Tracking reference signals



Last week: stability of feedback loop 1
d
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Feedback loop (system) is stable if
the eigenvalues of A.; all have negative real parts



Last week: stability of feedback loop 2
d

The closed-loop system is stable if and only if
the zeros of D,D. + N,N, all have negative real parts



Last week: transfer functions of feedback loop
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Find transfer function from r to y

At the three summing junctions:
X1 =R-—-PPXy, Xo=PXi —FPPXy, Y=PFPX +FPX
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Example
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Solve for Y by Cramer’s rule:
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Tracking reference signals: setup

—_’?—> C(s)

Requirement: output y(t) follows a specified reference signal r(t)

— P(s) -

Hidden requirement: closed-loop stability (always required)



Example

Cruise control of a car: you set a reference speed, say 100km/h
and a controller regulates the speed to the setpoint

P(s) = Sil, R(s) = X2 first trial controller C(s) =1

Closed-loop characteristic polynomial is
Thus the closed-loop system is stable

1 _
1+P(s)C(s)

Transfer function from r to e is %ﬁg =
Thus E(s) =

By final-value theorem: lim;_, o e(t) = lim,_,g sFE(s) =



Example

Cruise control of a car: you set a reference speed, say 100km/h
and a controller regulates the speed to the setpoint

P(s) = =5, R(s) = 12, second trial controller C(s) = 50

Closed-loop characteristic polynomial is
Thus the closed-loop system is stable

1 _
1+P(s)C(s)

Transfer function from r to e is %ﬁ; =
Thus E(s) =

By final-value theorem: lim;_,, e(t) = lim,_,g sE(s) =



Example

High controller gain reduces tracking error,
but is expensive over a wide bandwidth

P(s) = Si]_? R(s) = 1%, third trial controller C(s) = %

Closed-loop characteristic polynomial is

Thus the closed-loop system is stable

1 _
1+P(s)C(s)

Transfer function from r to e is %ﬁg =
Thus E(s) =

By final-value theorem: lim;_,, e(t) = lim,_,g sE(s) =



Example

Cruise control of a car: you set a reference speed, say 100km/h
and a controller regulates the speed to the setpoint

P(s) = 31%1, R(s) = 1%, third trial controller C(s) = %

Note: R(s) has a pole at s = 0,
so R(s) is generated by an integrator

The controller is an integrator too

This is the internal model principle:
the controller provides an internal model of the reference



Example

Tracking a ramp signal

P(s) = S%jﬁ), R(s) = 23, controller C(s) = *

Closed-loop characteristic polynomial is s*(s + 1) +2s + 1

Thus the closed-loop system is stable

. . FE(s) _ 1 . s%(s+1)
Transfer function from r to e is R() — 1FP()C() — s2(sF1)+2s%1

1
Thus E(S) — 33—|—382_|—_|—28—|—1r0

. . . s(s+1
lim; o0 e(t) = limg_ o SE(s) = limg_,q 83+§2+21+1r0 =

Plant and controller together provide an internal model



Internal model principle

L?_, C(s)

Assume that P(s) is strictly proper, C(s) is proper,
and the closed loop is stable.

If P(s)C(s) contains an internal model of the unstable part of R(s),
then perfect asymptotic tracking occurs, i.e. lim; .., e(t) =0

Robustness: as long as the closed loop is stable,
perfect tracking occurs under sufficiently small perturbation of P(s)



Example

Tracking a sinusoidal signal

P(s) = o7, R(s) =

controller C(s) = =’

2_|_1 9
Closed-loop characteristic polynomial is (s% 4+ 1)(s + 1) + s

Thus the closed-loop system is stable

Transfer function from r to e is % = 17 P(i)c(s) = (S(ij;)l()s(fi)lls
s+1
Thus E( ) (32—|—1)(s—|—1)—|—8

lim; o0 e(t) = limg_,o SE(s) = limg_, G 2+81()8(?;1r)1)+8




