Roadmap

ODE (physical laws)

State model

Transfer function model

Consider a continuous-time, real-valued function f(t), where $-\infty < t < \infty$.

Laplace transform of f(t) is:

$$F(s) := \int_0^\infty f(t) e^{-st} dt$$

where $s \in \mathbb{C}$ is a complex variable.

Note: the integral is one-sided: ignores f(t) for t < 0

Question: does the integral converge?

Assumption 1: f(t) is piecewise continuous for $t \geq 0$.

(f is continuous except possibly at a countable number of times $0 = t_0 < t_1 < \cdots$, where the intervals be lower bounded)

Ex. sinusoid

Ex. square wave

Ex. f(t) = 0 if t is rational; f(t) = 1 if t is not rational

Assumption 1 ensures for every finite T: (Riemann integral) $\int_0^T f(t)e^{-st}dt$ exists

Assumption 2: f(t) is exponentially bounded for $t \geq 0$.

(there exist $M \geq 0$ and $a \in \mathbb{R}$ such that $|f(t)| \leq Me^{at}$)

Ex.
$$f(t) = e^t$$

Ex.
$$f(t) = e^{(t^2)}$$

Ex.
$$f(t) = \frac{1}{t-1}$$
 if $t \neq 1$; $f(t) = 0$ if $t = 1$

Assumption 2 ensures if Re(s) is sufficient large: $\lim_{T\to\infty} \int_0^T f(t)e^{-st}dt$ exists

Let Re(s) be sufficient large.

To prove $\lim_{T\to\infty} \int_0^T f(t) \mathrm{e}^{-st} dt$ exists, it suffices to prove $\lim_{T\to\infty} \int_0^T |f(t)\mathrm{e}^{-st}| dt$ exists

$$\int_{0}^{T} |f(t)e^{-st}| dt \leq M \int_{0}^{T} e^{at} |e^{-st}| dt$$

$$= M \int_{0}^{T} e^{at} e^{-\operatorname{Re}(s)t} dt$$

$$= M \int_{0}^{T} e^{-(\operatorname{Re}(s)-a)t} dt$$

$$= \frac{M}{\operatorname{Re}(s)-a} (1 - e^{-(\operatorname{Re}(s)-a)T})$$

$$\leq \frac{M}{\operatorname{Re}(s)-a} \quad (\text{for } \operatorname{Re}(s) > a)$$

Therefore $\lim_{T\to\infty} \int_0^T |f(t)e^{-st}| dt$ exists.

Recap

Consider a continuous-time, real-valued function f(t), where $-\infty < t < \infty$.

Laplace transform of f(t) is:

$$F(s) := \int_0^\infty f(t) e^{-st} dt$$

where $s \in \mathbb{C}$ is a complex variable.

Assumption 1: f(t) is piecewise continuous for $t \geq 0$.

Assumption 2: f(t) is exponentially bounded for $t \ge 0$. i.e. $|f(t)| \le Me^{at}$

$$F(s) := \int_0^\infty f(t) e^{-st} dt$$
 exists if $Re(s) > a$

Recap

$$F(s) := \int_0^\infty f(t) e^{-st} dt$$
 exists if $Re(s) > a$

"region of convergence (ROC)": open right half-plane

unit step: f(t) = 1 for $t \ge 0$

ROC

"region of convergence (ROC)": open right half-plane

Note: no poles of F(s) inside ROC

Note: a pole of F(s) on the boundary of ROC (if ROC is not the entire complex plane)

Note: given F(s) to find ROC, locate all poles and draw a vertical dashed line through the pole(s) farthest to the right

ex.
$$F(s) = \frac{1}{(s^2+1)(2s-1)}$$

blowing-up exponential: $f(t) = e^{2t}$

sinusoid: $f(t) = \sin(\omega t)$

derivative: $\dot{f}(t) = \frac{df}{dt}$

Table

$$f(t) \qquad F(s)$$

$$1_{+}(t) \qquad \frac{1}{s}$$

$$e^{at} \qquad \frac{1}{s-a}$$

$$\dot{f}(t) \qquad sF(s) - f(0)$$

$$c_{1}f_{1}(t) + c_{2}f_{2}(t) \qquad c_{1}F_{1}(s) + c_{2}F_{2}(s)$$

$$f(t) * g(t) \qquad F(s)G(s)$$

$$t^{n} \qquad \frac{n!}{s^{n+1}}$$

$$\sin \omega t \qquad \frac{\omega}{s^{2} + \omega^{2}}$$

$$\cos \omega t \qquad \frac{s}{s^{2} + \omega^{2}}$$

$$e^{at} \sin \omega t \qquad \frac{\omega}{(s-a)^{2} + \omega^{2}}$$

$$e^{at} \cos \omega t \qquad \frac{s - a}{(s-a)^{2} + \omega^{2}}$$

$$t \sin \omega t \qquad \frac{2\omega s}{(s^{2} + \omega^{2})^{2}}$$

$$t \cos \omega t \qquad \frac{s^{2} - \omega^{2}}{(s^{2} + \omega^{2})^{2}}$$

unit step valid if f(t) is differentiable at t = 0linearity convolution