
TCT: General Information

TCT is a program for the synthesis of supervisory controls for discrete-event sys-
tems. Generators and recognizers are represented as standard DES in the form of a
5-tuple

[Size, Init, Mark, Voc, Tran]

Size is the number of states (the standard state set is {0, …, Size−1}), Init is the
initial state (always taken to be 0), Mark lists the marker states, Voc the vocal states,
and Tran the transitions. A vocal state is a pair [I, V] representing positive integer
output V at state I. A transition is a triple [I, E, J] representing a transition from the
exit (source) state I to the entrance (target) state J and having event label E. E is an
odd or even nonnegative integer, depending on whether the corresponding event is
controllable or uncontrollable.

All DES transition structures must be deterministic: distinct transitions from the
same exit state must carry distinct labels.

Synthesis Procedures

DES = create(DES)
is a new discrete-event system (DES). Option 1 allows fast user input via a
sequence of prompts, resulting in direct creation of a .DES file. Option 2
allows the user to create a text (.ADS) file with any ASCII text editor; this
file can be converted to a .DES file using the TCT procedure FD.

xv

kai.cai@eng.osaka-cu.ac.jp

DES2 = selfloop(DES1,[SELF-LOOPED EVENTS])
is DES1 augmented by a selfloop (q, E, q) for each listed event E, at each
state q where a transition ðq; E; q0Þ is not already defined. The event E can
be chosen freely and need not belong to the alphabet of DES1.

DES2 = trim(DES1)
is the trim (reachable and coreachable) substructure of DES1.

DES = sync(DES1,DES2,…,DESk)
is the (reachable) synchronous product of DES1,DES2,…,DESk. DES
need not be coreachable. Not for use with vocalized DES.

DES = meet(DES1,DES2,…,DESk)
is the meet (reachable cartesian product) of DES1,DES2,…,DESk. DES
need not be coreachable. Not for use with vocalized DES.

DES3 = supcon(DES1,DES2)
is a trim generator for the supremal controllable sublanguage of the
marked legal language generated by DES2 with respect to the plant DES1.
DES3 provides a proper supervisor for DES1. Not for use with vocalized
DES.

DES2 = force(DES1,[FORCIBLE EVENTS],[PREEMPTIBLE EVENTS],
TIMEOUT EVENT)
is DES1 modified by the insertion of a new timeout event whose dis-
ablement forces an event in the forcible list to preempt every event in the
preemptible list. Not for use with vocalized DES.

DES3 = mutex(DES1,DES2,[EXCLUDED-STATE-PAIRS])
is formed from the product of DES1 and DES2, by excluding state pairs
listed as [[I1,J1],[I2,J2],…], plus all state pairs from which they are
reachable along an uncontrollable path; and then taking the reachable
substructure of the result. DES3 is reachable and controllable, but need not
be coreachable. For the corresponding control data, compute DES = sync
(DES1,DES2), then DAT = condat(DES,DES3). If DES3 is trim, it pro-
vides a proper supervisor for the mutual exclusion problem; if not, a
solution is SUP = supcon(DES,DES3). Not for use with vocalized DES.

DAT2 = condat(DES1,DES2)
returns control data DAT2 for the supervisor DES2 of the controlled
system DES1. If DES2 represents a controllable language (with respect to
DES1), as when DES2 has been previously computed with supcon, then
DAT2 will tabulate the events that are to be disabled at each state of
DES2. In general condat can be used to test whether the language rep-
resented by DES2 is controllable with respect to DES1: just check that the
disabled events tabled in DAT2 are themselves controllable (have

xvi TCT: General Information

kai.cai@eng.osaka-cu.ac.jp

odd-numbered labels). To show DAT call SA. Not for use with vocalized
DES.

DES3 = supreduce(DES1,DES2,DAT2)
is a reduced supervisor for plant DES1 which is control-equivalent to
DES2, where DES2 and control data DAT2 were previously computed
using supcon and condat. Also returned is an estimated lower bound slb
for the state size of a strictly state-minimal reduced supervisor. DES3 is
strictly minimal if its reported state size happens to equal the slb.

{LOC1,LOC2,…,LOCm} = localize(PLANT,{PLANT1,…,PLANTm},SUPER)
is the set of localizations of SUPER to the m independent components
PLANT1,…,PLANTm of PLANT. Independence means that the alphabets
of PLANT1,…,PLANTm must be pairwise disjoint. Optionally, correct-
ness of localization is verified and reported as ControlEqu(…) in
MAKEIT.TXT. localize is mainly for use when SUPER is a decentralized
supervisor with authority over PLANT1,…,PLANTm, and PLANT is their
synchronous product. Not for use with vocalized DES.

DES2 = minstate(DES1)
is a minimal-state DES that generates the same closed and marked lan-
guages as DES1, and the same string mapping induced by vocalization (if
any). DES2 is reachable, but not coreachable unless DES1 is coreachable.

DES2 = complement(DES1, [AUXILIARY-EVENTS])
is a generator of the marked language complementary to the marked
language of DES1, with respect to the extended alphabet comprising the
event labels of DES1 plus those in the auxiliary-event list. The closed
behavior of DES2 is all strings over the extended alphabet. The string
mapping induced by vocalization (if any) is unchanged.

DES2 = project(DES1, [NULL/IMAGE EVENTS])
is a generator of the projected closed and marked languages of DES1,
under the natural projection specified by the listed NULL or IMAGE
events. In decentralized control, DES2 could be an observer’s local model
of DES1. Not for use with vocalized DES.

DES2 = relabel(DES1, [OLD-NEW EVENT LABEL PAIRS])
is a generator for the relabeled closed and marked behaviors of DES1,
where the relabeling of languages maps each listed DES1 event label
(alphabet element) into a specified label of DES2; unlisted DES1 labels are
unchanged, while some DES2 labels may coincide with unlisted DES1
labels. Not for use with vocalized DES.

TCT: General Information xvii

kai.cai@eng.osaka-cu.ac.jp

DES2 = vocalize(DES1, [STATE-OUTPUT PAIRS])
has the same closed and marked behaviors as DES1, but with user-selected
state output at the entrance state corresponding to each selected (exit state,
event input) pair.

DES2 = outconsis(DES1)
has the same closed and marked behaviors as DES1, but is
output-consistent in the sense that nonzero state outputs are unambigu-
ously controllable or uncontrollable. A vocal state with output V in the
range 10,…,99 may be split into siblings with outputs, respectively, V1 or
V0 in the range 100,…,991.

DES2 = hiconsis(DES1)
has the same closed and marked behaviors as DES1, but is hierarchically
consistent in the sense that high-level controllable events may be disabled
without side effects. This may require additional vocalization together with
changes in the control status of existing state outputs. hiconsis incorpo-
rates and extends outconsis.

DES2 = higen(DES1)
is defined over the state-output alphabet of (vocalized) DES1 and repre-
sents the closed and marked state-output (or ‘high-level’) behaviors of
DES1. For instance, starting with a ‘low-level’ vocalized model GLO, the
sequence

OCGLO = outconsis(GLO)
HCGLO = hiconsis(OCGLO)
HCGHI = higen(HCGLO)

returns a DES pair (HCGLO, HCGHI) that is hierarchically consistent:
controllable languages in HCGHI can be synthesized, via the state-output
map, as controllable languages in HCGLO.

DES3 = supnorm(DES1,DES2,[NULL/IMAGE EVENTS])
is a trim DES which represents the supremal sublanguage of the legal
language represented by DES2, that is normal with respect to the marked
behavior of the plant generator DES1 and the natural projection specified
by the NULL/IMAGE event list. Not for use with vocalized DES.

DES3 = supscop(DES1,DES2,[NULL/IMAGE EVENTS])
is a trim DES which represents the supremal normal solution to the
Supervisory Control and Observation Problem (SCOP), corresponding to
the plant DES1, legal language DES2, and specified natural projection. In
this solution, only observable controllable events may be disabled. Not for
use with vocalized DES.

xviii TCT: General Information

kai.cai@eng.osaka-cu.ac.jp

DES3 = suprobs(DES1,DES2,[NULL/IMAGE EVENTS])
is a trim DES which represents the supremal relatively observable sub-
language of the language represented by DES2, with respect to the plant
DES1, and specified natural projection. Not for use with vocalized DES.

DES3 = supconrobs(DES1,DES2,[NULL/IMAGE EVENTS])
is a trim DES which represents the supremal controllable and relatively
observable sublanguage of the legal language represented by DES2, with
respect to the plant DES1 and specified natural projection. In this solution,
any controllable event, observable or not, is subject to disablement. Not
for use with vocalized DES.

DES2 = sup(s)qc(DES1,[NULL/IMAGE EVENTS])
is a possibly nondeterministic DES with ‘silent’ transitions (labeled ‘e’)
which represents DES1 reduced by canonical (i.e. supremal) (strong)
quasi-congruence with respect to the specified natural projection. The user
may select whether or not to print the corresponding state partition in
MAKEIT.TXT; the printout omits singleton cells. Not for use with
vocalized DES.

DES2 = allevents(DES1)
is a marked one-state DES self-looped with all the events of DES1. DES2
can be used as specification for the supervisory control of DES1 with
respect to the sole criterion of nonblocking.

(DES3,DES4) = natobs(DES1,DES2)
returns a natural projection DES3 of DES1, where the projection is a
natural observer, for the marked behavior of DES1, with (allevents) image
representation DES4. The event list of DES4 is an economical extension
of the Seed event list supplied by the user in the form of an allevents
representation DES2. For natobs to be valid DES1 should be trim.

DES2 = uncertmod(DES1,[NULL/IMAGE EVENTS])
returns the uncertainty model of DES1 obtained by projection modulo
uncertainty sets, corresponding to the specified natural projection on
strings.

true/false = nonconflict(DES1,DES2)
tests whether DES1, DES2 are nonconflicting, namely whether all
reachable states of the product DES are coreachable. Not for use with
vocalized DES.

true/false = isomorph(DES1,DES2)
tests whether DES1 and DES2 are identical up to renumbering of states
(but with initial state held fixed at 0); if so, their state correspondence can
be displayed.

TCT: General Information xix

kai.cai@eng.osaka-cu.ac.jp

true/false = (s)observ(DES1,DES2,[NULL/IMAGE EVENTS])
tests whether the language represented by DES2 is (strongly) (DES1,P)-
observable, for the specified natural projection P. If observability fails, a
diagnostic is provided with state(s) and event(s) where failure occurs. Not
for use with vocalized DES.

Utilities

DES2 = BFS(DES1)
is DES1 with its state set recoded by breadth-first search from state 0. BFS
recoding can facilitate drawing a transition diagram, or in compensating
for previous recodings introduced by outconsis or hiconsis.

DES2 = edit(DES1)
is obtained from DES1 by user-selected modifications.

ScreenDisplay = show(DES)
SE displays an existing DES, SA a DAT (condat) table, SX a TXT (text)
file. Tables can be browsed with page keys. The file MAKEIT.TXT keeps
a record of user files as they are generated.

TextFile = FE(DES)/FA(DAT)
is an ASCII text file PDS/PDT for printing or offline conversion to another
format.

DESFile = FD(ADS)
converts an ADS file or group of files, formed using create (option 2), to
the corresponding DES file(s).

UserDirectory = UD
is a listing of the current user subdirectory.

GIF = CE(DES)
converts a DES file to a GIF file for graphical display.

LabeledTransitionGraph = DE(GIF)
displays a GIF file obtained from CE, as a labeled transition graph; marker
states are denoted by a double circle.

xx TCT: General Information

kai.cai@eng.osaka-cu.ac.jp

	Preface
	Contents
	Introduction
	TCT: General Information
	Synthesis Procedures
	Utilities

	1 Algebraic Preliminaries
	1.1 Posets
	1.2 Lattices
	1.3 Equivalence Relations
	1.4 Equivalence Kernel and Canonical Factorization
	1.5 Application: Internal Model Principle
	1.6 Notes
	References

	2 Linguistic Preliminaries
	2.1 Languages
	2.2 Nerode Equivalence and Right Congruence
	2.3 Canonical Recognizers
	2.4 Automata
	2.5 Generators
	2.6 Regular Expressions
	2.7 Causal Output Mapping and Hierarchical Aggregation
	2.8 Chains of Regular Languages
	2.9 Notes
	References

	3 Supervision of Discrete-Event Systems: Basics
	3.1 Introduction
	3.2 Representation of Controlled Discrete-Event Systems
	3.3 Synchronous Product, Shuffle, and Meet
	3.4 Controllability and Supervision
	3.5 Supremal Controllable Sublanguages and Optimal Supervision
	3.6 Implementation of Supervisory Controls by Automata
	3.7 Design of Supervisors Using TCT
	3.8 Forced Events
	3.9 Supervisory Control for Reconfiguration
	3.10 Mutual Exclusion
	3.11 Supervisory Control by Relabeling
	3.12 Supervisor Reduction
	3.13 Notes
	References

	4 Decentralized and Distributed Supervision of Discrete-Event Systems
	4.1 Introduction
	4.2 Conjunction of Supervisors
	4.3 Naive Decentralized Supervision: Deadly Embrace
	4.4 Decentralized Supervision: Small Factory
	4.5 Decentralized Supervision: Big Factory
	4.6 Decentralized Supervision: Transfer Line
	4.7 Decentralized Supervision: AGVs in a Manufacturing Workcell
	4.8 Decentralized Supervision by Natural Projection
	4.9 Reasoning About Nonblocking
	4.10 Synchronization and Event Hiding
	4.11 Distributed Supervision by Supervisor Localization
	4.12 Notes
	References

	5 Hierarchical Supervision of Discrete-Event Systems
	5.1 Hierarchical Control Structure
	5.2 Two-Level Controlled Discrete-Event System
	5.3 High-Level Control Structure
	5.4 Command and Control
	5.5 Hierarchical Consistency
	5.6 Hierarchical Supervision of Transfer Line
	5.7 Hierarchical Supervision with Nonblocking
	5.8 Notes
	References

	6 Supervisory Control with Partial Observations
	6.1 Natural Projections and Normal Languages
	6.2 Observable and Relatively Observable Languages
	6.3 Feasible Supervisory Control
	6.4 Infimal Closed Observable Sublanguages
	6.5 Supervisory Control and Normality
	6.6 Control of a Guideway
	6.7 Nondeterminism, Quasi-congruences, and the Observer Property
	6.8 Efficient Coordination in Decentralized Control
	6.9 Notes
	References

	7 State-Based Control of Discrete-Event Systems
	7.1 Introduction
	7.2 Predicates and State Subsets
	7.3 Predicate Transformers
	7.4 State Feedback and Controllability
	7.5 Balanced State Feedback Controls and Modularity
	7.6 Dynamic State Feedback Control
	7.7 Notes
	References

	8 Supervision of Vector Discrete-Event Systems
	8.1 Introduction
	8.2 Vector Discrete-Event Systems
	8.3 VDES Modeling
	8.4 Linear Predicates
	8.5 State Feedback and Controllability of VDES
	8.6 Reachability and Loop-Freeness
	8.7 Loop-Freeness and Optimal Control
	8.8 Example: FACT#5
	8.9 Memory and Dynamic State Feedback Control for VDES
	8.10 Modular Dynamic State Feedback Control for VDES
	8.11 Example: FACT#2
	8.12 Modeling and Control of a Production Network
	8.13 Representation of Optimal Control by a Control VDES
	8.14 Notes
	References

	9 Supervisory Control of Timed Discrete-Event Systems
	9.1 Introduction
	9.2 Timed Discrete-Event Systems
	9.3 Example 1
	9.4 Example 2
	9.5 Time Bounds as Specifications
	9.6 Composition of TDES
	9.7 Example 3
	9.8 Controllability of TDES
	9.9 Supremal Controllable Sublanguages and Optimal Supervision
	9.10 Example 4: Endangered Pedestrian
	9.11 Example 5: Timed Manufacturing Cell
	9.12 Modular Supervision of Generalized TDES
	9.13 Notes
	References

	10 Correction to: Supervisory Control of Discrete-Event Systems
	Correction to:W. M. Wonham and K. Cai Supervisory Control of Discrete-Event Systems, Communications and Control Engineering,https://doi.org/10.1007/978-3-319-77452-7

	A Supervisory Control of a Mine Pump
	Untimed Mine Problem in TCT
	Timed Mine Problem in TTCT

	 Bibliography
	Chapter References
	For Further Reading
	Textbooks, Monographs and Proceedings
	Supplementary Reports and Articles
	Systems Control Group Publications and Theses on Discrete-Event Systems

	Index

