequences. Accordingly, let A(k) be the
row-stochastic averaging matrix occurring randomly at time k and G(k) be its associated graph. We then
consider the stochastic linear system

z(k+1) = A(k)x(k).
We are now ready to present the main result of this chapter.

Theorem 12.1 (Consensus for randomized algorithms). Let {A(k)}rez., be a sequence of random
row-stochastic matrices with associated digraphs {G(k) } kez.,- Assume

(A1) the sequence of variables { A(k)}kezs, is iid.,

(A2) at each time k, the random matrix A(k) has a strictly positive diagonal so that each digraph in the
sequence {G(k)} ez, has a self-loop at each node, and
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(A3) the digraph associated to the expected matrix E[A(k)], for any k, has a globally reachable node.
Then the following statements hold almost surely:
(i) there exists a random non-negative vector w € R™ withw; + - - - + w, = 1 such that

klim A(k)-A(k—1) - - - A(0) = 1,w"  almost surely,
—00

(ii) as k — oo, each solution x(k) of x(k + 1) = A(k)x(k) satisfies
lim z(k) = (wT:U(O))ln almost surely,

k—oo

(iii) if additionally each random matrix is doubly-stochastic, then w = %ln so that

lim z(k) = average(z(0))1,.
k—o0
Note: if each random matrix is doubly-stochastic, then E[A(k)] is doubly-stochastic. The converse is
easily seen to be false.
Note: Assumption (A1) is restrictive and more general conditions are sufficient; see the discussion
below in Section 12.4.

Additional results on uniform symmetric gossip algorithms

Recall: given undirected graph G, at each iteration, select uniformly likely one of the graph edges, say
agents i and j talk, and they both perform (1/2,1/2) averaging, that is:

ik +1) = ay(k+ 1) = %(xi(k) T 2i(k)).

Corollary 12.2 (Convergence for uniform symmetric gossip). If the graph G is connected, then each
solution to the uniform symmetric gossip converges to average consensus with probability 1.

Proof based on Theorem 12.1. The corollary can be established by verifying that Assumptions (A1)-(A3) in
Theorem 12.1 are satisfied. Regarding (A3), note that the graph associated to the expected averaging matrix
is G. |

We provide also an alternative elegant proof.

Proof based on Theorem 11.6. For any time ky > 0 and any edge (i, j), consider the event “the edge (7, j) is
not selected for update at any time larger than k(. Since the probability that (4, j) is not selected at any
time k is 1 — 1/m, whre m is the number of edges, the probability that (7, j) is not selected at any times

after kg is
1\ k—ko
lim (1 - 7) ~0

k—o0 m

With this fact one can verify that all assumptions in Theorem 11.6 are satisfied by the random sequence
of matrices almost surely. Hence, almost sure convergence follows. Finally, since each matrix is doubly
stochastic, average(x(k)) is preserved, and the solution converges to average(z(0))1,,. [
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12.3.2 Additional results on the mean-square convergence factor

Given a sequence of stochastic averaging matrices {A(k)}xez., and corresponding solutions z(k) to
x(k + 1) = A(k)z(k), we define the mean-square convergence factor by

1/k
Pmean-square ({A(K) Yhezop) =  sup  limsup (E[||x(k)—average(x(k))lanD .

m(o)izﬁnal k—o0

We now present upper and lower bounds for the mean-square convergence factor.

Theorem 12.3 (Upper and lower bounds on the mean-square convergence factor). Under the same
assumptions as in Theorem 12.1, the mean-square convergence factor satisfies

pes (BIAMR)])” < rmcansquare < p(E | AR)T (L = 127 /m) A(R)] ).

12.4 Historical notes and further reading

In this chapter we present results from (

] 3 H] 5

, ) that build on classic references such as ( , ; , ).
Specifically, references for the main Theorem 12.1 are ( , ) and (
, )- Note that Assumption (A1) is restrictive and more general conditions are sufficient.
For example, ( ) treat the case of a sequence of row-stochastic matrices
generated by an ergodic and stationary random process. Related analysis and modeling results are presented
in ( , 2005; , 2013; , 2013; , 2014; ,
)-
For a comprehensive analysis of the mean-square convergence factor we refer to ( ,
, Proposition 4.4).
A detailed analysis of the uniform symmetric gossip model is given by ( )- A detailed
analysis of the model with stochastic interactions and prominent agents is given by ( ,
); see also ( , ).

In this book we will not discuss averaging algorithms in the presence of quantization effects, we refer the

reader instead to ( , ; , ; , ). Similarly, regarding averaging
in the presence of noise, we refer to ( , ; , ; , ;

, ). Finally, regarding averaging in the presence of delays, we refer to (

5 5 > s > )
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12.5 Table of asymptotic behaviors for averaging systems

Dynamics

Assumptions & Asymptotic Behavior

References

discrete-time:
z(k+1) = Az(k),
A row-stochastic adjacency
matrix of digraph G

G has a globally reachable node
=
limg o0 #(k) = (wT2(0))1,,

where w > 0, w' A = w', and 1lw =1

Thm 5.1

continuous-time:

z(t) = —Lx(t),

L Laplacian matrix of
digraph G

G has a globally reachable node
=
limy o0 2(t) = (wT2(0))1,,

where w > 0, w' L = OZ, and 1Iw =1

Thm 7.4

time-varying discrete-time:
z(k+1) = A(k)x(k),
A(k) row-stochastic adjacency
matrix of digraph G(k),
ke ZZO

(i) at each time k, G(k) has self-loop at each node,

(ii) each a;;(k) > 0 is larger than € > 0,

(iii) there exists duration 9 s.t., for all time £,
G(k)U---UG(k 4+ 6 — 1) has a globally reachable node

=

limy,_s00 2(k) = (w'2(0))1,, where w > 0,1Tw =1

Thm 11.4

time-varying symmetric
discrete-time:
z(k+1) = A(k)z(k),
A(k) symmetric stochastic
adjacency of G(k), k € Z>¢

(i) at each time k, G(k) has self-loop at each node,

(ii) each a;;(k) > 0 is larger than € > 0,
(iii) for all time k, U,>j G(7) is connected
.

limg_,o (k) = average (x(O)) 1,

Thm 11.6

time-varying continuous-time:
z(t) = —L(t)z(t),
L(t) Laplacian matrix of
digraph G(t),t € R>g

(i) each a;j(k) > 0 is larger than € > 0,

(ii) there exists duration 7’ s.t., for all time ¢,
digraph associated to tt+TL(7)dT has a globally reachable

node
=

limy_s00 2(k) = (w'2(0))1,, where w > 0,1Jw = 1

Thm 11.11

randomized discrete-time:
z(k+1) = A(k)x(k),
A(k) random row-stochastic
adjacency matrix
of digraph G(k), k € Z>¢

(i) {A(k})}kezzo is i.i.d.,

(ii) each matrix has strictly positive diagonal,
(iii) digraph associated to E[A(k)] has a globally reachable

node,

=
-

limg 00 z(k) = (w x(O)) 1,, almost surely,
where w > 0 is random vector with 17w = 1

Thm 12.1

Table 12.1: Averaging systems: definitions, assumptions, asymptotic behavior, and reference
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CHAPTER ] 3

Motivating Problems and Systems

In this chapter we begin our study of nonlinear network systems by introducing some example models
and problems. Although the models presented are simple and their mathematical analyses are elementary,
these models provide the appropriate notation, concepts, and intuition required to consider more realistic
and complex models.

13.1 Lotka-Volterra population models

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for
modeling the dynamics of interacting populations in mathematical ecology. These equations were originally
developed in ( , ; , )- In what follows we introduce various single-species and multi-
species model of population dynamics. We start with single-species models. We let x(t) denote the
population number or its density at time ¢. The ratio @ /x is the average contribution of an individual to the
growth of the population.

Single-species constant growth model In a simplest model, one may assume &/ is equal to a constant
growth rate r. This assumption however leads to exponential growth or decay z(t) = z(0) e"* depending
upon whether r is positive or negative. Of course, exponential growth may be reasonable only for short
periods of time and violates a reasonable assumption of bounded resources for large times.

Single-species logistic growth model In large populations it is natural to assume that resources would
diminish with the growing size of the population. In a very simple model, one may assume & /x = r(1—z/k),
where r > 0 is the intrinsic growth rate and £ > 0 is called the carrying capacity. This assumption leads to
the so-called logistic equation

i(t) = raz(t) (1 — z(t)/k). (13.1)

This dynamical system has the following behavior:
(i) there are two equilibrium points 0 and &,
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(ii) the solution is
kz(0) e

M) = 0@ =)

(iii) all solutions with 0 < z(0) < k are monotonically increasing and converge asymptotically to x,

(iv) all solutions with x < (0) are monotonically decreasing and converge asymptotically to k.

The reader is invited to show these facts and related ones in Exercise E13.1. The evolution of the logistic
equation from multiple initial values is illustrated in Figure 13.1.

A

kz(0)e™

2(t) = K+ z(0)(emt — 1)

> t

1/r 2/r 3/r 4/r 5/r

Figure 13.1: Solutions to the logistic equations from 10 initial conditions

Multi-species Lotka-Volterra model with signed interactions Finally, we consider the case of n > 2
interacting species. We assume logistic growth model for each species with an additional term due to the

interaction with the other species. Specifically, we write the growth rate for species i € {1,...,n},
i -
K3
;i =7r; +a;r; + | Z ‘aija;j, (13.2)
J=1,j#1

where the first two terms are the logistic equation (so that a;; is typically negative because of bounded
resources and the carrying capacity is k; = —r;/a;;), and the third term is the combined effect of the
pairwise interactions with all other species. The vector 7 is called the intrisic growth rate, the matrix
A = la;j] is called the interaction matrix, and the ordinary differential equations (13.2) are called the
Lotka-Volterra model for n > 2 interacting species. For z € R%, this model is written in vector form as

@ = diag(z) (Az +r) = fiv(z). (13.3)

As illustrated in Figure 13.2, for any two species ¢ and j, the sign of a;; and a;; in the interaction matrix
A is determined by which of the following three possible types of interaction is being modeled:

(+, +) = mutualism: for a;; > 0 and aj; > 0, the two species are in symbiosis and cooperation. The
presence of species 7 has a positive effect on the growth of species j and vice versa.
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(a) Common clownfish (Amphiprion ocel-
laris) near magnificent sea anemones
(Heteractis magnifica) on the Great Bar-
rier Reef, Australia. Clownfish and
anemones provide an example of eco-
logical mutualism in that each species
benefits from the activity of the other.
Public domain image from Wikipedia.

(b) The canadian lynx (Lynx canadensis)
is a major predator of the snowshoe hare
(Lepus americanus). Historical records of
animals captures indicate that the lynx
and hare numbers rise and fall periodi-
cally; see (Odum, 1959). Public domain
image from Rudolfo’s Usenet Animal
Pictures Gallery (no longer in existence).

(c) Subadult male lion (Panthera Leo)
and spotted hyena (Crocuta Crocuta)
compete for the same resources in the
Maasai Mara National Reserve in Narok
County, Kenya. Picture "Hyédnen und
Léwe im Morgenlicht" by lubye134, li-
censed under Creative Commons Attri-
bution 2.0 Generic (BY 2.0).

Figure 13.2: Mutualism, predation and competition in population dynamics

(+,-) = predation: for a;; > 0 and a;; < 0, the species are in a predator-prey or host-parasite relationship.
In other words, the presence of a prey (or host) species j favors the growth of the predator (or parasite)
species i, wheres the presence of the predator species has a negative effect on the growth of the prey.

(--) = competition: for a;; < 0 and aj; < 0, the two species compete for a common resources of sorts
and have therefore a negative effect on each other.

Note: the typical availability of bounded resources suggests it is ecologically meaningful to assume that
the interaction matrix A is Hurwitz and that, to model the setting in which species live in isolation, the
diagonal entries a;; are negative.

Scientific questions of interest include:

(i) Does the Lotka-Volterra system have equilibrium points? Are they stable?
(ii) How does the presence of mutualism, predation, and/or competition affect the dynamic behavior?

(iii) Does the model predict extinction or periodic evolution of species?

Virus propagation models

We now study the diffusion and propagation of infectious diseases over networks. The proposed models may
be relevant also in the context of propagation of information/signals in a communication network, spread
of rumors over a social network, and diffusion of innovations in competitive economic networks. In the
interest of clarity, we begin with “lumped” variables, i.e., variables which represent an entire “well-mixed”
population of nodes. We then introduce “distributed” variable models, i.e., network models.

We start by studying three low-dimensional deterministic models in which nodes may be in one of two
or three states; see Figure 13.3. For the SI and SIS models, we say that an epidemic outbreak takes place if a
small initial fraction of infected individuals leads to the contagion of a significant fraction of the population.
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We say the system displays an epidemic threshold if epidemic outbreaks occur when some combined value
of parameters and initial conditions are above critical values.

|
Susceptible | Infected Susceptible ! | Infected

Susceptible I Infected I Recovered

Figure 13.3: The three basic models SI, SIS and SIR for the propagation of an infectious disease

The SI model Given a population, let z(¢) denote the fraction of infected individuals at time ¢ € R>.
Similarly, let s(¢) denote the fraction of susceptible individuals. Clearly, z(t) + s(t) = 1 at all times. We
model propagation via the following first-order differential equation, called the susceptible—infected (SI)
model

#(t) = Bs(t)a(t) = B — a()a(t), (13.4)
where 8 > 0 is the infection rate. It is immediate to see that the SI model (13.4) is a logistic equation (13.1)
with growth rate r = [ and carrying capacity x = 1. As before, the solution from initial condition
z(0) =z € [0,1] is

Bt
1 — g + g et

From all positive initial conditions 0 < z¢ < 1, the solution z(¢) is monotonically increasing and converges
to the unique equilibrium 1 as ¢ — oo, as illustrated in Figure 13.4.

(13.5)

x(t), % infected individuals

100%

80%

60%

40%

20%

2/ 4/8 6/8 8/8

Figure 13.4: Evolution of the fraction of infected individuals in the (lumped deterministic) SI model

The SIS model Next, we study a model in which individuals recover from the infection, but are susceptible
to being re-infected. As in the SI model, the population is divided into two fractions with s(¢) + z(¢) = 1
and [ is the infection rate. We model the recovery process via a constant recovery rate v and write the
(susceptible—infected—susceptible) SIS model as

& = fsr —yx = (f—v— PBr)r. (13.6)
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This SIS model is again a logistic equation with closed-form solution

_ (8 =)o
Brg — e~ B (y — B(1 - z9))’
from initial condition z(0) = zo € [0, 1] and for § # 7. Note, however, that there is a change now: it is

possible for the carrying capacity 3/(/3 — ) to be positive or negative. From the solution in equation (13.7)
and from the simulations in Figure 13.5, one can observe the following two cases:

x(t)

(13.7)

(i) if 8 < v, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic disappears), and

(ii) if B > ~, then, from all positive initial conditions z(0) > 0, all trajectories converge to the unique
exponentially stable equilibrium z = (8 — 7)/f < 1 (epidemic outbreak and steady-state epidemic
contagion).

z(t) % infected individuals A z(t) % infected individuals

100% 100%

80% \ 80% \

60% 60%

40% 40%

20% 20%
t t
> >

12 16 4 8 12 16
(a) SISmodel with f =1 < v =2 (b) SIS model with =1 >~y = .5

Figure 13.5: Evolution of the fraction of infected individuals in the (lumped deterministic) SIS model

The SIR model As third and final lumped deterministic model, we study the setting in which individuals
recover from the infection and are not susceptible to the epidemics after one round of infection. In other
words, we assume the population is divided into three distinct groups: s(t) denotes the fraction of susceptible
individuals, 2:(¢) denotes the fraction of infected individuals, and r(¢) denotes the fraction of recovered
individuals. Clearly, s(t) + x(t) 4+ r(t) = 1. We model the recovery process via a constant recovery rate -y
and write our (susceptible—infected—recovered) SIR model as

5(t) = —Bs(D)a(),
#(t) = Bs(D(t) — ya(b), (1338)
#(t) = ya ().

Note that the first term is the same infection term as in the SI model and the second term is the same
recovery term as in the SIS model.

We postpone the analysis of this mode till later, but illustrate its behavior via a simulation in Figure 13.6.

Note the qualitatively different behavior for /vy = 4 and 3/v = 1/4.
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2 2(t) % infected, s(t) % susceptible, r(t) % recovered 4 2(t) % infected, s(t) % susceptible,r(t) % recovered
100% N 100%
s(t)
80% 80%
r(t)
60% 60% & s(t)
40% \\ 0% r(t)
z(t)
20% 20%
/ ¥ t \_ =) t
. . . >
4 8 12 16 4 8 12 16
(a) SIR model with 8 = 2, v = 1/4, initial infected 1% (b) SIR model with 8 = 2, v = 4, initial infected 30%

Figure 13.6: Evolution of the fraction of infected, susceptible and recovered individuals in the (lumped deterministic)
SIR model (assuming zero recovered individuals at initial time)

The network/multigroup epidemic models We conclude this section by presenting natural extensions
of the three lumped SI/SIS/SIR scalar models to the setting of network multigroup models; originally due
to ( , ; , ). In other words, we new present deterministic network
models for the propagation of epidemics.

Two interpretations of the provided models are possible: if node ¢ is a population of individuals
at location 7, then x; can be interpreted as the infected fraction of that population. If node 7 is a sin-
gle individual, then z; can be interpreted as the probability that the individual is infected: z;(t) =
Plindividual ¢ is infected at time ¢].

Consider an undirected weighted graph of order n with adjacency matrix A and degree matrix D =
diag(A1l,). The entries of A describe the frequency of contact among individuals; the graph is therefore
referred to as a contact network (the nodes are individuals, the links are social contacts). Let z;(¢) € [0, 1]
denote the fraction of infected individuals at node 7 € V" at time ¢t € R>(. Given an infection rate 3, for
x € [0, 1]™, the network SI model is

n

aijwj(t). (13.9)

ai(t) = B —2,(1))

j=1

Next, given additionally a recovery rate ~, the network SIS model is

£i(t) = B —wi(t)) Y agjary(t) =y (o). (13.10)

And, finally, we consider the SIR model. Let s;(t), z;(t), ri(t) € [0, 1] denote the fractions of susceptibile,
infected and recovered individuals at node ¢ € V" at time ¢ € R>(. The network SIR model is

$i(t) = —Bsi(t) Z::1 Qi T 5 (1),
i (t) = Bsi(l) Z::l aijxi(t) — yai(t), (13.11)
ri(t) = yi(t).
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These models are immediately written in equivalent vector form as:

network SI: T = B(In — diag(z))Aw, (13.12)
network SIS: i = B(I, — diag(z)) Az — vy, (13.13)
network SIR: $ = —pdiag(s)Ax, (13.14)

& = fdiag(s)Azr — yx.

Note that the SIR system is completely specified by two equations and the constraint s(¢) +z(t)+7r(t) = 1,.
Scientific questions of interest for network epidemic models include:
(i) Do the network models have a behavior similar to the scalar models?

(ii) As a function of the model parameters, what possible asymptotic behaviors (e.g., vanishing infection,
steady-state epidemic, full contagion) arise?

(iif) What is the transient propagation of epidemics starting from small initial fractions of infected nodes
(epidemic outbreak or monotonically vanishing infection)?

13.3 Kuramoto coupled-oscillator models
In this section we introduce network of coupled oscillators and, in particular, phase-coupled oscilla-
tors. We start with two simple definitions. Given a connected, weighted, and undirected graph G =

({1,...,n}, E, A) and angles 01, . . ., 6,, associated to each node in the network, define the coupled oscilla-
tors model by

9’i:wi_zaijsm(9i_9j), ie{l,...,n}. (13.15)
j=1

A special case of this model is due to ( , ); the Kuramoto coupled oscillators model is characterized
by a complete homogeneous graph (i.e., a graph with identical edge weights a;; = K/n for all i,j €
{1,...,n} and for some coupling strength K):

) K
0; =w; — — > sin(6; — 0,), e {1,....n}. 13.16
w n;sm( ) ie{ n} ( )

Note: for n = 2, with the shorthands w = w; — wy and a = aj2 + a9, the coupled oscillator model can
be written as a one-dimensional system in the difference variable § = 6; — 65 as:

0 = w — asin(0). (13.17)

Coupled oscillator models arise naturally in many circumstances; in what follows we present three
examples taken from ( , ).
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Example #1: A spring network on a ring We start by studying a system of n dynamic particles
constrained to rotate around a unit-radius circle and assumed to possibly overlap without ever colliding.
Each particle is subject to (1) a non-conservative torque 7;, (2) a linear damping torque, and (3) a total elastic
torque. This system is illustrated in Figure 13.7.

We assume that pairs of interacting particles ¢ and j are coupled through elastic springs with stiffness
kij > 0; we set k;; = 0 if the particles are not interconnected. The elastic energy stored by the spring
between particles at angles 0; and 0; is

U;;(605,0;) = %dis‘[ance2 = k—; ((cos0; — cos ;) + (sin6; — sin6;)?)
= kij (1 — cos(;) cos(8;) — sin(6;) sin(6;)) = ki; (1 — cos(6; — 6;)),

so that the elastic torque on particle ¢ is

0

Ti(0:,05) = =5,

Uij(ﬁi, 9]) = —kij sin(@i — 9])

Newton’s Law applied to this rotating system implies that the network of spring-interconnected particles
obeys the dynamics

mib; + dib; = 7 — Zn ) k;jsin(0; — 6;),
J:

where m; and d; are inertia and damping coefficients. In the limit of small masses m; and uniformly-high
viscous damping d = d;, that is, m;/d =~ 0, the model simplifies to the coupled oscillator network (13.15)

éi:wi—Zaijsin(Gi—Gj), iG{l,...,n}~
j=1

with natural rotation frequencies w; = 7;/d and with coupling strengths a;; = k;;/d.

Figure 13.7: Mechanical analog of a coupled oscillator network
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Example #2: The structure-preserving power network model As second example we consider an
AC power network, visualized in Figure 13.8, with n buses including generators and load buses. We present
two simplified models for this network, a static power-balance model and a dynamic continuous-time
model.

Canada

vo || | i_'ﬁ@@

. lL‘% So T T

NoCal

P
Utah Jr

—— a 0
@Auzona @ ] [] @ South

(a) Line diagram (b) Equivalent graph representation

Figure 13.8: A simplified aggregated model with 16 generators and 25 load busses of the Western North American
power grid, ofter referred to as the Western Interconnect. This model is often studied in the context of inter-area
oscillations ( , ). In the equivalent graph representation, generators are represented by light blue
boxes and load buses by light red boxes.

The transmission network is described by an admittance matrix Y~ € C™*™ that is symmetric and sparse
with line impedances Z;; = Zj; for each branch {4, j} € E. The network admittance matrix is sparse
matrix with nonzero off-diagonal entries Y;; = —1/Z;; for each branch {i, j} € E; the diagonal elements
Yii=— Z?:L#i Y; assure zero row-sums.

The static model is described by the following two concepts. Firstly, according to Kirchhoff’s current
law, the current injection at node ¢ is balanced by the current flows from adjacent nodes:

n 1 n
Li=) 7 (Vi=Vj) =3 YyV;.
=174 j=1

J

Here, I; and V; are the phasor representations of the nodal current injections and nodal voltages, so that, for
example, V; = |V;| €% corresponds to the signal |V;| cos(wot + 6;). (Recall i = v/—1.) The complex power
injection S; = V; - I; (where Z denotes the complex conjugate of z € C) then satisfies the power balance
equation
n n
Si=Vie Y ViV =D ViglVillVjle "=
j=1 Jj=1

Secondly, for a lossless network the real part of the power balance equations at each node is

P; = 7 sin(60; — 0; , 1e{l,...,n}, 13.18
Ji ; a;j - sin( i) i€ n} ( )

active power injection active power flow from j to 4
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where a;; = |V;||V;]|Yi;| denotes the maximum power transfer over the transmission line {7, j}, and
P; = R(S;) is the active power injection into the network at node 4, which is positive for generators and
negative for loads. The systems of equations (13.18) are the active power flow equations at balance.

Next, we discuss a simplified dynamic model. Many appropriate dynamic models have been proposed
for each network node: zeroth order (for so-called constant power loads), first-order models (for so-called
frequency-dependent loads and inverter-based generators), and second and higher order for generators;
see ( , ). For extreme simplicity, we here assume that every node is described by a
first-order integrator with the following intuition: node i speeds up (i.e., ; increases) when the power
balance at node ¢ is positive, and slows down (i.e., §; decreases) when the power balance at node i is negative.
This assumption leads immediately to the coupled-oscillators model (13.15) written as:

éi =P - Z Qi sin(@i — 9]'). (13.19)
7=1

The systems of equations (13.19) are a first-order simplified version of the so-called coupled swing
equations; see ( , )- A more realistic model of power network necessarily include
higher-order dynamics for the generators, uncertain load models, mixed resistive-inductive lines, and the
modelling of reactive power.

Example #3: Flocking, schooling, and vehicle coordination As third example, we consider a set
of n kinematic particles in the plane R?, which we identify with the complex plane C. Each particle
i € {1,...,n} is characterized by its position 7; € C, its heading angle §; € S!, and a steering control
law u;(r, ) depending on the position and heading of itself and other vehicles, see Figure 13.9.(a). For
simplicity, we assume that all particles have unit speed. The particle kinematics are then given by

’I'"Z' = €i9i
. ' (13.20)
92' = Uy (’I”, 0) 5

fori € {1,...,n}. If no control is applied, then particle 7 travels in a straight line with orientation 6;(0),

and if u; = w; € R is a nonzero constant, then particle i traverses a circle with radius 1/|w;|.

The interaction among the particles is modeled by a interaction graph G = ({1,...,n}, E, A) deter-
mined by communication and sensing patterns. Interesting motion patterns emerge if the controllers use
only relative phase information between neighboring particles. As we will discuss later, we may adopt
potential functions-based gradient control strategies (i.e., negative gradient flows) to coordinate the relative
heading angles 6;(t) — 6;(t). As shown in Example #1, an intuitive extension of the quadratic elastic spring
potential to the circle is the function U;; : S!, S — R defined by

Uij(GZ-, 9]) = aij(l — COS(Qi — 6]')),

for each edge {1, j} of the graph. Note that the potential U;;(6;, ¢;) achieves its unique minimum value if
the heading angles 0; and 6; are synchronized and its unique maximum when 6; and 6; are out of phase by
angle 7.

These considerations motivate the gradient-based control strategy

éi ZWO_K880 Z Uij(ei—ej) :wo—KZ::l Qjj sin(&i—é{j), 1€ {1,...,n}. (13.21)
' {ij}eE
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to synchronize the heading angles of the particles for K > 0 (gradient descent), respectively, to disperse
the heading angles for K < 0 (gradient ascent). The term wy can induce additional rotations (for wy # 0)
or translations (for wy = 0). A few representative trajectories are illustrated in Figure 13.9.

The controlled phase dynamics (13.21) give rise to elegant and useful coordination patterns that mimic
animal flocking behavior ( , ) and fish schools. Inspired by these biological phenomena,
scientists have studied the controlled phase dynamics (13.21) and their variations in the context of tracking
and formation controllers in swarms of autonomous vehicles (

Figure 13.9: Figure (a) illustrates the particle kinematics (13.20). Figures (b)-(e) illustrate the controlled dynamics (13.20)-
(13.21) with n = 6 particles, a complete interaction graph, and identical and constant natural frequencies: wy(t) = 0
in figures (b) and (c) and wy(¢) = 1 in figures (d) and (e). The values of K are K = +1 in figures (b) and (d) and
K = —1 in figure (c) and (e). The arrows depict the orientation, the dashed curves show the long-term position
dynamics, and the solid curves show the initial transient position dynamics. As illustrated, the resulting motion
displays synchronized or dispersed heading angles for K = +1, and translational motion for wy = 0, respectively
circular motion for wy = 1. Image reprinted from ( , ) with permission from Elsevier.

Scientific questions of interest for coupled oscillator model include:

(i) When do the oscillators asymptotically achieve frequency synchronization, that is, when do they
asymptotically reach an equal velocity?

(i) When do they reach phase synchronization?

(iii) Are frequency (or phase) synchronized solutions stable and attractive in some sense?

Appendix: Stochastic propagation models

In this appendix, for readers with a background in probability theory, we discuss some models for stochastic
virus propagation and show that their behavior in expectation is captured by the deterministic scalar models
described above in Section 13.2.

We first consider a stochastic SI model. We consider a population of n individuals in which pairwise
meetings between individuals take place. We assume the existence of a meeting rate By, > 0 such that,
over the interval (¢,t + At), nfSyAt individuals will meet on average other nf8, At individuals. Assum-
ing meetings involve uniformly-selected individuals on average, over the interval (¢, + At), there are
5(t)*nBmAt meetings between a susceptible and another susceptible individual; these meetings, as well
as meetings between infected individuals result in no epidemic propagation. However, there will also
be s(t)x(t)nPmAt + x(t)s(t)nfmAt meetings between a susceptible and an infected individual. We as-
sume a fraction f; € [0, 1], called transmission rate, of these meetings results on average in the successful
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transmission of the infection:
B (s(t)a:(t)nﬁmAt + x(t)s(t)nﬁmAt> = 28,8z (t)s(t)nAL.
In summary, based on these assumptions, the fraction of infected individuals satisfies on average
x(t + At) = x(t) + 26:Bmx(t)s(t) At.

Now it is immediate to see that the SI model (13.4) is the limit at At — 0, where the infection parameter
5 is twice the product of meeting rate (3, and infection transmission fraction ;.

The SIS and SIR models are also justified by showing that the constant recovery rate assumption
corresponds to assuming a so-called Poisson recovery rate for the stochastic version of the SI model. This
assumption is arguably not very realistic, but it leads to a simple analysis.
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13.5 Exercises

E13.1 Logistic ordinary differential equation. Given a growth rate » > 0 and a carrying capacity x > 0,
consider the logistic equation (13.1) defined by

z=rz(l —z/k),

with initial condition 2(0) € R>(. Show that

(i) there are two equilibrium points 0 and &,

(ii) the solution is
kz(0) e

M) = e =)

(E13.1)

and it takes value in R,
(iii) all solutions with 0 < x(0) < & are monotonically increasing and converge asymptotically to &,
(iv) all solutions with £ < x(0) are monotonically decreasing and converge asymptotically to , and
(v) if 2(0) < k/2, then the solution z(¢) has an inflection point when x(¢) = /2.

E13.2 Simulating coupled oscillators. Simulate in your favorite programming language and software package
the coupled Kuramoto oscillators in equation (13.16). Set n = 10, define a vector w € R!° with entries
deterministically uniformly-spaced between —1 and 1. Select random initial phases.

(i) Simulate the resulting differential equations for K’ = 10 and K = 0.1.
(ii) Find the approximate value of K at which the qualitative behavior of the system changes from
asynchrony to synchrony.

Turn in your code, a few printouts (as few as possible), and your written responses.
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CHAPTER ] 4‘

Stability Theory for Dynamical Systems

In this chapter we provide a brief self-contained review of stability theory for nonlinear dynamical systems.
We review the key ideas and theorems in stability theory, including the Lyapunov Stability Criteria and
the Krasovskii-LaSalle Invariance Principle. We then apply these theoretical tools to a number of example
systems, including linear and linearized systems, negative gradient systems, continuous-time averaging
dynamics (i.e., the Laplacian flow) and positive linear systems described by Metzler matrices.

This chapter is not meant to provide a comprehensive treatment, e.g., we leave out matters of existence
and uniqueness of solutions and we do not include proofs. Section 14.9 below provides numerous references
for further reading. We start the chapter by introducing a running example with three prototypical
dynamical systems.

Example 14.1 (Gradient and mechanical systems). We start by introducing a differentiable function
V : R — R; for example see Figure 14.1. Based on V' and on two positive coefficients m and d, we define

V(x)
Figure 14.1: A differentiable function V playing the role of a po-
tential energy function (i.e., a function describing the potential
energy stored) in a negative gradient system, a conservative me-
chanical systems or a dissipative mechanical systems. Specifically,

L V(@) =-—ze " /(1+e ")+ (z—10)2/(1+ (z — 10)2).

three instructive and prototypical dynamical systems:

; . . ov
negative gradient system: T = —87(1'), (14.1)

. . . ov
conservative mechanical system: mi = —8—(36), (14.2)

x

e . . ov .

dissipative mechanical system: mi = —a—(a:) —di. (14.3)

x

In the study of physical systems, the parameter m is an inertia, d is a damping coefficient, and the function
V is the potential energy function, describing the potential energy stored in the system.
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These example are also know as a (first order, second order, or second order dissipative) particle on an
energy landscape, or the “rolling ball on a hill” examples. According to Newton’s law, the correct physical
systems are models (14.2) and (14.3), but we will also see interesting examples of first-order negative
gradient systems (14.1). °

14.1 On sets and functions

Before proceeding we review some basic general properties of sets and functions. First, we recall that a set

W C R™ is bounded if there exists a constant K that each w € W satisfies ||w| < K, closed if it contains

its boundary (or, equivalently, if it contains all its limit points), and compact if it is bounded and closed.
Second, given a differentiable function V : R" — R, a critical point of V' is a point * € R" satisfying

v .

A critical point x* is a local minimum point (resp. local strict minimum point) of V if there exists a distance

e > 0 such that V(z*) < V(x) (resp. V(2*) < V(x)) for all z # x* within distance ¢ of . The point z* is

a global minimum if V' (z*) < V' (z) for all z # x*. Local and global maximum points are defined similarly.
Given a constant ¢ € R, we define the /-level set of V' and the ¢-sublevel set of V' by

V) ={yeR"|V(y)=¢}, and V_'({)={yeR"|V(y) <{}.

These notions are illustrated in Figure 14.2.

o 1 L3 )
Vol () = {a| V(z) < b}
Figure 14.2: A differentiable function, its sublevel set and its critical points. The sublevel set V_ Yo ={z|V(z) <

¢1} is unbounded. The sublevel set V' (£5) = [x1, x5] is compact and contains three critical points (x5 and x4 are

local minima and 3 is a local maximum). Finally, the sublevel set V.= 1(¢3) is compact and contains a single critical
point, the global minimum z4.

Third, given a point g € R”, a function V : R" — R is

(i) locally positive-definite (resp. positive-semidefinite) about x( if V(xg) = 0 and if there exists a
neighborhood U of x such that V() > 0 (resp. V(z) > 0) forall z € U \ {zo},

(ii) globally positive-definite about x¢ if V (z¢) = 0 and V(z) > 0 for all z € R"™ \ {z¢}, and
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(iii) locally (resp. globally) negative-definite if —V is locally (resp. globally) positive-definite; and negative-
semidefinite if —V is positive-semidefinite.

Note: Assume a differentiable V' is locally positive-definite about xy. Pick & > V(xp). One can
show that the sublevel set V_'(«) contains a neighborhood of . Indeed, in Figure 14.2, V is locally

positive-definite about x4 and V_-1(¢3) and V-1 (¢3) are both compact intervals containing 4.

Fourth and finally, a non-negative continuous function V' : X — R>g is

(i) radially unbounded if X = R™ and V' (z) — oo along any trajectory such that ||z|| — oo, i.e., for any
sequence {x,, }nen satisfying lim,,_,~ ||Zy|| = 0o we have lim,, o V(2,,) = 00, and

(ii) proper if, for all £ € R, the /-sublevel set of V' is compact.
We illustrate these concepts in Figure 14.3 and state a useful equivalence without proof.

Lemma 14.2. A continuous function V : R" — Rxq is proper if and only if it is radially unbounded.

A e ” (v - 10)? A Viegam(z) =2z —1-1o
= — og-lin = g(x)
Vo) = =2 = T @0 )

T T

> >
(a) This function V' : R — R is not radially unbounded (b) The function Vin1og : R>0 — R is proper on X = Rso
because limg 400 V() = 1. since each sublevel set is a compact interval.

Figure 14.3: Example proper and not proper functions

Dynamical systems and stability notions

Dynamical systems

A (continuous-time) dynamical system is a pair (X, f) where X, called the state space, is a subset of R" and
f, called the vector field, is a map from X to R"™. Given an initial state ¢y € X, the solution (also called
trajectory or evolution) of the dynamical system is a curve ¢t — z(t) € X satisfying the differential equation

2(t) = f(xz(t), =(0) = xo.

A dynamical system (X, f) is linear if x — f(x) = Az for some square matrix A.

Typically, the map f is assumed to have some continuity properties so that the solution exists and is
unique for at least small times. Moreover, some of our examples are defined on closed submanifolds of R"
(e.g., the Lotka-Volterra model (13.3) is defined over the positive orthant RZ j, the network SIS model (13.10)
is defined over the hypercube [0, 1]”, and the coupled oscillator model (13.15) is defined over the set of n
angles) and additional assumptions are required to ensure that the solution exists for all times in X. We do
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not discuss these topics in great detail here, we simply assume the systems admit solutions inside X for all
time, and refer to the references in Section 14.9 below.

Equilibrium points and their stability

An equilibrium point for the dynamical systems (X, f) is a point 2* € X such that f(z*) = 0,,. If the
initial state is x(0) = 2, then the solution exists unique for all time and is constant: z(t) = x* for all
t e Rzo.

An equilibrium point z* for the dynamical system (X, f) is

(i) stable (or Lyapunov stable) if, for each € > 0, there exists 0 = d(¢) > 0 so that if ||z(0) — z*|| < 4,
then ||z(t) — z*|| < e forall t > 0,
(ii) unstable if it is not stable, and
(iii) locally asymptotically stable if it is stable and if there exists ¢ > 0 such that lim;_, z(t) = x* for all
trajectories satisfying ||z(0) — z*|| < 6.

These three concepts are illustrated in Figure 14.4.

zte LI

(a) Stable equilibrium: for all €, each so-  (b) Unstable equilibrium: no matter how  (c) Asymptotically stable equilibrium: so-

lution inside a sufficiently small §-disk ~ small § is, at least one solution starting  lutions starting in a sufficiently small 6-

remains inside the e-disk. inside the §-disk diverges. disk converge asymptotically to the equi-
librium.

Figure 14.4: lllustrations of a stable, an unstable and an asymptotically stable equilibrium.

These first three notions are local in nature. To characterize global properties of a dynamical system
(X, f), we introduce the following notions. Given a locally asymptotically stable equilibrium point z*,

(i) the set of initial conditions ¢ € X whose corresponding solution x(t) converges to z* is called the
region of attraction of x*,
(if) =™ is said to be globally asymptotically stable if its region of attraction is the whole space X, and

(iii) z* is said to be globally (respectively, locally) exponentially stable if it is globally (respectively, locally)
asymptotically stable and there exist positive constants c; and ¢y such that all trajectories starting in
the region of attraction satisfy

lo(t) — 27| < ex[lw(0) — 2| ™"
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Example 14.3 (Gradient and mechanical systems: Example 14.1 continued). It is instructive to
report some numerical simulations of the three dynamical systems and state some conjectures about their
equilibria and stability properties. These conjectures will be established in the next section.

ANions tox = —8—‘/(96)
NN O
-l

(a) Conjecture: solutions converge to one of the two local
minima.

>

. .. ov
solutions to m# = ——

ox

(c) Conjecture: solutions oscillate around a local minimum or
diverge.

ov

Nm = (@) — di
o
N

(e) Conjecture: solutions converge to one of the two local
minima.

A

trajectories converge to local minima

>
(b) Sketch of the motion on the potential energy surface.

A

trajectories oscillate about local minima

>
(d) Sketch of the motion on the potential energy surface.

trajectories converge to local minima

>
(f) Sketch of the motion on the potential energy surface.

Figure 14.5: Numerically computed solutions (left) and graphical visualization of the solutions (right) for the three
example systems with potential energy function V. Parameters are z(0) € {—2,—1,...,14} andm =d = 1.

First main convergence tool: the Lyapunov Stability Criteria

We are now ready to provide a critical tool in the study of the stability and convergence properties of a
dynamical system. Roughly speaking, Lyapunov’s idea is to use the concept of an energy function with a
local/global minimum that is non-increasing along the system’s solution.
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Before proceeding, we require one final useful notion. The Lie derivative (also called the directional
derivative) of a differentiable function V' : R” — R with respect to a vector field f : R” — R" is the
function .Z;V : R™ — R defined by

oV

gfv(fﬂ') = oz

(z)f(z) = ' j(x)fi(l")- (14.4)

Note that, along the flow of a dynamical system (X, f), we have V(z(t)) = £V (x(t)). Therefore,
V : R" — R is non-increasing along every trajectory of (X, f) if each solution x : R>g — X satisfies

V(x(t) = 2V (x(t) <0,

or, equivalently, if each point x € X satisfies £V (z) < 0. Because of this last inequality, when the
vector field f is clear from the context, it is customary to adopt a slight abuse of notation and write

V(z) =2V (z).

We are now ready to present the main result of this section.

Theorem 14.4 (Lyapunov Stability Criteria). Consider a dynamical system (R™, f) with differentiable
vector field f and with an equilibrium point x* € R". The equilibrium point x* is

stable if there exists a continuously-differentiable function V : R™ — R, called a weak Lyapunov function,
satisfying

(L1) V is locally positive-definite about x*,
(L2) Z;V is locally negative-semidefinite about x*;

locally asymptotically stable if there exists a continuously-differentiable function V : R™ — R, called a local
Lyapunov function, satisfying Assumption (L1) and

(L3) Z;V is locally negative-definite about x*;

globally asymptotically stable if there exists a continuously-differentiable function V : R™ — R, called a
global Lyapunov function, satisfying

(L4) V is globally positive-definite about x*,
(L5) Z;V is globally negative-definite about =™,
(L6) V is proper.

Note the immediate implications: (L4) => (L1) and (L5) = (L3) = (L2).

Note: Theorem 14.4 assumes the existence of a Lyapunov function with certain properties, but does
not provide constructive methods to design or compute one. In what follows we will see that Lyapunov
functions can be designed for certain classes of systems. But, in general, the design of Lyapunov function is
challenging. A common procedure is based on trial-and-error: one selects a so-called candidate Lyapunov
function and verifies which, if any, of the properties (L1)—(L6) is satisfied.
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Example 14.5 (Gradient and mechanical systems: Example 14.3 continued). We now apply the
Lyapunov Stability Criteria in Theorem 14.4 to the example dynamical systems in Exercise 14.1. Based on
the properties of the function V' in Figures 14.2 with local minimum points x5 and x4, we establish most of
the conjectures from Exercise 14.3. Note that the vector fields and the Lyapunov functions we adopt in
what follows are all continuously differentiable.

Negative gradient systems: For the dynamics & = —0V/0z(z), as candidate Lyapunov function about x,
we consider the function V' (z) — V(z2). We compute

V(z) = —||av/oz|? < 0.

Note that V — V (2) is locally positive definite about x5 (Assumption (L1)) and V is locally negative
definite about 23 (Assumption (L3)); hence V' — V' (z2) is a local Lyapunov function for the equilibrium
point z2. An identical argument applies to z4. Hence, both local minima z9 and x4 are locally
asymptotically stable;

Conservative and dissipative mechanical systems: Given a positive inertia m and a non-negative damping
coefficient d > 0, we write the conservative and the dissipative mechanical systems in first order
form as:

T=v, mv=—dv— —(x),

, o (@)

where (z,v) € R? are the position and velocity coordinates. As candidate Lyapunov function about
the equilibrium point (2, 0), we consider the mechanical energy E : R x R — R>¢ given by the sum
of kinetic and potential energy:

1
E(z,v) = §m1)2 +V(x).
We compute its derivative along trajectories of the considered mechanical system as follows:

E(az,v)—mvv—ka(aﬁ)x—v(— (a:)) +%(x)v——dv <0.

This calculation, and x2 being a local minimum of V, together establish that, for d > 0, the function
E — V (x3) is locally positive definite about x5 (Assumption (L1)) and E is locally negative semidefinite
about x9 (Assumption (L2)). Hence, the function E — V' (x3) is a weak Lyapunov function for the
equilibrium point (z2,0) and, therefore, the point (x2, 0) is stable for both the conservative and the
dissipative mechanical system. An identical argument applies to the point (x4, 0).

Note that we obtain the correct properties, i.e., consistent with the simulations in the previous exercise,
for negative gradient system and for the conservative mechanical system. But more work is required to
show that the local minima are locally asymptotically stable for the dissipative mechanical system. °

Example 14.6 (The logistic equation). As second example, we consider the logistic equation (13.1):

#(t) = ra(t) (1 — x:ﬁ)) = fogistie(),
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A ‘/log-lin,fi ($>

% 2% 3n  dn _—

Figure 14.6: The function Vigg.iin x(2) =  — k — klog(x/k), with k£ > 0.

with growth rate r and carrying capacity . We neglect the possible initial condition x(0) = 0 (with
subsequent equilibrium solution z(t) = 0 for all ¢ > 0) and restrict out attention to solutions in X = R-y.
For k > 0, define the logarithmic-linear function Vigglin,x : R>0 — R, illustrated in Figure 14.6, by

x
Viogins(T) =2 — K — HlOg<E)'
In Exercise E14.1 we ask the reader to verify that

(1) Viog-lin,x is continuously differentiable with d%vlog-hn,n () = (x — Kk)/x,
(i) Viog-in,kx(2) > 0 for all > 0 and Viggiin «(«) = 0 if and only if z = &, and
(111) limx—>0+ Viog-hn,li(x) = hmx%oo Viog-lin,li(x) = +4o00.

Next we compute

r— K €T r
Gt = {1 3) =L

In summary, we have established that fiogsic is a differentiable vector field, z* = & is an equilibrium
point, Vieg1in » is globally positive definite about x, £ .. Viog-in s is globally negative definite about ,
and Viog lin,« is proper. Hence, Viog.lin,« is a global Lyapunov function and z* = & is globally asymptotically
stable. (This result is consistent with the behavior characterized in Exercise E13.1.) °

14.4 Second main convergence tool: the Krasovskii-LaSalle Invariance
Principle

While the Lyapunov Stability Criteria are very useful, it is sometimes difficult to find a Lyapunov function
with a negative-definite Lie derivative. To overcome this obstacle, in this section we introduce a powerful
tool for the convergence analysis, namely the Krasovskii-LaSalle Invariance Principle.

Before stating the main result, we introduce two useful concepts:

(i) A curve t — x(t) approaches a set S C R™ as t — +oo if the distance! from () to the set S
converges to 0 as t — +o00.

If the set S consists of a single point s and t — x(t) approaches S, then ¢t — x(t) converges to s in
the usual sense: lim;_,; » 2(t) = s. If the set S consists of multiple disconnected components and

"Here we define the distance from a point y to a set Z to be inf,cz ||y — 2||.
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t — x(t) approaches S, then t — x(t) must approach one of the disconnected components of S.
Specifically, if the set S is composed of a finite number of points, then ¢ — x(¢) must converge to
one of the points.

(i) Given a dynamical system (X, f), aset W C X is invariant if each solution starting in W remains
in W, that is, if 2(0) € W implies z(t) € W for all ¢ > 0.

For example, any sublevel set of a function is invariant for the corresponding negative gradient flow.
We are now ready to present the main result of this section.

Theorem 14.7 (Krasovskii-LaSalle Invariance Principle). For a dynamical system (X, f) with differ-
entiable f, assume that

(KL1) all trajectories of (X, f) are bounded,
(KL2) there exists a closed set W C X that is invariant for (X, f), and
(KL3) there exists a continuously-differentiable function V : X — R satisfying £V (x) <0 forallz € X.

Then for each solution t «— x(t) starting in W there exists ¢ € R such that x converges to the largest invariant
set contained in

{zeW | ZV(z)=0}nV ().

Note: if the closed invariant set W C X in Assumption (KL2) is also bounded, then Assumption (KL1)
is automatically satisfied.

Note: unlike in the Lyapunov Stability Criteria, the Krasovskii-LaSalle Invariance Principle does not
require the function V to be locally positive definite and establishes certain asymptotic convergence
properties without requiring the Lie derivative of V' to be locally negative definite.

Note: in some examples it is sometimes sufficient for one’s purposes to show that z(t) — {x €
W | &V (z) = 0}. In other cases, however, one really needs to analyze the largest invariant set inside
{z e W | LV () =0}.

Note: If the largest invariant set is the union of multiple disjoint non-empty sets, then the solution to
the negative gradient flow must converge to one of these disjoint sets.

Example 14.8 (Gradient and mechanical systems: Example 14.5 continued). We continue the anal-
ysis of the example dynamical systems in Exercises 14.1 and 14.5. Specifically, we sharpen here our results
about the dissipative mechanical system about a local minimum point x5 (or 24) based on Krasovskii-LaSalle
Invariance Principle.

First, we note that the assumptions of the Krasovskii-LaSalle Invariance Principle in Theorem 14.7 are
satisfied:

(i) the function E and the vector field (the right-hand side of the mechanical system) are continuously
differentiable;

(i) the derivative E is locally negative semidefinite; and

(iii) for any initial condition (z9,v9) € R? sufficiently close to (x9,0) the sublevel set {(z,v) €
R? | E(x,v) < E(xg,v0)} is compact due to the local positive definiteness of V' at 3.
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It follows that (z(t),v(t)) converges to largest invariant set contained in
C= {(.%',U) S R | E(l‘,’l)) < E(:EO)UO)aU = 0} = {(27,0) S R | E($>O> < E(x()aUO)}'

A subset of C' is invariant if any trajectory initiating in the subset remains in it. But this is only true if the
starting position Z satisfies a%V(j) = 0, because otherwise the resulting trajectory would experience a
strictly non-zero v(0) and hence leave C. In other words, the largest invariant set inside C'is {(z,0) €
R? | E(x,0) < E(x0,v0), C%V(x) = 0}. But the local minimum point x5 is the unique critical point in the
sublevel set and, therefore,

lim (z(t),v(t)) = (z2,0). 3

t—+00

Application #1: Linear and linearized systems

It is interesting to study the convergence properties of a linear system. Recall that a symmetric matrix is
positive definite if all its eigenvalues are strictly positive.

Theorem 14.9 (Convergence of linear systems). For a matrix A € R"*", the following properties are
equivalent:

(i) each solution to the differential equation & = Ax satisfies limy_, ;oo x(t) = Oy,
(ii) A is Hurwitz, i.e., all the eigenvalues of A have strictly-negative real parts, and

(iii) for every positive-definite matrix (), there exists a unique solution positive-definite matrix P to the
so-called Lyapunov equation:

ATP+PA=—Q.

Note: one can show that statement (iii) implies statement (i) using the Lyapunov Stability Criteria with
function V' (z) = 27 Pz, whose Lie derivative along the systems solutions is V = 2T (ATP 4+ PA)x =
—xTQx <0.

Next, we show a very useful way to apply linear stability methods to analyze the local stability of a
nonlinear system.

The linearization at the equilibrium point * of the dynamical system (X, f) is the linear dynamical
system defined by the differential equation & = Az, where

L

B 8x($*)

Theorem 14.10 (Convergence of nonlinear systems via linearization). Consider a dynamical system
(X, f) with an equilibrium point x*, with twice differentiable vector field f, and with linearization A at x*.
The following statements hold:

(i) the equilibrium point x* is locally exponentially stable if all the eigenvalues of A have strictly-negative
real parts; and

(ii) the equilibrium point x* is unstable if at least one eigenvalue of A has strictly-positive real part.
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Example 14.11 (Two coupled oscillators). For § € R, consider the dynamical system (13.17) arising
from two coupled oscillators:

0 = f(#) = w —sin(f).

If w € [0, 1], then there are two equilibrium points inside the range 6 € [0, 27|:

07 = arcsin(w) € [0,7/2], and 05 = m — arcsin(w) € |7/2,+7).
(Moreover, for § € R, the 27-periodic set of equilibria are {67 + 2kn | k € Z} and {05 + 2k7 | k € Z}.)
The linearization matrix A(6}) = %(Gf ) = —cos(0) for i € {1,2} shows that ] is locally exponentially
stable and 6 is unstable. .

Example 14.12 (A third order scalar system). Pick a scalar ¢ and, for x € R, consider the dynamical

system
i=f(z)=c- 2>

The linearization at the equilibrium z* = 0 is indefinite: A(z*) = 0. Thus, Theorem 14.10 offers no
conclusions other than the equilibrium cannot be exponentially stable. On the other hand, the Krasovskii-
LaSalle Invariance Principle shows that for ¢ < 0 every trajectory converges to z* = 0. Here, a non-
increasing and differentiable function is given by V(z) = 22 with Lie derivative %V (z) = —2cz? < 0.
Since V' (x(t)) is non-increasing along the solution to the dynamical system, a compact invariant set is then
readily given by any sublevel set {x | V' (z) < ¢} for ¢ > 0. o

Application #2: Negative gradient systems

We now summarize and extend the analysis given in Example 14.3 of the stability properties of negative
gradient systems. Recall for convenience that, given a differentiable function V' : R" — R, the negative
gradient flow defined by V is the dynamical system

i(t) = —g‘;(x(t)). (14.5)

We start by noting that, as in the Exercise, the Lie derivative of V along the negative gradient flow is

ov . |2
f_ggV(ﬂﬁ):—H(%(x) <0,

and that, therefore, each sublevel set V! (¢), for £ € R is invariant (provided it is non-empty).

Given a twice differentiable function V' : R® — R and a point z € R", the Hessian matrix of
V, denoted by Hess V(z) € R"™*", is the symmetric matrix of second order partial derivatives at x:
(Hess V);j(z) = 8*V/dx;0x(s). Givena critical point 2* of V/, if the Hessian matrix Hess V' (z*) is positive
definite, then x* is an isolate local minimum point of V. The converse is not true; as a counterexample,
consider the function V' (z) = z# and the critical point z* = 0.

Theorem 14.13 (Convergence of negative gradient flows). Let V : R" — R be twice-differentiable
and assume its sublevel set Vgl(ﬁ) = {x € R" | V(x) < £} is compact for some { € R. Then the negative
gradient flow (14.5) has the following properties:
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(i) each solution t — x(t) starting in Vgl(ﬁ) satisfies limy_, oo V(2(t)) = ¢, for some ¢ < {, and
approaches the set of critical points of V :

{:p eR" } aa‘;(ﬂs) = On},

(ii) each local minimum point x* is locally asymptotically stable and it is locally exponentially stable if and
only if Hess V' (z*) is positive definite,

(iii) a critical point x* is unstable if at least one eigenvalue of Hess V' (z*) is strictly negative,

(iv) if the function V is analytic, then every solution starting in a compact sublevel set has finite length (as a
curve in R™) and converges to a single equilibrium point.

Proof. To show statement (i), we verify that the assumptions of the Krasovskii-LaSalle Invariance Principle
are satisfied as follows. First, as set W we adopt the sublevel set V. 1(¢) which is compact by assumption
and is invariant. Second we know the Lie derivative of V along the vector field is non-positive. Statement (i)
is now an immediate consequence of the Krasovskii-LaSalle Invariance Principle.
The statements (ii) and (iii) follow from observing that the linearization of the negative gradient system
at the equilibrium z* is the negative Hessian matrix evaluated at z* and from applying Theorem 14.10.
Regarding statement (iv), we refer to the original source ( , ). |

Note: If the function V' has isolated critical points, then the negative gradient flow evolving in a compact
set must converge to a single critical point. In such circumstances, it is also true that from almost all initial
conditions the solution converges to a local minimum rather than a local maximum point or other critical
points.

Note: If a twice-differentiable function V is strictly convex (as defined in Section 7.6), then its unique
global minimum point z* is globally exponentially stable; see Exercise E14.3.

Application #3: Continuous-time averaging systems and Laplacian
matrices

In this section we revisit the continuous-time averaging system, i.e., the Laplacian flow, and study the
evolution of the max-min function as a Lyapunov function.
As in Section 11.5, define the max-min function Vipax-min : R” — R>q by

Vinaxmin(z) = max x; — min 1z, (14.6)

and that Vijax-min(2) > 0, and Vijax-min(2) = 0 if an only if x = a1,, for some « € R.

Lemma 14.14 (The max-min function along the Laplacian flow). Let L € R™*" be the Laplacian
matrix of a weighted digraph G. Let x:(t) be the solution to the Laplacian flow & = —Lx. Then

(i) t — Vinax-min(z(t)) is non-increasing,

(ii) if G has a globally reachable node, then lim;_, oo Vinax-min(2(%)) = 0 and lim;_, o, x(t) = al,, for some
aeR.
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Numerous proofs for these results are possible (e.g., statement (ii) is established in Theorem 7.4). A
second approach is to use the properties of the row-stochastic matrices exp(—Lt), t € R>, as established
in Theorem 7.2.

Here we pursue a strategy based on adopting Viax-min as a weak Lyapunov function and, because
Vinax-min 18 not continuously-differentiable, applying an appropriate generalization of the Krasovskii-LaSalle
Invariance Principle in Theorem 14.7. For our purposes here, it suffices to present the following concepts.

Definition 14.15. The upper right Dini derivative and upper left Dini derivative of a continuous function
f :]a,b] = R at a point t € ]a, b[ are defined by, respectively,

DHf(t) = Tlimsup f(HAt)—f(t)’ and D f(t) = limsup f(t+ AL - f(t)
At>0,At—0 At At<0,At—0 At

Note that the sup operator is always defined (possibly equal to +00) and therefore so are the Dini
derivatives.

Lemma 14.16 (Properties of the upper Dini derivatives). Given a continuous function f : Ja,b] — R,
(i) if f is differentiable at t € ]a, b|, then D f(t) = D~ f(t) = %f(t) is the usual derivative of f att,
(ii) if DY f(t) < 0and D~ f(t) <0 forallt € |a,b|, then f is non-increasing on |a, b, and
(iii) given differentiable functions f1,..., fm : |a,b] = R, if
f(t) =max{fi(t) |ie{l,...,m}},
then
D £(t) = max {ifi(t) [ic 1}, and D f(t) = min {ifi(t) e 1)}
dt ’ dt ’
where I(t) = {i € {1,...,m} | fi(t) = f(t)}.

Note: statement (i) follows from the definition of derivative of a differentiable function. Statement (ii) is
a consequence of Lemmas 1.3 and 1.4 in ( , ), where proofs are given. Statement (iii)
is known as ’s Lemma. Given differentiable functions fi, ..., fim, a consequence of statements (ii)
and (iii) is that the function ¢ — max{fi(¢),. .., fm(t)} is non-increasing on Ja, b[ if DT f(¢) < 0 for all
t €la,bl

Proof of Lemma 14.14. Let Xyax(t) = max(z(t)) and xyin(t) = min(x(¢)). For simplicity, let argmax(x(t))
{i €{1,...,n} | zi(t) = Tmax(t)} and argmin(x(t)) = {i € {1,...,n} | 2i(t) = Tmin(t)}. Along the
Laplacian flow &; = Z?:l a;j(x; — x;), Lemma 14.16(iii) (Danskin’s Lemma) implies

D Vaemin(2(t)) = max{a;(t) | i € argmax(x(t))} — min{z;(¢) | i € argmin(z(¢))}

= max { Z aij(Tj — Tmax) | @ € argmax(z(t))}
j=1

— min { Z aij(zj — Tmin) | 1 € argmin(z(t))},
j=1
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where we have used — min(z) = max(—z). Because 2;—Zmax < 0and z;—zmin > Oforallj € {1,...,n},
we have established that D Viax-min(2()) is the sum of two non-positive terms. This property, combined
with Lemma 14.16(ii), implies that ¢ — Vipax-min (2 (%)) is non-increasing, thereby completing the proof of
statement (i).

To establish statement (ii) we invoke a generalized version of the Krasovskii-LaSalle Invariance Princi-
ple 14.7. First, we note that statement (i) implies that any solution is bounded inside [Zmin(0), Zmax(0)]";
this is a sufficient property (in lieu of the compactness of the set W). Second, we know the continuous
function Vipax-min along the Laplacian flow is non-increasing (in lieu of the same property for a Lie derivative
of a continuously-differentiable function). Therefore, we now know that there exists ¢ such that the solution
starting from z(0) converges to the largest invariant set C' contained in

{m € [wmiﬂ(o)vxmax(o)]n | D+Vmax—min($)‘ - 0} nv

t=—Lz max- mm(c)

Because Viax-min 1S non-negative, we know ¢ > 0. We now assume by absurd that ¢ > 0, we let y(¢) be
a trajectory originating in C, and we aim to show that Viax-min(y(t)) decreases along time (which is a
contradiction because C' is invariant).

Let k be a globally reachable node. Let i (resp. j) be an arbitrary index in argmax(y(0)) (resp. argmin(y(0)))
so that y;(0) — y;(0) = ¢ > 0. Without loss of generality we assume y;(0) < y;(0). (Otherwise it would
need to be y1(0) > y;(0) and we would proceed similarly.) Recall we know ¢;(0) < 0. We now note that,
if §;(t) = O for all t € (0,¢) for a positive ¢, then the equation §; = ., a;;(y; — i) and the property
¥i(0) = maxy(0) together imply that y;(t) = y;(¢) for all t € (0,¢) and for all j such that a;; > 0.
Iterating this argument along the directed path from i to k, we get the contradiction that yy(t) = v;(t)
forallt € (0,¢). Therefore, we know that ¢;(¢) < 0 for small times. Because i is an arbitrary index in
argmax(y(0)), we have proved that ¢t — max y(t) is strictly decreasing for small times. This establishes
that C' is not invariant if ¢ > 0 and completes the proof of statement (ii). |

14.8 Application #4: Positive linear systems and Metzler matrices

In this section we study the positive linear system & = Az, x € RY, with equilibrium point Oy, and with
matrix A being Metzler matrix. To establish the stability properties of 0, we start by characterizing certain
properties of Metzler matrices.

We recall from Section 9.2 the properties of Metzler matrices. For example the Perron-Frobenius
Theorem 9.4 for Metzler matrices establishes the existence of a dominant eigenvalue. If the dominant
eigenvalue is negative, then the Metzler matrix is Hurwitz; this case was studied in Theorem 9.5.

For the remainder of this section, given a symmetric matrix A € R"*", we write A > 0 (resp. A < 0) if
A is positive definite (resp. negative definite), that is, if all its eigenvalues are strictly positive (resp. strictly
negative).

Theorem 14.17 (Properties of Hurwitz Metzler matrices: continued). Fora Metzler matrix A € R™*",
the following statements are equivalent:

(i) A is Hurwitz,
(ii) A is invertible and —A~! > 0,
(iii) for allb > 0O, there exists x* > 0,, solving Ax* + b = Oy,
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(iv) there exists £ € R™ such that £ > 0,, and A < 0,,
(v) there exists ) € R™ such thatn > 0, andn" A < 07, and
(vi) there exists a diagonal matrix P = 0 such that ATP + PA < 0.

Note: if the vectors £ and 7 satisfy the conditions of statements (iv) and (v) respectively, then the matrix
P = diag(n1 /&1, ... ,nn/&n) satisfies the conditions of statement (vi).
Note: a matrix A with a diagonal matrix P as in statement (vi) is said to be diagonally stable.

Proof. The equivalence between statements (i), (ii), and (iii) is established in Theorem 9.5.

Statements (iv) and (v) are equivalent because of the following argument and its converse: if statement (iv)
holds with & = £(A), then statement (v) holds with np = £(AT).

We first prove that (ii) implies (iv). Set ¢ = —A~'1,,. Because —A~! > 0 is invertible, it can have no
row identically equal to zero. Hence ¢ = —A~'1,, > 0,,. Moreover A¢ = —1,, < 0,,.

Next, we prove that (iv) implies (i). Let A be an eigenvalue of A with eigenvector v. Define w € R" by
w; = v;/&;, fori € {1,...,n}, where { is as in statement (iv). We have therefore A\&w; = E?:l a;j&w;.
If £ is the index satisfying |wy| = max; |w;| > 0, then

n
"y
Mo =aube+ D ayé—2,
. - Wy
J=Lj#L
which, in turn, implies

n

< > ané < —auk,

=17t

N = auel < > ag ”

n
wj‘
j=1,j#L

where the last equality follows from the /-th row of the inequality A¢ < 0,,. Therefore, |\ — ag| < —ayy.
This inequality implies that the eigenvalue A\ must belong to an open disc in the complex plan with center
ag < 0 and radius |ag|. Hence, A, together with all other eigenvalues of A, must have negative real part.

We now prove that (iv) implies (vi). From statement (iv) applied to A and AT, let ¢ > 0,, satisfy A¢ < 0,
and n > 0, satisfy AT < 0,,. Define P = diag(ni /&1, ..., 0. /&) and consider the symmetric matrix
ATP + PA. This matrix is Metzler and satisfies (ATP + PA)¢ = AT + PA¢ < 0,,. Hence, ATP + PA
is negative diagonally dominant and, because (iv) == (i), Hurwitz. In summary, AT P 4+ PA is symmetric
and Hurwitz, hence, it is negative definite.

Finally, the implication (vi) = (i) is established in Theorem 14.9. |

The following corollary illustrates how each of the conditions (iv), (v), and (vi) corresponds to a Lyapunov
function of a specific form for a Hurwitz Metzler system.

Corollary 14.18 (Lyapunov functions for positive linear systems). Let A be a Hurwitz Metzler matrix.
The positive linear system & = Az, x € R, with equilibrium point On, admits the following global Lyapunov
functions:

Vi(z) = maxeqy,. oy i/ for & > 0 satisfying A < 0,

Va(z) =70z, n > 0 satisfyingn' A < 0,

Va(z) = V(z) = ' Pz, for a diagonal matrix P - 0 satisfying ATP + PA < 0.
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We illustrate the level sets of these three Lyapunov functions in Figure 14.7.
A A A
> > \ >
(a) Rectangular level set (b) Linear level set (c) Quadratic level set
Figure 14.7: Level curves of Lyapunov functions for positive linear systems defined by Hurwitz Lyapunov matrix
14.9 Historical notes and further reading

Classic historical works on stability properties of physical systems include ( , ; , ;

, )- Modern stability theory started with the work by ( ), who proposed
the key ideas towards a general treatment of stability notions and tests for nonlinear dynamical systems.
’s ideas were extended by ( ); ( ) and ( ,
, ) through their work on invariance principles. Other influential works include ( , ;
, )-

For comprehensive treatments, we refer the reader to the numerous excellent texts in this area, e.g.,
including the classic control texts ( , ; , ; , ), the classic dynamical
systems texts ( , ; , ; , ), and the more
recent works ( , ; , ; , ).

This chapter has treated systems evolving in continuous time. Naturally, it is possible to develop a
Lyapunov theory for discrete-time systems, even though remarkably there are only few references on this

topic; see ( , , Chapter 1).
Our treatment of Metzler matrices in Section 14.8 is inspired by the presentation in ( , )-
We refer to ( , ; , ) for a comprehensive review of stability theory for

nonsmooth systems and Lyapunov functions. Properties of the Dini derivatives are reviewed by
(1992). The usefulness of Dini derivatives in continuous-time averaging systems is highlighted for
example by ( ); see also ( , ) for Danskin’s Lemma.
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Exercises

E14.1

E14.2

E14.3

E14.4

E14.5

E14.6

The logarithmic-linear function. For x > 0, define the function Viogin » : R>o — R by

‘/log—lin,n(z) =T —K— Iilog(%)

Show that
(1) Viog-lin, is continuously differentiable and %Vlog_hm w(@) = (x — k) /x,
(ii) Viog-in,x () > 0 for all 2 > 0 and Viggiin,« () = 0 if and only if z = &, and
(i) limy_,0+ Viegtin,x () = limy 0 Vieg-tin,x () = 4-00.

Gronwall-Bellman Comparison Lemma. Given a continuous function of time ¢ — a(t) € R, suppose
the signal ¢ — x(t) satisfies
z(t) < a(t)z(t).

Define a new signal ¢ — y(t) satisfying ¢(t) = a(t)y(t). Show that

(i) y(t) = y(0)exp (f(;t a(t)dr), and
(i) if z(0) < y(0), then z(t) < y(t).

The negative gradient flow of a strictly convex function. Let f : R™ — R be a strictly convex and
twice differentiable function. Show convergence of the associated negative gradient flow, & = — - f(z), to
the global minimizer x* of f using the Lyapunov function candidate V (z) = (z — z*)T(x — 2*) and the
Krasovskii-LaSalle Invariance Principle in Theorem 14.7.

Hint: Use the global underestimate property of a strictly convex function stated as follows: f(y) — f(x) >

%f(x)(y — ) for all distinct x and y in the domain of f.

Distributed optimization using the Laplacian flow. Consider the saddle point dynamics (7.16) that
solve the optimization problem (7.15) in a distributed fashion. Assume that the objective functions are
strictly convex and twice differentiable and that the underlying communication graph among the distributed
processors is connected and undirected. By using the Krasovskii-LaSalle Invariance Principle show that all
solutions of the saddle point dynamics converge to the set of saddle points.

Hint: Use the following global underestimate property of a strictly convex function: f(y)— f(z) > {% fz)(y—x)

for all distinct x and y in the domain of f; and the following global overestimate property of a concave function:

g(y) —g(z) < a%g(a:)(y — x) for all distinct © and y in the domain of g. Finally, note that the overestimate
property holds with equality g(y) — g(z) = 2 g(z)(y — z) if g(z) is affine.

Region of attraction for an example nonlinear systems. Consider the nonlinear system

1 = —2x1 — 219 — 4m‘;’x§,

./,.CQ = —2{)’}1 — 2{1,‘2 — 2‘%4111'2.

Is the origin locally asymptotically stable? What is the region of attraction?

A useful corollary by ( )- Consider a dynamical system (R”, f) with
differentiable vector field f and with an equilibrium point z* € R™.

Assume the continuously-differentiable V' : R” — R is a weak Lyapunov function, but not a local
Lyapunov function (as defined in Theorem 14.4). In other words, assume V is locally positive-definite about
x* (Assumption (L1)) and £}V is locally negative-semidefinite about 2* (Assumption (L2)), but £V is not
locally negative-definite about * (Assumption (L3)). Then Lyapunov Theorem 14.4 implies that 2* is stable
but not necessarily locally asymptotically stable.

Now, assume:
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(L7) {x*} is the only positively invariant set in {z € W | Z§V (x) = 0}, where W be a neighborhood of
x* on which V' is positive-definite and £V is negative-semidefinite.

Prove that Assumptions (L1), (L2) and (L7) imply the equilibrium point x* is locally asymptotically stable.

E14.7 Limit sets of dynamical systems. Consider the following nonlinear dynamical system

i =4z — fi(x) (22 + 222 — 4), (E14.1a)
By = =223 — fo(wo) (23 4 223 — 4), (E14.1b)

where the differentiable functions f1(z), f2(x) have the same sign as their arguments, i.e., x; f;(z;) > 0 if
x; #0, f;(0) = 0, and f/(0) > 0. This vector field exhibit some very unconventional limit sets. In what
follows you will investigate this vector field and show that each trajectory converge to an equilibrium, but
that none of the equilibria is Lyapunov stable.

(i) Show that & = {x € R? | 22 4 223 = 4} is an invariant set. Calculate the equilibria on the set £.

(i) Show that all trajectories converge either to the invariant set £ or to the origin (0, 0).

(iii) Determine the largest invariant set inside £, such that all trajectories originating in £ converge to that
set.

(iv) Show that the origin (0, 0) and all equilibria on £ are unstable, i.e., not stable in the sense of Lyapunov.
Sketch the vector field.
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Lotka-Volterra Population Dynamics

In this chapter we study the behavior of the Lotka-Volterra population model, that was introduced in
Section 13.1. First we illustrate the behavior of the 2-dimensional model via simple phase portraits. Then,
using Lyapunov stability theory from Chapter 13 we provide sufficient conditions for the general n-
dimensional model to have a globally asymptotically stable point. As a special case, we study the case of
cooperative models.

Recall that the Lotka-Volterra vector field for n > 2 interacting species, as given in equation (13.3), is

i = diag(z) (Az + 1) = fiv(z), (15.1)
where the matrix A = [a;;] is called the interaction matrix, and the vector 7 is called the intrisic growth
rate.

15.1 Two-species model and analysis
In this section we consider the two-species Lotka-Volterra system

1 = z1(r1 + anz + a1272), (15.2)
T9 = xa(ry + ag1x1 + agws), |

with scalar parameters (r1,72) and (a11, a12, a1, az2). It is possible to fully characterize the dynamics
behavior of this system as a function of the six scalar parameters. As explained in Section 13.1, to model
bounded resources, our standing assumptions are:

r; >0, and a; < 0, fori € {1,2}.

We study various cases depending upon the sign of a12 and as;.
To study the phase portrait of this two-dimensional system, it is establish the following details:

(i) along the axis x2 = 0, there exists a unique non-trivial equilibrium point 27 = —r1/a11;

(ii) similarly, along the axis z1 = 0, there exists a unique non-trivial equilibrium point 2§ = —ra/a22;
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(ili) the z1-null-line is the set of points (x1,x2) where £; = 0, that is, the line in the (21, z2) plane
defined by r1 + a1121 + aja22 = 0;
(iv) similarly, the xo-null-line is the (z1, z2) plane defined by 73 + a21x1 + agexs = 0.
Clearly, the z1-null-line (respectively the z1-null-line) passes through the equilibrium point x7 (respec-
tively x3).
In what follows we study the cases of mutualistic interactions and competitive interactions. We refer to
Exercise E15.2 for a specially-interesting case of predator-prey interactions.
15.1.1 Mutualism

Here we assume inter-species mutualism, that is, we assume both inter-species coeflicients a2 and a9
are positive. We identify two distinct parameter ranges corresponding to distinct dynamic behavior and

illustrate them in Figure 15.1.

Lemma 15.1 (Two-species mutualism). Consider the two-species Lotka-Volterra system (15.2) with scalar
parameters (r1,r2) and (a11, ai2, a1, aze). Assume the interaction is mutualistic, i.e., assume a12 > 0 and

a1 > 0. The following statements hold:

CaseI: ifajpa < aiiag2, then there exists a unique positive equilibrium point (7, x3), solution to

at
a1

and all trajectories starting in R2>0 converge to it;

starting in R2,) diverge.
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Case I: ai2 > 0, a1 > 0, ai2a21 < aiji1ass. There exists a
unique positive equilibrium point. All trajectories starting in

R2, converge to the equilibrium point.
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Case II: otherwise, if ajoaz1 > aj1a92, then there exists no positive equilibrium point and all trajectories
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Case II: a12 > 0, as1 > 0, ai12a21 > aiiaszze. There exists
no positive equilibrium point. All trajectories starting in R,

diverge.

Figure 15.1: Two possible cases of mutualism in the two-species Lotka-Volterra system
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Competition

Here we assume inter-species competition, that is, we assume both inter-species coefficients a;2 and ao; are
negative. We identify four (two sets of two) distinct parameter ranges corresponding to distinct dynamic
behavior and illustrate them in Figures 15.2 and 15.3.

Lemma 15.2 (Two-species competition with a positive equilibrium). Consider the two-species Lotka-
Volterra system (15.2) with scalar parameters (r1,r2) and (a1, a2, a1, as). Assume the interaction is
competitive, i.e., assume a1z < 0 and ag; < 0. The following statements hold:

Case III: ifra/|azs| < 71/|ai2| and r1/]ai1| < ra2/|ag1]|, then there exists a unique positive equilibrium,

which attracts all trajectories starting in R2>0 ;

CaseIV: if r1/|aia| < ro/|azs| and ro/|as1| < ri/lai1|, then the equilibrium in R2>0 is unstable; all
trajectories (except the equilibrium solution) converge either to the equilibrium (—ry/a11,0) or to the
equilibrium (0, —r2/as2).

As for Case [, for Cases IIl and IV, it is easy to compute the unique positive equilibrium point (z7, %)

as the solution to [an aw} [{Ei] =— [m}
ag] G99 Ty )

N S s S,
H S Ay
> T s
e 77
— e P
====== T
N T e
T ::——xg—null-linb 4:; z
o ——y

—ri/an —ra/ag —ri/an

Case IV: a12 < 0, a21 < 0, r1/]a12| < 7r2/|azz|, and
r2/]az1| < ri/|ai1]. The equilibrium in R%, is unstable;
all trajectories (except the equilibrium solution) converge ei-
ther to the equilibrium (—71/a11,0) or to the equilibrium
(0, *1"2/@22).

Case III: a12 < 0, az1 < 0, rg/|azz] < 71/|aiz2|, and
ri/la11] < r2/|a21|. There exists a unique positive equi-
librium, which attracts all trajectories starting in RZ.

Figure 15.2: Two competition cases with an equilibrium in the two-species Lotka-Volterra system

Lemma 15.3 (Two-species competition without positive equilibria). Consider the two-species Lotka-
Volterra system (15.2) with scalar parameters (r1,r2) and (ai1,a12,a21,a22). Assume the interaction is
competitive, i.e., assume a1z < 0 and ag; < 0. The following statements hold:

Case V: ifro/|asa| < ri/|laia| and ro/|as1| < ri/|a11]|, then there exists no equilibrium in ]R2>0 and all
trajectories starting in R2 ) converge to the equilibrium (—r1/a11,0);
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238 Chapter 15. Lotka-Volterra Population Dynamics
Case VI: ifr1/|a12| < r2/|age| and r1/]a11| < r2/|azi|, then there exists no equilibrium in ]R2>0 and all
trajectories starting in R2 , converge to the equilibrium (0, —r2/ass).
~ A
S 1=
MU, Wz
WUy,
R e
P\ 7
W 7y ¢
;e:/xg-nut-lin\%\x&i(\:{t u '/ é?{'// / :// / / =
| NN\ 2E
—7"2/<121 —7’1/(111 —Tl/a1'1 *7’27@1
Case V: a12 < 0, az1 < 0, r2/|az2| < 71/|aiz|, and Case VI: a12 < 0, az1 < 0, r1/]ai2] < 7r2/|azz|, and
r2/|az1| < r1/la11|. There exists no equilibrium in RZ,. r1/)a11| < 7r2/|a21|. There exists no equilibrium in R% .
All trajectories starting in R, converge to the equilibrium All trajectories starting in R, converge to the equilibrium
(=r1/a11,0). (0, =12 /azs).
Figure 15.3: Two competition cases without equilibria in the two-species Lotka-Volterra system
15.2 General results for Lotka-Volterra models

We have seen some variety of behavior in the 2-species Lotka-Volterra model (15.2). Much richer dynamical
behavior is possible in the n-species Lotka-Volterra model (13.3), including persistence, extinction, equilibria,
periodic orbits, and chaotic evolution. In what follows we focus on sufficient conditions for the existence

and stability of equilibrium points.

Lemma 15.4 (Lotka-Volterra is a positive system). For n > 2, the Lotka-Volterra system (15.1) is a
positive system, i.e., x(0) > 0 implies z(t) > 0 for all subsequent t. Moverover, if z;(0) = 0, then x;(t) = 0

for all subsequent t.

Therefore, without loss of generality, we can assume that all initial conditions are positive vectors in
RZ. In other words, if a locally-asymptotically stable positive equilibrium exists, the best we can hope for
is to establish that its region of attraction is R ;. We are now ready to state the main result of this section.

Theorem 15.5 (Sufficient conditions for global asymptotic stability). For the Lotka-Volterra sys-
tem (15.1) with interaction matrix A and intrinsic growth rate r, assume

(A1) A is diagonally stable, i.e., there exists a positive vector p € R" such that diag(p)A + AT diag(p) is
g y p

negative definite, and

(A2) the unique equilibrium point x* = — A~ r is positive.
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Then x* is globally asymptotically stable on RZ .

Proof. Note that A diagonally stable implies A Hurwitz and invertible. For x > 0, recall the logarithmic-
linear function Vigg 1in,~ : R>o — R illustrated in Figure 14.6 and defined by

Vioglinys () =2 — K — mlog(g).

Assumption (A2) allows us to define V' : R%; — R>q by

sz log-lin,z} xz sz Ty — .7}: - x: log(xz/iﬂf))

From Exercise E14.1 we know that the function Viog1in « is continuously differentiable, takes non-negative
values and satisfies Vlog_hnﬁ(sci) = 0 if and only if x; = k. Moreover, this function is unbounded in the
limits as z; — oo and x; — 0T. Therefore, V is globally positive-definite about z* and proper.

Next, we compute the Lie derivative of V' along the flow of the Lotka-Volterra vector field fiy(z) =
diag(x)(Az + r). First, compute d%ivlog-lin,x; (x3)(zi) = (x; — x})/xi, so that

gfw sz

Because A is invertible and 2* = — A~ 1r, we write Ax +r = A(z — z*) and obtain

va( ))i-

L Vi) = pilwi — 2])(Alx — 2*));
i=1

— (o - 2*)TAT diag(p)(z — o)
1 « . . *

= 5 (o —a")T(AT diag(p) + diag(p)4) (v — 2%).

where we use the equality y" By = y" (B + BT)y/2 for ally € R” and B € R"*". Assumption (A1) now

implies that .2,V (x) < 0 with equality if and only if x = 2*. Therefore, £,V is globally negative-

definite about x*. According to the Lyapunov Stability Criteria in Theorem 14.4, x* is globally asymptotically

stable on RY . |

Note: Assumption (A2) is not critical and, via a more complex treatment, a more general theorem can
be obtained. Under the diagonal stability Assumption (A1), ( , , Theorem 3.2.1) shows the
existence of a unique non-negative and globally stable equilibrium point * for each » € R"; the existence
and uniqueness of z* is established via a linear complementarity problem.

Cooperative Lotka-Volterra models

In this section we focus on the case of Lotka-Volterra systems with only mutualistic interactions. In other
words, we consider systems whose interaction terms satisfy a;; > 0 for all 7 and j. For such systems,
whenever ¢ # j we know

0
ang(va)i(%) = aj;xj > 0,
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so that the Jacobian matrix of such systems is Metzler everywhere in R>(. Such systems are called
cooperative.

We recall from Section 9.2 the properties of Metzler matrices. For example the Perron-Frobenius
Theorem 9.4 for Metzler matrices establishes the existence of a dominant eigenvalue. Metzler matrices
have so much structure that we are able to provide the following fairly comprehensive characterization:
(1) Metzler matrices with a positive dominant eigenvalue have unbounded solutions of the Lotka-Volterra
model (see Lemma 15.6 below), and (2) Metzler matrices with a negative dominant eigenvalue (and positive
intrinsic growth parameter) have a globally asymptotically-stable equilibrium point (see Theorem 15.7
below).

We start with a sufficient condition for unbounded evolutions.

Lemma 15.6 (Unbounded evolutions for unstable Metzler matrices). Consider the Lotka-Volterra
system (15.1) with interaction matrix A and intrinsic growth rate r. If A is an irreducible Metzler matrix with
a positive dominant eigenvalue, then

(i) there exist unbounded solutions starting from R~ ¢, and

(ii) if r > 0, then all solutions starting from R~ are unbounded.

Proof. Let A > 0 and w > 0 with 17w = 1 be the dominant eigenvalue and left eigenvector of A, whose
existence and properties are established by the Perron-Frobenius Theorem 9.4 for Metzler matrices. Define
V :R%, — Ry as the following weighted geometric average:

V(r) =M@

Along the flow of the Lotka-Volterra system, simple calculations show

ov 1 Z
&if) = wix—iV(x) — fLV sz (fiv(@)i =w" (Az +7) =w " (A\z + 7).
Generalizing the classic inequality (a + b)/2 > (ab)'/? for any a, b € ]R>o, we recall from ( , )
the weighted arithmetic-geometric mean inequality: w'x > 1"z} for any z,w € R” %o Therefore, we
have
LV (2)

V) w Az +r) > NIzl +wTr = AV(z) +w'r,
so that
L V(x) > V() AV (z) +w'r).

This inequality implies that, for any z(0) such that V' (x(0)) > —wTr/), the function ¢ — V (x(t)), and
therefore the state z(t), goes to infinity in finite time. This concludes the proof of statement (i).
Statement (ii) follows by noting that » > 0 implies V ((0)) > —wTr /A for all z(0) € RZ,,. [

Note: this lemma is true for any interaction matrix A that has a positive left eigenvector with positive
eigenvalue.
We next provide a sufficient condition for global convergence to a unique equation® point.
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Theorem 15.7 (Global convergence for cooperative Lotka-Volterra). Forthe Lotka-Volterra system (15.1)
with interaction matrix A and intrinsic growth rate r, assume

(A3) the interaction matrix A is Metzler and Hurwitz, and

(A4) the intrinsic growth parameter 1 is positive.
Then there exists a unique interior equilibrium point x* and x* is globally attractive on RY .

Proof. We leave it to the reader to verify that, based on Assumptions (A3) and (A4), the Assumptions (A1)

and (A2) of Theorem 15.5 are satisfied so that its consequences hold. |
Note: In ( , , Chapter 4), Theorem 15.7 is established via the Lyapunov function V' (z) =
mMaxX;e(i,.. n} Irz;% l, where z* is the equilibrium point and diag(¢y, .. .,&,) is the diagonal Lyapunov

matrix (as in Theorem 14.17(vi)) for the Metzler Hurwitz matrix A.

15.4 Historical notes and further reading

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for
modeling the dynamics of interacting populations in mathematical ecology. These equations were originally

developed in ( , ; , ).

An early reference for the analysis of the 2-species model is (Goh, ). Early references for the key
stability result in Theorem 15.5 are ( , ; , ).

Textbook treatment include ( , ; , ; , ). For a more complete treatment of
the n-special model, we refer the interested reader to ( , ; , ). For example,

( ) discusses conservative Lotka-Volterra models (Hamiltonian structure and existence of periodic orbits),
competitive and monotone models.

We refer to the texts ( , ; , ) for comprehensive discussions
about the connection with between Lotka-Volterra models and evolutionary game dynamics.
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15.5 Exercises

E15.1 Proofs for 2-species behavior. Provide proofs for Lemmas 15.1, 15.2, and 15.3.

E15.2 The 2-dimensional Lotka-Volterra predator/prey dynamics. In this exercise we study a 2-dimensional
predator/prey model. We specialize the general Lotka-Volterra population model to the following set of
equations:

#(t) = ax(t) — B (t)y(t),

§(t) = —yy(t) + sz(t)y(t), (E15.1)

where x is the non-negative number of preys, y is the non-negative number of predators individuals, and «,
B, and ~y are fixed positive systems parameters.
(i) Compute the unique non-zero equilibrium point (z*, y*) of the system.
(ii) Determine, if possible, the stability properties of the equilibrium points (0, 0) and (z*, y*) via lineariza-
tion (Theorem 14.10).
(iii) Define the function V(z,y) = —dz — By + vIn(x) + o In(y) and note its level sets as illustrated in
Figure (E15.1).

a) Compute the Lie derivative of V' (z,y) with respect to the Lotka-Volterra vector field.
b) What can you say about the stability properties of (z*, y*)?
c) Sketch the trajectories of the system for some initial conditions in the z-y positive orthant.

Figure E15.1: Level sets of the function V' (z, y) for unit parameter values
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CHAPTER ] 6

Virus Propagation in Contact Networks

In this chapter we continue our discussion about the diffusion and propagation of infectious diseases.
Starting from the scalar lumped models discussed in Section 13.2, we presents deterministic nonlinear
models over strongly-connected contact networks. We consider network models for susceptible-infected
(S), susceptible-infected-susceptible (SIS), and susceptible-infected-recovered (SIR) settings. In each setting,
we provide a comprehensive nonlinear analysis of equilibria, stability properties, convergence, monotonicity,
positivity, and threshold conditions; in all three cases the network results are appropriate generalizations
of the respective scalar models.

As in previous chapters, for an irreducible nonnegative matrix A, we let Apax = p(A), Winax, and vmax
denote the dominant eigenvalue of A and the corresponding positive left and right eigenvectors associated
with Ayay, normalized to satisfy w;axvmax =1.

16.1 Susceptible-Infected Model

Recall that the scalar SI model is discussed in Section 13.2, including model (13.4), solution (13.5), and
sample evolution in Figure 13.4. Given an adjacency matrix A € RZ{", the network SI model, illustrated in

Figure 16.1, is given by

2i(t) = B(1—zi(t) D aijz;(t), (16.1)
j=1
or, in equivalent vector form,
i(t) = B(I, — diag(z(t))) Az(t), (16.2)

where 8 > 0 is the infection rate. Alternatively, in terms of the fractions of susceptibile individuals
s(t) = 1,, — z(t), the network SI model is

5(t) = —Bdiag(s(t)) A(L, — s(t)). (16.3)

Theorem 16.1 (Dynamical behavior of network SI model). Consider the network SI model (16.2) with
B > 0. For strongly connected graph with adjacency matrix A, the following statements hold:
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244 Chapter 16. Virus Propagation in Contact Networks

B (infection rate)

!

Figure 16.1: In the network SI model, each node is described by a fraction of infected individuals taking value between
0 (blue) and 1 (red). Individuals become increasingly infected with infection rate 3.

(i) ifx(0),s(0) € [0,1]™, then z(t), s(t) € [0,1]" for allt > 0. Moreover, x(t) is monotonically non-
decreasing (here by monotonically non-decreasing we mean x(t1) < x(t2) for allt; < t2). Finally, if
x(0) > 0,, and (0) # O, then x(t) > 0, for allt > 0;

(ii) the model (16.2) has two equilibrium points: 0,, (no epidemic), and 1,, (full contagion);

a) the linearization of model (16.2) about the equilibrium point O,, is & = S Ax and it is exponentially

unstable;
b) let D = diag(AL,,) be the out-degree matrix. The linearization of model (16.3) about the equilib-
rium 0, is § = —BDs and it is exponentially stable;

(iii) each trajectory with initial condition x(0) # 0,, converges asymptotically to 1,,, that is, the epidemic
spreads monotonically to the entire network.

Proof. Regarding statement (i), the fact that, if x(0), s(0) € [0, 1]™, then z(t), s(t) € [0,1]" forallt > 0
means that [0, 1] is an invariant set for the differential equation (16.2). This is the consequence of Nagumo’s
Theorem (see (Blanchini and Miani, 2015, Theorem 4.7)), since for any z belonging on the boundary of the
set [0, 1], the vector 3(I,, — diag(z)) Az is either tangent or points inside the set [0, 1]".

Observe that the invariance of the set [0, 1]" implies that ©(¢) > 0, and so z(¢;) < z(t2) forall t; < to.

We now want to prove that, if (0) > 0,, and z(0) # 0, then z(t) > 0, for all £ > 0. If, by
contradiction, thereisi € {1,...,n} and T' > 0 such that ;(T") = 0, then the monotonicity of z;(¢) = 0
implies that z;(t) = 0 for all ¢ € [0, T, which yields @;(¢) = 0 for all ¢ € [0, T|. By equation (16.1) this
implies that ;(t) = 0 for all ¢ € [0, T for all j such that a;; > 0. We iterate this argument and using the
irreducibility of A we get the contradiction that 2:(¢) = 0 for all ¢ € [0, T']. This concludes the proof of (i).

Regarding statement (ii), note that O,, and 1,, are clearly equilibrium points. Let Z € [0, 1]" be an
equilibrium and assume that Z # 1,,. Then there is 7 such that Z; # 1. Since ﬁ(l — a’:z) Z;’L:1 ai;T; =0,
then Z?:l a;jT; = 0 which implies that Z; = 0 for all j such that a;; > 0. By iterating this argument
and using the irreducibility of A we get that £ = 0 concluding only 0,, and 1,, are equilibrium points.
Statements (ii)a and (ii)b are obvious. Exponential stability of the linearization § = —Ds is obvious, and
the Perron-Frobenius Theorem implies the existence of the unstable positive eigenvalue p(A) > 0 for the
linearization & = SAwx.
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Regarding statement (iii), consider the function V (z) = 1} (1,, — x); this is a smooth function defined
over the compact and forward invariant set [0, 1]™ (see statement (i)). Since V = —3 il (In - diag(x))Aw,
we know that V' < 0 for all z and V() = 0 if and only if z € {0, 1,,}. The Krasovskii-LaSalle Invariance
Principle implies that all trajectories with x(0) converge asymptotically to either 1,, or 0,,. Additionally,
note that 0 < V(z) < nforall z € [0,1]™, that V(z) = 0 if and only if x = 1,, and that V(z) = n if and
only if x = 0,,. Therefore, all trajectories with 2(0) # 0,, converge asymptotically to 1,,. |

For the adjacency matrix A, there exists a non-singular matrix 7 such that A = T.JT !, where .J is the
Jordan normal form of A. Since A is non-negative and irreducible, the first Jordan block J; = (Apax)1x1
and A\pax > R(N\;) for any other eigenvalue \; of A. Consider now the onset of an epidemic in a large
population characterized by a small initial infection 2:(0) = o much smaller than 1,,. The system evolution
is approximated by @ = S Ax. This “initial-times” linear evolution satisfies

z(t) = P4 2(0) = T A7 T 12(0)
= fAmaxt (Telel T tz(0) + o(1)),
where e; is the first standard basis vector in R” and 0( ) denotes a time-varying vector that vanishes as

t — 4o00. Let u1 denote the first column of 7" and let v{ denote the first row of T~1. Since AT = T'J and

T~'A = JT~!, one can check that u; (v resp.) is the right (left resp.) eigenvector of A associated with

the eigenvalue Apax. Since T-1T = I,,, we have UlTul = 1. Therefore,

a(t) = Pt (uy0f2(0) + o(1))
= eﬁ)‘maxt ('U);Lax.r([))

T
wmax Umax

Umax + 0(1)). (16.4)

That is, the epidemic initially experiences exponential growth with rate S\« and with distribution among
the nodes given by the eigenvector vpax.

Now suppose that at some time 7', for all ¢ we have that 2;(T') = 1 — &;, where each ¢; is much smaller
than 1. Then, for time ¢ > T, the approximated system for s(¢) is given by:

S (t) = —fd;s; (t) — S; (t) =¢g; e_ﬁdi(t_T) .
From the discussion above, we conclude that the initial infection rate is proportional to the eigenvector
centrality, and the final infection speed is proportional to the degree centrality.
Susceptible-Infected-Susceptible model

Recall that the scalar SIS model is discussed in Section 13.2, including model (13.6), solution (13.7), and
sample evolution in Figure 13.5. The network SIS model with infection rate 5 and recovery rate v is given

by:
zi(t) = (1 — x4(t Z a;jx;(t) — yai(t), (16.5)
or, in equivalent vector form,

i(t) = B(I,, — diag(z(t))) Az(t) — va(t). (16.6)
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In the rest of this section we study the dynamical properties of this model. We start by defining the
monotonically-increasing functions

f+) =y/(I+y), and [ (2)=2z/(1-2),

for y € R>g and 2 € [0, 1[. Note that f (f-(2)) = z for all z € [0, 1). For vector variables y € R% and
2 € 0,1)", we write Fy (4) = (fy (31). -+ £+ (o)), and F () = (F(21), .-, £ (zn).

We first characterize the behavior of the network SIS model in a regime we describe as “below the
threshold”

Theorem 16.2 (Dynamical behavior of the network SIS model: Below the threshold). Consider the
network SIS model (16.5), with 3 > 0 and v > 0, over a strongly connected digraph with adjacency matrix
A. Let Apax and wiax be the dominant eigenvalue of A and the corresponding normalized left eigenvector
respectively. If BAmax/y < 1, then

(i) ifz(0),s(0) € [0,1]™, then x(t),s(t) € [0,1]™ for allt > 0. Moreover, if 2(0) > 0,, and z(0) # O,
then z(t) > 0,, forallt > 0;

(ii) there exists a unique equilibrium point 0, the linearization of (16.5) about 0,, is & = (BA — vI,)x
and it is exponentially stable;

(iii) from anyx(0) # O, the weighted averaget — w/ . x(t) is monotonically and exponentially decreasing,
and all the trajectories converge to O,.

Proof. Regarding statement (i), as in Theorem 16.1 the first part is the consequence of Nagumo’s The-
orem. Then define y(t) := €'z (¢). Notice that this variable satisfies the differential equation () =
Bdiag(s(t))Ay(t). From the same arguments used in the proof of the statement (i) in Theorem 16.1 we
argue that y(¢) > 0,, for all ¢ > 0. From this it follows that also z(¢) > 0,, for all ¢ > 0.

Regarding statement (ii), assume that x* is an equilibrium point. It is easy to se that +* < 1,,. Observe
moreover that * is an equilibrium point if and only if Az* = F_(2*) or, equivalently, if and only if
Fy (%Aaz*) = z*. This means that «* is an equilibrium if and only if it is a fixed point of F, where
F(x) = F+(§Am). Let A = BA/~. For z € [0,1]", note F, (Az) < Az because f; (z) < z. Moreover,
0, <z < y implies that 0,, < F(x) < /ly Therefore, if 0,, < x, then F* (z) < Az, for all k. Since A is
Schur stable, then limy, o, F¥(x) = 0. This shows that the only fixed point of F is zero.

Next, the linearization of equation (16.6) is verified by dropping the second-order terms. The linearized
system is exponentially stable at 0,, for SAyax — 7 < 0 because Apax is larger, in real part, than any other
eigenvalue of A by the Perron-Frobenius Theorem for irreducible matrices.

Finally, regarding statement (iii), define y(t) = w ..z (t) and note that (I,, — diag(z)) Wmax < Wmax
for any z € [0, 1]". Therefore,

J(t) < By Az(t) — YW@ () = (BAmax — 7)y(t) <

By the Grénwall-Bellman Comparison Lemma in Exercise E14.2, y(¢) is monotonically decreasing
and satisfies y(t) < y(0) exp ((8Amax — 7)t) from all initial conditions y(0). This concludes our proof of
statement (iii). |

We next present the dynamical behavior of the network SIS model “above the threshold” as follows.
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Theorem 16.3 (Dynamical behavior of the network SIS model: Above the threshold). Consider the
network SIS model (16.5), with 8 > 0 and v > 0, over a strongly connected digraph with adjacency matrix A.
Let Amax be the dominant eigenvalue of A and let wyax and viax be the corresponding normalized left and
right eigenvectors respectively. Let d = Al,,. If BA\max/7y > 1, then

(i) ifz(0),s(0) € [0,1]™, then x(t),s(t) € [0,1]™ for allt > 0. Moreover, if z(0) > 0,, and z(0) # O,
then z(t) > 0,, forallt > 0;

(ii) O,, is an equilibrium point, the linearization of system (16.6) at O,, is unstable due to the unstable
eigenvalue SAmax — v (i.e., there will be an epidemic outbreak);

(iii) besides the equilibrium O,,, there exists a unique equilibrium point x*, called the endemic state, such
that
a) r* > 0y,
b) =¥ = 6avmax + O(6%) as & — 0T, where § := SAmax/y — 1 and

T
wmax vmax

. )
wl. - diag(Vmax ) Vmax

¢) v* =1, — (y/B) diag(d) 11, + O(v%/3?), at fixed A, asy/3 — 07,
d) define a sequence {y(k)}ren C R™ by

yk+1):= F, (fAy(k:)). (16.7)

Ify(0) > 0 is a scalar multiple of viax and satisfies either 0 < max; y;(0) < 1 — v/(8Amax) or
min; y;(0) > 1 — v/(BAmax), then

lim y(k) = z™.

k—o0

Moreover, ifmax; y;(0) < 1—7/(5Amax), theny(k) is monotonically non-decreasing; if min; y;(0) >

1 — /(B Amax), then y(k) is monotonically non-increasing.

(iv) the endemic state =* is locally exponentially stable and its domain of attraction is [0, 1]™ \ O,,.

Note: statement (ii) means that, near the onset of an epidemic outbreak, the exponential growth rate is
BAmax — 7y and the outbreak tends to align with the dominant eigenvector vpax; for more details see the
discussion leading up to the approximate evolution (16.4).

Proof of selected statements in Theorem 16.3. Statement (i) can be proved as done for statement (i) of Theo-
rem 16.1.
Statement (ii) follows from the same analysis of the linearized system as in the proof of Theorem 16.2(ii).
Regarding statement (iii), we begin by establishing two properties of the map =z — F+(A$) for
A = BA/. First, we claim that, y > z > 0,, implies Fy (Ay) > F, (Az). Indeed, note that G being
connected implies that the adjacency matrix A has at least one strictly positive entry in each row. Hence,
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y — z > 0, implies A(y — z) > 0, and, since f is monotonically increasing, Ay > Az implies
F.(Ay) > Fy (A2)

Second, we observe that, for any 0 < o < 1 and z > 0, we have fi(az) > zifandonlyif 2 < 1—1/a.
Suppose y(0) is a scalar multiple of vpyax and 0 < max; y;(0) < 1 — v/(BAmax). We have

P (Ay(0); = £+ (F23,(0)) = (o).

Therefore, the sequence {y(k)}ren defined by equation (16.7) satisfies y(1) > y(0), which in turn leads to
y(2) = Fy(Ay(1)) > Fy(Ay(0)) = y(1), and by induction, y(k + 1) = Fy (Ay(k)) > y(k) for any k € N.
Such sequence {y(t)} is monotonically non-decreasing and entry-wise upper bounded by 1,,. Therefore,
as k diverges, y(k) converges to some x* > 0,, such that F'y (/lx*) = x*. This proves the existence of an
equilibrium z* = limy_, o y(k) > 0,, as claimed in statements (iii)a and (iii)d.

Similarly, for any 0 < e < 1 and z > 0, f4 (az) < zif and only if z > 1 — 1/a. Following the same
line of argument in the previous paragraph, one can check that the {y(k)}rcn defined by equation (16.7) is
monotonically non-increasing and converges to some x*, if y(0) is a scalar multiple of vy and satisfies
mini yz(o) >1- 7/(6>\max)-

We now establish the uniqueness of the equilibrium z* € [0,1]" \ {0, }. First, we claim that an
equilibrium point with an entry equal to 0 must be 0,,. Indeed, assume y* is an equilibrium point and assume
y; = 0 for some i € {1,...,n}. The equality y/ = f+(3_7_; ai;y}) implies that also any node j with
a;; > 0 must satisfy y; = 0. Because G is connected, all entries of y* must be zero. Second, by contradiction,
we assume there exists another equilibrium point y* > 0,, distinct from z*. Let o := min;{y;/2}} and
let i satisfy o = y/x}. Then y* > az* > 0,, and y = ax}. Notice that we can assume with no loss of
generality that o < 1, otherwise we exchange z* and y*. Observe now that

(Fy(Ay) — "), = f+((Ay*)) — o}
> fi(a(Az*);) — ax} (A > 0,xn)
> af+((Ax*),) —azx; (0O<a<landz>0)
= a(Fy(Az*) - z*), = 0. (z* is an equilibrium)

Therefore, (FJr (/ly*) — y*)l > 0, which contradicts the fact that y* is an equilibrium.
Now we prove statement (iii)b. Observe first that, if we take

max (5 max
0= (1) o :

B B Amax maXi{vmax,i} 6+ InaXi{Umax,i}7

then y(k) is monotonically non-decreasing and converges to z*, and if we take instead

max 6 max
0= (15 ) o :

- B Amax mini{vmax,i} S d+1 Inini{vmax,i}7

then y(k) is monotonically non-increasing and converges to z*. These two statements together imply
argue that

1) VUmax % ) Umax
< X < N ’
0+ 1maxi{vmax,;} ~ 0+ 1 mini{vmax}
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and, in turn, that z* is infinitesimal as a function of §. Consider now the Taylor expansion z*(J) =
216 + 2202 + O(63). Since the equilibrium z* satisfies the equation

(6 4 1) (I, — diag(z")) Az* — Apaxa™ =0,

by substituting the expansion and equating to zero the coefficient of the term J, we obtain the equation
Ax1 — Amax®1 = 0. This proves that x; is a multiple of vyax, namely £1 = avpax for some constant a. By
equating to zero the coefficient of the term 42, we obtain instead the equation

Az + Azy — diag(z1) Az — Apaxx2 = 0.
Using the fact that ©; = avpax We argue that

2 .
@ AmaxVUmax + Ax2 — 6" Amax dlag(vmax)vmax — AmaxZ2 = 0.

T

max We obtain

By multiplying on the left by w

T 2 T :
a)\maxwmaxvmax —a )\maxwmax dlag(vmax)vmax =0,

which proves that

wrﬂaxvmax
a=—7F .
wl . diag(vmax)Vmax
Point (iii)c can be proved in a similar way; we refer the reader to ( , ) for the details.
Regarding statement (iv) we refer the reader to ( , ; , )
or ( , , Theorems 1 and 2) in the interest of brevity. |

Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

Scalar SIR model In this model individuals who recover from infection are assumed not susceptible
to the epidemic any more. In this case, the population is divided into three distinct groups: s(t), z(t),
and r(t), denoting the fraction of susceptible, infected, and recovered individuals, respectively, with
s(t) + (t) + r(t) = 1. We write the (Susceptible-Infected-Recovered) SIR model as:

5(t) = —Bs(B)a(d),
#(t) = Bs((t) — ya(b), (1638)
#(t) = ya (),

and present its dynamical behavior as follows.

Lemma 16.4 (Dynamical behavior of the SIR model). Consider the SIR model (16.8). From each initial
condition s(0) + z(0) + r(0) = 1 with s(0) > 0, z(0) > 0 and r(0) > 0, the resulting trajectory t
(s(t),x(t),r(t)) has the following properties:
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(i) s(t) >0,z(t) > 0,7(t) >0, and s(t) + z(t) + r(t) = 1 forallt > 0;
(ii) t — s(t) is monotonically decreasing and t — r(t) is monotonically increasing;

(iii) limy—yoo(s(t), z(t), 7(t)) = (Sco, 0, 7o), Where ro is the unique solution to the equality
B
1 -7 =s(0)e 7 (T”_T(O)); (16.9)

(iv) if Bs(0)/y < 1, thent — x(t) monotonically and exponentially decreases to zero ast — oo;

(v) ifBs(0)/y > 1, thent — x(t) first monotonically increases to a maximum value and then monotonically
decreases to 0 ast — oo; the maximum fraction of infected individuals is given by:

ZTmax = 2(0) + s(0) — %(10{;(5(0)) +1—log (%))

As mentioned before, we describe the behavior in statement (v) as an epidemic outbreak, an exponential
growth of ¢ — x(t) for small times.

Network SIR model The network SIR model on a graph with adjacency matrix A is given by
5i(t) = =Bsi(t) 3 e (1),
i(t) = Bsi(t) ZFl agz;(t) —yxi(t),
7i(t) = yxi(t),

where 3 > 0 is the infection rate and v > 0 is the recovery rate. Note that the third equation is redundant

because of the constraint s;(t) + x;(t) + r;(t) = 1. Therefore, we regard the dynamical system in vector
form as:

5(t) = —pBdiag(s(t))Az(t), (16.10a)
z(t) = pdiag(s(t))Ax(t) — va(t). (16.10b)
Theorem 16.5 (Dynamical behavior of the network SIR model). Consider the network SIR model (16.10),
with 8 > 0 and v > 0, over a strongly connected digraph with adjacency matrix A. Fort > 0, let Amax(t)

and Wax(t) be the dominant eigenvalue of the non-negative matrix diag(s(t))A and the corresponding
normalized left eigenvector, respectively. The following statements hold:

(i) ifx(0) > 0,, and s(0) > 0O,,, then

a) t — s(t) andt — x(t) are strictly positive for allt > 0,
b) t — s(t) is monotonically decreasing, and
¢) t — Amax(t) is monotonically decreasing;
(ii) the set of equilibrium points is the set of pairs (s*,0,,), for any s* € [0,1]", and the linearization of
model (16.10) about (s*,0,,) is
5(t) = —p diag (s*)Aa:,

z(t) = B diag (5*)A:p — yx; (16.11)
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(iii) (behavior below the threshold) let the time T > 0 satisfy SAmax(7) < . Then the weighted average
t = Wmax(7)T2(t) , fort > 7, is monotonically and exponentially decreasing to zero;

(iv) (behavior above the threshold) if BAmax(0) > 7 and x(0) > 0y, then,

a) (epidemic outbreak) for small time, the weighted average t > wmax (0) T2 (t) grows exponentially
fast with rate 3Amax(0) — 7, and

b) there exists T > 0 such that BAmax(T) < 7;

(v) each trajectory converges asymptotically to an equilibrium point, that is, lim;_, . x(t) = O,, so that the
epidemic asymptotically disappears.

In other words, when SAm.x(0)/y > 1, we have an epidemic outbreak, i.e., an exponential growth
of infected individual for short time. In any case, the theorem guarantees that, after at most finite time,
BAmax(t)/7 < 1 and the infected population decreases exponentially fast to zero.

Proof. Regarding statement (i)a, s(¢) > 0, is due to the fact that Az is bounded and s(t) is continuously
differentiable to . The statement that z(t) > 0,, for all ¢ > 0 is proved in the same way as Theorem 16.2 (i).
Statement (i)b is the immediate consequence of $;(t) being strictly negative. From statement (i)a we know
that each s;(t) is positive, and from A being irreducible and #(0) # 0,, we know that 37, a;;z; is positive.
Therefore, 3;(t) = —Bsi(t) > j_; aijzj(t) < Oforalli € {1,...,n} and ¢ > 0.

For statement (i)c, we start by recalling the following property from ( , , Example 7.10.2): for
B and C nonnegative square matrices, if B < C, then p(B) < p(C). Now, pick two time instances t; and
to with 0 < t; < 9. Let & = max; s;(t2)/si(t1) and note 0 < a < 1 because s(t) is strictly positive and
monotonically decreasing. Now note that,

diag(s(t1))A > adiag(s(t1))A > diag(s(t2))A,
so that, using the property above, we know

plding(s(t1))A) > ap(diag(s(t1))4) > p(diag(s(t2))A).

This concludes the proof of statement (i)c.
Regarding statement (ii), note that a point (s*, z*) is an equilibrium if and only if:

0, = —(@diag(s")Az", and

0, = fdiag(s*)Ax™ — vyx™.
Therefore, each point of the form (s*,0,,) is an equilibrium. On the other hand, summing the last two
equalities we obtain 0,, = y2* and thus z* must be 0,,. As a straightforward result, the linearization of

model (16.10) about any equilibrium point (s*, 0, 1,, — s*) is given by equation (16.11).
Regarding statement (iii), left multiplying wmax(7)T on both sides of equation (16.10b) we obtain:

d

 (Wnax(7)T2(1)) = Wina(7)T (/3 diag (s(t)) Az (t) — fy:U(?f)),

< wmax(T)T<6 diag (3(7))A$(t) - 'yx(t)> = (BAmax(1) — V)WmaX(T)Tw(t)'
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Therefore, we obtain
Wnax (T) T2 (1) < (Wimax (7) T 2(0)) ePAmax(D)=7)

The right-hand side exponentially decays to zero when SAmax(7) < 7. Therefore, wmayx(7) T z(t) also
decreases monotonically and exponentially to zero for all ¢t > .

Regarding statement (iv)a, note that based on the argument in (i)a, we only need to consider the case
when z(0) > 0,,. Left-multiplying wyax(0) T on both sides of equation (16.10b), we obtain:

% (wmaX(O)Tx(t»‘ — wmax(O)T<ﬁ diag (s(t)) Az(t) — w(ﬂ)’

= (BAmax(0) = ) Wmax(0) Tz (0).

t=0 t=0

Since SAmax(0) — v > 0, the initial time derivative of wax(0) T2(t) is positive. Since ¢ — wWmax(0) T2 (t)
is a continuously differentiable function, there exists 7/ > 0 such that 4 (wmax(0)Tz(t)) > 0 for any
te0,7].

Regarding statement (iv)b, since $(¢) < 0,, and is lower bounded by 0,,, we conclude that the limit
limy_, 4 o s(t) exists. Moreover, since s(t) is monotonically non-increasing, we have lim;_, o $(t) = 0,
which implies either lim;_, 1 s(¢) = 0,, or lim; 4o x(t) = 0,. If s(t) converges to O,, then ()
converges to —yx(t). Therefore, there exists 7' > 0 such that SAmax(7") < 7y, which leads to z(¢) — 0, as
t — 4o0. If 5(t) converges to some s* > 0,,, then z(¢) still converges to O,,. Therefore, for any (s(0), z(0)),
the trajectory (s(t), z(t)) converges to some equilibria with the form (s*,0,,), where s* > 0y,. Let

s(t) = s" +05(t), and x(t) = 0, + 65(¢).

We know that 05(¢) > 0 and 0,(t) > 0 for all ¢ > 0. Moreover, d5(¢) is monotonically non-increasing and
converges to 0,,, and there exists 7' > 0 such that, for any t > T, 0x(t) is monotonically non-increasing
and converges to O,,.

Let A\* and v* denote the dominant eigenvalue and the corresponding normalized left eigenvector of
matrix diag(s*)A, respectively, that is, v*T diag(s*)A = X\*v*T. First let us suppose SA* — v > 0, then
the linearized system of (16.8) around (s*, 0,,) is written as

5, = —Bdiag(s") A6,

b, = Bdiag(s*)Ad, — 70,
Since SA* — v > 0, the linearized system is exponentially unstable, which contradicts the fact that
(65(t),04(t)) — (0,,,0,) as t — +oc0. Alternatively, suppose SA* — v = 0. By left multiplying v*T on
both sides of the equation for 4() in (16.8), we obtain

v T8, = (BA* —7)(v"76,) + Bo*T diag(d,) A,
= Bv* T diag(ds)Ad, > Oy,

which contradicts d,(t) — 0,, as t — +00. Therefore, we conclude that SA\* — v < 0. Since Apax(t) is

continuous on ¢, we conclude that there exists 7 < 400 such that SAp.x(t) — v < 0.
[ |
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In the rest of this section, we present some numerical results for the network SIR model on the undirected
unweighted graph illustrated in Figure 16.2. The adjacency matrix A is binary. Unless otherwise stated, the
system parameters are J = 0.5 and v = 0.4. As initial condition, we select one node fully infected (the
dark-gray node in Figure 16.2, say, with index 1), 19 fully healthy individuals, and zero recovered fraction —
corresponding to z(0) = ey, 7(0) = 0,, and s(0) = 1,, — z(0).

Figure 16.2: Sample undirected unweighted graph with 20 nodes

The left image in Figure 16.3 illustrates the time evolution of (3/7)Amax(t) with varying network
parameters. Note that each evolution starts above the threshold, reaches the threshold value 1 in finite
time, and converges to a final value below 1. The right image in Figure 16.3 illustrates the behavior of the
average susceptible, average infected and average recovered quantities in populations starting from a small
initial infection fraction and with SAmax(t)/ above 1 at time 0. Note that the evolution of the infected
fraction of the population displays a unimodal dependence on time, like in the scalar model.

ew" T
08} Umax(0) " s(t) Umas(0) ' r(t)
0.6}
04f
02} =
) | vmaX(Q) x(t)x t
5 10 15 20

(a) The spectral radius of (8/~) diag(s(t))A); the (b) Fraction of susceptible, infected, and recovered individu-
parameter -y takes value in .1,.2, ..., .9 correspond- als. At initial time we have SAmax(0)/~y = 3.57.
ing, respectively, to the curves from top to bottom.

Figure 16.3: Evolution of the network SIR model from initial condition consisting of one node fully infected individual
(the dark-gray node in Figure 16.2), 19 fully healthy individuals, and zero recovered fraction.

Appendix: The stochastic network SI model

Building on Appendix 13.4, we now present and study a stochastic model of the propagation phenomenon
over a contact network.

The stochastic model The stochastic network SI model, illustrated in Figure 16.4, is defined as follows:
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(i) We consider a group of n individuals. The state of each individual is either S for susceptible or I for
infected.

(if) The n individuals are in pairwise contact, as specified by an undirected graph G with adjacency
matrix A (without self-loops). The edge weights represent the frequency of contact among two
individuals.

(iii) Each individual in susceptible status can transition to infected as follows: given an infection rate
B > 0, if a susceptible individual 7 is in contact with an infected individual j for time At, the
probability of infection is a;;3At. Each individual can be infected by any neighboring individual:
these random events are independent.

Figure 16.4: In the stochastic network SI model, each susceptible individual (blue) becomes infected by contact with
infected individuals (red) in its neighborhood according to an infection rate 3.

An approximate deterministic model We define the infection variable at time ¢ for individual ¢ by

Yi(t) =

1, ifnode 7 is in state [ at time ¢,
0, ifnode i isin state S at time ¢,

and the expected infection, which turns out to be equal to the probability of infection, of individual ¢ by

zi(t) = E[Yi(t)] = 1- P[Y;(t) = 1] + 0 P[Yi(t) = 0]
— PIY;(t) = 1].

In what follows it will be useful to approximate P[Y;(t) = 0] Y;(t) = 1] with P[Y;(¢) = 0], that is, to
require Y; and Y; to be independent for arbitrary ¢ and j. We claim this approximation is acceptable over
certain graphs with large numbers n of individuals. The final model, which we obtain below based on the
Independence Approximation, is an upper bound on the true model because P[Y;(t) = 0] > P[Y;(t) =
0] ¥;(t) = 1]

Definition 16.6 (Independence Approximation). For any two individuals i and j, the infection variables
Y; and Y; are independent.
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Theorem 16.7 (From the stochastic to the deterministic network SI model). Consider the stochastic
network SI model with infection rate 3 over a contact graph with adjacency matrix A. The probabilities of
infection satisfy

Moreover, under the Independence Approximation 16.6, the probabilities of infection x;(t) = P[Y;(t) = 1],
i€ {1,...,n}, satisfy (deterministic) network SI model defined by

i (t) = B(1 — x4(t Zaw%

We study the deterministic network SI model in the next section.

Proof. We start by defining the random variables
Y—i(t) = (Yl(t)a <. 7Yé—1(t)7 Yvi-l—l(t)7 SUR) Yn(t))7

and, similarly, Y_;_;(t), fori,j € {1,...,n}. We are interested in the event that a susceptible individual
remains susceptible (or, vice versa, the event that susceptible individual becomes infected) over the interval
of time [t, t + At], for a short interval duration At. We start by computing the probability of non-infection
for a duration At, conditioned upon Y_;(¢):

n

P[Y;(t + At) = 0| Y;(t) = 0,Y_;(t)] = H (1= ay;Y;(t)BAL) =1 — zn:aijyj(t)ﬁm + O(A).

j=1 j=1
The complementary probability, i.e., the probability of infection for duration At is:

P[Y;(t + At) = 1|Y;(t) = 0,Y_;(t)] = zn: ai; Y;(t)BAL + O(AL?).
j=1
We are now ready to study the random variable Y;(t + At) — Y;(t), given Y_;(¢):
E[Yi(t+At) = Yi(t) | Y=i(t)]
= 1-PY;(t + At) = 1,Y(t) = 0| Yi()]
+0-P[(Yi(t + At) =Yi(t) = 0) or (Yi(t + At) = Y;(t) = 1) | Y_i(t)] (by def. expectation)
=PlY;(t+ At) = 11Yi(t) = 0,Y_;(¢)] - P[Yi(t) = 0] Y_;(t)] (by conditional prob.)

(Zaw DAL+ O(AR)) - PIYi(t) = 0] Vi(t))

We now remove the conditioning upon Y_;(¢) and compute

E[Y;(t + At) = Yi(t)] = E[E[Y;(t + At) = Yi(t) | Y_i(1)]]

= (D auBat) -E[Y;(1) - BIYi(t) = 0[Y(0)] + O(AF),
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Next, assuming y is an arbitrary realization of the random variable Y, we have
E[Y;(t) - PY;(¢) = 0] Y-i()]
= Z y;j - PlYi(t) = 0| Y_i(t) = y—i] - PY_i(t) = y—i] (by def. expectation)
Y—i
=3, P = 0¥ () = iy, Yit) = 1]
X PY_;—;(t) = y—i—;, Y;(t) = 1] (because y; € {0,1})
= Z PYi(t) =0,Y_;_;(t) = y—i—j, Y;(t) = 1] (by conditional prob.)
Y—i—j
=P[Yi(t) = Oa}/j(t) = 1],
where the first summation is taken over all possible values y_; that the variable Y_;(¢) takes and a similar
convention applies to the other summations. In summary, we know
E[Yi(t + At) = Yi(t)] = > ai; AL - P[Y;(t) = 0,Y;(t) = 1] + O(AL?),
j=1
so that, also recalling P[Y;(t) = 1] = E[Y;(¢)],
d EYi(t+AY) - i) o
—PlYi(t) =1] = 1 = iiPlYi(t) =0,Y;(t) = 1].
SPY(H) =1]= lim_ = 93 eI =050 =1
The final step is an immediate consequence of the Independence Approximation: P[Y;(t) = 0,Y;(t) = 1] =
PIY;(t) = 01Y;(t) = 1] - P[Y;(t) = 1] ~ (1 = P[Yi(t) = 1]) - P[Y;(¢) = 1]. u
16.5 Historical notes and further reading

The dynamics of several classic scalar epidemic models are surveyed by ( )-

The earliest work on the network SIS model is ( , ); this article proposes a
rigorous analysis of the threshold for the epidemic outbreak, which depends on both the disease parameters
and the spectral radius of the contact network. For the case when the basic reproduction number is above
the epidemic threshold, this paper establishes the existence and uniqueness of a nonzero steady-state
infection probability, called the endemic state. ( ) refer to the model and the
multi-group or multi-population SIS model. Numerous extensions and variations on these basic results
have appeared over the years.

( ) proposes and analyzes a discrete-time n