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Distributed Dual Gradient Tracking for Resource
Allocation in Unbalanced Networks

Jiaqi Zhang , Keyou You , Senior Member, IEEE, and Kai Cai , Senior Member, IEEE

Abstract—This paper proposes a distributed dual gradient
tracking algorithm (DDGT) to solve resource allocation problems
over an unbalanced network, where each node in the network
holds a private cost function and computes the optimal resource
by interacting only with its neighboring nodes. Our key idea is the
novel use of the distributed push-pull gradient algorithm (PPG)
to solve the dual problem of the resource allocation problem. To
study the convergence of the DDGT, we first establish the sublin-
ear convergence rate of PPG for non-convex objective functions,
which advances the existing results on PPG as they require the
strong-convexity of objective functions. Then we show that the
DDGT converges linearly for strongly convex and Lipschitz smooth
cost functions, and sublinearly without the Lipschitz smoothness.
Finally, experimental results suggest that DDGT outperforms ex-
isting algorithms.

Index Terms—Distributed resource allocation, unbalanced
graphs, dual problem, distributed optimization, push-pull
gradient.

I. INTRODUCTION

D ISTRIBUTED resource allocation problems (DRAPs) are
concerned with optimally allocating resources to multiple

nodes that are connected via a directed peer-to-peer network.
Each node is associated with a local private objective function to
measure the cost of its allocated resource, and the global goal is
to jointly minimize the total cost. The key feature of the DRAPs
is that each node computes its optimal amount of resources by
interacting only with its neighboring nodes in the network. A
typical application is the economic dispatch problem, where the
local cost function is often quadratic [1]. See [2]–[5] for other
applications.

A. Literature Review

Existing works on DRAPs can be categorized depending on
whether the underlying network is balanced or not. A balanced
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network means that the “amount” of information to any node is
equal to that from this node, which is crucial to the algorithm
design. Most of early works on DRAPs focus on balanced
networks and the recent interest is shifted to the unbalanced
case.

The central-free algorithm (CFA) in [2] is the first documented
result on DRAPs for balanced networks, where at each iteration
every node updates its decision variables using the weighted
error between the gradient of its local objective function and
those of its neighbors, and it can be accelerated by designing
an optimal weighting matrix [3]. It is proved that the CFA
achieves a linear convergence rate for strongly convex and
Lipschitz smooth cost functions. For time-varying networks,
the CFA is shown to converge sublinearly in the absence of
strong convexity [4]. This rate is further improved in [6] by
optimizing its dependence on the number of nodes. In addition,
there are also several ADMM-based methods that only work for
balanced networks [7]–[9]. By exploiting the mirror relationship
between the distributed optimization and distributed resource
allocation, several accelerated distributed algorithms are pro-
posed in [10], [11]. Moreover, [12] and [13] study continuous-
time algorithms for DRAPs by using the machinery of control
theory.

For unbalanced networks, the algorithm design for DRAPs is
much more complicated, which has been widely acknowledged
in the distributed optimization literature [14], [15]. In this case,
a consensus based algorithm that adopts the celebrated surplus
idea [15] is proposed in [1] and [16]. However, their convergence
results are only for quadratic cost functions where the analyses
rely on the linear system theory. The extension to general convex
functions is performed in [17] by adopting the nonnegative
surplus method, at the expense of a slower convergence rate. The
ADMM-based algorithms are developed in [18], [19], and algo-
rithms that aim to handle communication delay in time-varying
networks and perform event-triggered updates are respectively
studied in [20] and [21]. We note that all the above-mentioned
works [1], [16]–[21] do not provide explicit convergence rates
for their algorithms. In contrast, the algorithm proposed in this
work is proved to achieve a linear convergence rate for strongly
convex and Lipschitz smooth cost functions, and has a sublinear
convergence rate without the Lipschitz smoothness.

There are several recent works with convergence rate analyses
for their algorithms over unbalanced networks. Most of them
leverage the dual relationship between DRAPs and distributed
optimization problems. For example, the algorithms in [22]
and [23] use stochastic gradients and diminishing stepsize to
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solve the dual problem of DRAPs, and thus their convergence
rates are limited to an order of O(ln(k)/

√
k) for Lipschitz

smooth cost functions. [23] also shows a rate of O(ln(k)/k)
if the cost function is strongly convex. An algorithm with linear
convergence rate is recently proposed in [24] for strongly convex
and Lipschitz smooth cost functions. However, its convergence
rate is unclear if either the strongly convexity or the Lipschitz
smoothness is removed. In [9], a push-sum-based algorithm
is proposed by incorporating the alternating direction method
of multipliers (ADMM). Although it can handle time-varying
networks, the convergence rate is O(1/k) even for strongly
convex and Lipschitz smooth functions.

B. Our Contributions

In this work, we propose a distributed dual gradient tracking
algorithm (DDGT) to solve DRAPs over unbalanced networks.
The DDGT exploits the duality of DRAPs and distributed
optimization problems, and takes advantage of the distributed
push-pull gradient algorithm (PPG) [25], which is also called
AB algorithm in [26]. If the cost function is strongly convex
and Lipschitz smooth, we show that the DDGT converges at a
linear rate O(λk), λ ∈ (0, 1). If the Lipschitz smoothness is not
satisfied, we show the convergence of the DDGT and establish
an convergence rate O(1/k). To our best knowledge, these
convergence results are only reported for undirected or balanced
networks in [10]. Although a distributed algorithm for directed
networks is also proposed in [10], there is no convergence
analysis. The advantages of the DDGT over existing algorithms
are also validated by numerical experiments.

To characterize the sublinear convergence of the DDGT, we
first show that PPG converges sublinearly to a stationary point
even for non-convex objective functions. Clearly, this advances
existing works [25]–[27] as their convergence results are only
for strongly-convex objective functions. In fact, the convergence
proofs for PPG in [25]–[27] require constructing a complicated
3-dimensional matrix and then derive the linear convergence rate
O(λk)whereλ ∈ (0, 1) is the spectral radius of this matrix. This
approach is no longer applicable since a linear convergence rate
is usually not attainable for general non-convex functions [28]
and hence the spectral radius of such a matrix cannot be strictly
less than one.

C. Paper Organization and Notations

The rest of this paper is organized as follows. In Section II, we
formulate the constrained DRAPs with some standard assump-
tions. Section III firstly derives the dual problem of DRAPs
which is amenable to distributed optimization, and then in-
troduces the PPG. The DDGT is then obtained by applying
PPG to the dual problem and improving the initialization. In
Section IV, the convergence result of the DDGT is derived by
establishing the convergence of PPG for non-convex objective
functions. Section V performs numerical experiments to validate
the effectiveness of the DDGT. Finally, we draw conclusive
remarks in Section VI.

We use a lowercase x, bold letter x and uppercase X to
denote a scalar, vector, and matrix, respectively. xT denotes the
transpose of the vector x. [X]ij denotes the element in the i-th
row and j-th column of the matrix X . For vectors we use ‖ · ‖
to denote the l2-norm. For matrices we use ‖ · ‖ and ‖ · ‖F to
denote respectively the spectral norm and the Frobenius norm.
|X | denotes the cardinality of set X . Rn denotes the set of n-
dimensional real vectors. 1 denotes the vector with all ones, the
dimension of which depends on the context. ∇f(x) denotes the
gradient of a differentiable function f atx. We say a nonnegative
matrix X is row-stochastic if X1 = 1, and column-stochastic if
XT is row-stochastic. O(·) denotes the big-O notation.

II. PROBLEM FORMULATION

Consider the distributed resource allocation problems
(DRAPs) with n nodes, where each node i has a local private
cost function Fi : Rm → R. The goal is to solve the following
optimization problem in a distributed manner:

minimize
w1,...,wn∈Rm

n∑

i=1

Fi(wi)

subject to wi ∈ Wi,
n∑

i=1

wi =
n∑

i=1

di (1)

where wi ∈ Rm is the local decision vector of node i, repre-
senting the resources allocated to i. Wi is a local convex and
closed constraint set. di denotes the resource demand of node
i. Both Wi and di are only known to node i. Let d �

∑n
i=1 di,

then
∑n

i=1 wi = d represents the constraint on total available
resources, showing the coupling among nodes.

Remark 1: Problem (1) covers many forms of DRAPs con-
sidered in the literature. For example, the standard local con-
straint Wi = [wi, wi] for some constants wi and wi is a one-
dimensional special case of (1), see e.g. [1], [16], [17], [20], [24].
Moreover, the coupling constraint can be given in a weighted
form

∑n
i=1 Aiwi = d, which can be transformed into (1) by

defining a new variable w′
i = Aiwi and a local constraint set

W′
i = {Aiwi|wi ∈ Wi}. In addition, many works only consider

quadratic cost functions [1], [16].
Solving (1) in a distributed manner means that each node

can only communicate and exchange information with a sub-
set of nodes via a communication network, which is modeled
by a directed graph G = (V, E). Here V = {1, . . . , n} denotes
the set of nodes, E ⊆ V × V denotes the set of edges, and
(i, j) ∈ E if node i can send information to node j. Note that
(i, j) ∈ E does not necessarily imply that (j, i) ∈ E . Define
N in

i = {j|(j, i) ∈ E} ∪ {i} and N out
i = {j|(i, j) ∈ E} ∪ {i} as

the set of in-neighbors and out-neighbors of node i, respec-
tively. That is, node i can only receive messages from its in-
neighbors and send messages to its out-neighbors. Let aij > 0
be the weight associated to edge (j, i) ∈ E . G is balanced if∑

j∈N in
i
aij =

∑
j∈N out

i
aji for all i ∈ V . Note that balancedness

is a relatively strong condition, since it can be difficult or even
impossible to find weights satisfying it for a general directed
graph [29].
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The following assumptions are made throughout the paper.
Assumption 1 (Strong convexity and Slater’s condition):
1) The local cost function Fi is μ-strongly convex for all

i ∈ V , i.e., for any w,w′ ∈ Rm and θ ∈ [0, 1],

Fi(θw + (1− θ)w′)

≤ θFi(w) + (1− θ)Fi(w
′)− μ

2
θ(1− θ)‖w −w′‖2.

2) The constraint
∑n

i=1 wi = d is satisfied for some point in
the relative interior of the Cartesian product W := W1 ×
· · · ×Wn.

Assumption 2 (Strongly connected network): G is strongly
connected, i.e., there exists a directed path from any node i to
any node j.

Assumption 1 is common in the literature. Note that we do
not assume the differentiability of Fi. Under Assumption 1,
the optimal point of (1) is unique. Let F � and w�

i , i ∈ V denote
respectively its optimal value and optimal point, i.e., F � =∑n

i=1 Fi(w
�
i ). Assumption 2 is also common and necessary for

the information mixing over a network.

III. THE DISTRIBUTED DUAL GRADIENT

TRACKING ALGORITHM

This section introduces our distributed dual gradient tracking
algorithm (DDGT) to solve (1) over an unbalanced network.
We start with the dual problem of (1) and transform it into a
form for distributed optimization. Then, the DDGT is obtained
by using the push-pull gradient method (PPG [25], [26]) on
the dual problem, which is an efficient distributed optimization
algorithm over unbalanced networks.

A. The Dual Problem of (1) and PPG

Define the Lagrange function of (1) as

L(W,x) =

n∑

i=1

Fi(wi) + xT

(
n∑

i=1

wi − d

)
(2)

where W = [w1, . . . ,wn] ∈ Rm×n and x is the Lagrange mul-
tiplier. Then, the dual problem of (1) is given by

maximize
x∈Rm

inf
W∈W

L(W,x). (3)

Under Assumption 1, the strong duality holds [30], [31,
Exercise 5.2.2]. The objective function in (3) is written as

inf
W∈W

L(W,x) = inf
W∈W

n∑

i=1

(
Fi(wi) + xTwi

)− xTd

=

n∑

i=1

inf
wi∈Wi

{
Fi(wi) + xTwi

}− xTd

=

n∑

i=1

−F ∗
i (−x)− xTd

where

F ∗
i (x) � sup

wi∈Wi

{
wT

i x− Fi(wi)
}

(4)

is the convex conjugate function corresponding to the pair
(Fi,Wi) [31, Section 5.4]. Thus, the dual problem (3) can be
rewritten as a convex optimization problem

minimize
x∈Rm

f(x) �
n∑

i=1

fi(x), fi(x) � F ∗
i (−x) + xTdi (5)

or equivalently,

minimize
x1,...,xn∈Rm

n∑

i=1

fi(xi)

subject to x1 = · · · = xn. (6)

Recall that strong duality holds, and therefore problem (6) is
equivalent to problem (1) in the sense that the optimal value of
(6) is f� = −F � and the optimal point x�

1 = · · · = x�
n = x� of

(6) satisfies Fi(w
�
i ) + F ∗

i (−x�) = −(w�
i )

Tx�. Hence, we can
simply focus on solving the dual problem (6).

The strong convexity of Fi implies that F ∗
i is differentiable

with Lipschitz continuous gradients [30], and the supremum in
(4) is attainable. By Danskin’s theorem [31], the gradient of F ∗

i

is given by ∇F ∗
i (x) = argmaxw∈Wi

{xTw − Fi(w)}. Thus, it
follows from (5) that

∇fi(x) = −∇F ∗
i (−x) + di

= − argmin
w∈Wi

{xTw + Fi(w)}+ di. (7)

The dual form (6) allows us to take advantage of recent
advances in distributed optimization to solve DRAPs over un-
balanced networks. For example, distributed algorithms are
proposed in [32, gradient-push], [33, Push-DIGing], [34, Ex-
traPush], [35, DEXTRA], [36] to solve (6) over general di-
rected and unbalanced graphs. Asynchronous algorithms are
also studied in [37]–[40]. In particular, [25] and [26] propose
PPG algorithm (or called AB in [26]) by using the idea of
gradient tracking, which achieves a linear convergence rate if the
objective function fi is strongly convex and Lipschitz smooth
for all i. Moreover, PPG has an empirically faster convergence
speed than its competitors (e.g. [33]), and its linear update rule
is an advantage for implementation. The compact form of PPG
is given as

x
(i)
k+1 =

∑

j∈N in
i

aij

(
x
(j)
k − αy

(j)
k

)

y
(i)
k+1 =

∑

j∈N in
i

bijy
(j)
k +∇fi

(
x
(i)
k+1

)
−∇fi

(
x
(i)
k

)
(8)

where aij > 0 for any j ∈ N in
i and

∑
j∈N in

i
aij = 1, bij > 0 for

any i ∈ N out
j and

∑
i∈N out

j
bij = 1, α is a positive stepsize, and

x
(i)
0 and y

(i)
0 are initialized such that y(i)

0 = ∇fi(x
(i)
0 ), ∀i ∈ V .

Intuitively, the update for y(i)
k aims to asymptotically track the

global gradient ∇f(x̄k) and the update for x(i)
k enforces it to

converge to x̄k while performing an inexact gradient descent
step, where x̄k = 1

n

∑n
i=1 x

(i)
k is the mean of nodes’ states. We

refer interested readers to [25], [26] for more discussions on
PPG.
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Algorithm 1: The Distributed Dual Gradient Tracking
Algorithm (DDGT) — From the View of Node i.

• Initialization: Let w(i)
0 = 0, w(i)

0 = 0, s(i)0 = di.a

• For k = 0, 1, . . . ,K, repeat
1: Receive w̃

(j)
k := w

(j)
k + αs

(j)
k and s̃

(ji)
k := bijs

(j)
k from

its in-neighbor j.
2: Compute w

(i)
k+1, w(i)

k+1 and s
(i)
k+1 as (9).

3: Broadcast w̃(i)
k+1 and s̃

(i)
k+1 to each of out-neighbors.

• Return w
(i)
K .

aIf only the total resource demand d is known to all nodes, then we can

simply set s(i)0 = 1
nd, which can be done in a distributed manner [17].

B. The DDGT Algorithm

We are ready to present the DDGT algorithm. Plugging the
gradient (7) into (8) and noticing that the di term is cancelled in
∇fi(x

(i)
k+1)−∇fi(x

(i)
k ), we have

w
(i)
k+1 =

∑

j∈N in
i

aij

(
w

(j)
k + αs

(j)
k

)
, (9a)

w
(i)
k+1 = argmin

w∈Wi

{
Fi(w)−wTw

(i)
k+1

}
, (9b)

s
(i)
k+1 =

∑

j∈N in
i

bijs
(j)
k −

(
w

(i)
k+1 −w

(i)
k

)
. (9c)

where notations have been changed to keep consistency with the
primal problem (1), i.e., x(i)

k = −w
(i)
k and y

(i)
k = s

(i)
k .

The DDGT is summarized in Algorithm 1 and we now elab-
orate on it. After initialization, each node i iteratively updates
three vectors w(i)

k ,w
(i)
k and s

(i)
k . In particular, at each iteration

node i receives w̃(j)
k := w

(j)
k + αs

(j)
k and s̃

(ji)
k := bijs

(j)
k from

each of its in-neighbors j, and updates w(i)
k+1 according to (9a),

where aij is positive for any j ∈ N in
i such that

∑
j∈N in

i
aij = 1

as with (8), andα is a positive stepsize. The update of s(i)k in (9c)
is similar, where bij > 0 for any i ∈ N out

j and
∑

i∈N out
j

bij = 1.

This process repeats until terminated. We set aij = bij = 0 for
any (j, i) /∈ E for convenience. Define two matrices [A]ij = aij
and [B]ij = bij , then A is a row-stochastic matrix and B is a
column-stochastic matrix. Clearly, the directed network associ-
ated with A and B can be unbalanced.

Remark 2: In practice, one can simply set aij = |N in
i |−1 and

bij = |N out
j |−1, and then all conditions are satisfied. Note that

this setting requires each node to know the number of its in-
neighbors and out-neighbors, which is common in the literature
of distributed optimization over directed networks [32]–[35].

Notably, the initialization for DDGT exploits the structure of
the DRAPs and improves that of PPG. By PPG, w(i)

0 and s
(i)
0

should be exactly set as w(i)
0 = w̃�

i and s
(i)
0 = di − w̃�

i , where
w̃�

i = argminw∈Wi
Fi(w) is a local minimizer. In DDGT, the

computation of w̃�
i is actually not necessary since the update

without w̃�
i in w

(i)
0 and s

(i)
0 and the update with it become

equivalent after the first iteration due to the special form of
∇fi(x). Clearly, the former is simpler and is adopted in DDGT.

The update ofw(i)
k in (9b) requires finding an optimal point of

an auxiliary local optimization problem, which can be obtained
by standard algorithms, e.g., projected (sub)gradient method or
Newton’s method, and can even be given in an explicit form for
some special cases. Note that solving sub-problems per itera-
tion is common in many duality-based optimization algorithms,
including the dual ascent method and proximal method [41].

Remark 3: Consider two special cases. The first one is that
the local constraint set Wi = Rm and Fi is differentiable as
in [4]. Then, (9b) becomes

w
(i)
k+1 = ∇−1Fi(w

(i)
k+1) (9b′)

where ∇−1Fi denotes the inverse function of ∇Fi, i.e.,
∇−1Fi(∇Fi(x)) = x for any x ∈ Rm.

The second case is that the decision variable is a scalar, Wi is
an interval [wi, wi], and Fi is differentiable as in [1], [17], [20].
Then, (9b) becomes

w
(i)
k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

wi, if ∇−1F (w
(i)
k+1) > wi

wi, if ∇−1F (w
(i)
k+1) < wi

∇−1F (w
(i)
k+1), otherwise

(9b′′)

which is in fact adopted in [1], [17], [20]. Hence, (9b) can be
seen as an extension of their methods. �

An interesting feature of DDGT lies in the way to
handle the coupling constraint

∑n
i=1 w

(i)
k = d. Notice that

DDGT is simply initialized such that w
(i)
0 = 0, ∀i ∈ V and∑n

i=1 s
(i)
0 = d. By summing (9c) over i = 1, . . . , n, we obtain

that
∑n

i=1(w
(i)
k + s

(i)
k ) =

∑n
i=1(w

(i)
0 + s

(i)
0 ) = d. Thus, if s(i)k

converges to 0, the constraint is satisfied asymptotically, which
is essential to the convergence proof of the DDGT.

By strong duality, the convergence of DDGT can be estab-
lished by showing the convergence of PPG. However, existing
results, e.g., [25]–[27], [42] for the convergence of PPG are
established only if fi is strongly convex and Lipschitz smooth.
Note that fi in (6) is often not strongly convex due to the
introduction of convex conjugate function F ∗

i , though Fi in (1)
is strongly convex [30]. This is indeed the case if Fi includes ex-
ponential term [43] or logarithmic term [44]. Without Lipschitz
smoothness for Fi, we can only obtain that fi is differentiable
and 1

μ -Lipschitz smooth [45, Theorem 4.2.1], i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ 1

μ
‖x− y‖, ∀i ∈ V,x,y ∈ Rn.

(10)
Thus, we still need to prove the convergence of PPG for non-
strongly convex objective functions fi. Particularly, a crucial
step in the convergence proof of PPG in [25], [26] uses a compli-
cated 3-dimensional matrix whose spectral radius is strictly less
than one for a sufficiently small stepsize. Then, PPG converges
at a linear rate. This does not work here since the spectral radius
of such a matrix cannot be strictly less than one if fi is not
strongly convex. In fact, we cannot expect a linear convergence
rate for the non-strongly convex case [28].
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Next, we shall prove that PPG converges to a stationary point
at a rate of O(1/k) even for non-convex objective functions,
based on which we show the convergence and evaluate the
convergence rate of DDGT.

IV. CONVERGENCE ANALYSIS

In this section, we first establish the convergence result of
PPG in (8) for non-convex fi, which is of independent interest
as the existing results on PPG only apply to the strongly convex
case. Then, we show the convergence of the DDGT and evaluate
the convergence rate for a special case.

A. Convergence Analysis of PPG Without Convexity

Consider PPG given in (8). With a slight abuse of notation,
let fi be a general differentiable function in the rest of this
subsection. Denote

Xk =
[
x
(1)
k , . . . ,x

(n)
k

]T
∈ Rn×m

Yk =
[
y
(1)
k , . . . ,y

(n)
k

]T
∈ Rn×m

∇fk =
[
∇f1(x

(1)
k ), . . . ,∇fn

(
x
(n)
k

)]T
∈ Rn×m (11)

and

[A]ij =

{
aij , if (j, i) ∈ E
0, otherwise,

[B]ij =

{
bij , if (j, i) ∈ E
0, otherwise.

Note that A is row-stochastic and B is column-stochastic. The
starting points of all nodes are set to the same point x0 for
simplicity.

Then, (8) can be written in the following compact form

Xk+1 = A(Xk − αYk) (12a)

Yk+1 = BYk +∇fk+1 −∇fk (12b)

The convergence result of PPG for non-strongly convex or
even non-convex functions are given in the following theorem.

Theorem 1 (Convergence of PPG Without Convexity): Sup-
pose Assumption 2 holds and fi, i ∈ V in (6) is differentiable and
L-Lipschitz smooth (c.f. (10)). If the stepsize α is sufficiently
small, i.e.,α satisfies (28) and (43), then {x(i)

k }, i ∈ V generated
by (8) satisfies that

1

k

k∑

t=1

‖∇f(x̄t)‖2 ≤ f(x0)− f�

γk
+

3Lα2(L2c20 + c22)

γ(1− θ)k

+
α (

√
nLc0 + c2)

(
1 +

∑k0

t=1 ‖∇f(x̄t)‖2
)

γ(1− θ)k
(13)

where x̄k =
∑n

i=1 π
(i)
A x

(i)
k , πA is the normalized left Perron

vector of A, and θ, c0, c2, γ, k0 are positive constants given in
(27), (31), (44), (45) of Appendix, respectively.

Moreover, it holds that

1

k

k∑

t=1

‖Xt − 1x̄T
t ‖2F ≤ 2c20

(1− θ)k
+

c21α
2

k

k∑

t=1

‖∇f(x̄t)‖2

(14)
and if f is convex, f(x̄k) converges to f�.

The proof of Theorem 1 is deferred to the Appendix.
Theorem 1 shows that PPG converges to a stationary point
of f at a rate of O(1/k) for non-convex functions. The order
of convergence rate is consistent with the centralized gradient
descent algorithm [41]. Generally, the network size n affects the
convergence rate in a complicated way since it closely relates to
the network topology and the two weighting matricesA andB. If
σA, σB, δAF and δBF in Lemmas 2 and 3 of Appendix do not vary
with n, which holds, e.g., by setting A = B in some undirected
graphs such as complete graphs and star graphs, then it follows
from (27), (28), (31) and (44) that θ = O(1), α = O(1/

√
n),

c0 ≈ O(
√
n) and γ ≈ O(α). Then, (13) ensures a convergence

rate O(n/k), which is reasonable since the Lipschitz constant L
is defined in terms of local objective functions, and the global
Lipschitz constant generally increases linearly with n, implying
a convergence rate O(n/k) even for the centralized gradient
descent method [41, Section 6.1].

B. Convergence of the DDGT

We now establish the convergence and quantify the conver-
gence rate of the DDGT.

Theorem 2 (Convergence of the DDGT): Suppose Assump-
tions 1 and 2 hold. If the stepsize α > 0 is smaller than an
upper bound given in (28) and (43) with L replaced by 1/μ, then
{w(i)

k }, i ∈ V in Algorithm 1 converges to an optimal point of

(1), i.e., limk→∞ w
(i)
k = w�

i , ∀i ∈ V .
Proof: Under Assumption 1, the strong duality holds be-

tween the original problem (1) and its dual problem (6). Recall
the relation between the DDGT (9) and PPG (8). We obtain
that f(x̄k) converges to f� by the convexity of the dual problem
and Theorem 1, and f� = −F � = −L(W �,x) for any x ∈ Rm.
Moreover,

f(x̄k)− f� = L(W �, x̄k)− inf
W∈W

L(W, x̄k)

= L(W �, x̄k)− L(Wk, x̄k)

≥ ∂WL(Wk, x̄k)
T(W � −Wk) +

μ

2
‖Wk −W �‖2F

≥ μ

2
‖Wk −W �‖2F (15)

where L(W,x) is the Lagrange function in (2), W � =

[w�
1, . . . ,w

�
n] and Wk = [w

(i)
k , . . . ,w

(i)
k ]. The first inequality

follows from the strong convexity of F by Assumption 1 and
the second inequality uses the first-order necessary condition for
a constrained minimization problem. The convergence of w(i)

k

is obtained immediately from (15).
The stepsize condition follows from Theorem 1 and the Lip-

schitz smoothness of the dual function (c.f. (10)). �
Remark 4: We note that it is possible to extend the DDGT to

time-varying networks [17], since the convergence of the DDGT
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essentially depends on that of PPG, and a recent work [27] shows
the feasibility of PPG over time-varying networks for strongly
convex functions.

C. Convergence Rate of the DDGT

As in [4] and [10], this subsection focuses on the special
case that Wi = Rm and Fi is differentiable for all i ∈ V for
the convergence rate characterization, since the constrained
case involves more complicated concepts and notations such
as subdifferential.

Under Assumption 1, it follows from [30] that the Karush-
Kuhn-Tucker (KKT) condition of (1)

∇F1(w
�
1) = · · · = ∇Fn(w

�
n), (16a)

n∑

i=1

w�
i = d (16b)

is a necessary and sufficient condition for optimality. The con-
vergence rate of the DDGT is in terms of (16).

Theorem 3 (Convergence Rate of the DDGT): Suppose that
Wi = Rm, Fi is differentiable for all i, and the conditions in
Theorem 2 are satisfied. Let ∇Fk = 1

n

∑n
i=1 ∇Fi(w

(i)
k ), then

{w(i)
k } generated by the DDGT satisfies that

1

k

k∑

t=1

(
n∑

i=1

‖∇Fi(w
(i)
t )−∇Ft‖2 + ‖

n∑

i=1

w
(i)
t − d‖2

)

≤ 2(f(x0)− f�)

γk
+

6Lα2(L2c20 + c22)

γ(1− θ)k
+

4nc20(μ
2 + 1)

μ2(1− θ)k

+
2α (

√
nLc0 + c2)

(
1 +

∑k0

t=1 ‖∇f (x̄t) ‖2
)

γ(1− θ)k
+O

(
1

k2

)

where all the constants are defined in Theorem 1.
Moreover, if Fi, i ∈ V has Lipschitz continuous gra-

dients, then
∑n

i=1 ‖w(i)
k −w�

i ‖2 converges linearly, i.e.,∑n
i=1 ‖w(i)

k −w�
i ‖2 ≤ O(λk) for some λ ∈ (0, 1).

Proof: Since Wi = Rm, it follows from (9b) that x(i)
k+1 =

−∇Fi(w
(i)
k+1). Thus,

n∑

i=1

∥∥∥∇Fi

(
w

(i)
k

)
−∇Fk

∥∥∥
2

=

n∑

i=1

∥∥∥x(i)
k − 1

n

n∑

i=1

x
(i)
k

∥∥∥
2

=
∥∥∥
(
I − 1

n
11T

)
Xk

∥∥∥
2

F

≤ 2‖ (I − 1πT
A

)
Xk‖2F + 2

∥∥∥
(
1πT

A − 1

n
11T

)
Xk

∥∥∥
2

F

= 2‖Xk − 1x̄T
k‖2F + 2

∥∥∥
(
1

n
11T − 1πT

A

)(
Xk − 1x̄T

k

) ∥∥∥
2

F

≤ 2n‖Xk − 1x̄T
k‖2F (17)

where Xk is defined in (11), x̄k and πA are defined in
Theorem 1. The first inequality uses the relation ‖a+ b‖2 ≤
2‖a‖2 + 2‖b‖2, and the last inequality follows from ‖ 1

n11
T −

1πT
A‖2F ≤ n− 1.

On the other hand, it follows from (7) and (9b) that

n∑

i=1

w
(i)
k − d = −

n∑

i=1

∇fi

(
x
(i)
k

)

= −
(
∇f(x̄k) +

n∑

i=1

(
∇fi(x

(i)
k )−∇fi(x̄k)

))

Taking the norm on both sides yields that
∥∥∥∥∥

n∑

i=1

w
(i)
k − d

∥∥∥∥∥

2

≤ 2‖∇f(x̄k)‖2 + 2n

n∑

i=1

‖∇fi(x
(i)
k )−∇fi(x̄k)‖2

≤ 2‖∇f(x̄k)‖2 + 2n

μ2

n∑

i=1

‖x(i)
k − x̄k‖2

= 2‖∇f(x̄k)‖2 + 2n

μ2
‖Xk − 1x̄T

k‖2F (18)

where we use ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 again and the
Cauchy-Schwarz inequality to obtain the first inequality, and
the second inequality follows from (10). Combining (17) and
(18) implies that

n∑

i=1

∥∥∥∇F
(
w

(i)
k

)
−∇Fk

∥∥∥
2

+

∥∥∥∥∥

n∑

i=1

w
(i)
k − d

∥∥∥∥∥

2

≤ 2 ‖∇f (x̄k)‖2 + 2n(1 + μ2)

μ2

∥∥Xk − 1x̄T
k

∥∥2

F

The desired result then follows from Theorem 1.
The linear convergence rate in the presence of Lipschitz

smoothness can be similarly obtained by following the linear
convergence of PPG for strongly convex and Lipschitz smooth
objective functions ([26, Theorem 1] or [25, Theorem 1]), which
is omitted to save space. �

Theorem 3 shows that the DDGT converges at a sublinear rate
O(1/k) for strongly convex objective functions, and achieves
a linear convergence rate if Lipschitz smoothness is further
satisfied. In view of Theorem 1, the explicit form of the term
corresponding to O(1/k2) in Theorem 3 can be obtained after
tedious computations.

V. NUMERICAL EXPERIMENTS

This section validates our theoretical results and compares
the DDGT with existing algorithms via simulation. More pre-
cisely, we compare the DDGT with the algorithms in [17],
[24] and [10, Mirror-Push-DIGing]. Note that [10] does not
provide convergence guarantee for Mirror-Push-DIGing, [17]
has no convergence rate results, and [24] only shows the con-
vergence rate for strongly convex and Lipschitz smooth cost
functions. Moreover, the algorithm in [24] involves solving a
subproblem similar to (9b) per iteration and [17] adopts the
update in (9b′′) which is a special case of (9b), and hence the
computational complexities of the two algorithms are similar
to DDGT per iteration. In contrast, Mirror-Push-DIGing [10]
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Fig. 1. The communication network in [46] and [47].

Fig. 2. Convergence rate w.r.t the number of iterations of different algorithms
with quadratic cost function Fi(wi) = ai(wi − bi)

2.

requires computing a proximal operator, which may have higher
computational costs.

We test these algorithms over 126 nodes connected via a
directed network, which is a real Email network [46], [47].
Each node i is associated with a local quadratic cost function
Fi(wi) = ai(wi − bi)

2 where ai ∼ U(0, 1) and bi ∼ N (0, 4)
are randomly sampled. Note that the quadratic cost function
is commonly used in the literature [10], [17], [24]. The global
constraint is

∑126
i=1 wi = 50.

We first test the case without local constraints by settingWi =
Rm. The stepsize used for each algorithm is tuned via a grid
search,1 and all initial conditions are randomly set. Fig. 2 depicts
the decay of distance between w

(i)
k and the optimal solution

with respect to the number of iterations. It clearly shows that the
DDGT has a linear convergence rate and converges faster than
algorithms in [17], [24] and [10].

To validate the theoretical result for strongly convex cost func-
tions without Lipschitz smoothness, we test the algorithms with
a quartic local cost function Fi(wi) = ai(wi − bi)

2 + ci(wi −
di)

4, where ci ∼ U(0, 10) and di ∼ N (0, 4) are randomly sam-
pled. Clearly, this function is strongly convex but not Lipschitz
smooth. All other settings remain the same and the result is plot-
ted in Fig. 3, where the Mirror-Push-DIGing [10] is not included
because its proximal operator is very time-consuming, and an
approximate solution for the proximal operator often leads to a
poor performance of the algorithm. The dotted line in Fig. 3 is
the sequence {100/k} with k the number of iterations. We can
observe that the convergence rates of all algorithms are slower

1The grid search scheme works as follows. For each algorithm, we select a
“good” stepsize by inspection, and then gradually increase and decrease stepsizes
around the selected one with an equal grid size, respectively. Then, we find the
fastest one among all the tried stepsizes.

Fig. 3. Convergence rate w.r.t the number of iterations of different algorithms
with quartic cost function Fi(wi) = ai(wi − bi)

2 + ci(wi − di)
4.

Fig. 4. Convergence rate w.r.t the number of iterations of different algorithms
with quartic cost function Fi(wi) = ai(wi − bi)

2 + ci(wi − di)
4 and local

constraint −2 ≤ wi ≤ 2, ∀i.

than that in Fig. 2, but the DDGT still outperforms the other
two algorithms. Moreover, it is interesting to observe that the
DDGT and the algorithm in [24] have near-linear convergence
rates, though the theoretical convergence rate for the DDGT is
O(1/k).

Finally, we study the effect of local constraints on the conver-
gence rate. To this end, we assign each node a local constraint
−2 ≤ wi ≤ 2, and test all algorithms with the setting of Fig. 3.
The result is depicted in Fig. 4, which shows that the convergence
of the DDGT is essentially not affected, while the algorithm
in [24] is heavily slowed compared with that in Fig. 3.

VI. CONCLUSION

We proposed the DDGT for distributed resource allocation
problems (DRAPs) over directed unbalanced networks. Con-
vergence results are provided by exploiting the strong duality
of DRAPs and distributed optimization problems, and taking
advantage of the PPG algorithm. We studied the convergence
and convergence rate of PPG for non-convex problems and
obtained that the DDGT converges linearly for strongly con-
vex and Lipschitz smooth objective functions, and sub-linearly
without the Lipschitz smoothness. Future works are to provide
tighter bounds for the convergence rate, design asynchronous
versions [37], [38], study quantized communication [48], and
design accelerated algorithms [49]. In particular, an interesting
idea to accelerate the DDGT is to add a vanishing strongly
convex regularization term to the dual problems of DRAPs,
which may allow a larger stepsize in the early stage and hence
possibly lead to faster convergence.
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APPENDIX

A. Preliminary Results on Stochastic Matrices

We first introduce three lemmas from [25], [26].
Lemma 1 ([26], [42]): Suppose Assumption 2 holds. The

matrix A has a unique unit nonnegative left eigenvector πA

w.r.t. eigenvalue 1, i.e., πT
AA = πT

A and πT
A1 = 1. The matrix

B has a unique unit right eigenvector πB w.r.t. eigenvalue 1,
i.e., BπB = πB and πT

B1 = 1.
The proof of Lemma 1 follows from the Perron-Frobenius

theorem and can be found in [25], [26].
Lemma 2 ([50], [25], [26]): Suppose Assumption 2 holds.

There exist matrix norms ‖ · ‖A and ‖ · ‖B such that σA � ‖A−
1πT

A‖A < 1 andσB � ‖B − πB1
T‖B < 1. Moreover,σA andσB

can be arbitrarily close to the second largest absolute value of
the eigenvalues of A and B, respectively.

A method to construct such matrix norms can be found in the
proof of Lemma 5.6.10 in [50].

Lemma 3 ([25], [26]): There exist constants δFA, δAF, δFB

and δBF such that for any X ∈ Rn×n, we have

‖X‖F ≤ δFA‖X‖A, ‖X‖F ≤ δFB‖X‖B

‖X‖A ≤ δAF‖X‖F , ‖X‖B ≤ δBF‖X‖F
Lemma 3 is a direct result of the norm equivalence theorem. If

A and B are symmetric, which means the network is undirected,
then δAF = δBF = 1 and δFA = δFB =

√
n.

Note that the norm ‖ · ‖A defined in Lemma 2 is only for
matrices in Rn×n. To facilitate presentation, we slightly abuse
the notation and define a vector norm ‖x‖A � ‖ 1√

n
x1T‖A for

any x ∈ Rn, where the norm in the right-hand-side is the matrix
norm defined in Lemma 2. Then, we have

‖Mx‖A = ‖ 1√
n
Mx1T‖A ≤ ‖M‖A

∥∥∥
x1T
√
n

∥∥∥
A
= ‖M‖A‖x‖A

where the first equality is by definition and the inequality follows
from the sub-multiplicativity of matrix norms. Moreover, for
any matrix X = [x1, . . . ,xm] ∈ Rn×m, define the matrix norm

‖X‖A =
√∑m

i=1 ‖xi‖2A. Recall that m is the dimension of x
and hence the definition is distinguished from that in Lemma 2.
We have

‖MX‖A = ‖[Mx1, . . . ,Mxn]‖A =

√∑m

i=1
‖Mxi‖2A

≤
√∑m

i=1
‖M‖2A‖xi‖2A = ‖M‖A‖X‖A.

Therefore, for any M ∈ Rn×n, X ∈ Rn×m, and x ∈ Rn, the
following relation holds

‖MX‖A ≤ ‖M‖A‖X‖A, ‖Mx‖A ≤ ‖M‖A‖x‖A. (19)

Similarly, we can obtain such a relation based on the matrix
norm ‖ · ‖B defined in Lemma 2.

Next, we define three important auxiliary variables:

x̄k � XT
kπA, ȳk � Y T

k πA, ŷk � Y T
k 1

(12b)
= ∇fT

k1 (20)

where x̄k is a weighted average of x(i)
k that is identical to the

one defined in Theorem 1, ȳk is a weighted average of y(i)
k , and

ŷk is the sum of y(i)
k .

Finally, for any X = [x(1), . . . ,x(n)]T ∈ Rn×m, let

∇f(X) = [∇f1(x
(1)), . . . ,∇fn(x

(n))]T ∈ Rn×m,

and let ρ(X) denote the spectral radius of matrix X .

B. Proof of Theorem 1

Step 1: Bound ‖Xk − 1x̄T
k‖A and ‖Yk − πBŷ

T
k‖B

It follows from (9) that

‖Xk+1 − 1x̄T
k+1‖A

= ‖AXk − 1x̄T
k − α

(
A− 1πT

A

)
Yk‖A

=
∥∥(A− 1πT

A

) [(
Xk − 1x̄T

k

)− α
(
Yk − πBŷ

T
k

)− απBŷ
T
k

]∥∥
A

≤ σA‖Xk − 1x̄T
k‖A + ασA‖Yk − πBŷ

T
k‖A + ασA‖πBŷ

T
k‖A

≤ σA‖Xk − 1x̄T
k‖A + ασAδAFδFB‖Yk − πBŷ

T
k‖B

+ ασAδAF‖ 1
n
1T(∇f(Xk)−∇f

(
1x̄T

k

)
+∇f(1x̄T

k))‖

≤ ασAδAFδFB‖Yk − πBŷ
T
k‖B +

ασAδAF

n
‖∇f(x̄k)‖

+

(
σA +

ασAδAFL√
n

)
‖Xk − 1x̄T

k‖A (21)

where we use Lemma 2 and (19) to obtain the first inequality,
the second inequality is from Lemma 3 and (20), and the last
inequality follows from the L-Lipschitz smoothness.

Now we bound ‖Yk − πBŷ
T
k‖B. From (12) we have

‖Yk+1 − πBŷ
T
k+1‖B

= ‖BYk − πBŷ
T
k + (∇fk+1 −∇fk)− (πBŷ

T
k+1 − πBŷ

T
k)‖B

= ‖(B − πB1
T)(Yk − πBŷ

T
k) + (I − πB1

T)(∇fk+1 −∇fk)‖B

≤σB‖Yk − πBŷ
T
k‖B+LδBF‖I−πB1

T‖B‖Xk+1 −Xk‖F
≤ σB‖Yk − πBŷ

T
k‖B + LδBF‖Xk+1 −Xk‖F . (22)

where the last inequality follows from ‖I − πB1
T‖B = 1, which

can be readily obtained from the construction of the norm ‖ · ‖B

[50, Lemma 5.6.10]. Moreover, it follows from (12a) that

‖Xk+1 −Xk‖F = ‖AXk −Xk − αAYk‖F
= ‖(A− I)(Xk − 1x̄T

k)− αAYk‖F
≤ ‖A− I‖ ‖Xk − 1x̄T

k‖F + α‖A(Yk − πBŷ
T
k + πBŷ

T
k)‖F

≤ 2
√
n‖Xk − 1x̄T

k‖F + α‖A‖(‖Yk − πBŷ
T
k‖F + ‖πBŷ

T
k‖F )

≤ 2
√
nδFA‖Xk − 1x̄T

k‖A + α
√
n(δFB‖Yk − πBŷ

T
k‖B + ‖ŷT

k‖)
≤ 2

√
nδFA‖Xk − 1x̄T

k‖A + α
√
nδFB‖Yk − πBŷk‖B

+ α
√
nδFB‖ 1

n
1T(∇f(Xk)−∇f(1x̄T

k) +∇f(1x̄T
k))‖

≤ (αδFBL+ 2
√
nδFA)‖Xk − 1x̄T

k‖A

+ α
√
nδFB‖Yk − πBŷk‖B +

αδFB√
n

‖∇f(x̄k)‖
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where we used ‖A‖ ≤ √
n. The above relation combined with

(22) yields

‖Yk+1 − πBŷ
T
k+1‖B

≤ (σB + Lα
√
nδBFδFB)‖Yk − πBŷ

T
k‖B

+ (2L
√
nδBFδFA + L2αδBFδFB)‖Xk − 1x̄T

k‖A

+
LαδFBδBF√

n
‖∇f(x̄k)‖. (23)

Combing (21) and (23) implies the following linear matrix
inequality

[
‖Xk+1 − 1x̄T

k+1‖A

‖Yk+1 − πBŷ
T
k+1‖B

]

︸ ︷︷ ︸
� zk+1

�
[
P11 P12

P21 P22

]

︸ ︷︷ ︸
� P

[
‖Xk − 1x̄T

k‖A

‖Yk − πBŷ
T
k‖B

]

︸ ︷︷ ︸
� zk

+
α

n

[
σAδAF‖∇f(x̄k)‖

LδBFδFB
√
n‖∇f(x̄k)‖

]

︸ ︷︷ ︸
� uk

(24)

where � denotes the element-wise less than or equal sign and

P11 = σA +
LασAδAF√

n
, P12 = ασAδAFδFB

P21 = LδBF(αδFBL+ 2
√
nδFA), P22 = σB + Lα

√
nδBFδFB

Note that ρ(P ) < 1 for sufficiently small α, since

lim
α→0

P =

[
σA 0

2L
√
nδBFδFA σB

]

has spectral radius smaller than 1.
The linear matrix inequality (24) implies that

zk � P k−1z1 +

k−1∑

t=1

P t−1uk−t. (25)

Let θ1 and θ2 be the two eigenvalues of P such that |θ2| > |θ1|,
and θ � ρ(P ) = |θ2|, then P can be diagonalized as

P = TΛT−1, Λ =

[
θ1 0

0 θ2

]
. (26)

Let Ψ =
√
(P11 − P22)2 + 4P12P21. Note that the analysis so

far holds ifσA is replaced by any value in (σA, 1) (similar forσB),
and hence we assume without loss of generality that σA �= σB

to simplify presentation. In that case, Ψ is lower bounded by
some positive value that is independent of α, say Ψ. With some
tedious calculations, we have

θ1 =
P11 + P22 −Ψ

2

θ = θ2 =
P11 + P22 +Ψ

2

=
1

2

(
σA + σB +

LασAδAF√
n

+ Lα
√
nδBFδFB +Ψ

)
. (27)

By letting θ = θ2 < 1, we obtain that α should satisfy

α <
(1− σA)(1− σB)

LδFBδBF(2σAδAFδFB + (2σAδAFδFA + 1)
√
n)

. (28)

Moreover, T and T−1 in (26) can be expressed in an explicit
form

T =

[
P11−P22−Ψ

2P21

P11−P22+Ψ
2P21

1 1

]
, T−1 =

[
−P21

Ψ
P11−P22+Ψ

2Ψ
P21

Ψ
P22−P11+Ψ

2Ψ

]

It then follows from (26) that

0 � P k = TΛkT−1

=

⎡

⎣
θk
1+θk

2

2 +
(P11−P22)(θ

k
2−θk

1 )
2Ψ

P12

Ψ (θk2 − θk1 )

P21

Ψ (θk2 − θk1 )
θk
1+θk

2

2 +
(P11−P22)(θ

k
1−θk

2 )
2Ψ

⎤

⎦

� θk

[
1 1/Ψ

(2L
√
nδBFδFA + L)/Ψ 1

]
(29)

where we used |P11 − P22| ≤ Ψ,Ψ ≥ Ψ, and the bound (28) to
obtain the inequality.

Combining (24), (25) and (29) yields that

‖Xk − 1x̄T
k‖F ≤ c0θ

k−1 + c1α

k−1∑

t=1

θt−1‖∇f(x̄k−t)‖

‖Yk − πBŷ
T
k‖F ≤ c2θ

k−1 + c3α
k−1∑

t=1

θt−1‖∇f(x̄k−t)‖ (30)

where c0, c1, c2 and c3 are constants given as follows

c0 = ‖Y0 − πBŷ
T
0‖B/Ψ ≤ δBF

Ψ

(
n∑

i=1

‖∇fi(x0)‖2
)1/2

c1 =
σAδAF

n
+

LδBFδFB√
nΨ

c2 = ‖Y0 − πBŷ
T
0‖B ≤ δBF

(
n∑

i=1

‖∇fi(x0)‖2
)1/2

c3 =
2L

√
nδBFδFA + L

nΨ
+

LδBFδFB√
n

. (31)

Step 2: Bound ‖ȳk‖2
From (12) and the L-Lipschitz smoothness, we have

f(x̄k+1) ≤ f(x̄k)− α∇f(x̄k)
Tȳk +

Lα2

2
‖ȳk‖2. (32)

Note that

ȳk = Y T
k πA = (Yk − πBŷ

T
k + πBŷ

T
k)

TπA

= (Yk − πBŷ
T
k)

TπA + Y T
k 1π

T
BπA

= (Yk − πBŷ
T
k)

TπA + (∇f(Xk)−∇f(1x̄T
k))

T1πT
BπA

+ πT
BπA∇f(x̄k) (33)
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where we used the relation Y T
k 1 = ∇f(Xk)

T1 and
∇f(1x̄T

k)
T1 = ∇f(x̄k). Then, we have

−∇f(x̄k)
Tȳk

= −∇f(x̄k)
T(∇f(Xk)−∇f(1x̄T

k))
T1πT

BπA

−∇f(x̄k)
T(Yk − πBŷ

T
k)

TπA − πT
BπA‖∇f(x̄k)‖2

≤ −πT
BπA‖∇f(x̄k)‖2 + L

√
n‖∇f(x̄k)‖‖Xk − 1x̄T

k‖F
+ ‖∇f(x̄k)‖‖Yk − πBŷ

T
k‖F (34)

where we used ‖πA‖ ≤ 1, and the Lipschitz smoothness
‖∇f(Xk)−∇f(1x̄T

k)‖F ≤ L‖Xk − 1x̄T
k‖F to obtain the last

inequality.
Moreover, it follows from (33) and the relation ‖a+ b+

c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2 that

‖ȳk‖2 ≤ 3‖(Yk − πBŷ
T
k)

TπA‖2 + 3‖πT
BπA∇f(x̄k)‖2

+ 3‖(∇f(Xk)−∇f(1x̄T
k))

T1πT
BπA‖2

≤ 3‖Yk − πBŷ
T
k‖2 + 3(πT

BπA)
2‖∇f(x̄k)‖2

+ 3 L2n‖Xk − 1x̄T
k‖2. (35)

Step 3: Bound
∑k

t=1 ‖∇f(x̄t)‖‖Xt − 1x̄T
t ‖F and∑k

t=1 ‖Xt − 1x̄T
t ‖2F

We first bound the summation of the terms ‖∇f(x̄t)‖‖Xt −
1x̄T

t ‖F and ‖∇f(x̄t)‖‖Yt − πBŷ
T
t ‖F in (34) over t = 1, . . . , k.

It follows from (30) that

‖∇f(x̄k)‖‖Xk − 1x̄T
k‖F

≤ c0θ
k−1‖∇f(x̄k)‖+ c1α‖∇f(x̄k)‖

k−1∑

t=1

θt−1‖∇f(x̄k−t)‖

(36)

Then, define

ϑt =
[
θt−2, θt−3, . . . , θ, 1, 0, . . . , 0

]T ∈ Rk

ϑ̃t =

⎡

⎣0, . . . , 0︸ ︷︷ ︸
t−1

, 1, 0, . . . , 0

⎤

⎦
T

∈ Rk

υk = [‖∇f(x̄1)‖, . . . , ‖∇f(x̄k)‖]T ∈ Rk

Θ̃k =

k∑

t=1

ϑtϑ̃
T
t =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 θ · · · θk−2

0 1 · · · θk−1

. . .
. . .

...

0 1

0

⎤

⎥⎥⎥⎥⎥⎥⎦

where θ is defined in (27). Note that ∇f(x̄k) = υT
k ϑ̃t and

θt−1‖∇f(x̄k−t)‖ = υT
kϑt, which combined with the relation

‖∇f(x̄k)‖ ≤ 1 + ‖∇f(x̄k)‖2 and (36) yields

k∑

t=1

‖∇f(x̄t)‖‖Xt − 1x̄T
t ‖F

≤ c0

k∑

t=1

θt−1(1 + ‖∇f(x̄t)‖2) + c1α

k∑

t=1

‖∇f(x̄k)‖ϑT
t υk

≤ c0
1− θ

+ c0

k∑

t=1

θt−1‖∇f(x̄t)‖2 + c1α
k∑

t=1

υT
k ϑ̃tϑ

T
t υk

≤ c0
1− θ

+ c0

k∑

t=1

θt−1‖∇f(x̄t)‖2 + c1αυ
T
kΘ̃kυk. (37)

The last term υT
kΘ̃kυk in (37) can be bounded by

υT
kΘ̃kυk = υT

k

Θ̃k + Θ̃T
k

2
υk ≤ 1

2
ρ(Θ̃k + Θ̃T

k)‖υk‖2 ≤ ‖υk‖2
1− θ

where the last inequality follows from ρ(Θ̃k + Θ̃T
k) ≤ ‖Θ̃k +

Θ̃T
k‖1 ≤ ‖Θ̃k‖1 + ‖Θ̃k‖∞ ≤ 2

1−θ . Thus, we have from (37) that

k∑

t=1

‖∇f(x̄t)‖‖Xt − 1x̄T
t ‖F

≤ c0
1− θ

+ c0

k∑

t=1

θt−1‖∇f(x̄t)‖2 + c1α

1− θ

k∑

t=1

‖∇f(x̄t)‖2

(38)

Similarly, we can bound
∑k

t=1 ‖∇f(x̄t)‖‖Yt − πBŷ
T
t ‖F as

follows,

k∑

t=1

‖∇f(x̄t)‖‖Yt − πBŷ
T
t ‖F

≤ c2
1− θ

+ c2

k∑

t=1

θt−1‖∇f(x̄t)‖2 + c3α

1− θ

k∑

t=1

‖∇f(x̄t)‖2.

Next, we bound
∑k

t=1 ‖Xt − 1x̄T
t ‖2F and

∑k
t=1 ‖Yt −

πBŷt‖2F . We first consider
∑k

t=1 ‖Xt − 1x̄T
t ‖2F . For anyk ∈ N,

define

νk = [c0, c1α‖∇f(x̄1)‖, . . . , c1α‖∇f(x̄k−1)‖]T ∈ Rk

φt = [θt−1, θt−2, . . . , θ, 1, 0, . . . , 0]T ∈ Rk

Θk =

k∑

t=1

φtφ
T
t ∈ Rk×k

where the elements are defined in (27) and (31). Clearly, Θk is
nonnegative and positive semi-definite. We have from (30) that
‖Xt − 1x̄T

t ‖F ≤ νT
kφt, and hence

k∑

t=1

‖Xt − 1x̄T
t ‖2F ≤ νT

kΘkνk ≤ ‖Θk‖‖νk‖2. (39)

To bound ‖Θk‖, let [Θk]ij be the element in the i-th row and
j-th column of Θk. For any 0 < i ≤ j ≤ k, we have

[Θk]ij

=

k∑

t=j−1

θt−i+1θt−j+1 =

k∑

t=j−1

θ2t−i−j+2

=
θ2j−2(1− θ2(k−j+2))

1− θ2
θ2−i−j =

θj−i(1− θ2(k−j+2))

1− θ2
.
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Since Θk is symmetric, ‖Θk‖ equals to its spectral radius. By
invoking the Gershgorin circle theorem, we have

‖Θk‖ ≤ max
j

k∑

i=1

[Θk]ij = max
j

⎡

⎣
j∑

i=1

[Θk]ij +

k∑

i=j+1

[Θk]ij

⎤

⎦

= max
j

⎡

⎣
j∑

i=1

[Θk]ij +

k∑

i=j+1

[Θk]ji

⎤

⎦

= max
j

[
j∑

i=1

θj−i(1− θ2(k−j+2))

1− θ2

+

k∑

i=j+1

θi−j(1− θ2(k−i+2))

1− θ2

⎤

⎦

= max
j

[
(1− θj)(1− θ2(k−j+2))

(1− θ)(1− θ2)

+
θ(1− θk−j) + θ2(k−j+2)(1− θj−k)

(1− θ)(1− θ2)

]

j=k
=

(1 + θ2)(1− θk)

1− θ
≤ 2

1− θ
.

It then follows from (39) that

k∑

t=1

‖Xt − 1x̄T
t ‖2F ≤ 2

1− θ

[
c20 + c21α

2
k−1∑

t=1

‖∇f(x̄t)‖2
]

k∑

t=1

‖Yt − πBŷt‖2F ≤ 2

1− θ

[
c22 + c23α

2
k−1∑

t=1

‖∇f(x̄t)‖2
]

(40)

Step 4: Bound
∑k

t=1 ‖∇f(x̄t)‖2
Combining (32), (34) and (35) implies that

f(x̄k+1)

≤ f(x̄k)− α∇f(x̄k)
Tȳk +

Lα2

2
‖ȳk‖2

≤ f(x̄k)− απT
BπA

(
1− 3LαπT

BπA

2

)
‖∇f(x̄k)‖2

+ α‖∇f(x̄k)‖‖Yk − πBŷ
T
k‖F +

3Lα2

2
‖Yk − πBŷ

T
k‖2F

+
3 L3α2

2
‖Xk − 1x̄T

k‖2F + Lα
√
n‖∇f(x̄k)‖‖Xk − 1x̄T

k‖F .
(41)

Summing both sides of (41) over 1, . . . , k, we have

απT
BπA

(
1− 3LαπT

BπA

2

) k∑

t=1

‖∇f(x̄t)‖2

≤ f(x0)− f(x̄k) + α

k∑

t=1

‖∇f(x̄t)‖‖Yt − πBŷ
T
t ‖F

+
3Lα2

2

k∑

t=1

(‖Yt − πBŷt‖2F + L2‖Xt − 1x̄T
t ‖2F

)

+
k∑

t=1

Lα
√
n‖∇f(x̄t)‖‖Xt − 1x̄T

t ‖F

≤ f(x0)− f� +
3Lα2(L2c20 + c22)

1− θ
+

α(
√
nLc0 + c2)

1− θ

+
3Lα4(L2c21 + c23)

1− θ

k∑

t=1

‖∇f(x̄t)‖2

+
α2(

√
nLc1 + c3)

1− θ

k∑

t=1

‖∇f(x̄t)‖2

+ α(
√
nLc0 + c2)

k∑

t=1

θt−1‖∇f(x̄t)‖2 (42)

where the last inequality follows from (38) and (40).
We can move the terms related to

∑k
t=1 ‖∇f(x̄t)‖2 in

the right-hand-side of (42) to the left-hand-side to bound∑k
t=1 ‖∇f(x̄t)‖2. To this end, the stepsize α should satisfy

α <

(
3LπT

BπA

2

+
3 L3c21 + 3 Lc23 + L

√
n(c0 + c1) + c2 + c3

(1− θ)πT
BπA

)−1

(43)

which is followed by

γ � απT
BπA

(
1− 3LαπT

BπA

2

−α(3 L3c21 + 3 Lc23 + L
√
n(c0 + c1) + c2 + c3)

(1− θ)πT
BπA

)
> 0.

(44)

If θk ≤ α
1−θ , i.e.,

k ≥ k0 � ln(α)− ln(1− θ)

ln(θ)
, (45)

then it follows from (42) that

γ

k∑

t=1

‖∇f(x̄t)‖2 ≤ f(x0)− f� +
3Lα2(L2c20 + c22)

(1− θ)

+
α(

√
nLc0 + c2)

(1− θ)
+ α(

√
nLc0 + c2)

k0∑

t=1

‖∇f(x̄t)‖2

Thus, we have

1

k

k∑

t=1

‖∇f(x̄t)‖2 ≤ f(x0)− f�

γk
+

3Lα2(L2c20 + c22)

γ(1− θ)k

+
α(

√
nLc0 + c2)(1 +

∑k0

t=1 ‖∇f(x̄t)‖2)
γ(1− θ)k

which is (13) in Theorem 1. The inequality (14) follows from
(40) immediately.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on January 14,2021 at 01:11:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DISTRIBUTED DUAL GRADIENT TRACKING FOR RESOURCE ALLOCATION IN UNBALANCED NETWORKS 2197

Now we look back at (41). Jointly with (13), (38), (40) and
(41), it follows from the supermartingale convergence theo-
rem [41, Proposition A.4.4] that f(x̄k) converges. If f is further
convex, it follows from the convergence of

∑k
t=1 ‖∇f(x̄t)‖2

that f(x̄k) converges to f�.
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