Nyquist Criterion

Intuition

Given a feedback loop, we want to analyze if it is stable

So far we have had two computational methods:

1) Compute eigenvalues of
$$A_{cl} = \begin{bmatrix} A_p & B_p C_c \\ -B_c C_p & A_c \end{bmatrix}$$

2) Compute zeros of $D_p D_c + N_p N_c$

Nyquist criterion is a graphical method for this purpose

Intuition

Plant $P(s) = \frac{N_p(s)}{D_p(s)}$ is rational and strictly proper, controller $KC(s) = \frac{KN_c(s)}{D_c(s)}$ is rational and proper $(K \neq 0)$

Closed-loop characteristic polynomial is $D_p(s)D_c(s) + KN_p(s)N_c(s)$

Note
$$1 + KP(s)C(s) =$$

If there is no unstable pole-zero cancellation,

 $D_pD_c + KN_pN_c$ and 1 + KPC have the same unstable zeros

Feedback stability $\Leftrightarrow D_p D_c + K N_p N_c$ has no unstable zeros $\Leftrightarrow 1 + K P C$ has no unstable zeros

Intuition

Let
$$M(s) := 1 + KP(s)C(s)$$

Then
$$P(s)C(s) = \frac{1}{K}M(s) - \frac{1}{K}$$

Feedback stability $\Leftrightarrow M(s)$ has no zeros in $\text{Re}(s) \ge 0$ $\Leftrightarrow P(s)C(s)$ has no zeros in $\text{Re}(s) \ge -\frac{1}{K}$

Nyquist criterion is a graphical test for this condition

Principle of the argument is from complex function theory

"Argument" refers to the angle of a complex number

Principle of the argument involves two things:

- 1) a curve in the complex plane
- 2) a transfer function

Consider a closed curve \mathcal{D} (also called contour) with no self-intersections and with clockwise (CW) orientation

Consider a rational transfer function G(s), having no zeros or poles on the curve \mathcal{D}

For every point s in the complex plane, G(s) is a point in the complex plane, thus we can draw of graph for G(s)

Draw two copies of the complex plane: "s-plane" for \mathcal{D} and "G-plane" for G(s)

As s goes once around \mathcal{D} from any starting point, the point G(s) traces out a closed curve \mathcal{G} the image of \mathcal{D} under G(s)

$$G(s) = s - 1$$

 \mathcal{G} is simply \mathcal{D} shifted to the left by one unit

Since \mathcal{D} encircles the zero of G(s) at s = 1, \mathcal{G} encircles the origin (s = 0) once CW

$$G(s) = s - 1$$

 \mathcal{G} is simply \mathcal{D} shifted to the left by one unit

Since \mathcal{D} does not encircle the zero of G(s) at s = 1, \mathcal{G} does not encircle the origin

$$G(s) = \frac{1}{s-1}$$

The angle of G(s) equals the negative of the angle of s-1: $\angle G(s) = \angle 1 - \angle (s-1) = -\angle (s-1)$

If \mathcal{D} encircles the pole of G(s) at s=1, \mathcal{G} encircles the origin (s=0) once counter-clockwise (CCW)

$$G(s) = \frac{1}{s-1}$$

The angle of G(s) equals the negative of the angle of s-1: $\angle G(s) = \angle 1 - \angle (s-1) = -\angle (s-1)$

Since \mathcal{D} does not encircle the pole of G(s) at s = 1, \mathcal{G} does not encircle the origin

Relation between # poles and # zeros of G(s) encircled by \mathcal{D} and # times the origin encircled by \mathcal{G}

Suppose that G(s) has no poles or zeros on \mathcal{D} . If \mathcal{D} encircles n poles and m zeros of G(s), then \mathcal{G} encircles the origin exactly n-m times CCW

Proof: Write $G(s) = K \frac{\prod_i (s-z_i)}{\prod_i (s-p_i)}$ where K is a real gain, z_i are zeros, and p_i are poles

Then the angle of
$$G(s)$$
 is $\angle G(s) = \angle K + \Sigma \angle (s - z_i) - \Sigma \angle (s - p_i)$
= $\Sigma \angle (s - z_i) - \Sigma \angle (s - p_i)$

Since \mathcal{D} encircles m zeros z_i and n poles p_i the net change in $\angle G(s)$ is $m(-2\pi) - n(-2\pi) = (n-m)2\pi$

Therefore \mathcal{G} encircles the origin n-m times CCW

$$G(s) = \frac{s}{s-1}$$

$$G(s) = \frac{s-1}{s(s-10)}$$

$$G(s) = \frac{s-1}{s(s-1.1)(s-10)}$$