
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcon20

Download by: [Northwestern Polytechnical University] Date: 29 February 2016, At: 01:11

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20

Delay-robustness in distributed control of timed
discrete-event systems based on supervisor
localisation

Renyuan Zhang, Kai Cai, Yongmei Gan & W. M. Wonham

To cite this article: Renyuan Zhang, Kai Cai, Yongmei Gan & W. M. Wonham (2016): Delay-
robustness in distributed control of timed discrete-event systems based on supervisor
localisation, International Journal of Control, DOI: 10.1080/00207179.2016.1147606

To link to this article: http://dx.doi.org/10.1080/00207179.2016.1147606

Accepted author version posted online: 05
Feb 2016.
Published online: 25 Feb 2016.

Submit your article to this journal

Article views: 14

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcon20
http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2016.1147606
http://dx.doi.org/10.1080/00207179.2016.1147606
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2016.1147606
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2016.1147606
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2016.1147606&domain=pdf&date_stamp=2016-02-05
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2016.1147606&domain=pdf&date_stamp=2016-02-05

INTERNATIONAL JOURNAL OF CONTROL,
http://dx.doi.org/./..

Delay-robustness in distributed control of timed discrete-event systems based on
supervisor localisation

Renyuan Zhang a, Kai Caib, Yongmei Ganc and W. M. Wonhamd

aSchool of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China; bUrban Research Plaza, Osaka City University, Osaka,
Japan; cSchool of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China; dDepartment of Electrical and Computer Engineering,
University of Toronto, Toronto, Canada

ARTICLE HISTORY
Received July
Accepted January

KEYWORDS
Timed discrete-event
systems; distributed
supervisory control;
supervisor localisation;
delay-robustness

ABSTRACT
Recently, we studied communication delay in distributed control of untimed discrete-event systems
based on supervisor localisation.We proposed a property called delay-robustness: the overall system
behaviour controlled by distributed controllers with communication delay is logically equivalent to
its delay-free counterpart. In this paper, we extend our previous work to timed discrete-event sys-
tems, in which communication delays are counted by a special clock event tick. First, we propose a
timed channelmodel anddefine timeddelay-robustness; for the latter, a verificationprocedure is pre-
sented.Next, if thedelay-robust property doesnot hold,we introduceboundeddelay-robustness, and
present an algorithm to compute themaximal delay bound (measured by number of ticks) for trans-
mitting a channelled event. Finally, we demonstrate delay-robustness on the example of an under-
load tap-changing transformer.

1. Introduction

For distributed control of discrete-event systems (DES),
supervisor localisation was recently proposed (Cai &
Wonham, 2010a, 2010b, 2015; Cai, Zhang, & Wonham,
2013; Zhang, Cai, Gan, Wang, & Wonham, 2013), which
decomposes a monolithic supervisor or a heterarchical
array of modular supervisors into local controllers for
individual agents. Collective local controlled behaviour
is guaranteed to be globally optimal and nonblocking,
assuming that the shared events among local controllers
are communicated instantaneously, i.e. with no delay.
In practice, however, local controllers are linked by a
physical communication network in which delays may
be inevitable. Hence, for correct implementation of the
local controllers obtained by localisation, it is essential to
model and appraise communication delays.

In Zhang, Cai, Gan, Wang, and Wonham (2015)
and its conference precursor (Zhang, Cai, Gan, Wang,
& Wonham, 2012), we studied communication delays
among local controllers for untimed DES. In particu-
lar, we proposed a new concept called delay-robustness,
meaning that the system’s behaviour of local controllers
interconnected by communication channels subject to
unbounded delays is logically equivalent to its delay-free
counterpart. Moreover, we designed an efficient proce-
dure to verify for which channelled events the system is

CONTACT Renyuan Zhang ryzhang@nwpu.edu.cn

delay-robust. If for a channelled event r the system fails
to be delay-robust, there may still exist a finite bound for
which the system can tolerate a delay in r. In untimed
DES, however, there lacks a temporal measure for the
delay bound (except for counting the number of occur-
rences of untimed events).

In this paper and its conference antecedent (Zhang,
Cai, & Wonham, 2014), we extend our study on delay-
robustness to the timed DES (or TDES) framework pro-
posed in Brandin and Wonham (1994) and Wonham
(2015). In this framework, the special clock event tickpro-
vides a natural way of modelling communication delay
as temporal behaviour. We first propose a timed chan-
nel model for transmitting each channelled event, which
effectively measures communication delay by the num-
ber of tick occurrences, with no a priori upper bound,
so that the channel models unbounded delay. We then
define timed delay-robustness with respect to the timed
channel, thus extending its untimed counterpart (Zhang
et al., 2015, 2012) in two respects: (1) the system’s tempo-
ral behaviour is accounted for, and (2) timed controllabil-
ity is required. An algorithm is presented to verify timed
delay-robustness according to this new definition.

If the delay-robust property fails to hold, we introduce
bounded delay-robustness and present a corresponding
verification algorithm. In particular, the algorithm com-
putes the maximal delay bound (in terms of number of

© Taylor & Francis

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

http://www.tandfonline.com
http://dx.doi.org/10.1080/00207179.2016.1147606
http://orcid.org/0000-0002-4142-5166
mailto:ryzhang@nwpu.edu.cn

2 R. ZHANG ET AL.

ticks) for transmitting a channelled event, i.e. the largest
delay that can be tolerated without violating the sys-
tem specifications. These concepts and the correspond-
ing algorithms are illustrated for the case of an under-load
tap-changing transformer (ULTC).

Distributed/decentralised supervisory control with
communication delay has been widely studied for
untimed DES (e.g. Barrett & Lafortune, 2000; Darondeau
& Ricker, 2012; Hiraishi, 2009; Kalyon, Gall, Marchand,
& Massart, 2011; Lin, 2014; Sadid, Ricker, & Hashtrudi-
Zad, 2015; Schmidt, Schmidt, & Zaddach, 2007; Tripakis,
2004; Xu&Kumar, 2008). In particular, in Tripakis (2004)
and Kalyon et al. (2011), the existence of distributed con-
trollers in the unbounded delay case is proved to be unde-
cidable; and in Tripakis (2004), Schmidt et al. (2007), Xu
and Kumar (2008), Hiraishi (2009) and Lin (2014), dis-
tributed controllers are synthesised under the condition
that communication delay is bounded. We also note that
Sadid et al. (2015) propose a way to verify robustness of
a given synchronous protocol with respect to a fixed or
a finitely bounded delay, as measured by the number of
untimed events occurring during the transmitting pro-
cess. We refer to Zhang et al. (2015, 2012) for a detailed
review of these works and their differences from our
approach. Communication delay in timed DES, on the
other hand, has (to our knowledge) received little atten-
tion. The present work is based on our previous research
on timed supervisor localisation (Cai & Wonham, 2015;
Cai et al., 2013; Zhang et al., 2013); the new approachmay
be applied to different settings, e.g. timed automata, in
a suitable manner (the details still need to be studied in
future work).

The paper is organised as follows. Section 2 pro-
vides a review of the Brandin–Wonham TDES frame-
work and recalls supervisor localisation for TDES. In
Section 3, we introduce a timed channel model, and
present the concept and verification algorithm for timed
delay-robustness. In Section 4, we define bounded delay-
robustness, and present an algorithm to compute the
maximal delay bound. These concepts and the corre-
sponding algorithms are demonstrated in Section 5 on
the distributed control problem for a ULTC with com-
munications. Conclusions are presented in Section 6.

2. Distributed control by supervisor localisation
of TDES

2.1 Preliminaries on TDES

The TDES model proposed in Brandin and Wonham
(1994) is an extension of the untimed DES generator
model of the Ramadge–Wonham framework (Wonham,

2015). A TDES is given by

G := (Q, �, δ, q0,Qm). (1)

Here, Q is the finite set of states; � is the finite set of
events, including the special event tick, which represents
‘tick of the global clock’; δ: Q × � → Q is the (par-
tial) state transition function (this is derived from the
corresponding activity transition function; the reader is
referred to the detailed transition rules given in Brandin
and Wonham (1994) and Wonham (2015)); q0 is the ini-
tial state; and Qm � Q is the set of marker states. The
transition function is extended to δ: Q × �∗ → Q in
the usual way. The closed behaviour of G is the language
L(G) � {s � �∗|δ(q0, s)!} and the marked behaviour is
Lm(G) � {s � L(G)|δ(q0, s) � Qm} � L(G). We say that
G is nonblocking if L̄m(G) = L(G), where ·̄ denotes prefix
closure (Wonham, 2015).

Let �∗ be the set of all finite strings, including the
empty string ϵ. For �′ � �, the natural projection P:
�∗ → �′∗ is defined by

P(ε) = ε;

P(σ) =
{

ε, if σ /∈ �′,
σ, if σ ∈ �′;

P(sσ) = P(s)P(σ), s ∈ �∗, σ ∈ �.

(2)

As usual, P is extended to P: Pwr(�∗) → Pwr(�′∗),
where Pwr(·) denotes powerset. Write P−1: Pwr(�′∗)→
Pwr(�∗) for the inverse-image function of P.

To adapt the TDESG in (1) for supervisory control, we
first designate a subset of events, denoted by �hib � �,
to be the prohibitible events which can be disabled by an
external supervisor. Next, and specific to TDES, we bring
in another category of events, called the forcible events,
which can preempt event tick; let �for � � denote the
set of forcible events. Note that tick��hib��for. Now it
is convenient to define the controllable event set �c :=
�hib∪̇{tick}. The uncontrollable event set is�u � � − �c.

We introduce the notion of (timed) controllability as
follows. For a string s�L(G), defineEligG(s)� {σ ��|sσ
� L(G)} to be the subset of events ‘eligible’ to occur (i.e.
defined) at the state q = δ(q0, s). Consider an arbitrary
language F � L(G) and a string s ∈ F ; similarly, define
the eligible event subset EligF (s) := {σ ∈ �|sσ ∈ F}. We
say F is controllable with respect to G if, for all s ∈ F ,

EligF (s) ⊇

⎧⎪⎪⎨
⎪⎪⎩

EligG(s) ∩ (�u∪̇{tick})
if EligF (s) ∩ � f or = ∅,

EligG(s) ∩ �u
if EligF (s) ∩ � f or
= ∅.

(3)

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 3

Whether or not F is controllable, we denote by C(F) the
set of all controllable sublanguages of F. Then, C(F) is
nonempty, closed under arbitrary set unions, and thus
contains a unique supremal (largest) element denoted by
supC(F) (Brandin and Wonham, 1994; Wonham, 2015).
Now consider a specification language E � �∗ imposed
on the timed behaviour of G; E may represent a logical
and/or temporal requirement. Let the TDES

SUP = (X, �, ξ, x0,Xm) (4)

be the corresponding monolithic supervisor that is opti-
mal (i.e. maximally permissive) and nonblocking in the
following sense: SUP’s marked language Lm(SUP) satis-
fies

Lm(SUP) = supC(E ∩ Lm(G)) ⊆ Lm(G)

and, moreover, its closed language L(SUP) = Lm(SUP).

2.2 Supervisor localisation of TDES

In this section, we introduce the supervisor localisation
procedure, which was initially proposed in the untimed
DES framework (Cai and Wonham, 2010a) and then
adapted to the TDES framework (Cai & Wonham, 2015;
Cai et al., 2013; Zhang et al., 2013). By this procedure, a
set of local controllers and local preemptors is obtained and
shown to be ‘control-equivalent’ to the monolithic super-
visor SUP in (4). By allocating these constructed local
controllers and preemptors to each component agent, we
build a distributed supervisory control architecture.

Let TDES G in (1) be the plant to be controlled and E
be a specification language. As in Wonham (2015), syn-
thesise the monolithic optimal and nonblocking super-
visor SUP.1 Supervisor SUP’s control action includes
(1) disabling prohibitible events in �hib and (2) pre-
empting tick via forcible events in �for. By the super-
visor localisation procedure, a set of local controllers
{LOCC

α = (Yα, �α, ηα, y0,α,Ym,α)|α ∈ �hib} and a set of
local preemptors {LOCP

β = (Yβ, �β, ηβ, y0,β,Ym,β)|β ∈
� f or} are constructed. In each local controller LOCC

α ,
each state yα � Yα corresponds to a cell of a control
cover on SUP’s state set. The initial state is y0, α and
the marker state set Ym, α . The transition function ηα is
derived from the control cover and the transitions defined
on the corresponding states. The event set �α is the set
of events that cause state changes in ηα . A local pre-
emptor is constructed similarly, but based on a preemp-
tion cover on SUP’s state set (Cai & Wonham, 2010a;
Zhang et al., 2013). The supervisor localisation procedure

localises SUP’s control action with respect to each pro-
hibitible event α (resp. forcible event β) into a local con-
troller LOCC

α (resp. local preemptor LOCP
β). These LOCC

α

and LOCP
β are all generalised TDES,2 and proved to be

control-equivalent to SUP (with respect to G) in the fol-
lowing sense:

L(G) ∩
(⋂

α∈�hib

P−1
α L(LOCC

α)
)

∩
(⋂

β∈� f or

P−1
β L(LOCP

β)
)

= L(SUP), (5)

Lm(G) ∩
(⋂

α∈�hib

P−1
α Lm(LOCC

α)
)

∩
(⋂

β∈� f or

P−1
β Lm(LOCP

β)
)

= Lm(SUP). (6)

Here, Pα : �∗ → �∗
α and Pβ : �∗ → �∗

β are the natu-
ral projections as in (2).

Now, using the constructed local controllers and local
preemptors, we build a distributed supervisory control
architecture (without communication delay) for a multi-
agent TDES plant. Consider that the plant G consists of
N component TDES Gi (i ∈ N := {1, 2, . . . ,N}), each
with event set �i�tick. For simplicity, assume �i��j =
{tick}, for all i
= j ∈ N ; namely the agents Gi are inde-
pendent except for synchronisation on the global event
tick. As a result, the marked and closed behaviours of
the composition of the Gi coincide with those of their
synchronous product (Wonham, 2015), and thus we use
synchronous product instead of composition to combine
TDES together, i.e. G = ||

i∈N
Gi, where || denotes the syn-

chronous product of TDES.3
A convenient allocation policy of local con-

trollers/preemptors is as follows. For a fixed agent
Gi, let �i, for, �i, hib � �i be its forcible event set and
prohibitible event set, respectively. As exemplified in
Figure 1, allocate to Gi the set of local controllers
LOCC

i := {LOCC
α|α ∈ �i,hib} and the set of local pre-

emptors LOCP
i := {LOCP

β |β ∈ �i, f or}. This allocation
creates a distributed control architecture for the multi-
agent plant G, in which each agent Gi is controlled by its
own local controllers/preemptors, while interacting with
other agents through communication of shared events.
For agent Gi, the set of communication events that need
to be imported from other agents is

�com,i :=
(⋃

α∈�i,hib

�α − �i

)
∪

(⋃
β∈�i, f or

�β − �i

)
(7)

where �α and �β are the event sets of LOCC
α and of

LOCP
β , respectively.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

4 R. ZHANG ET AL.

LOCC
σ1 LOCC

σ2

G1 G2 G3

LOCC
σ3 LOCP

σ3 LOCP
σ4

LOCP
σ5

LOCC
σ1 LOCC

σ2 LOCC
σ3

LOCP
σ3 LOCP

σ4
LOCP

σ5

G1 G2 G3

Communication

G

SUP

G

Figure . Example of distributed control by supervisor localisation: plant G is composed of three agents Gk with event sets �k, k � [,
]; σ , σ � �, σ � �, and σ , σ � �; σ , σ , σ � �hib and σ , σ , σ � �for. First, by the supervisor localisation procedure, we
construct from SUP a set of local controllers {LOCC

σ1
, LOCC

σ2
, LOCC

σ3
} and a set of local preemptors {LOCP

σ3
, LOCP

σ4
, LOCP

σ5
}. Then, by

our allocation policy, we obtain a distributed control architecture in which eachGk is controlled by its own local controllers/preemptors,
while interacting with other agents through communication of shared events.

σ

σ

Figure . Timed channel model CH(j, σ , i) for transmitting event
σ fromGj toGi with indefinite (i.e. unspecified) time delay.

However, this distributed control architecture is built
under the assumption that the communication delay of
communication events is negligible. While simplifying
the design of distributed controllers, this assumptionmay
be unrealistic in practice, where controllers are linked by a
physical network subject to delay. In the rest of this paper,
we investigate how the communication delay affects the
synthesised local control strategies and the correspond-
ing overall system behaviour.

3. Timed delay-robustness

Consider event communication between a pair of agents
Gi and Gj (i, j ∈ N): specifically, Gj sends an event σ to
Gi. Let �j be the event set of Gj and �com, i as in (7) the
set of communication events that Gi imports from other
agents. Then, the set of events that Gj sends to Gi is

� j,com,i := � j ∩ �com,i. (8)

We thus have event σ � �j, com, i.
Now consider the timed channel model CH(j, σ , i) for

transmission of σ displayed in Figure 2.CH(j, σ , i) is a 2-
state TDESwith event set {σ ,σ ′, tick}. The transition from
state 0 to 1 by σ means thatGj has sent σ to channel, while
the transition from state 1 back to 0 by σ ′ means that Gi
has received σ from channel. We refer to σ ′ as the signal
event of σ , and assign its controllability status to be the
same as σ (i.e. σ ′ is controllable if σ is controllable). The
self-loop transition tick at state 1 therefore counts com-
munication delay of σ transmission: the number of ticks

that elapse between σ and σ ′. Measuring the delay by tick
events is a major improvement compared to the untimed
channelmodel we used in Zhang et al. (2015, 2012) where
no suitable measure existed to count the delay. With the
aid of this tickmeasure, we shall later (Section 4) compute
useful delay bounds for event communication.

It should be stressed that the number of tick occur-
rences between σ and σ ′ is unspecified, inasmuch as
the self-loop tick at state 1 may occur indefinitely. In
this sense,CH(j, σ , i) models unbounded communication
delay. Note that tick is also self-looped at state 0; this is not
used to count delay, but rather for the technical necessity
of preventing the event tick frombeing blockedwhen syn-
chronising CH(j, σ , i) with other TDES. The initial state
0 is marked, signalling each completion of event σ trans-
mission; state 1, on the other hand, is unmarked because
the transmission is still ongoing.

The capacity of channel CH(j, σ , i) is 1, meaning that
only after the latest occurrence of event σ is received by
its recipient Gi, will the channel accept a fresh instance
of σ from Gj. Hence, CH(j, σ , i) permits reoccurrence of
σ (i.e. Gj sends σ again) only when it is idle, namely at
state 0. The capacity constraint of CH(j, σ , i) can be eas-
ily relaxed to allow multi-capacity channel models, as we
shall see in Remark 3.1. We, nevertheless, adopt CH(j, σ ,
i) for its structural simplicity and suitability for clarifying
the concept of delay-robustness presented next.

As displayed in Figure 3, after the delay is introduced,
the transmission of σ is replaced by the channel model
CH(j, σ , i), and the channelled behaviour of the system is
described as follows. Suppose given Gk, k ∈ N ; by local-
isation (see Section 2.2), Gk acquires a set of local con-
trollers LOCC

k := {LOCC
α|α ∈ �k,hib} and a set of local

preemptors LOCP
k := {LOCP

β |β ∈ �k, f or}. 4 So, the local
controlled behaviour of Gk is

SUPk := Gk || (||
α∈�k,hib

LOCC
α

) || (||
β∈�k, f or

LOCP
β

)
. (9)

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 5

LOCC
σ1 LOCC

σ2

G1 G2 G3

LOCC
σ3 LOCP

σ3 LOCP
σ4

LOCP
σ5

Synchronization on σ4

LOCC
σ1 LOCC

σ2

G1 G2 G3

LOCC
σ3 LOCP

σ3 LOCP
σ4

LOCP
σ5

Introduce
CH(3, σ4, 1)

communication delay

Channel communication

Synchronization

Figure . Example of distributed control architecture with communication delay: consider the example in Figure and assume that only
event σ in G is transmitted to G with unbounded delay. When the communication delay of σ is negligible, LOCC

σ1
and LOCC

σ2
will

‘synchronise’on the occurrence of σ inG, namely σ is communicated through ‘synchronisation’. When the communication delay of σ
is unbounded, the communication of σ is modelled by a TDES channel model CH(, σ ,).

As exemplified in Figure 3, after the delay is introduced,
the transmission of σ is replaced by the channel model
CH(j, σ , i). Observe that when Gj sends σ to Gi through
CH(j, σ , i), only the recipientGi’s local behaviour SUPi is
affected because Gi receives σ ′ instead of σ due to delay.
Hence, each transition σ of SUPi must be replaced by
its signal event σ ′; we denote by SUP′

i the resulting new
local behaviour ofGi (the corresponding local controllers
are denoted by LOCC

α

′ and the local preemptors LOCP
β

′).
Now let

NSUP := SUP′
i ||(||

k∈N ,k
=i
SUPk) (10)

and then

SUP′ := NSUP ||CH(j, σ, i). (11)

So, SUP′ is the channelled behaviour of the system with
respect toCH(j, σ , i). Note that both SUP′ andNSUP are
defined over �′ � ��{σ ′}.

Let P: �′∗ → �∗ and Pch: �′∗ → {σ , tick, σ ′}∗ be nat-
ural projections (as in (2)). We define delay-robustness as
follows.

Definition 3.1: Consider that Gj sends event σ to Gi
through channel CH(j, σ , i). The monolithic supervisor
SUP in (4) is delay-robustwith respect toCH(j, σ , i) if the
following conditions hold:

(i) SUP′ in (11) is correct and complete, i.e.

PL(SUP′) = L(SUP) (12)

PLm(SUP′) = Lm(SUP) (13)

(∀s ∈ �′∗)(∀w ∈ �∗)s ∈ L(SUP′)&(Ps)w
∈ Lm(SUP) ⇒ (∃v ∈ �′∗)Pv

= w&sv ∈ Lm(SUP′) (14)

(ii) P−1
ch (L(CH(j, σ, i))) is controllable with respect
to L(NSUP) and {σ }, i.e.

P−1
ch L(CH(j, σ, i)){σ }

∩ L(NSUP) ⊆ P−1
ch L(CH(j, σ, i)) (15)

In condition (i) above, ‘correctness’ of SUP′ means that
no P-projection of anything SUP′ can do is disallowed
by SUP, while ‘completeness’ means that anything SUP
can do is the P-projection of something SUP′ can do. In
this sense, the channelled behaviour SUP′ is ‘equivalent’
to its delay-free counterpart SUP. Thus, if SUP is deter-
mined to be delay-robust with respect toCH(j, σ , i), then
by (9)–(11), the composite plant under the control of the
local controllers and preemptors with unbounded delay
of event σ transmission from Gj to Gi is equivalent to
SUP. Note that here the local controllers and preemp-
tors are constructed from the monolithic supervisor by
the supervisor localisation procedure in Cai and Won-
ham (2010a, 2015), and we do not design a new supervi-
sor with delay-prone channels from scratch, but to verify
delay-robustness of the original supervisor.

Specifically, conditions (12) and (13) state the equality
of closed and marked behaviours between SUP and the
P-projection of SUP′; condition (14), which is required
for ‘completeness’, states that if SUP′ executes a string s
whose projection Ps in SUP can be extended by a string
w to a marked string of SUP, then SUP′ can further exe-
cute a string v whose projection Pv is w and such that

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

6 R. ZHANG ET AL.

sv is marked in SUP′. Roughly, an observationally consis-
tent inference about coreachability at the ‘operating’ level
of SUP′ can be drawn from coreachability at the abstract
(projected) level of SUP.

Condition (ii) of Definition 3.1 imposes a basic
requirement that channel CH(j, σ , i), when combined
with NSUP in (10) to form SUP′, should not entail
uncontrollability with respect to σ . We impose condi-
tion (ii) no matter whether σ is controllable or uncon-
trollable. This is because we view the channel CH(j, σ ,
i) as a purely passive adjunction to the original system,
and therefore CH(j, σ , i) cannot exercise control on σ .
In other words, the channel has to ‘accept’ any event that
the rest of the system might execute, whether that event
is controllable or uncontrollable. Otherwise, if there were
already an instance of σ in the channel (i.e. CH(j, σ , i) at
state 1), then reoccurrence of σ would be (unintention-
ally) ‘blocked’, causing condition (ii) to fail. This issue per-
sists, albeit in milder form, even if we use channel models
of multiple (finite) capacities (see Remark 3.1 below).

We note that delay-robustness as defined above is an
extension, from untimed DES to timed DES, of the con-
cept proposed under the samename inZhang et al. (2012)
. In particular, the channel model CH(j, σ , i) used in the
definition is capable of measuring transmission delay by
counting tick occurrences; and condition (ii) in the defi-
nition requires controllability for timed DES.

Finally, we present an algorithm to verify the delay-
robustness property. Note that when (12) and (13) hold,
then (14) is identical with the Lm(SUP′)-observer prop-
erty of P (Feng & Wonham, 2008; Wong & Wonham,
2004). The latter may be verified in polynomial time
(O(m4),m the state size of SUP′) by computing the supre-
mal quasi-congruence of a nondeterministic automaton
derived from SUP′ and P (Feng &Wonham, 2010; Wong
&Wonham, 2004).5 The following is the delay-robustness
verification algorithm.

Algorithm 1:
(1) Check if P is an Lm(SUP′)-observer. If not, return

false.
(2) Check if PL(SUP′) = L(SUP) and PLm(SUP′) =

Lm(SUP). If not, return false.
(3) Check if P−1

ch (L(CH(j, σ, i))) is controllable with
respect to L(NSUP) and {σ }. If not, return false.

(4) Return true.

If Step 1 above, (O(m4) complexity) is successful, i.e.
P is indeed an Lm(SUP′)-observer, then Step 2 of com-
puting PL(SUP′) and PLm(SUP′) is of polynomial com-
plexity O(m4) (Feng and Wonham, 2010). Then, check-
ing the two equalities in Step 2 is of O(m2) complexity.
Finally, in Step 3, controllability may be checked using a
standard algorithm (Brandin &Wonham, 1994) in linear

σ

σ

σ

σ

σ

σ

Figure . C-capacity channel modelNCH(j, σ , i).

time O(m). Therefore, Algorithm 1 terminates and is of
polynomial complexityO(m4). Note that if we change the
order of Steps 1 and 2, the subset construction algorithm
for computing projection on SUP is required, and in that
case, the complexity of Algorithm 1 would be exponen-
tial. The following result is straightforward.

Proposition 3.1: Consider that Gj sends event σ to Gi
through channel CH(j, σ , i). The monolithic supervisor
SUP is delay-robust with respect to CH(j, σ , i) if and only
if Algorithm 1 returns true.

We note here that coerciveness, as defined in Wonham
(2015, Chapter 9), is preservedwhen SUP is delay-robust.
Coerciveness says that if tick is preempted by one of the
local controllers and preemptors, then a forcible event
must remain enabled in the plant. According to endnote
4, tick is only preempted by a forcible eventβ at some state
y of local preemptor LOCP

β , and at state y, β is enabled;
at any other states, tick is defined. After the communi-
cation delay is introduced, if tick is preempted in SUP′,
there must exist a local preemptor LOCP

β and its state y
such that at y, tick is preempted by β , and β is enabled,
since after the modification on tick-selfloop, tick will not
be prevented by synchronous product. Thus, coerciveness
is preserved despite the fact that delay is introduced.

Remark 3.1 (Multi-capacity channel model): So far, we
have considered the 1-capacity channel model CH(j, σ ,
i), and defined delay-robustness with respect to it. We
now consider themore generalC-capacity channelmodel
NCH(j, σ , i), C 	 1 a positive integer, displayed in Fig-
ure 4 . The sender Gj may send at most C instances
of event σ to NCH(j, σ , i), with each instance sub-
ject to indefinite delay. With channel NCH(j, σ , i), one
may proceed just as before, by replacing CH(j, σ , i) by
NCH(j, σ , i) throughout, to define the corresponding
delay-robustness property with respect to NCH(j, σ , i),
and then revising Algorithm 1 correspondingly to verify
delay-robustness.

It is worth noting that when NCH(j, σ , i) reaches its
maximum capacity, and Gj sends yet another instance
of σ , then σ is ‘blocked’ by NCH(j, σ , i), implying
uncontrollability of the channelled behaviour. Hence, the
uncontrollability problem always exists as long as the
channel model is of finite capacity and delay is indefinite,
although the controllability condition (cf. condition (ii)

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 7

σ

σ
σ σ

σ

Figure . Timed channel modelCHd(j, σ , i), d	 , for transmitting
event σ fromGj toGi with delay bound d.

of Definition 3.1) is more easily satisfied for larger capac-
ity channels (simply because more instances of σ may be
sent to the channel).

4. Bounded delay-robustness andmaximal
delay bound

Consider again the situation that agentGj sends an event
σ to Gi. If the monolithic supervisor SUP is verified (by
Algorithm 1) to be delay-robust, then we will use channel
CH(j,σ , i) in Figure 2 to transmitσ subject to unbounded
delay, and the system’s behaviour will not be affected. If,
however, SUP fails to be delay-robust, there are two possi-
ble implications: (1) σ must be transmitted without delay
(as in the original setup of localisation (Cai & Wonham,
2015; Cai et al., 2013; Zhang et al., 2013)); or (2) there
exists a delay bound d (1) for σ such that if each trans-
mission ofσ is completedwithin d occurrences of tick, the
system’s behaviour will remain unaffected. This section
aims to identify the latter case, which we call ‘bounded
delay-robustness’, and, moreover, to determine the bound
d.

To that end, consider the channel model CHd(j, σ , i)
in Figure 5, with parameter d 	 1. CHd(j, σ , i) is a (d +
2)-state TDES with event set {σ , tick, σ ′}. After an occur-
rence of σ (state 0 to 1), CHd(j, σ , i) counts up to d (0)
occurrences of tick (state 1 through d + 1) by which time
the signal event σ ′ must occur. That is, the occurrence of
σ ′ (Gi receives σ) is bounded by d ticks. Note that the tick
self-loop at state 0 is again for the technical requirement
to prevent the blocking of event tick when synchronising
CHd(j, σ , i) with other TDES.

NowwithCHd(j, σ , i), the channelled behaviour of the
system is

SUP′
d := NSUP ||CHd(j, σ, i) (16)

where NSUP is given in (10). The event set of SUP′
d

is �′ = ��{σ ′}, and we recall the natural projections P:
�′∗ → �∗ and Pch: �′∗ → {σ , tick, σ ′}∗.

Definition 4.1: Consider that Gj sends event σ to Gi
through channel CHd(j, σ , i), d 	 1. The monolithic
supervisor SUP in (4) is bounded delay-robust with

respect to CHd(j, σ , i) (or d-bounded delay-robust) if the
following conditions hold:

(i) SUP′
d in (16) is correct and complete, i.e.

PL(SUP′
d) = L(SUP) (17)

PLm(SUP′
d) = Lm(SUP) (18)

(∀s ∈ �′∗)(∀w ∈ �∗)s ∈ L(SUP′
d)&(Ps)w

∈ Lm(SUP) ⇒ (∃v ∈ �′∗)Pv

= w&sv ∈ Lm(SUP′
d) (19)

(ii) P−1
ch (L(CHd(j, σ, i))) is controllable with respect
to L(NSUP) and {σ }, i.e.

P−1
ch L(CHd(j, σ, i)){σ } ∩ L(NSUP)

⊆ P−1
ch L(CHd(j, σ, i)) (20)

Bounded delay-robustness is defined in the same way
as (unbounded) delay-robustness in Definition 3.1, but
with respect to the new channel model CHd(j, σ , i) with
delay bound d. As a result, d-bounded delay-robustness
may be verified by Algorithm 1with correspondingmod-
ifications. For later reference, we state here the modified
algorithm.
Algorithm 2:

(1) Check if P is an Lm(SUP′
d)-observer. If not, return

false.
(2) Check if PL(SUP′

d)= L(SUP) and PLm(SUP′
d)=

Lm(SUP). If not, return false.
(3) Check ifP−1

ch (L(CHd(j, σ, i))) is controllablewith
respect to L(NSUP) and {σ }. If not, return false.

(4) Return true.

Wenote here that according to endnote 4, the coercive-
ness is also preserved.

Now, if the monolithic supervisor SUP fails to be
(unbounded) delay-robust with respect to channel CH(j,
σ , i), we would like to verify whether SUP is bounded
delay-robust with respect to CHd(j, σ , i) for some d 	 1.
In that case, we compute the maximal delay bound, i.e.
the largest delay (number of ticks) that can be tolerated
without changing the system’s logical behaviour. For this,
we need the following lemma.
Lemma 4.1: Consider that Gj sends event σ to Gi through
channelCHd(j, σ , i), d	 1. If SUP is not d-bounded delay-
robust, then it is not (d + 1)-bounded delay-robust.

The result of Lemma 4.1 is intuitive: if SUP cannot tol-
erate a σ transmission delay of d, neither can it tolerate a
delay (d + 1). By induction, in fact, SUP cannot toler-
ate any delay larger than d. The proof of Lemma 4.1 is in

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

8 R. ZHANG ET AL.

Appendix 1. This fact suggests the following algorithm for
identifying bounded delay-robustness as well as comput-
ing the maximal delay bound.
Algorithm 3:6

(1) Set d = 1.
(2) Check by Algorithm 2 if SUP is d-bounded delay-

robust relative to channel CHd(j, σ , i). If not, let
d = d − 1 and go to Step 3. Otherwise, advance d
to d + 1 and repeat Step 2.

(3) Output dmax � d.
Lemma 4.2: If SUP is not delay-robust with respect to
CH(j, σ , i), then Algorithm 3 terminates in at most 2m∗m
steps, i.e. dmax
 2m∗m, where m is the state size of SUP′ in
(11).

The proof of Lemma 4.2 is given in Appendix 2. In
Algorithm 3, wework upwards starting from theminimal
delay d = 1. If SUP is not 1-bounded delay-robust with
respect to CH1(j, σ , i), then by Lemma 4.1, SUP is not
d-bounded delay-robust for any d > 1. Therefore, SUP
is not bounded delay-robust and σ must be transmitted
without delay. Note that in this case, Algorithm 3 outputs
dmax = 0.

If SUP is 1-bounded delay-robust, we next check if it
is 2-bounded delay-robust with respect to CH2(j, σ , i).
If SUP fails to be 2-bounded delay-robust, then again by
Lemma 4.1, SUP fails to be d-bounded delay-robust for
any d > 2. Hence, SUP is bounded delay-robust, with the
maximal delay bound dmax = 1.

If SUP is shown to be 2-bounded delay-robust, the
iterative process continues until SUP fails to be (d + 1)-
bounded delay-robust for some d 	 2; this happens in
finitely many steps according to Lemma 4.2. Then, SUP
is bounded delay-robust, with the maximal delay bound
dmax = d. The following result is immediate.
Proposition 4.1: Consider that Gj sends event σ to Gi
through channelCHd(j, σ , i), d	 1. The monolithic super-
visor SUP is bounded delay-robust with respect to CHd(j,
σ , i) if and only if the output dmax of Algorithm 3 satisfies
dmax > 0. Moreover, if SUP is bounded delay-robust, then
dmax is the maximal delay bound for σ transmission.

To summarise, when an event σ is sent from Gj to Gi,
we determine unbounded or bounded delay-robustness
and choose the corresponding channel as follows.
Algorithm 4:

(1) Check by Algorithm 1 if SUP is (unbounded)
delay-robust. If so, terminate, set the maximal
delay bound dmax = �, and use channel CH(j, σ ,
i) in Figure 2.

(2) Check by Algorithm 3 if SUP is bounded delay-
robust. If so (i.e. dmax 	 1), terminate and use
channel CHd(j, σ , i) in Figure 5 with d = dmax.

Figure . Example .: SUP and SUP.

Figure . Example .: CH(, α,) and CH(, β ,).

(3) In this case, dmax = 0. Terminate and use no chan-
nel: σ must be transmitted without delay.

Remark 4.1 (Multiple channelled events): So far, we
have considered a single event communication: agent Gj
sends event σ toGi. Using this as a basis, we consider the
case that multiple events are transmitted simultaneously.
In this case, we build different channelmodels to transmit
each event separately. Note here that our model does not
impose any particular order on transmitted events, nor
does delay-robustness require that the order of received
events be the same as that of the corresponding transmit-
ted events. The following example shows that even if the
order of reception, say of events α and β , differs from that
of their transmission, SUPmay still be delay-robust with
respect to {α, β}.

Example 4.1: Let SUP1 and SUP2 be the generators
shown in Figure 6 (here we do not consider the preemp-
tion of tick); assume events α and β in SUP2 are exported
to SUP1 and both controllable. First, we create channels
CH(2, α, 1) and CH(2, β , 1), as shown in Figure 7, to
transmit event α and β , respectively. Then, replacing all
instances of α and β by α′ and β ′ correspondingly, we
obtain SUP′

1. Finally, with CH(2, α, 1) and CH(2, β , 1)
hard-wired into the system, the overall system behaviour
is represented by SUP′, as shown in Figure 8. Defining
natural projection P: {α, β , σ , tick, α′, β ′}∗ → {α, β , σ ,
tick}∗, we can verify that conditions (12), (13) and (14)
hold for SUP, P and SUP′, and condition (15) holds for
both CH(2, α, 1) and CH(2, β , 1) (events α and β are
both controllable). By inspection of Figure 8, we find that
in string s = αββ ′α′σ � L(SUP′), the order of arrivals of
α and β differ from the order of their occurrence, without
affecting the delay-robustness of SUP.

In the following, we present an approach to the general
case of multiple channelled events, as is common in dis-
tributed control, such that the overall system behaviour
with all the delays is optimal and nonblocking. We will

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 9

Figure . Example .: SUP and SUP′.

consider that each fixed triple (sender, channelled event,
receiver) is assigned with its own communication chan-
nel, and the assigned channels operate concurrently. Our
goal is to obtain these channels, ensuring unbounded or
bounded delay-robustness, one for each triple (sender,
channelled event, receiver).

First fix i, j ∈ N , and recall from (8) that �j, com, i is
the set of events that Gj sends to Gi. Write �j, com, i =
{σ 1,… , σ r}, r 	 1, and treat the channelled events σ 1,
σ 2,...sequentially, in order of indexing.
Algorithm 5:

(1) Set p = 1.
(2) For event σ p � �j, com, i apply Algorithm 4 to

obtain the maximal delay bound dmax.
(2.1) If dmax = �, the case of unbounded delay-

robustness, choose channel CH(j, σ p, i), and let
NSUP � NSUP||CH(j, σ p, i).

(2.2) If dmax 	 1 is finite, the case of bounded delay-
robustness, choose channel CHd(j, σ p, i), and let
NSUP � NSUP||CHd(j, σ p, i).

(2.3) If dmax = 0, then no channel is chosen and σ p must
be transmitted without delay.

(1) If p < r, advance p to p + 1 and repeat Step 2.
(3) Output a set of channels used for sending events

from Gj to Gi.

Note that at Step 2 of Algorithm 5, if a channel is cho-
sen for event σ p, then NSUPmust be reset to be the syn-
chronous product of NSUP and the channel, so that in
choosing a channel for the next event σ p + 1, the previ-
ously chosen channel is considered together. This ensures
that when the derived channels operate concurrently, the
system’s behaviour is not affected. It is worth noting that
a different ordering of the set �j, com, i may result in a dif-
ferent set of channels; if no priority of transmission delay

Figure . ULTC: components and controller.

is imposed on the communication events, wemay choose
an ordering randomly.

Finally, since the set of all communication events is
�com := ∪

i, j∈N
� j,com,i, we simply apply Algorithm 5 for

each (ordered) pair i, j ∈ N to derive all communication
channels. Again, a different ordering of the set N × N
generally results in a different set of channels, because the
channels chosen for a pair (i, j) will be used to decide
channels for all subsequent (i′, j′). For convenience, we
will simply order the pairs (i, j) sequentially first on j, then
on i.

We note that to verify delay-robustness in Algo-
rithm 5, SUP′ becomes more complex when more chan-
nels are introduced. The computation may be expensive
when there are a large number of communication chan-
nels. Nevertheless, SUP′ is implemented in a purely dis-
tributed fashion: distributed supervisors and communi-
cation channels. We shall investigate the computational
issue for SUP′ in future work, one promising approach
being to use State Tree Structures (Ma &Wonham, 2005).

5. Case study: under-load tap-changing
transformer

In this section, we demonstrate timed delay-robustness
and associated verification algorithms on an under-load
tap-changing transformer (ULTC) system.

5.1 Model description and supervisor localisation

Transformers with tap-changing facilities constitute an
important means of controlling voltage at all levels
throughout electrical power systems. We consider a
ULTC as displayed in Figure 9, which consists of
two components: voltmeter and tap-changer (Afzalian,
Saadatpoor, & Wonham, 2008).

This ULTC is operated in two modes: automatic and
manual. In the automatic mode, the tap-changer works
according to the following logic. (1) If the voltage devi-
ation is greater than some threshold value, then a timer
will start; when the timer times out, a ‘tap increase (or
decrease) event’ will occur and the timer will reset; a
tap increase or decrease should only occur if the voltage

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

10 R. ZHANG ET AL.

=

Figure . Timed transition graph of ULTC components.

change continues to exceed threshold after the time out –
this is to avoid tap changes in response to merely occa-
sional random fluctuations of brief duration. (2) If the
voltage returns to the dead-band, because of a tap change
or some other reason, then no tap change will occur. (3)
If the voltage exceeds the maximally allowed value Vmax,
then lowering of the tap command without delay occurs
instantaneously. In the manual mode, the system is wait-
ing for ‘tap-up’, ‘tap-down’, or ‘automatic’ commands. An
operator can change the operation mode from one to the
other, and thus the operator is included with the plant
components to be controlled.

Each plant component is modelled as a TDES dis-
played in Figure 10, and associated events are listed in

Table 1. The plant to be controlled is the synchronised
behaviour of voltmeter (VOLT), tap-changer (TAP) and
operator (OPTR), i.e.

PLANT = VOLT||TAP||OPTR. (21)

We consider a voltage control problem of the ULTC:
when the voltage is not ‘normal’, design controllers to
recover the voltage through controlling tap ratio after a
time delay to recover the voltage. Figure 11 displays the
TDES model SPEC for the control specification in auto-
matic/manual mode.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 11

Table Physical interpretation of events.

Event Physical interpretation Time bounds (lower, upper) (hib/for)

 Initialise voltmeter (,�) hib
 Report |
V|> ID and
V> (,�)
 Report |
V|< ID, i.e. voltage recovered (,�)
 Report |
V|> ID and
V< (,�)
 Report voltage exceeds Vmax (,�)
 Tap-up/down failed (,�)
 Tap-down command with tick delay (,�) hib & for
 Tap-down successful (,�)
 Tap-up command with tick delay (,�) hib & for
 Tap-up successful (,�)
 Tap-down command without delay (,�) hib & for
 Enter automatic mode (,�) hib
 Enter manual mode (,�) hib

Note that since the tap increase (decrease) and low-
ering tap commands would preempt the occurrence of
tick, the corresponding events 31, 33 and 35 are des-
ignated as forcible events. In the following, we syn-
thesise the monolithic supervisor SUP by the standard
TDES supervisory control theory (Brandin & Wonham,
1994; Wonham, 2015) and the local controllers by TDES
supervisor localisation (Cai et al., 2013; Zhang et al.,
2013).

First, synthesise the monolithic supervisor TDES SUP
in the usual sense that its marked behaviour

Lm(SUP) = SupC(Lm(SPEC) ∩ Lm(PLANT)) (22)

and its closed behaviour L(SUP) = Lm(SUP). SUP has
231 states and 543 transitions, and embodies disabling
actions for all the prohibitible events and preempting
actions relative to tick for all the forcible events.

Next, by the supervisor localisation, we obtain a
set of local controllers LOCC

11, LOCC
31, LOCC

33, LOCC
35

LOCC
41 and LOCC

43 for controllable events 11, 31, 33, 35,
41 and 43, respectively, and a set of local preemptors
LOCP

31, LOCP
33 and LOCP

35 for forcible events 31, 33 and
35, respectively; their transition diagrams are shown in
Figure 12.

Here, the local controllers and local preemptors are
coincidentally described by the same automaton. How-
ever, in general, there is no particular relationship
between LOCc

σ and LOCP
σ for the prohibitible and

forcible event σ ; an illustrative example can be found in
Section 5 in Zhang et al. (2013).

Finally, using these constructed local con-
trollers/preemptors, we build a distributed control
architecture without communication delays for ULTC
as displayed in Figure 13. It is guaranteed by supervi-
sor localisation of TDES (Cai et al., 2013; Zhang et al.,
2013) that the ULTC under the control of these local
controllers and preemptors without communication
delay has closed and marked behaviour identical to SUP
in (22).

=

Figure . Control specification SPEC in automatic/manual mode. The transition from the square with ‘*’ represents similar transitions
from all states to the ‘manual operation mode’.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

12 R. ZHANG ET AL.

Figure . Local controllers and local preemptors for ULTC. We add necessary self-loops of communication events
and event tick to the local controllers and preemptors according to endnote . Let *(x) be the set of events
whose self-loops need to be added at state x. In LOCC

11,
∗() = ∗() = ∗() = {tick, , , , , , , },

∗() = {tick, }, ∗() = {tick, , , }, and ∗() = {tick, , , }; in LOCC
31,

∗() = ∗() = ∗() = ∗() = ∗() = {} and ∗() =
{tick, }; in LOCP

31,
∗() = ∗() = ∗() = ∗() = ∗() = ∗() = {}; in LOCC

33,
∗() = ∗() = ∗() = ∗() = ∗() = {} and ∗() = {tick, }; in

LOCP
33,

∗() = ∗() = ∗() = ∗() = ∗() = ∗() = {}; in LOCC
35,

∗() = {tick, }; in LOCP
35,

∗() = {}; in LOCC
41,

∗() = {tick} ∗() = {tick,
}; in LOCC

43,
∗()= {tick, , , , , , , }, and ∗()= {tick, , , , }.

Figure . Distributed control architecture of ULTC: the labels on
the dashed arrows denote the events to be communicated.

5.2 Delay-robustness verification

Now, we investigate the timed delay-robustness prop-
erty for ULTC. For illustration, we consider the following
three cases.

(1) Event 30 in �T, com, O
Applying Algorithm 4, at Step 1, we verify by Algo-

rithm 1 that SUP is delay-robust with respect to the com-
munication channel CH(T, 30, O) transmitting event 30,
as displayed in Figure 14.

For illustration, consider the case that the voltmeter
reported an increase in voltage (in VOLT as displayed
in Figure 10, events 11 and 10 have occurred), and

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 13

Figure . Communication Channel CH(T, , O).

Figure . Communication Channels CH(V, , O) and CH(V, ,
O).

the tap has received a tap-up command, but the tap-up
operation failed (in TAP as displayed in Figure 10, events
tick, tick, tick, tick, tick, 33 and 30 have occurred in
sequence). The events that are eligible to occur are 11,
35, 41, 43, and tick. However, (1) LOCC

11 disables event
11; (2) LOCC

35 disables event 35; (3) LOCC
41 will disable or

enable event 41 depending on the communication delay
of event 30; (4) LOCC

43 disables event 43; (5) tick will not
be preempted, since no forcible event is enabled. If 30 is
transmitted instantly, event 41 is enabled by LOCC

41 and
the system will enter the automatic mode. If the trans-
mission of 30 is delayed, only event tick is enabled, and
other events will not be enabled until the system enters
the automatic mode. However, according to the transi-
tion diagram of LOCC

41 displayed in Figure 12, only after
LOCC

41 has received the occurrence of event 30, will it
enable event 41, and bring the system into the automatic
mode. Hence, the overall system behaviour will not be
affected even if the communication of event 30 is delayed.

(2) Event 10 in �V, com, O
Applying Algorithm 4, at Step 1, we verify by Algo-

rithm 1 that SUP fails to be delay-robust with respect to
the channelCH(V, 10,O), as displayed in Figure 15; then
at Step 2, we check by Algorithm 3 that themaximal delay
bound for event 10 is 4, i.e. SUP is bounded delay-robust
with respect to the channel CH4(V, 10, O), as displayed
in Figure 15.

For illustration, consider the case that an increase in
the voltage is reported (i.e. events 11 and 10 in VOLT
have occurred sequentially). The events that are eligi-
ble to occur are 11, 35, 41, 43, and tick. And if OPTR

Figure . Communication Channel CH(V, , O).

knows the voltage increase before the fifth tick occurs,
the tap-changer will generate a tap-up command and the
operator can switch the system into manual mode; oth-
erwise, the tap-changer will also generate a tap-up com-
mand, but the system cannot enter the manual mode.
So, event 43 will be enabled after the event sequence
s � 11.10.tick.tick.tick.tick.tick.310.33 (where event 310
is the signal event of 10), but is disabled after s′ �
11.10.tick.tick.tick.tick.tick.33. s and s′ cannot be distin-
guished under the projectionP that erases the signal event
310. However, the system can enter the manual mode
after the sequence s, but not after s′. Namely, the system
cannot ‘complete’ the behaviour of enteringmanualmode
after s′, but this behaviour can be finished in its delay-free
counterpart SUP. So, the observer property (19) required
by bounded delay-robustness is violated when the delay
bound d exceeds 4 ticks, and we conclude that the maxi-
mal delay bound for event 10 is 4.

Similarly, one can verify by Algorithm 4 that SUP is
bounded delay-robust with respect to CH4(V, 14, O), as
displayed in Figure 16, and any other events except 10, 14
and 30 must be transmitted without delay.

(3) All communication events
Applying Algorithm 5 to each of the sets of com-

munication events displayed in Figure 13 in sequence,
we obtain that d′

max(T, 30,O) = ∞, d′
max(V, 10,O) =

d′
max(V, 14,O) = 4, and for the remaining events, d′

max =
0. In the following, we verify that if all the communica-
tion events are communicated within their correspond-
ing delay bounds, the overall system behaviour will still
not be affected.

First, use CH(T, 30, O), CH4(V, 10, O) and CH4(V,
14, O) to transmit events 30, 10 and 14 respectively. Sec-
ond, connected by these channels, the overall system
behaviour is

SUP′
com = SUPV ||SUPT ||CH4(V, 10,O)||

CH4(V, 14,O)||CH(T, 30,O)||SUP′′′
O)

over the augmented alphabet {10, 11,… , 43, 10′, 14′, 30′},
where SUP′′′

O is obtained by replacing 10, 14, and 30 by
10′, 14′ and 30′, respectively. Third, one can verify that:
(1) SUP′

com is correct and complete, and (2)CH(T, 30,O),

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

14 R. ZHANG ET AL.

CH4(V, 10, O) and CH4(V, 14, O) will not cause uncon-
trollability with respect to the uncontrollable communi-
cation events. Finally, we conclude that the overall system
behaviour is still optimal and nonblocking.

6. Conclusions

In this paper, we have studied communication delays
among local controllers obtained by supervisor locali-
sation in TDES. First, we have identified properties of
‘timed delay-robustness’ which guarantee that the speci-
fication of our delay-free distributed control continues to
be enforced in the presence of (unbounded) delay, and
presented a verification algorithm to determine delay-
robustness. Second, for those events that fail to be delay-
robust, we have proposed an algorithm to determine
their maximal delay bound dmax such that the system is
dmax-bounded delay-robust. Finally, a ULTC example has
exemplified these results, showing how to verify delay-
robustness; in addition, we obtained a set of maximal
delay bounds, one for each communication event, under
the condition that the overall system behaviour is still
optimal and nonblocking.

When the system and its supervisor are of large-scale,
the verification procedures of the delay-robustness may
well face computational difficulty. To overcome this diffi-
culty, we aim in our futurework to study delay-robustness
of large-scale systems from the following two approaches.
The first approach is to base our verification procedures
on State Tree Structures (Ma & Wonham, 2005), which
has been applied to DES to synthesise the monolithic
supervisor efficiently. The second approach is to employ
the decentralised control architecture. Instead of com-
puting the monolithic supervisor, we first synthesise a
set of decentralised supervisors to achieve global opti-
mality and nonblocking (Cai & Wonham, 2010b; Feng &
Wonham, 2008), and then verify delay-robustness of each
decentralised supervisor. By this reasoning, the overall
system is delay-robust if all the decentralised supervisors
are delay-robust.

Notes

1. We remark that if the system and its supervisor are
of large scale, we first synthesise a set of decentralised
supervisors to achieve global optimality and nonblock-
ing, and then apply supervisor localisation to decom-
pose each decentralised supervisor in the set (as in Cai
&Wonham, 2010a, 2015). Other decentralised/distributed
control schemes, e.g. coordination technique (Komenda,
Masopust, & van Schuppen, 2014 and Seow, Pham, Ma, &
Yokoo, 2009), are also candidates for computing the decen-
tralised/distributed supervisors.

2. We refer to any DES over an alphabet which includes tick
as a generalised TDES; it need not be a (strict) TDES con-
structed according to the rules in Wonham (2015, Section
9.2). Generalised TDES are needed tomodel specifications
and supervisors (Wonham, 2015).

3. The closed and marked behaviours of TDES =
TDES1 ||TDES2 are L(TDES) = L(TDES1) ||
L(TDES2) and Lm(TDES) = Lm(TDES1) || Lm(TDES2),
where || denotes the synchronous product of languages
(Wonham, 2015). There are three cases where we use syn-
chronous product to compute the concurrent behaviour
of TDES. (1) The TDES that describe plant components
share only event ‘tick’ in this case, synchronous prod-
uct is equivalent to composition (Wonham, 2015). (2)
We compute the plant behaviour restricted by a gener-
alised TDES; in this case, the TDES synchronises with
the plant to form their concurrent behaviour; it is not
composed with the plant to generate a larger system. (3)
We compute the concurrent behaviour of generalised
TDES.

4. At each state x of each local controller LOCC
α , if a com-

munication event σ � �α − �k is not defined, we add a
σ -self-loop, i.e. transition (x, σ , x) to LOCC

α ; if tick is not
defined at x, we add a tick-self-loop, i.e. transition (x, tick,
x) to LOCC

α . At each state y of each preemptor LOCP
β , if

communication event σ � �β − �k is not defined, we
add a σ -self-loop, i.e. transition (y, σ , y) to LOCP

β ; if tick
is not defined and not preempted, we add a tick-self-loop,
i.e. transition (y, tick, y) to LOCP

β . With this modification,
(1) the new local controllers LOCC

α (resp. local preemptors
LOCP

β) are also control equivalent to SUP (because LOCC
α

(resp. LOCP
β) does not disable events σ from other com-

ponents Gj; (2) the definition of σ at every state of LOCC
α

(resp. LOCP
β) is consistent with the assumption that LOCC

α

(resp. LOCP
β) may receive σ after indefinite communica-

tion delay; and (3) tick is only preempted by forcible events,
say β , at some states of the corresponding local preemptor
LOCP

β , and at those states, β is enabled (otherwise, tick is
defined).

5. We note en passant that Bravo, da Cunha, Pena, Malik,
and Cury (2012) reports an algorithm with quadratic time
complexity for verifying the observer property alone; that
does not, however, yield structural information which (if
the observer property is not satisfied) might be useful for
remedial design.

6. The algorithm can be transformed into a binary search
version, which can reduce the complexity. Here, the linear
search version we used is directly derived from Lemma 4.1
and is easier to follow.

7. The concept ‘simple string’ is derived from the ‘simple
path’ in graph theory, where a path is called simple if
no vertex is traversed more than once (Danielson, 1968).
Here, string t is called simple if no state is traversed more
than once.

Disclosure statement

No potential conflict of interest was reported by the authors.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 15

Funding

This work was partially supported by the National Nature Sci-
ence Foundation of China [grant number 61403308]; the Fun-
damental Research Funds for the Central Universities, China
[grant number 3102014JCQ01069]; the Program to Dissemi-
nate Tenure Tracking System, MEXT, Japan; the Natural Sci-
ences and Engineering Research Council, Canada [grant num-
ber 7399].

ORCID

Renyuan Zhang http://orcid.org/0000-0002-4142-5166

References

Afzalian, A., Saadatpoor, A., &Wonham,W. (2008). Systematic
supervisory control solutions for under-load tap-changing
transformers. Control Engineering Practice, 16, 1035–1054.

Barrett, G., & Lafortune, S. (2000). Decentralized supervisory
control with communicating controllers. IEEE Transactions
on Automatic Control, 45(9), 1620–1638.

Brandin, B., & Wonham, W. (1994). Supervisory control of
timed discrete-event systems. IEEE Transactions on Auto-
matic Control, 39(2), 329–342.

Bravo, H., da Cunha, A., Pena, P., Malik, R., & Cury, J.
(2012). Generalised verification of observer property in dis-
crete event systems. Proceedings of 11th international work-
shop on discrete event systems (WODES2012) (pp. 337–
342), Guadalajara, Mexico.

Cai, K., & Wonham, W.M. (2010a). Supervisor localization: A
top-down approach to distributed control of discrete-event
systems. IEEE Transactions on Automatic Control, 55(3),
605–618.

Cai, K., & Wonham, W. (2010b). Supervisor localization for
large discrete-event systems: Case study production cell.
International Journal of Advanced Manufacturing Technol-
ogy, 50(9–12), 1189–1202.

Cai, K., &Wonham,W.M. (2015). Supervisor localization: A top-
down approach to distributed control of discrete-event sys-
tems. Lecture Notes in Control and Information Sciences
(Vol. 459). Switzerland: Springer.

Cai, K., Zhang, R., & Wonham, W. (2013). Supervision local-
ization of timed discrete-event systems. Proceedings of 2013
American Control conference (pp. 5666–5671), Washing-
ton, DC.

Danielson, G. (1968). On finding simple paths and circuits in a
graph. IEEE Transactions on Circuit Theory, 15(3), 294–295.

Darondeau, P., & Ricker, L. (2012). Distributed control of
discrete-event systems: A first step. Transactions on Petri
Nets and Other Models of Concurrency, 6, 24–45.

Feng, L., & Wonham, W.M. (2008). Supervisory control archi-
tecture for discrete-event systems. IEEE Transactions on
Automatic Control, 53(6), 1449–1461.

Feng, L., & Wonham, W. (2010). On the computation of nat-
ural observers in discrete-event systems. Discrete Event
Dynamic Systems, 20(1), 63–102.

Hiraishi, K. (2009). On solvability of a decentralized supervi-
sory control problem with communication. IEEE Transac-
tions on Automatic Control, 54(3), 468–480.

Kalyon, G., Gall, T.L., Marchand, H., &Massart, T. (2011). Syn-
thesis of communicating controllers for distributed systems.
Proceedings of 2011 50th IEEE conference onDecision and
Control and European Control conference (CDC-ECC),
Orlando, FL, USA.

Komenda, J., Masopust, T., & van Schuppen, J. (2014). Coordi-
nation control of discrete-event systems revisited. Discrete
Event Dynamic Systems, 25(1–2), 65–94.

Lin, F. (2014). Control of networked discrete event sys-
tems: Dealing with communication delays and losses.
SIAM Journal on Control and Optimization, 52(2), 1276–
1298.

Ma, C., &Wonham,W.M. (2005).Nonblocking supervisory con-
trol of state tree structures. Berlin: Springer-Verlag.

Sadid, W., Ricker, L., & Hashtrudi-Zad, S. (2015). Robust-
ness of synchronous communication protocols with delay
for decentralized discrete-event control. Discrete Event
Dynamic Systems, 25(1–2), 159–176.

Schmidt, K., Schmidt, E., & Zaddach, J. (2007). A shared-
medium communication architecture for distributed dis-
crete event systems. Proceedings of Mediterranean con-
ference on Control and Automation (pp. 1–6), Athens,
Greece.

Seow, K.T., Pham, M.T., Ma, C., & Yokoo, M. (2009). Coor-
dination planning: Applying control synthesis methods for
a class of distributed agents. IEEE Transactions on Control
Systems Technology, 17(2), 405–415.

Takai, S., & Ushio, T. (2003). Effective computation of Lm(g)-
closed, controllable, and observable sublanguage arising in
supervisory control. Systems & Control Letters, 49(3), 191–
200.

Tripakis, S. (2004). Decentralized control of discrete-event
systems with bounded or unbounded delay communica-
tion. IEEE Transactions on Automatic Control, 49(9), 1489–
1501.

Wong, K., & Wonham, W. (2004). On the computation
of observers in discrete-event systems. Discrete Event
Dynamic Systems, 14(1), 55–107.

Wonham, W. (2015). Supervisory control of discrete-
event systems. Toronto: Systems Control Group, ECE
Department, University of Toronto. Retrieved from
http://www.control.utoronto.ca/DES

Xu, S., & Kumar, R. (2008). Asynchronous implementation of
synchronous discrete event control. Proceedings of 9th inter-
national workshop onDiscrete Event Systems (WODES’08)
(pp. 181–186), Göteborg, Sweden.

Zhang, R., Cai, K., Gan, Y., Wang, Z., & Wonham, W.
(2012). Checking delay-robustness of distributed supervisors
of discrete-event systems. Proceedings of international con-
ference on Information Science and Control Engineering
(pp. 350–355), Shenzhen, China.

Zhang, R., Cai, K., Gan, Y., Wang, Z., & Wonham, W. (2013).
Supervision localization of timed discrete-event systems.
Automatica, 49(9), 2786–2794.

Zhang, R., Cai, K., Gan, Y., Wang, Z., & Wonham, W. (2015).
Distributed supervisory control of discrete-event systems
with communication delay. Discrete Event Dynamic Sys-
tems. doi:10.1007/s10626-014-0208-4

Zhang, R., Cai, K., & Wonham, W. (2014). Delay-robustness
in distributed control of timed discrete-event systems based
on supervisor localization. Proceedings of 53rd IEEE
conference on Decision and Control (pp. 6719–6724),
Los Angeles, CA.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

http://orcid.org/0000-0002-4142-5166
http://www.control.utoronto.ca/DES
http://dx.doi.org/10.1007/s10626-014-0208-4

16 R. ZHANG ET AL.

Appendices

Appendix 1. Proof of Lemma 4.1

To prove Lemma 4.1, we need the following Lemmas A.1
and A.2.
Lemma A.1: For any delay bound d 	 1, there hold

L(SUP) ⊆ PL(SUP′
d) (A1)

Lm(SUP) ⊆ PLm(SUP′
d) (A2)

Proof: Note that for different delay bounds d, the alpha-
bets of SUP′

d and CHd(j, σ , i) are �′ = ��{σ ′} and {σ ,
tick, σ ′}, respectively. Here, we only prove that L(SUP) ⊆
PL(SUP′

d); (A2) can be proved in the sameway by replac-
ing L by Lm throughout.

Let s � L(SUP); we must show that there exists a
string t ∈ L(SUP′

d) such that P(t) = s. We first consider
that only one instance of σ appears in s, and write s =
x1σx2, where x1, x2 are free of σ . By (16) and observ-
ing that SUP′

i is obtained by replacing each instance of
σ by σ ′, we obtain that t := x1σσ ′x2 ∈ L(SUP′

d). Fur-
thermore, P(t) = s. So, L(SUP) ⊆ PL(SUP′

d). This result
can be easily extended to the general case where s has
multiple instances of σ , because σ is transmitted by the
channel model and the reoccurrence of σ is permitted
only when transmission of the previous σ is completed.
Namely, if s = x1σx2σ …, xk − 1σxk, there exists a string t
= x1σσ ′x2σσ ′ …, xk − 1σσ ′xk such that t ∈ L(SUP′

d) and
Pt = s. Hence, we declare that L(SUP) ⊆ PL(SUP′

d). �
Lemma A.2: Let t = x1σx2x3σ ′x4 ∈ Lm(SUP′

d), where
x1, x2, x3 and x4 are strings free of σ and σ ′, i.e. x1, x2, x3,
x4 � (� − {σ })∗. Then, t ′ := x1σx2σ ′x3x4 ∈ Lm(SUP′

d).

Proof of Lemma A.2: Recall that SUP′
i is SUPi with

transitions labelled σ relabelled σ ′. By definition of syn-
chronous product, x2, x3 and σ ′ can be re-ordered with-
out affecting the membership of t in Lm(SUP′

d), namely
the strings t′ formed from t by the successive replacement

x1σx2x3σ ′x4 → x1σσ ′x2x3x4
→ x1σx2σ ′x3x4

will belong to Lm(SUP′
d) as well. In other words, if the

transmission of σ is completed in a shorter time (the
number of ticks in x2 will be smaller than that in x2x3),
the behaviour is still legal. �
Proof of Lemma 4.1: We prove Lemma 4.1 by contrapo-
sition, i.e. if SUP is (d + 1)-bounded delay-robust, then
it is also d-bounded delay-robust. To that end, we must
verify (17)–(20).

(1) For (17), we prove that PL(SUPd
′)�L(SUP) and

PL(SUPd
′)� L(SUP) in sequence. PL(SUPd

′)�L(SUP) is
obtained from Lemma A.1 immediately. By inspection of
the transition diagram of CHd(j, σ , i) in Figure 5, we get
that L(CHd(j, σ , i))� L(CHd + 1(j, σ , i)). So, according to
(16),

L(SUP′
d) ⊆ L(SUP′

d+1). (A3)

Since SUP is (d + 1) −bounded delay-robust,
PL(SUP′

d+1) ⊆ L(SUP). Hence, PL(SUPd
′) � L(SUP).

(2) Condition (18) can be confirmed from the proof of
(17) by replacing L by Lm throughout.

(3) For (19), assume that s ∈ L(SUP′
d) and (Ps)w �

Lm(SUP); we must show that there exists a string v � �′∗

such that Pv = w and sv ∈ Lm(SUP′
d).

By (A3), we have s ∈ L(SUP′
d+1). Since SUP is (d+ 1)-

bounded delay-robust, there exists a string u � �′∗ such
that Pu = w and su ∈ Lm(SUP′

d). Here, we consider the
case that only one instance of σ exists in su; the general
cases can be confirmed similarly (since the transmission
of multiple instances of σ does not result in mutual inter-
ference). In the following, we prove (19) from these three
cases: (i) su = s1σ s2σ ′s3u1u2, (ii) su = s1σ s2u1σ ′u2, and
(iii) s1s2u1σu2σ ′u3, where s1, s2, s3, u1, u2, u3 are free of
σ and σ ′.

(i) su = s1σ s2σ ′s3u1u2. By (16), we have su
� Lm(NSUP). Similarly, since s ∈ L(SUP′

d), s ∈
P−1
ch L(CHd(j, σ, i)). Furthermore, s = s1σ s2σ ′s3, which
means that after string s, σ ′ has reset the channel CHd(j,
σ , i). Thus, s ∈ P−1

ch Lm(CHd−1(j, σ, i)). On the other
hand, because u is free of σ , su ∈ P−1

ch Lm(CHd(j, σ, i)).
Hence, su ∈ Lm(SUP′

d). Define v = u; then, Pv = Pu= w
and sv ∈ Lm(SUP′

d), as required by (19).
(ii) su = s1σ s2u1σ ′u2. By Lemma A.2, it results from

su ∈ Lm(SUP′
d) that s1σ s2σ ′u1u2 ∈ Lm(SUP′

d). The rest
is similar to case (1); in this case, v = σ ′u1u2.

(iii) su = s1s2u1σu2σ ′u3. By Lemma A.2, we have
s1s2u1σσ ′u2u3 ∈ Lm(SUP′

d). Also, the rest is similar to
case (1); in this case, v = u1σσ ′u2u3.

(4) Let s ∈ P−1
ch L(CHd(j, σ, i)) and sσ � L(NSUP);

we show that sσ ∈ P−1
ch L(CHd(j, σ, i)) by contraposition.

Assume that sσ /∈ P−1
ch L(CHd(j, σ, i)). WriteCHd(j, σ , i)

= (Cd,�ch, τ d, cd, 0, {cd, 0}), where�ch = {σ , tick, σ ′}. We
claim that τ d(cd, 0, Pchs) cd, 0; otherwise, σ is defined
at state τ d(cd, 0, Pchs) and sσ ∈ P−1

ch L(CHd(j, σ, i)). By
inspection of the transition diagrams of CHd(j, σ , i)
and CHd + 1(j, σ , i), it results from τ d(cd, 0, Pchs)
cd, 0, that τ d + 1(cd + 1, 0, Pchs) cd + 1, 0. Hence, sσ /∈
P−1
ch L(CHd+1(j, σ, i)), in contradiction to the fact that
SUP is (d + 1) −bounded delay-robust. �

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 17

σ

σ

σ

Figure B. Ps1 = Ps′1, Pw
′ = t and t is a simple string.

Appendix 2 Proof of Lemma 4.2

Since SUP is not delay-robust with respect to CH(j, σ ,
i), by Definition 3.1, one of the conditions (12)–(15) is
violated. In the following, we prove that in each case, dmax

 2m∗m, wherem is the state size of SUP′ in (11).

(1) Condition (12) is violated. Since that
L(SUP) � PL(SUP′) always holds (similar to
Lemma A.1), we have PL(SUP′)�L(SUP). So, there
exists at least one string s � �′∗ such that s � L(SUP′),
but Ps�L(SUP). We claim that s can be written as
s1σw, where s1, w � �′∗; otherwise, s does not con-
tain any σ , and it follows from the construction of
SUP′ that Ps � L(SUP), a contradiction. As illustrated
in Figure B1, we prove in the following that there
exist strings s′1 ∈ L(SUP′) and w′ � �′∗ such that
#tick(w′) ≤ 2m ∗ m (where #tick(w′) represents the
number of events tick appearing in string w′), s′σw′

� L(SUP′), but P(s′σw′)�L(SUP), from which we can
conclude: to prevent the occurrence of string s′1σw′, the
maximal communication delay of σ must be less than
#tick(w′) ≤ 2m ∗ m, i.e. dmax
 2m∗(m′ + 1).

By s1σw � L(SUP′) and P(s1σw)�L(SUP), we have
P(s1σw) � PL(SUP′)�(�∗ − L(SUP)). To identify such
strings, we build an TDES XL = (Z, �, ζ , z0, Zm) such
that

Lm(XL) = PL(SUP′) ∩ (�∗ − L(SUP))

and

L(XL) = PL(SUP′),

i.e. P(s1σ) � L(XL), and P(s1σw) � Lm(XL).
First, we build XA such that Lm(XA) = PL(SUP′) and

L(XA)= Lm(XA) by the following two steps: (i) construct
PSUP′ by applying the subset construction algorithm on
SUP′ with natural projection P, and (ii) obtain XA by
marking all states of PSUP′. Second, we build XB such
that Lm(XB) = �∗ − L(SUP) and L(XB) = �∗ by first
adjoining a (non-marker) dump state q̂ to the state set of

σ=

σ

σ

Figure B. P-normality of SUP′

SUP and transitions (q, σ, q̂) for each state q of SUP if
σ � � is not defined at q (i.e. L(XB) = �∗), and sec-
ondly setting q̂ to be the only marker state. Third, let XL
= XA||XB; then, Lm(XL) = PL(SUP′)�(�∗ − L(SUP)),
L(XL)=PL(SUP′). The state size |Z|
 2m∗(m′ + 1), since
XA has at most 2m states (due to the subset construction
algorithm), and XB hasm′ + 1 states .

Finally, by P(s1σ) � PL(SUP′) = L(XL), there exists
a state z2 � Z such that z2 = ζ (z0, P(sσ)); by P(s1σw)
� Lm(XL), there exists a marker state zm � Zm such
that zm = ζ (z0, P(s1σw)) = ζ (z2, P(w)). So, there exists
at least a simple string7 t � �∗ joining z2 and zm such
that zm = ζ (z2, t), and thus P(s1σ)t � Lm(XL). It fol-
lows that (Ps1)σ t � PL(SUP′)�(�∗ − L(SUP)). So, there
exist strings s′1, w′ ∈ �′∗ such that Ps′1 = Ps1, Pw′ = t,
s′1σw′ ∈ L(SUP′), and P(s′1σw′) /∈ L(SUP), namely the
occurrence of w′ after s′1σ violates condition (12). Since
t is simple, we have #tick(t) ≤ |Z| ≤ 2m ∗ (m′ + 1). By
Pw′ = t, we have #tick(w′) = #tick(t) ≤ 2m ∗ (m′ + 1).
Furthermore, since SUP′ represents the system behaviour
with communication delay, we always have m′ + 1
 m.
Hence, #tick(w′) ≤ 2m ∗ m, as required.

(2) Condition (13) is violated. dmax
 m∗2m can be
confirmed similar to case (1).

(3) Condition (14) is violated. Since delay-robustness
of SUP is violated by the communication delay of σ , there
must exist strings s1, s2, andw, such that s1σ s2 � L(SUP′)
and P(s1σ s2)w � Lm(SUP), but no string v satisfies that
Pv = w and s1σ s2v � Lm(SUP′). As illustrated in Fig-
ure B2, we prove in the following that condition (14) is
also violated by the string pair s1σ t and s′′1σ t ′′, where
#tick(t) ≤ 2m ∗ m and #tick(t ′′) ≤ 2m ∗ m, from which
we conclude: to prevent the occurrences of the strings
s1σ t and s′′1σ t ′′, the communication delay of σ must be
less than min(#tick(t), #tick(t ′′)) ≤ 2m ∗ m , i.e. dmax

m∗2m.

To that end, we need the concept ‘normal automaton’
(Takai & Ushio, 2003). For SUP′ = (Y, �′, η, y0, Ym), we

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

18 R. ZHANG ET AL.

say that SUP′ is P-normal if

(∀s, t ∈ L(SUP′))R(s)
= R(t) ⇒ R(s) ∩ R(t) = ∅
(B1)

where R(s) � {y � Y|y = η(y0, s′), Ps = Ps′}. In case
SUP′ is not P-normal, replace SUP′ by SUP′||PSUP′,
wherePSUP′ is a deterministic generator over� obtained
by the subset construction. SUP′||PSUP′ is always P-
normal, and L(SUP′)= L(SUP′||PSUP′) and Lm(SUP′)=
Lm(SUP′||PSUP′). The state size of the new SUP′ is at
mostm∗2m.

By P(s1σ s2)w � Lm(SUP) � PLm(SUP′), there must
exist strings s′1, s′2, and v′ such that Ps′1 = Ps1, Ps′2 =
Ps2, Pv′ = w, and s′1σ s′2v ′ ∈ Lm(SUP′), as displayed in
Figure B2. Let y1 = η(y0, s1σ), y2 = η(y1, s2), y′

1 =
η(y0, s′1σ), and y′

2 = η(y′
1, s′2). Joining y1 and y2, there

must exist a simple string t such that y2 = η(y1, t). So,
R(s1σ s2)�R(s1σ t) = y2. By P-normality of SUP′, there

must exist a string s′′ � L(SUP′) such that y′
2 = η(y0, s′′),

P(s1σ t) = P(s′′), and y′
2 ∈ R(s1σ t). So, string s′′ can be

written as s′′1σ t ′′, where Ps′′1 = Ps1 and Pt′′ = Pt, and con-
dition (14) is also violated by the string pair s1σ t and
s′′1σ t ′′. Because t is simple, #tick(t) ≤ m, where m is the
state size of P-normal form of SUP′. So, when SUP′ is not
P-normal, #tick(t) ≤ m ∗ 2m. In addition, since Pt′′ = Pt,
#tick(t ′′) = #tick(t) ≤ m ∗ 2m, as required.

(4) Condition (15) is violated. In this case, assume that
σ is blocked at state y of SUP′, and the last occurrence
of σ occurs at state y′ of SUP′. From y′ to y, there must
exist a simple string t. We claim that the maximal com-
munication delay of σ must be less than #tick(t); other-
wise, the system will arrive at state y by string t. Hence,
dmax ≤ #t(tick) ≤ m.

Finally, by comparing dmax in the above four cases, we
conclude that if SUP is not delay-robust with respect to
CH(j, σ , i), dmax
 m∗2m.

D
ow

nl
oa

de
d

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
]

at
 0

1:
11

 2
9

Fe
br

ua
ry

 2
01

6

	Abstract
	1.Introduction
	2.Distributed control by supervisor localisation of TDES
	2.1.Preliminaries on TDES
	2.2.Supervisor localisation of TDES

	3.Timed delay-robustness
	4.Bounded delay-robustness and maximal delay bound
	5.Case study: under-load tap-changing transformer
	5.1.Model description and supervisor localisation
	5.2.Delay-robustness verification

	6.Conclusions
	Notes
	Disclosure statement
	Funding
	References
	Appendices
	6.1.Proof of Lemma4.1
	6.2.Proof of Lemma4.2

