Nyquist Criterion (examples)

Nyquist criterion

Suppose that G(s) = P(s)C(s) has no poles on the Nyquist contour \mathcal{D} (indenting to the right if necessary), and has n poles in Re(s) > 0

Feedback stability \Leftrightarrow

the Nyquist plot \mathcal{G} (i) does not pass through the $-\frac{1}{K}$ and (ii) encircles $-\frac{1}{K}$ exactly n times CCW

(Note: if n = 0, then (ii) does not encircle $-\frac{1}{K}$)

$$G(s) = P(s)C(s) = \frac{s+1}{s(s-1)}$$

Divide Nyquist contour \mathcal{D} into 4 segments:

Segment from A to B: $s = j\omega$, ω from ε to ∞

$$P(j\omega)C(j\omega) = \frac{j\omega+1}{j\omega(j\omega-1)}$$

$$\operatorname{Re}(P(j\omega)C(j\omega)) = -\frac{2}{\omega^2+1}, \operatorname{Im}(P(j\omega)C(j\omega)) = \frac{1-\omega^2}{\omega(\omega^2+1)}$$

$$\operatorname{Re}(P(j\varepsilon)C(j\varepsilon)) = -\frac{2}{\varepsilon^2+1} \approx -2, \operatorname{Im}(P(j\varepsilon)C(j\varepsilon)) = \frac{1-\varepsilon^2}{\varepsilon(\varepsilon^2+1)} \approx \infty$$

$$G(s) = P(s)C(s) = \frac{s+1}{s(s-1)}$$

Divide Nyquist contour \mathcal{D} into 4 segments:

Segment from B to C: radius is ∞

$$P(j\infty)C(j\infty) = 0, P(-j\infty)C(-j\infty) = 0$$

$$G(s) = P(s)C(s) = \frac{s+1}{s(s-1)}$$

Divide Nyquist contour \mathcal{D} into 4 segments:

Segment from C to D: $s = j\omega$, ω from $-\infty$ to $-\varepsilon$ complex conjugate of the segment from A to B

$$G(s) = P(s)C(s) = \frac{s+1}{s(s-1)}$$

Divide Nyquist contour \mathcal{D} into 4 segments:

Segment from D to A: $s = \varepsilon e^{j\theta}$, θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$

$$P(s)C(s) = \frac{\varepsilon e^{j\theta} + 1}{\varepsilon e^{j\theta}(\varepsilon e^{j\theta} - 1)}$$
$$\approx -\frac{1}{\varepsilon e^{j\theta}}$$

$$G(s) = P(s)C(s) = \frac{s+1}{s(s-1)}$$

P(s)C(s) has one pole s=1 encircled by \mathcal{D} , i.e. n=1

By Nyquist criterion: feedback loop is stable iff the Nyquist plot \mathcal{G} (i) does not pass through $-\frac{1}{K}$ and (ii) encircles $-\frac{1}{K}$ exactly 1 time CCW

So
$$-1 < -\frac{1}{K} < 0$$
, i.e. $K > 1$

Nyquist plot cannot be drawn by Matlab as a closed contour because Matlab does not indent \mathcal{D} to the right to avoid pole at s=0

So if you use Matlab, you must close the contour to be able to count encirclements

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from A to B: $s = j\omega$, ω from 0 to $1 - \varepsilon$

$$P(j\omega)C(j\omega) = \frac{1}{(j\omega+1)((j\omega)^2+1)}$$

$$\operatorname{Re}(P(j\omega)C(j\omega)) = \frac{1}{1-\omega^4}, \operatorname{Im}(P(j\omega)C(j\omega)) = \frac{-\omega}{1-\omega^4}$$

$$\operatorname{Re}(P(j(1-\varepsilon))C(j(1-\varepsilon)) \approx \operatorname{Im}(P(j(1-\varepsilon))C(j(1-\varepsilon))) \approx$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from B to C: $s = \varepsilon e^{j\theta} + j$, θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$

$$P(s)C(s) = \frac{1}{(\varepsilon e^{j\theta} + j + 1)((\varepsilon e^{j\theta} + j)^2 + 1)}$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from C to D: $s = j\omega$, ω from $1 + \varepsilon$ to ∞

$$P(j\omega)C(j\omega) = \frac{1}{(j\omega+1)((j\omega)^2+1)}$$

$$\operatorname{Re}(P(j\omega)C(j\omega)) = \frac{1}{1-\omega^4}, \operatorname{Im}(P(j\omega)C(j\omega)) = \frac{-\omega}{1-\omega^4}$$

$$\operatorname{Re}(P(j(1+\varepsilon))C(j(1+\varepsilon)) \approx \operatorname{Im}(P(j(1+\varepsilon))C(j(1+\varepsilon))) \approx$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from D to E: radius is ∞

$$P(j\infty)C(j\infty) = 0, P(-j\infty)C(-j\infty) = 0$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from E to F: $s = j\omega$, ω from $-\infty$ to $-1 - \varepsilon$ complex conjugate of the segment from C to D

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from F to G: $s = \varepsilon e^{j\theta} - j$, θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ complex conjugate of the segment from B to C

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

Divide Nyquist contour \mathcal{D} into 7 segments:

Segment from G to A: $s = j\omega$, ω from $-1 + \varepsilon$ to 0 complex conjugate of the segment from A to B

$$G(s) = P(s)C(s) = \frac{1}{(s+1)(s^2+1)}$$

P(s)C(s) has no poles encircled by \mathcal{D} , i.e. n=0

By Nyquist criterion: feedback loop is stable iff the Nyquist plot \mathcal{G} (i) does not pass through $-\frac{1}{K}$ and (ii) does not encircle $-\frac{1}{K}$

So
$$-\frac{1}{K} > 1$$
, i.e. $-1 < K < 0$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

P(s)C(s) has no poles in Re(s) > 0, i.e. n = 0

By Nyquist criterion: feedback loop is stable iff the Nyquist plot \mathcal{G} (i) does not pass through $-\frac{1}{K}$ and (ii) does not encircle $-\frac{1}{K}$

So either $-\frac{1}{K} < 0$ or $-\frac{1}{K} > 1$, i.e. either K > 0 or -1 < K < 0But K = 0 is also fine; so K > -1 after all

Minimum phase

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

P(s)C(s) has no poles in Re(s) > 0, i.e. n = 0

We've seen that closed-loop is stable for all gain K > -1

Note: P(s)C(s) has no zeros in the right half-plane

We say P(s)C(s) is minimum phase if it has no zeros in the right half-plane

Non minimum phase

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2} \frac{s-1}{s+1}$$

This P(s)C(s) is non-minimum phase

You can check by Nyquist criterion that closed-loop is stable for all gain -1 < K < 2

Non-minimum phase P(s)C(s) is generally harder to be made stable than the analogous minimum phase P(s)C(s)