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Abstract This paper identifies a property of delay-robustness in distributed supervisory
control of discrete-event systems (DES) with communication delays. In previous work a
distributed supervisory control problem has been investigated on the assumption that inter-
agent communications take place with negligible delay. From an applications viewpoint it is
desirable to relax this constraint and identify communicating distributed controllers which
are delay-robust, namely logically equivalent to their delay-free counterparts. For this we
introduce inter-agent channels modeled as 2-state automata, compute the overall system
behavior, and present an effective computational test for delay-robustness. From the test
it typically results that the given delay-free distributed control is delay-robust with respect
to certain communicated events, but not for all, thus distinguishing events which are not
delay-critical from those that are. The approach is illustrated by a workcell model with three
communicating agents.
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1 Introduction

Distributed control is pervasive in engineering practice, either by geographical necessity
or to circumvent the complexity of centralized (also called ‘monolithic’) control. Existing
work on distributed supervisory control of discrete-event systems (DES) has focused on
synthesis of local controllers for individual agents (plant components) such that the resulting
controlled behavior is identical with that achieved by global supervision (Su and Thistle
2006; Mannani and Gohari 2008; Darondeau 2005; Seow et al. 2009; Cai and Wonham
2010a, b). In these contributions, it is assumed that agents make independent observations
and decisions, with instantaneous inter-agent communication. While simplifying the design
of distributed control, this assumption may be unrealistic in practice, where controllers are
linked by a physical network subject to delays. Hence, to model and appraise these delays
is essential for the correct implementation of control strategies.

The communication problem in distributed control of multi-agent DES has been dis-
cussed by several researchers. Kalyon et al. (2011) propose a framework for the control
of distributed systems modeled as communicating finite state machines with reliable
unbounded FIFO channels. They formulate a distributed state avoidance control prob-
lem, and show that the existence of a solution for the problem is undecidable. Lin
(2014) investigates supervisory control of networked discrete-event systems which features
communication delays and data losses in observation and control. He assumes that the com-
munication between a supervisor and the plant is via a shared network and communication
delays are bounded. Darondeau and Ricker (2012) propose to synthesize distributed control
starting from a monolithic supervisor (in the DES sense) which can be represented as a dis-
tributed Petri net; local nets are linked by message passing to effect token transfer required
by transitions joining places that have been distributed to distinct locations. PN distributabil-
ity is admitted somewhat to constrain generality; but the exact relation of this approach to
our own remains open to future research.

Research on communication problems in decentralized/modular supervisory control has
also been reported in recent years. Taking delays into consideration, Yeddes et al. (1999)
propose a 3-state data transmission model, representing delays by timed events with lower
and finite upper time bounds; these events are incorporated into the plant and specifica-
tion automata, and the time bounds further restricted by a supervisor synthesis procedure;
maximal permissiveness and nonblocking, however, are not guaranteed. In (Barrett and
Lafortune 2000) Barrett and Lafortune propose an information structure model for analy-
sis and synthesis of decentralized supervisory control, applicable in principle to the case
of communication delays, but they assume that such delays are absent. For a limited class
of specifications, Tripakis (2004) formulates certain problems in decentralized control with
bounded or unbounded communication delay, modeling the system with communication
by automata with state output map. In this model the existence of controllers in case of
unbounded delay is undecidable. In our paper, by contrast, we address the question: does a
given controller have the property of delay-robustness (as we define it) or not? This ques-
tion is indeed decidable, and we provide an effective test to answer it. Schmidt et al. (2007)
consider a heterarchical (hierarchical/decentralized) architecture requiring communication
of shared events among modules of the hierarchy. A communication model is developed
in which delay may affect system operation unless suitable transmission deadlines are met.
If so, correct operation of the distributed supervisors is achieved if the network is suf-
ficiently fast. In (Schmidt and Schmidt 2008) correct heterarchical operation is achieved
subject to a condition of “communication consistency”, by which the occurrence of low-
level events is restricted by the feasibility of high-level events. Xu and Kumar (2008)
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consider monolithic supervisory control with bounded communication delay d (measured
by event count) between plant and controller; a condition is derived for equality of con-
trolled behaviors under delay d or with zero delay respectively; verification is exponential
in d. Hiraishi (2009) proposes an automaton formalism for communication with delay in
decentralized control, and concludes semi-decidability of the controller design problem in
the case of k-bounded delay and in case an observability condition holds for state-transition
cycles. Ricker and Caillaud (2011) consider decentralized control (with a priori given
individual observable event subsets) in the case where co-observability fails and therefore
inter-supervisor communication is needed for correct global supervision. The issue is when,
what, and to whom a given local supervisor should communicate; a solution is proposed to
the protocol design problem. In our paper this question does not arise because, with super-
visor localization, we already declare who communicates what to whom, and the problem is
then to analyze our existing ideal (instantaneous) communication scheme to see if it is still
correct in the presence of delay.

Thus we consider distributed control with separately modeled communication channels
having unknown unbounded delay, imposed on an existing distributed architecture known
to be optimal and nonblocking for zero delay. In this paper and its conference precursor
(Zhang et al. 2012), we start from the DES distributed control scheme called ‘supervisor
localization’ reported in (Cai and Wonham 2010a, b), which describes a systematic top-
down approach to design distributed controllers which collectively achieve global optimal
and nonblocking supervision. Briefly, we first synthesize a monolithic supervisor, or alter-
natively a set of decentralized supervisors, assuming zero delay; then we apply supervisor
localization to decompose each synthesized supervisor into local controllers for individual
plant components, in this process determining the set of events that need to be commu-
nicated. Next, and central to the present paper, we propose a channel model for event
communication, and design a test to verify for which events the system is delay-robust (as
we define it below).

The initial control problem is the standard ‘Ramadge-Wonham’ (RW) problem
(Ramadge and Wonham 1987; Wonham and Ramadge 1987; Wonham 2014b). Here the
plant (DES to be controlled) is modeled as the synchronous product of several DES agents
(plant components), say AGENT, AGENT,, ..., that are independent, in the sense that
their alphabets X, 3, ..., are pairwise disjoint. In a logical sense these agents are linked
by specifications SPEC;, SPEC,, ..., each of which (typically) restricts the behavior of an
appropriate subset of the AGENT; and is therefore modeled over the union of the corre-
sponding subfamily of the X;. For each SPEC;, a ‘decentralized’ supervisory controller
SUP; is computed in the same way as for a ‘monolithic’ supervisor (Ramadge and Won-
ham 1987); it guarantees optimal (i.e. maximally permissive) and nonblocking behavior of
the relevant subfamily (the ‘control scope’ of SPEC)) of the AGENT;. In general it will
turn out that the synchronous product of all the SUP; is blocking (e.g. may cause deadlock
in the overall controlled behavior); in that case one or more additional ‘coordinators’ must
be adjoined to suitably restrict the decentralized controlled behavior (see Cai and Wonham
2010a for an example). Techniques for coordinator design are available in the literature
(e.g. Feng et al. 2009; Wong and Wonham 1998; Hill and Tilbury 2006; Su et al. 2010) and
in this paper we take them for granted. On achieving satisfactory decentralized control we
finally ‘localize’ each decentralized supervisor, including the coordinator(s), if any, to the
agents that fall within its control scope; the algorithm that achieves this is detailed in (Cai
and Wonham 2010b), and we shall refer to it as Localize. The result of Localize is that each
AGENT; is equipped with local controllers, one for each of the SPEC; whose scope it falls
within; in that sense AGENT; is now ‘intelligent’ and semi-autonomous, with controlled
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behavior SUPLOC;, say, while the synchronous product behavior of all the SUPLOC; is
provably that of the monolithic supervisor for the RW problem we began with. Autonomy
of the SUPLOC,; is qualified, in that normally the transition structure of each SUPLOC;
will include events from various other AGENT} with & # i. The implementation of our
distributed control therefore requires instantaneous communication by AGENTy of ‘com-
munication’ events (when they occur, in its private alphabet ¥;) to SUPLOC; so the latter
can properly update its state. Think of a group of motorists maneuvering through a con-
gested intersection without benefit of external traffic control, each instead depending solely
on signals from (mostly) neighboring vehicles and on commonly accepted protocols. In our
DES model each SUPLOC; can disable only its private controllable events, in X;, but the
logic of disablement may well depend on observation of critical events from certain other
AGENTY} , as remarked above. It is clear that if these communications are subject to indef-
inite time delay, then control may become disrupted and the collective behavior logically
unacceptable. Our first aim is to devise a test to distinguish the latter case from the ‘benign’
situation where delay is tolerable, in the sense that ‘logical’ behavior is unaffected, even
though in some practical sense behavior might be degraded, for instance severely slowed
down.! This investigation would provide practitioners with useful information to implement
distributed supervisors by communication channels: ‘fast’ channels must be assigned for
communication of ‘delay-critical’ events, while ‘slow’ channels suffice for ‘delay-robust’
events.

In Section 3, we introduce the model of our communication channel. As will be seen,
there is an implicit constraint that a channeled event (i.e. a communication event transmit-
ted by a channel with indefinite delay) can occur and be transmitted only when its channel
is available. This is similar to the mechanism of “synchronous elastic circuits” or “latency
insensitive systems” (e.g. Kishinevsky and Cortadella 2008); see Remark 2 below for
details. As a consequence, an uncontrollable channeled event may or may not be blocked
by its channel, the former case being undesirable. Our second aim is to distinguish these two
cases; when an uncontrollable event is indeed blocked, we discuss how long it can be delayed.

We proceed to a formal review of distributed control by supervisor localization on the
assumption of instantaneous inter-agent communication. Then we introduce inter-agent
communication with delay, modeled by a separate logical channel for each delayed commu-
nication event (i.e. channeled event). As our main result, both a definition and a computa-
tional test are provided for ‘delay-robustness’ of the channeled distributed system with
respect to an arbitrary subset of communication events. In addition, we employ the standard
algorithm for checking controllability to identify whether or not an uncontrollable channeled
event is blocked by its channel. These issues are illustrated by a workcell model with three
communicating agents. Finally we present conclusions and suggestions for future work.

2 Preliminaries
2.1 Notation
Following (Wonham 2014b) we recall various standard concepts and notation. Consider a

system G of n component DES G; = (Q;, X;, ni, gio, Qim),i € N :={1,2, ..., n}, where

ISimilar issues are addressed in the literature on ‘delay-insensitive’ asynchronous networks; for the definition
see (Udding 1986) and for a useful summary (Zhang 1997).
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Q; is the (finite) state set, 3; is the (finite) set of event labels, n; : Q; x X; — Q; is the
transition (partial) function, g;¢ is the initial state, and Q;,, € Q; is the set of marker states.
Each event set X; is partitioned as the disjoint union X; = %;, Ux;, where I;, (resp. X;y)
is the subset of controllable (resp. uncontrollable) events for G;; the full event set for G is
the union ¥ = U{%;|i € N}.

Let X¥ denote the set of all finite strings of elements in X;, including the empty string
€, and as usual extend the transition function n; to Q; X E;k, by defining 7, (g, €) = qi ,
ni(gi,s0) = ni(ni(qi,s),o) forall g; € Q;, s € L} and o € X;. We write 1;(gio, 5)!
to mean that n; (gio, s) is defined. The prefix closure of a language L over X* is defined
as L = {s € Z*|su € L forsomeu € ¥*}. The closed behavior and marked behavior
of G; are defined respectively by L(G;) = {s € X[|ni(gi0.5)!} and L, (G;) = {s €
L(Gi)Ini(gio, s) € Qim}-

As in (Cai and Wonham 2010a, b) we assume that the G; are a priori indepen-
dent, in the sense that their alphabets X; are pairwise disjoint. The system G rep-
resenting their combined behavior is defined to be their synchronous product G =
(0, %2,1,90, Om) = Sync(Gy, ..., G,).? The closed behavior and marked behavior of G
are L(G) = ||{L(G;)|i € N} and L, (G) = |[[{Ln(G;)|i € N} where || denotes syn-
chronous product of languages. Assume each G; is trim (i.e. reachable and coreachable);
then by independence, G is trim, i.e., L, (G) = L(G).

Let ¥, € X be a subset of events thought of as ‘observable’. We refer the reader
to (Wonham 2014b) for the formal definition of natural projection P : X* — X7,
DES isomorphism, G-controllability, and the supremal quasi-congruence relation. Sim-
ply stated, natural projection P on a string s € X* erases all the occurrences in s of
o € X such that o ¢ 3,, namely Po = € (the empty string); P is implemented as
Project(G, Null[¥ — X,]), which returns a (state-minimal) DES PG over X, such that
L,(PG) = PL,,(G) and L(PG) = PL(G). Two DES are isomorphic if they are identi-
cal up to relabeling of states; G-controllability is the property required for a sublanguage of
L,,(G) to be synthesizable by a supervisory controller; while projection modulo supremal
quasi-congruence produces a (possibly nondeterministic) abstraction (reduced version) of
a DES G, denoted Supqc(G, Null[¥ — X,]), which preserves observable transitions and
the ‘observer’ property(Wong and Wonham 2004; Feng and Wonham 2010). As detailed
in (Wonham 2014b) these operations are available in a software implementation (Wonham
2014a) and will be referred to here as needed.

2.2 Distributed control without communication delay

Next we summarize the distributed control theory (assuming zero communication delay)
reported in (Cai and Wonham 2010a, b). First suppose G is to be controlled to satisfy a spec-
ification language L,,(SPEC) C Z* represented by a DES SPEC. Denote by K C X* the
supremal controllable sublanguage of L,, (G) N L,, (SPEC)(for details see Wonham 2014b).
Assume K is represented by the DES SUP, i.e. SUP has closed and marked behavior

L(SUP) = K, L, (SUP)=K. (1

Since G = Sync(Gy, ..., Gy) is the synchronous product of independent components
we seek to implement SUP in distributed fashion by ‘localizing” SUP to each G; as

2We may safely assume that the implementation Sync of synchronous product is always associative and
commutative; for more on this technicality see (Wonham 2014b, Section 3.3)
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proposed in (Cai and Wonham 2010a, b). For this we bring in a family of local controllers
LOC = {LOC;|i € N}, one for each G;, and define L(LOC) = ||[{L(LOC;)|i € N} and
L,,(LOC) = |{L,,(LOC;)|i € N}. It is shown in (Cai and Wonham 2010a, b) that

L(G) N L(LOC) = L(SUP) (2a)

L, (G) N L, (LOC) = L,,(SUP) (2b)

Here, the supervisory action of SUP is fully distributed among the set of local controllers,
each acting independently and asynchronously, except for being synchronized through
‘communication’ events. Generally, each local controller has a much smaller state set than
SUP and a smaller event subset of X, containing just the events of its corresponding plant
component, together with those communication events from other components that are
essential to make correct control decisions. We remark that if the system and its supervi-
sor are large scale, we first synthesize a set of decentralized supervisors to achieve global
optimality and nonblocking, and then apply supervisor localization to decompose each
decentralized supervisor in the set (as in Cai and Wonham 2010a).

3 Distributed control with communication delay

Cai and Wonham (2010b) discuss a boundary case of optimal distributed control that is fully-
localizable where inter-agent communication is not needed, namely the alphabet of each
local controller LOC; is simply %;, so that LOC; observes only events in its own agent G;.
In this case, no issue of delay will arise. The more general and usual case is that inter-agent
communication is imperative.

For simplicity assume temporarily that the system G consists of two components G and
G2, and let the monolithic supervisor SUP (in (1)) be given. By localization we compute
local controllers LOC; with event set Xyoc, and LOC; with event set Xy oc,; then the
local controlled behaviors are represented by

SUP; = Sync(G1,LOCy) 3)

SUP; = Sync(Gy, LOCy). “)

Let LOCSUP = Sync(SUP;, SUP,). By the localization theory of (Cai and Wonham
2010a, b) we know that L(LOCSUP) = L(SUP) and L,,(LOCSUP) = L,,(SUP), namely,
the synchronized behavior of SUP; and SUP, agrees with that of the monolithic control
SUP (in (1)).

In the general localization theory (instantaneous) inter-agent communication is both pos-
sible and necessary, so the alphabet Yoc, of LOC; (resp. Zroc, of LOC,) will include
elements (communication events) from X, (resp. 1) as well as events from its ‘private’
alphabet X (resp. X7). Let Zcom,1 (resp. Zeom,2) represent the set of communication events
from X, (resp. 1), 1.6 Leom,1 = ZLoc,; — 21 (esp. Zeom,2 = ZLOC, — 22); then the set
of communication events in LOCSUP (i.e. SUP) is

2:com = 2:com,] U 2:com,2~ (5)

We say that a communication event in X,y 1 is imported from G, by LOCy (resp. Zcom,2,
G and LOC),).
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Remark 1 For every state x of each controller LOC; (i € N), and each communication
event o in LOC; but imported from some other component G (j # i), if o is not defined at
x, we add a o-selfloop, i.e. transition (x, o, x) to LOC;. Now, o is defined at every state of
LOC;. With this modification, the new local controllers LOC; are also control equivalent
to SUP (because LOC; does not disable events o from other components G; and o will
be disabled by LOC; if and only if it is disabled by SUP) and the definition of o at every
state of LOC; is consistent with the assumption that LOC; may receive o after indefinite
communication delay.

Next we model the way selected communication events are imported with indefinite
time delay; we call such events channeled events. Let X, represent the set of channeled
events; then X.; C eom (Zeom 1s defined in (5)). For example assume that communication
event r in X» is transmitted to LOC; from G, via a channel modeled as the (2-state) DES
CH(2,r, 1) in Fig. 1;3 then r is a channeled event. In the transition structure of LOC,,
hence also of SUPy, we replace every instance of event r with a new event 7/, the ‘output’
of CH(2, r, 1) corresponding to input r (we call r’ the signal event of r); call these modified
models LOC/, SUP’l. Thus if and when r happens to occur (in Gy) CH(2,r, 1) is driven
by synchronization from its initial state O into state 1; on the eventual (and spontaneous)
execution of event 7’ in SUP’, which resets CH(2, r, 1) to state 0, the execution of 7" will be
forced by synchronization in LOCY. In the standard untimed model of DES employed here,
the ‘time delay’ between an occurrence of r and r’ is unspecified and can be considered
unbounded; indeed, nothing in our model so far implies that »’ will cause an actual state
change (as opposed to selfloop) because, subsequent to the occurrence of r in G2, SUP
might conceivably move to states (by events other than r’) where r’ is a selfloop and its
occurrence will not cause a state change in SUP’I. As a convention, the control status of 7’
(controllable or uncontrollable) is taken to be that of r. Suppose in particular that r in X, is
controllable. Since LOC; has ‘control authority’ only over controllable events in its private
alphabet 1, LOC] never attempts to disable r’ directly; r’ can only be disabled implicitly
by the ‘upstream’ disablement by LOC; of r.

In general LOC/1 ‘knows’ that r has occurred in G, only when it executes r’; mean-
while, other events may have occurred in G;. The only constraint placed on events in G, is
that r cannot occur again until 7’ has finally reset CH(2, r, 1) and the communication cycle
is ready to repeat. In other words, event » will be delayed in re-occurring until the chan-
nel used to transmit event r again becomes available. If event r is controllable, it can be
disabled or delayed by the local controller LOCj; 4 but if event r is uncontrollable, the con-
straint placed on G; will require that r” should reset CH(2, r, 1) before r is enabled to occur
again, possibly in violation of the intended meaning of ‘uncontrollable’. This issue will be
discussed in Section 3.3. The channel CH(2, r, 1) is not considered a control device, but

3Communications among local supervisors can be modeled in different ways, e.g. (Barrett and Lafortune
2000; Tripakis 2004; Park and Cho 2007). In our model channel capacity (for each separate channeled event)
is exactly 1 (event), imposing the constraint that a given labeled event cannot be retransmitted unless its pre-
vious instance has been received and acknowledged by the intended recipient (see footnote 4); this constraint
may not be appropriate in all applications. We adopt this model because its structure is reasonable, simple,
and renders the distributed control problem (with unbounded communication delay) tractable.

4Our model implicitly assumes that the sender (i.e. LOC,) may observe which of the two states CH(2, r, 1)
is at. If CH(2, r, 1) is at state 1 (the channel is not available), LOC, disables r; otherwise r is enabled. In a
more fine-grained model we may set " = rj,r{, where r7, signals to LOC] the occurrence of r in G2, while
r{, represents an acknowledgement to LOC3 that r}; has occurred in SUP}. We prove in (Zhang et al. 2014)
that these two channel models are equivalent as far as the unbounded property is concerned.
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QO

'

Fig. 1 Communication channel CH(2, r, 1), from agent G to local controller LOC; with channeled event r
(in the transition diagram of a DES, the circle with — represents the initial state and a double circle represents
a marker state). One may think of the delay of r as being the sum of the delay of (forward) event transmission
plus the delay of (backward) acknowledgement, i.e. two delays lumped into one. Note that when event r
is communicated to multiple local controllers, we employ separate channels with distinct signal events, as
illustrated in Fig. 8 below

rather an intrinsic component of the physical system being modeled; it will be ‘hard-wired’
into the model by synchronous product with G| and G».

Remark 2 'We note that our model of communication channel (Fig. 1) is similar to the mech-
anism of “synchronous elastic circuits” or “latency insensitive systems” (e.g. Kishinevsky
and Cortadella 2008). A synchronous elastic circuit is one whose behavior does not change
despite latencies (i.e. delays) of communication channels. One method of building syn-
chronous elastic circuits is “synchronous elastic flow” (Kishinevsky and Cortadella 2008),
where the idea of “back pressure” is used in a similar way to the “signal events” we use in
our model of communication delay.

Continuing with this special case we consider the joint behavior of G|, G, and
CH(2, r, 1) under control of LOC} and LOC,, namely

SUP' :

Sync(Gy, LOC), CH(2, r, 1), G2, LOCy)
= Sync(SUP,, CH(2, r, 1), SUP,) (©)

defined over the alphabet X; U {r'} U ;. We refer to SUP’ as the channeled behavior of
SUP (in (1)) with r being the channeled event (i.e. ., = {r}).

3.1 Delay-robustness and delay-criticality

In this subsection we formalize the definition and present an effective computational test
for delay-robustness.

Of principal interest is whether or not the communication delay between successive
occurrences of r and r’ is tolerable in the intuitive sense indicated above.

Let X;;¢ be the set of new events introduced by the communication channels, in which
each element is the signal event of an event in X, i.e.

Ysig = {0’|0 € Z¢p, o’ is the signal event of o}. 7

In SUP’ (in (6)), =4 = {r} and 5, = {r'}. Then the event set of SUP’ will be X’ =
YU, = TU{r'}. Let P : £ — X* be the natural projection of £"* onto ¥* (Wonham
2014b), i.e. P maps r’ to € (empty string).

To define whether or not SUP’ with alphabet X’ has the same behavior as SUP, when
viewed through P, we require that
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1. anything SUP can do is the P-projection of something SUP’ can do (SUP’ is
‘complete’); and
2. no P-projection of anything SUP’ can do is disallowed by SUP (SUP”’ is ‘correct’).

For completeness we need at least the inclusions
PL(SUP) 2 L(SUP) (8)

PL,,(SUP) D L,,(SUP) 9

In addition, however, we need the following observer property of P with respect to SUP’

and SUP. Suppose SUP’ executes string s € L(SUP’), which will be viewed as Ps €

L(SUP). As SUP is nonblocking, there exists w € X* such that (Ps)w € L, (SUP). For

any such w ‘chosen’ by SUP, completeness should require the ability of SUP’ to provide

a string v € X* with the property Pv = w and sv € Ly, (SUP’). Succinctly (cf. Wonham
2014b; FengWonham 2010)

(Vs € Z)(Yw € %) s € L(SUP) & (Ps)w € L,,(SUP)
= (v e T*) Pv = w & sv € L,,(SUP). (10)

Remark 3 In (Wonham 2014b, Chapter 6), P is defined to be an L,, (SUP’)-observer if
(Vs € ") (VYw € £*) s € L(SUP)) & (Ps)w € PL,,(SUP)
= (v e T*) Pv = w & sv € L,,(SUP).

It is clear that when PL,,(SUP’) = L,,(SUP), the observer property of P with respect to
SUP’ and SUP is identical with the L,, (SUP’)-observer property of P.

Briefly, we define SUP’ to be complete relative to SUP if (8), (9) and (10) hold.
Dually, but more simply, we say that SUP’ is correct relative to SUP if

PL(SUP) C L(SUP) (11)

PL,,(SUP) C L,,(SUP) (12)
To summarize, we make the following definition.

Definition 1 For given SUP’ in (6) and £, = {r}, SUP (in (1)) is delay-robust relative
to X provided SUP’ is complete and correct relative to SUP, namely, conditions (8)—(12)
hold, or explicitly

PL(SUP') = L(SUP) (13)
PL,,(SUP) = L,,(SUP) (14)
P has the observer property (10) with respect to SUP’ and SUP. (10bis)

We stress that in Definition 1 (and its generalizations later) the natural projection P is
fixed by the choice of channeled events and structure of the communication model. If the
definition happens to fail (for instance if the observer property fails), the only cure in the
present framework is to alter the set of channeled events, in the worst case reducing it to
the empty set, that is, declaring that all communication events must be transmitted without
delay.

The following example shows why the observer property is really needed; for if (13) and
(14) hold, but (10) fails, SUP’ may have behavior which is distinguishable from that of SUP.
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SUP,

SUP, 20 @

Fig. 2 Example 1: SUP; and SUP,

Example 1 Let SUP; and SUP; be the generators shown in Fig. 2; assume event 20 in
SUP; is exported to SUPy, i.e., r = 20 and ' = 120; SUP’l is obtained by replacing 20
in SUP; by 120, and SUP’ is obtained by (6). By inspection of Fig. 3, (13) and (14) are
verified to hold. However, we can see that (10) fails. Let s = 20.10.120.12 € L(SUP');
then Ps = 20.10.12. Now (Ps).11 = 20.10.12.11 € L,,(SUP); but there does not exist a
string v such that Pv = 11 and sv € L,,(SUP’). Thus, SUP can execute 11 after Ps, but
SUP’ can only execute € after s. This means that SUP” has behavior distinguishable from
that of SUP.

Since SUP is a nonblocking supervisor, delay-robustness of SUP also requires that SUP’
be nonblocking, i.e.

L,,(SUP) = L(SUP), (15)

as can easily be derived from (10),(13) and (14). The following example shows that when
delay-robustness fails, transmission delay of r can lead to blocking in SUP’.

SUP’'

Fig. 3 Example 1: SUP and SUP’
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Fig. 4 Example 2: SUP; and SUP,

Example 2 Let SUP;| and SUP; be the generators shown in Fig. 4, and assume event 20 in
SUP; is exported to SUPy, i.e., r = 20 and r’ = 120; SUP/l is obtained by replacing 20 in
SUP; by 120. Then SUP is nonblocking, but SUP’ obtained by (6) is blocking, as shown
in Fig. 5. Note that delay-robustness fails because (13) fails. Indeed, string 21.20.11 €
L(SUP’) but P(21.20.11) = 21.20.11 ¢ L(SUP). To see why SUP’ is blocking, start
from the initial state, and suppose events 21 and 20 have occurred in SUP; but that SUP
has not executed the corresponding event 120. Then SUP| may execute event 11, which is
immediately observed by SUP;; however, if 11 occurs, SUP’l and SUP;, cannot accomplish
their task synchronously; hence the system blocks.

Given SUP, X, Zig and SUP’, we wish to verify whether or not SUP is delay-robust
relative to X.;,. For this we need the concept of “supremal quasi-congruence” (Wonham

. O

1
‘ -
s (T (D)D)

SUP'

Fig. 5 Example 2: SUP and SUP’
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2014b; Wong and Wonham 2004) and the operator Supgc (Wonham 2014b, Sect. 6.7) which
projects a given DES over the alphabet X’ to QCDES, the corresponding quotient DES
over ©* = P(X*). We denote the counterpart computing procedure by

QCDES = Supqc(DES, Null[])

where Null[] is the event subset ¥’ — ¥ that P maps to the empty string €; for details see
(Wonham 2014b).> Let QCDES = (Z, =, ¢, 20, Zm). In general QCDES will be nondeter-
ministic with transition function ¢ : Z x £* — Pwr(Z) and include silent (¢ —) transitions.
If no silent or nondeterministic transitions happen to appear in QCDES, the latter is said
to be ‘structurally deterministic’. Formally, QCDES is structurally deterministic if, for all
z€ Zands € *, we have

(z,8) #0 = |¢(z,8)] = 1.

It is known that structural determinism of QCDES is equivalent to the condition that
P is an L,,(DES)-observer (cf. (Wong and Wonham 2004) and (Wonham 2014b, Theorem
6.7.1)).

Given minimal-state deterministic generators A and B over the same alphabet, we write
A CBiff L,,(A) € L,,(B) and L(A) € L(B); and A =~ B to mean both (A C B) and
(B € A), i.e. A and B are isomorphic. Clearly, “~” is transitive.

Now let SUP = (X, X, &, xg, X)) (in (1)), SUP’ = (Y, ¥/, 1, yo, Y,n) (in (6)),

PSUP’ = Project(SUP', Null[r']) (16)

QCSUP’ = Supqc(SUP', Null[r']). (17)
Write QCSUP’ = (Y, =, 1, g, Ym)-
The following theorem provides an effective test for whether or not the communication
delay is tolerable, i.e., SUP is delay-robust.

Theorem 1 SUP is delay-robust relative to %, (= {r}) if and only if QCSUP’ is
structurally deterministic, and isomorphic to SUP.

As indicated above, QCSUP’ can be computed by Supgc and isomorphism of DES can
be verified by Isomorph.® Hence, Theorem 1 provides an effective computational criterion
for delay-robustness. Before Theorem 1 is proved, a special relation between QCSUP’ and
PSUP’ must be established; a proof is in Appendix A.

Proposition 1 If QCSUP’ is structurally deterministic, then it is a canonical (minimal-
state) generator for P L,,(SUP).

Proof of Theorem 1 (If) From Proposition 1, QCSUP’ is a minimal state generator of
PL,,(SUP"). So, QCSUP’ ~ PSUP’. As QCSUP’ is isomorphic to SUP, QCSUP’ ~ SUP.
Hence, SUP ~ PSUP/, i.e. (13) and (14) both hold. For (10), since QCSUP’ is structurally

SThis procedure can also be phrased in terms of ‘bisimulation equivalence’ (Milner 1989), as explained in
(Wong and Wonham 2004). We remark that the algorithm for Supgc(DES, -) in (Wonham 2014b, Section
6.7), can be estimated to have time complexity O (kn*) where (k, n) is the (alphabet, state) size of DES. We
note that (Bravo et al. 2012) reports an algorithm with quadratic time complexity for verifying the observer
property alone.

% For language equality Isomorph should be applied to minimal (Nerode) state DES; see e.g. (Wonham 2014b,
Section 3.7.)
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deterministic (Wonham 2014b, Theorem 6.7.1), P is an L,,(SUP’)-observer; by Remark 3
and (14), P has the observer property with respect to SUP” and SUP. Thus by Definition 1,
SUP is delay-robust relative to X.j,.

(Only if) By Remark 3, conditions (10) and (14) imply that P is an L,, (SUP’)-observer;
thus QCSUP’ is deterministic (Wonham 2014b). By Proposition 1, QCSUP’ ~ PSUP'.
Equations (13) and (14) say that PSUP’ ~ SUP. Hence QCSUP’ ~ SUP. Finally, we
conclude that QCSUP’ is isomorphic to SUP.

We have now obtained an effective tool to determine whether or not SUP is delay-robust
relative to X, = {r}. If SUP is not delay-robust relative to r, we say that r is delay-
critical for SUP. In that case, communication of » (with delay, as r’) could result in violation
of a specification. If r is delay-critical, and if such violation is inadmissible, then » must
be transmitted instantaneously to the agent (in this case, LOC;) that imports it — where
“instantaneous” must be quantified on the application-determined time scale.

3.2 Delay-robustness for multiple events

In this subsection, we consider delay-robustness for multiple events. First, we adopt the
result of Theorem 1 as the basis of a new (though equivalent) definition and extend delay-
robustness naturally to multiple events. Then we prove that delay-robustness for a set R, (of
multiple events) implies that delay-robustness holds for any subset of R;.

Definition 2 Let Ry C X, be a subset of events » imported from G, by LOC; via their
corresponding channels CH(2, r, 1) (i.e. £., = R»), and let SUP; be modified to SUP’l by
replacing each r by its transmitted version r as before. Let

SUP’ := Sync(SUP), (CH(2, r, 1)|r € Ry}, SUPy).

Then SUP is delay-robust relative to the event subset R, provided Supgc(SUP,
Null[{r'|r € R,}]) is isomorphic to SUP.

Note that the property of SUP described in Definition 2 is stricter than in Definition 1:
that SUP is delay-robust with respect to each event r € R, taken separately does not imply
that SUP is delay-robust with respect to R, as a subset; however, that SUP is delay-robust
with respect to Ry does imply that SUP is delay-robust with respect to each separate event
r € R,. The former statement will be confirmed by Example 3 and the latter by Theorem 2.

Example 3 In this example SUP is delay-robust with respect to events 21 and 23 separately,
but is not delay-robust with respect to the event set {21, 23}. Let SUP; and SUP, be the
generators shown in Fig. 6, where events 20, 21, 22, 23 in SUP, are exported to SUP; and
event 15 in SUP| is exported to SUP;. Let events 21 and 23 be transmitted by communica-
tion channel CH(2, 21, 1) (with signal event 121) and CH(2, 23, 1) (with signal event 123)
respectively. Let ASUP] (resp. BSUP)) be obtained by replacing 21 (resp. 23) in SUP; by
121 (resp. 123) and XSUP be obtained by simultaneously replacing 21 and 23 in SUP; by
121 and 123. Let

SUP = Sync(SUP;, SUP,)
ASUP’' = Sync(ASUP;, CH(2, 21, 1), SUP,)
BSUP' = Sync(BSUP;, CH(2, 23, 1), SUP,)
XSUP' = Sync(XSUP}, CH(2,21, 1), CH(2, 23, 1), SUP,),
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20,21,23 20,21,22,23

path (1)

15 23 20 21 22 15

Fig. 6 Example 3: SUP; and SUP,

as shown in Fig. 7. One can verify that both Supqc(ASUP', Null[121]) and
Supgc(BSUP', Null[123]) are isomorphic to SUP, i.e. SUP is delay-robust with respect
to 21 and 23 separately. However, SUP is not delay-robust with respect to the event set
{21, 23}. Take

s = 15.23.20.123.21.22.121.15.

Asin Fig. 7, s € L(XSUP'), but by projecting out 121 and 123,
Ps =15.23.20.21.22.15 ¢ L(SUP),

which implies that PL(XSUP’) Q L(SUP) (where P is the natural projection which
projects 121 and 123 to the empty string €).

Intuitively, one sees from Fig. 6 that SUP| at its state 1 has three paths to choose from:
paths (1) and (2) are ‘safe’, but path (3) is ‘dangerous’ (because event 15 will occur, which
violates SUP’s behavior). Which path SUP; chooses depends on the events imported from
SUP;. If event 21 alone is delayed, SUP; can choose only path (1); if event 23 alone is
delayed, SUP;| can choose either path (1) or (2); thus delaying 21 and 23 individually leads
only to ‘safe’ paths. If, however, events 21 and 23 are both delayed, SUP; can choose any
of the three paths including the ‘dangerous’ path (3).

Before addressing delay-robustness for event subsets, we extend our definition to the
general case with n agents G; (j € N = {1, 2, ..., n}), each with local controller LOC;
which imports channeled events X (i, j) € X; from G; (i € I; C N). For this configura-
tion we employ binary channels as before, one for each r € X, (i, j). Thus an eventr € %;
that is channeled to both LOC; and LOC; will employ separate channels CH(i, r, j) and
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Fig. 7 Example 3: SUP, ASUP’, BSUP’ and XSUP’

CH(i, r, k). Here the channels CH(i, r, j) and CH(i, r, k) are distinct (see Fig. 8): we use
different signal events r’; and r,’( corresponding to r in CH(, r, j) and CH(, r, k), respec-
tively; in this way, the channeled event » may be received by LOC; and LOC; in either
order and with unspecified delays. Of course r might also be communicated (but with zero
delay) from G; to other local controllers LOC; with [ # j, k.

For this architecture, Definition 2 is generalized in the obvious way. For each j € N we
compute SUP’j by relabeling each event r that appears in SUP;, such that r € X4 (i, j)
(i € I}), by its channeled output r'. Since ¢y (i, j) € X; and the X; are pairwise disjoint,
this relabeling is unambiguous. Then we compute

SUP' = Sync(SUP,, CH(i, r, j) | r € Sen(i, j).i € Ij, j € N) (18)

Note that if for some j, I; = #, i.e. LOC; imports no channeled events from other agents
G;,i #7J, then SUP/j = SUP/'.

@ Springer



Discrete Event Dyn Syst

r r
n' r'
CH(r, )) CH(i, k)

Fig.8 CH(,r, j) and CH(i, r, k), with distinct signal events r} and ry,

With SUP = Sync(SUP; | j € N), we have the following definition.

Definition 3 SUP is delay-robust for distributed control of n agents by localization
provided the projected channeled behavior

Supqc(SUP', Null{r'|r € Zen(i, j),i € 1;,j € N}) (19)
is deterministic, and isomorphic with SUP.

The justification of this definition is merely a repetition of the argument for two agents
based on the conditions (13), (14) and (10bis). Once the obvious generalization of SUP’ has
been framed, as above, the basic conditions just referenced are fully defined as well, and
require no formal change. The final result in terms of Supgc is derived exactly as before.

We note that to verify delay-robustness in Definition 3 we need to compute SUP’ as in
(18). The computation may be expensive when there is a large number of communication
channels. Nevertheless SUP’ is implemented in a purely distributed fashion: distributed
supervisors and communication channels. We shall investigate the computational issue of
SUP’ in our future work, one promising approach being to use State Tree Structures (Ma
and Wonham 2005). We also note in passing that all the above results can be extended to
decentralized controllers; for details see Appendix B.

In the foregoing notation now suppose that SUP is known to be delay-robust for a set
of binary channels CH(i, r, j) withi € I;, j € N, and r in some subset X, (i, j) C %;.
We shall prove that SUP remains delay-robust when any one of these channels is replaced
by the ideal channel with zero transmission delay. As a corollary, delay-robustness is
preserved if the given set X (i, j) of channeled events from G; to LOC; is replaced
by any subset. Focussing attention on SUP; = Sync(G, LOC)), consider its envi-
ronment E = {SUP,,...,SUP,} with SUPg := Sync{SUP; | i = 2,...,n}. We
assume that E is augmented to a channeled version E’ (say) having internal channels
CHG,rij, j) (G, ] = 2,..,n,0i # j,rij € Zep(i, j)), together with outgoing external
channels CH(j, rj1, 1) to LOC; and incoming external channels CH(1, ry;, i) from Gj.
Denote the totality of E’s internal channels, along with those from Gi, by CHg. Write
SUPg = Sync(SUP, ..., SUP,, CHg) where SUP/j is SUP; with any eventr € ¢, (i, j)
replacedby r’ (i = 1,...,n; j = 2,...,n;i # j) as prescribed before. For the alphabet of
SUPg we have

Sp=UEi=2,.,n) U |reZgG j)i=1,.,nj=2..,ni#j}.

Similarly let SUP’l denote SUP; with channeled events r;; € Xep(j, 1) (j = 2,...,n)
replaced by r}l, and let £ denote the corresponding alphabet. By assumption the alphabets
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Y (i =1, ..., n) are pairwise disjoint, hence the X.,(j, 1) (j = 2, ..., n) together with X
are pairwise disjoint. Write

Ten(E, 1) =U{Zer(j, D1 j =2,....n}.

For clarity assume ¥.,(E, 1) = {«, B}; the extension to more than two events will be
evident. Thus «, B are the channeled events imported to LOC; from its environment SUPg
(actually SUPE), and appear in SUP’] as o/, B’. We can therefore write SUP’ in (19) in
more detail as

SUP’ = Sync(SUP;, CH(E, o, 1), CH(E, B, 1), SUPg).

Notice that o, 8 belong to £ := £, U---U X, but not X1, whereas o/, 8’ appear in SUP
and the two channels but not in SUPg/.

Now denote by SUP” the structure SUP’ but with the channel CH(E, «, 1) replaced by
one with zero delay (and so eliminated from the channel formalism). Thus

SUP” = Sync(SUP/, CH(E, B, 1), SUPg/)

where SUP] is SUP; with 8 replaced by B’ (but « left unchanged). We shall prove the
following result.

Theorem 2 If SUP is delay-robust with respect to the channel structure of SUP', then it
remains so with respect to that of SUP”.

The assertion is almost obvious from the intuition that the statement for SUP” should
be derivable by “taking the limit” at which CH(E, «, 1) operates with zero delay, namely
by replacing the communication event v, when unchanneled, with the zero-delay channeled
version «.a’, and finally projecting out o’. A proof is given in Appendix C.

3.3 Blocking of uncontrollable events

The foregoing discussion of delay robustness covers channeled events in general, regardless
of their control status, and is adequate if all channeled events happen to be controllable.
In the case of uncontrollable channeled events, however, we must additionally examine
whether channel delay violates the conventional modeling assumption that uncontrollable
events may occur spontaneously at states where they are enabled and should not be subject
to external disablement.

In our simplified model the transmission of r from G; to LOC; is completed (by
event r') with indefinite (unbounded) delay. A constraint imposed on SUP’ by the channel
CH(2, r, 1) is that r cannot occur again until " has reset CH(2, r, 1) and the communica-
tion cycle is ready to repeat. If r is controllable its re-occurrence can be disabled and hence
delayed until after the occurrence of r’ corresponding to the previous occurrence of r. If,
however, r is uncontrollable, then once it is re-enabled (by entrance of SUP; to a state where
r is defined) its re-occurrence cannot be externally delayed, according to the usual model-
ing assumption on uncontrollable events. In this sense the introduction of CH(2, r, 1) could
conceivably conflict with the intention of the original DES model. To address this issue we
examine whether or not communication delay of an uncontrollable event might violate a
modeling assumption.

Example 4 For illustration, let SUP; and SUP, be the generators shown in Fig. 9.
Assume event 20 in SUP, is exported to SUPj, ie., r = 20 and r' = 120;
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20 20
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20 20
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Fig.9 Example 4: SUP; and SUP,

SUP| is obtained by replacing 20 in SUP; by 120. As shown in Fig. 10, SUP’ =
Sync(SUP;, CH(2, 20, 1), SUP;) is easily verified to be delay-robust with respect to event
20. Define NSUP = Sync(SUP), SUP,). Let s = 20; then 5.20 € L(NSUP), but
5.20 ¢ L(SUP'). Since SUP' = Sync(NSUP, CH(2, 20, 1)), event 20 is blocked by
CH(2, 20, 1).

This example shows a case where the reoccurrence of an uncontrollable event is
‘blocked’ by its channel, which demonstrates that communication delay of an uncontrol-
lable event really violates the modeling assumption that uncontrollable events cannot be
disabled by any external agent. Now let

NSUP = Sync(SUP/, SUP,); (20)
then according to (6)
SUP’ = Sync(NSUP, CH(2, r, 1)). (21)

As before, write ¥’ = X U {r'} for the alphabet of SUP’, let P : ¥* — X* be the natural
projection of ™ to ©*, and define the new natural projection P, : ©* — {r, r’}*. Now,
for given NSUP and SUP”’ as in (20) and (21), and r € %,,, if there exists s € L(SUP’) such
that sr € L(NSUP), but sr ¢ L(SUP’), then we say that r is blocked by CH(2, r, 1).

20 120 20 120 11
st —(O—~O———O—0O

NSUP

Fig. 10 Example 4: SUP’ and NSUP
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Fig. 11 WORKCELL

To check whether or not r is blocked by CH(2, r, 1), we check if PflL(CH(Z, r, 1)) is
NSUP-controllable with respect to event r, i.e.

P~'L(CH(2,r, 1))r N L(NSUP) C P"'L(CH(2, 7, 1)).

For this, we employ the standard algorithm that checks controllability (Wonham 2014b); the
algorithm has complexity O (mn) where m and n represent the state numbers of CH(2, r, 1)
and NSUP, respectively.’

To summarize, for an uncontrollable event r, if SUP is delay-robust (by Theorem 1) and
r is never blocked by CH(2, r, 1) (by the controllability checking algorithm), then SUP is
said to be ‘unbounded’ delay-robust with respect to r. Otherwise, there exists s € L(SUP’)
such that sr € L(NSUP), but s» ¢ L(SUP’). Thus r is blocked by the channel, which could
violate the modeling assumption that an uncontrollable event should never be prohibited
or delayed by an external agent. However, if the occurrence of r’ is executed by LOC;
before the next occurrence of r, the controllers may still achieve global optimal nonblocking
supervision. In this case, we say that SUP is ‘bounded’ delay-robust with respect to r.8

We illustrate the foregoing results by an example adapted from (Wonham 2014b).

4 Example - WORKCELL
4.1 Model description and controller design

WORKCELL consists of ROBOT, LATHE and FEEDER, with three buffers, INBUF,
LBUF and SBBUF, connected as in Fig. 11. Labeled arrows denote synchronization on
shared transitions (events) in the corresponding component DES.

WORKCELL operates as follows: FEEDER acquires a new part from an infinite source
(event 11) then stores it (event 12) in a 2-slot buffer INBUF. ROBOT takes a new part from
INBUF (event 13) and stores it (event 14) in a 1-slot buffer LBUF; if LBUF is already full,
ROBOT may instead take a new part from INBUF (event 15) and store it (event 16) in a
1-slot ‘stand-by’ buffer SBBUF. If LBUF is empty and there’s already a part in SBBUF,
ROBOT first unloads the part in SBBUF (event 17) and loads it in LBUF (event 18). If

"For the case described in Section 3.2 of transmitting multiple events by separate channels, we use the
same method to check if each event r is blocked. Specifically, we check if Pr’lL(CH(i ,r, j)) is NSUP-
controllable with respect to r, where NSUP denotes the behavior of the system excluding CH(, r, j).

80ne way to determine a delay bound in terms of number of event occurrences is to find the shortest path
between two consecutive occurrences of event r in SUP. A more detailed study of this issue is left for future
research.
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Table 1 Physical interpretation of events

Event label Physical interpretation

11 FEEDER imports new part from infinite source

12 FEEDER loads new part in INBUF

13 ROBOT takes part from INBUF for loading into LBUF
14 ROBOT loads part from INBUF into LBUF

15 ROBOT takes part from INBUF for loading into SBBUF
16 ROBOT loads part from INBUF into SBBUF

17 ROBOT takes part from SBBUF for loading into LBUF
18 ROBOT loads part from SBBUF into LBUF

19 LATHE loads part from LBUF and starts working

20 LATHE exports finished part and returns to idle

LATHE is idle and there exists a part in LBUF, LATHE takes that part and starts working
on it (event 19), and when finished exports it and returns to idle (event 20). Event labels
accord with (Wonham 2014a): odd-(resp. even-) numbered events are controllable (resp.
uncontrollable). The physical interpretations of events are displayed in Table 1.

The specifications to be enforced are: 1) SPEC; says that a buffer must not overflow
or underflow; 2) SPEC; says that ROBOT can load SBBUF (event sequence 15.16) only
when LBUF is already full; 3) SPEC3 says that ROBOT can load LBUF directly from
INBUF (event sequence 13.14) only when SBBUF is empty; otherwise it must load from
SBBUF (event sequence 17.18). The DES models of plant components and specifications
are shown in Figs. 12 and 13.

We first compute the monolithic supervisor by a standard method (e.g. Wonham
2014a, b). The behavior of WORKCELL is the synchronous product of FEEDER,
ROBOT, and LATHE. As SPEC; is automatically incorporated in the buffer models, the
total specification SPEC is the synchronous product of INBUF, LBUF, SBBUF, SPEC,,
and SPEC3. The monolithic supervisor is SUPER = Supcon(WORKCELL, SPEC) with
(state, transition) count (70, 153).

11 19
12 20
FEEDER LATHE

Fig. 12 Plant models to be controlled
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12 12
ogiso@iio
13,15 13,15
INBUF
16 14,18
X QX
17 19
SBBUF LBUF
1418 16 14
s 16
= ()
o © D
19 17
SPEC, SPEC,

Fig. 13 Model of specifications

Next by use of procedure Localize (Wonham 2014a, b), we compute the localization of
SUPER (in the sense of (Cai and Wonham 2010a, b)) to each of the three WORKCELL
agents, to obtain local controllers FEEDERLOC, ROBOTLOC and LATHELOC, as
shown in Fig. 14. The local controlled behaviors are

FEEDERSUP = Sync(FEEDER, FEEDERLOC),
ROBOTSUP = Sync(ROBOT, ROBOTLOC),
LATHESUP = Sync(LATHE, LATHELOC).

From the transition structures shown in Fig. 14, we see that FEEDERLOC (FEEDERSUP)
must import events 13, 14, 15, 16, 17 and 18 from ROBOT, and 19 from LATHE;
ROBOTLOC (ROBOTSUP) must import events 12 from FEEDER, and 19 from LATHE;
and LATHELOC (LATHESUP) must import events 11 and 12 from FEEDER, and 13,
14,15, 16, 17 and 18 from ROBOT.

4.2 Illustrative cases

Based on the computed local controllers, we illustrate our new verification tools with the
following cases.

Case 1 Single Event
In this case, we show that SUPER is delay-robust relative to event 13, but is not delay-
robust relative to event 19.

(1) Taking FEEDERLOC for example, build a channel CH(R, 13, F)), as shown in
Fig. 15, using a new event label 113 to represent the corresponding channel output;
use 113 to replace 13 in FEEDERSUP to obtain FEEDERSUP', over the alphabet
{11,12,113,14,15,16,17,18,19}.
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1,14,16,17,1819 1313

FEEDERLOC

ROBOTLOC

13,17

LATHELOC

Fig. 14 Local Controller for each component. According to Remark 1, for every state x of each controller,
and each communication event o imported from some other component, if o is not defined at x, we add a o -
selfloop. Let *(x) be the set of selfloops to be adjoined at state x. In FEEDERLOC, *(0) = {13, 15, 17, 19},
*(3) = {13, 14, 15, 16, 18}, x(4) = {13, 14, 15, 16, 17, 18}; in ROBOTLOC, *(0) = {19}, x(1) = {19},
*(2) = {12, 19}, x(5) = {12}, %(7) = {19}, x(9) = {19}, x(10) = {12}, x(11) = {19}; in LATHELOC,
*(0) = {13, 15}, (1) = {12, 15}, *(2) = {15}, *(3) = {12, 15}, x(4) = {13, 14,15, 16, 17, 18}, x(5) =
{12, 13, 14, 16, 17, 18}, %(6) = {13, 14, 16, 17, 18}, x(7) = {12, 13, 14, 16, 17, 18}

13 15 15
13 115 215
CH(R,13,F) CH(R,15,F) CH(R,15,L)

Fig. 15 CH(R, 13, F), CH(R, 15, F), and CH(R, 15, L)
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Now compute the channeled behavior SUPER’ according to
SUPER’ = Sync(FEEDERSUP’, CH(R, 13, F), ROBOTSUP, LATHESUP)

over the augmented alphabet {11, ..., 20, 113} and with (state, transition) count (124, 302).
Next, to check delay-robustness we project SUPER’ modulo supremal quasi-congruence
with nulled event 113, to get, say,

QCSUPER’ := Supqc(SUPER’, Null[113])
(deterministic, with size (70, 153))

Finally we verify that QCSUPER’ is isomorphic to SUPER, and conclude that SUPER
is delay-robust with respect to the channeled communication of event 13 from ROBOT to
FEEDERLOC. As a physical interpretation, consider the case where events 11, 12, 11,
12, 13 have occurred sequentially (i.e. there exist two parts in INBUF and ROBOT has
taken a part from INBUF) and FEEDERSUP’ has not executed the occurrence 113 of
event 13. On the one hand, if FEEDERSUP’ executes event 113 (i.e. it acknowledges the
occurrence of event 13), it will enable event 11 legally (according to SUPER). On the other
hand, if FEEDERSUP’ does not execute event 113, then ROBOT will load the part into
LBUF and take another part from INBUF (execute event 15). So FEEDERSUP’ can enable
event 11 again, which is also legal according to SUPER. Hence, in this case, the channeled
system SUPER’ can run ‘correctly’(no extra behavior violates the specification) and can
‘complete’ the given task (with the help of SBBUF), i.e. the communication delay of event
13 is tolerable with respect to SUPER.

(2) By the same method, one can verify that event 19 channeled to ROBOTLOC is delay-
critical with respect to SUPER. By tracking the working process, we show that indefinite
communication delay of event 19 may result in violation of SPEC,. Consider the follow-
ing case: events 11,12,11,12,13,14,19 have occurred sequentially, i.e. there exists one part
in INBUF, ROBOT has loaded a part in LBUF and LATHE has taken the part from
LBUF (i.e. LBUF is now empty). Since the transmission of event 19 is delayed unbound-
edly, if ROBOT doesn’t ‘know’ that LATHE has taken the part from LBUF, it may
take a new part from INBUF (event 15) and load it into SBBUF (event 16) according to
ROBOTSUP/, i.e. the event sequence 11.12.11.12.13.14.19.15.16 occurs in WORKCELL
with communication delay, violating SPEC,. Hence event 19 is delay-critical.

Case 2 Multiple Events (Channels)

(1) We show that SUPER is delay-robust relative to the event set {13, 15}, with 13 and 15
both channeled to FEEDERLOC.

Consider the channel CH(R, 15, F) displayed in Fig. 15, using the signal event
115 to represent the corresponding channel output. Use labels 113, 115 to replace
13, 15 in FEEDERSUP to obtain FEEDERSUP’, over the alphabet {11,12,113, 14,
115,16,17,18,19}.

We compute the channeled behavior SUPER’ according to

SUPER' = Sync(FEEDERSUP’, CH(R, 13, F), CH(R, 15, F),
ROBOTSUP, LATHESUP),
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12 16
212 316
CH(F,12,R) CH(R,16,L)

Fig. 16 CH(F, 12, R) and CH(R, 16, L)

over the augmented alphabet {11, ..., 20, 113, 115} and with (state, transition) count
(180, 470). Next, to check delay-robustness we project SUPER’ modulo supremal quasi-
congruence with nulled events 113, 115, to get

QCSUPER’ := Supgc(SUPER’, Null[113,115])
(deterministic, with size (70, 153))

QCSUPER’ turns out to be isomorphic to SUPER, and we conclude that SUPER is
delay-robust with respect to the channeled communication of events 13, 15 from ROBOT
to FEEDERLOC. Briefly, the reason is that FEEDERSUP’ will enable event 11 after it
executes event 113 or 115, and ROBOT will remain idle if no more parts are loaded into
the system (i.e. event 11 cannot occur again).

(2) We verify that SUPER is delay-robust with respect event 15 provided it is chan-
neled only to FEEDERLOC; however, it must be communicated to LATHELOC without
delay. To verify this, we have two separate channels, CH(R, 15, F) and CH(R, 15, L),
with distinct signal events 115 and 215 (see Fig. 15). Taking the two channels separately,
by Definition 1 and the same method as above for event 13, we verify that SUPER is
delay-robust when 15 is communicated to FEEDERLOC by CH(R, 15, F), but delay-
critical to LATHELOC by CH(R, 15, L). Moreover, by Definition 3 and the procedure
in Section 3.2, we verify that SUPER is delay-critical when 15 is communicated to both
FEEDERLOC and LATHELOC.

Case 3 Blockingness of Uncontrollable Event

This case shows that although the occurrence of (uncontrollable) event 12 (channelled
to ROBOTLOC) may be blocked by its channel CH(F, 12, R), as shown in Fig. 16,
this will not violate the specifications. According to Section 3.3, we check whether
L(CH(F, 12, R)) is controllable with respect to

NSUPER = Sync(FEEDERSUP, ROBOTSUP', LATHESUP).

In (Wonham 2014a), we use Condat, which tabulates the set of events disabled in
CH(F, 12, R) with respect to NSUPER, to implement the verification of the controllability
for L(CH(F, 12, R)).Y

By using Condat, it turns out that event 12 is disabled at state 1 of L(CH(F, 12, R)).
Physically, suppose 11, 12 and 11 have occurred sequentially, i.e., FEEDER has stored a

9 Here the alphabet of CH(F, 12, R) is {12, 212}; before calling Condat, one should add the selfloop with
events in NSUPER but not in {12, 212} at each state of CH(F, 12, R).
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part in INBUF and taken another part (event 11). After that, FEEDER may store the part in
INBUF (event 12, which is uncontrollable). If ROBOTSUP does not acknowledge the first
occurrence of 12, then CH(F, 12, R) is at state 1, and thus cannot transmit the next occur-
rence of 12. So, in the channeled system SUPER’, event 12 is blocked by CH(F, 12, R).
If transmission of the first 12 is completed (i.e. event 212 occurs) before the second occur-
rence of event 12, then event 12 will not be blocked. In SUPER, only event 11 occurs
between two occurrences of event 12; thus we say that SUPER is ‘1-bound’-delay-robust
with respect to event 12.

Case 4 All communication events

When all communication events are subject to delay through channels (i.e. ., = Zeom),
it can be verified that delay-robustness of SUPER in the strong sense of Definition 3 fails,
i.e. SUPER fails to be delay-robust for distributed control by localization. In fact when all
the channeled events except 19 (channeled to ROBOTLOC) are received without delay,
Case 4 is reduced to Case 1; so SUPER cannot be delay-robust with respect to the set of all
communication events, consistently with Theorem 2 in Section 3.

5 Conclusions and future work

In this paper we have studied distributed control obtained by supervisor localization on
the relaxed assumption (compared to previous literature (Cai and Wonham 2010a, b)) that
inter-agent communication of selected ‘communication events’ (channeled events) may be
subject to unknown time delays. For this distributed architecture we have identified a prop-
erty of ‘delay-robustness’ which guarantees that the logical properties of our delay-free
distributed control (i.e. the original DES specifications) continue to be enforced in the
presence of delay, albeit with possibly degraded temporal behavior. We have shown that
delay-robustness can be effectively tested with polynomial complexity, and that such tests
serve to distinguish between events that are delay-critical and those that are not. The case
that an uncontrollable channeled event may be blocked by its communication channel is
identified by the algorithm for checking controllability. A simple workcell exemplifies the
approach, showing how delay-robustness may depend on the subset of events subject to
delay, and that a given event may be delay-critical for some choices of the delayed event
subset but not for others.

With the definitions and tests reported here as basic tools, future work should include the
investigation of alternative channel models and, of especial interest, global interconnection
properties of a distributed system of DES which render delay-robustness more or less likely
to be achieved. A quantitative approach involving timed discrete-event systems could also
be an attractive extension.

Appendix A: Proof of Proposition 1

Recall that SUP’ = (Y, ¥/, n, o, Yn). According to natural projection P : ©* — X*
which maps (X' — X) to €, define ' : ¥ x T* — Pwr(Y) given by

n'(y,1) ={n(y.s)ls € T, n(y, s)! &Ps = t}. (22)
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Let p be the supremal quasi-congruence on Y with respect to SUP’, and define P, : ¥ —
Y/p =: Y. As in (Wonham 2014b, Chapt. 6), QCSUP’ = (Y, %, n, Yo, Ym) is defined with
n:Y x X*— Pwr(Y) given by

n(y, 1) = (P’ (v, D) Po(y) =y}, (23)
Yo = Pp(yo) and Y;; = P, (¥Yp,).

Proof 'We must prove that QCSUP’ represents PL,, (SUP’) and is a canonical generator.
(1) We show that QCSUP’ represents P L,,(SUP), i.e,

L,(QCSUP)) = PL,,(SUP)
and
L(QCSUP) = PL(SUP)).
(i) L(QCSUP) C PL(SUP)
Let t € L(QCSUP’). We prove by induction that ¢t € P L(SUP’).
Base step: t = € € PL(SUP’) trivially.

Inductive step: Suppose ¢t € L(QCSUP’), t € PL(SUP'), and ta € L(QCSUP’); we must
prove ta € PL(SUP).

Since ta € L(QCSUP’), we have n(yg,t)! and n(yo,ta)!. So, Ay € Y) y =
n(yo,t) & n(y, a)!. We have yo = P,yo. Since t € PL(SUP), (3s € L(SUP?)) Ps = t,

i.e. n(yo, )!. So, n(yo,s) € n'(yo, 1), i-e., n'(yo, 1) # ¥. Thus, y = P,n'(yo, t) because
QCSUP’ is deterministic. Since n(y, a)! and n'(yg, t) # ¥, there exists y € n’(yo, t) such
that n(y, @) = P,n'(y, «). Hence, 1’ (yo, tar)!. However, according to (22)

0’ (yo, tar) = {n(y0, 5)Is € T, n(yo, )!, Ps = ta}.
Thus, (3s € L(SUP')) Ps = ta, so ta € PL(SUP).
(ii) PL(SUP) C L(QCSUP)
Let t € PL(SUP’); we show that t € L(QCSUP).

Base step: t = € € L(QCSUP') trivially.
Inductive step: Supposing t € PL(SUP’), t € L(QCSUP’), and ta € P L(SUP’), we show
ta € L(QCSUP')).

Since t € PL(SUP) and t € L(QCSUP'), n'(yo, t) # @, n(yg, )!; letting y = n(yo, 1),
then y = P,n’'(yo, 1) because QCSUP” is deterministic. Since ra € PL(SUP’), there exists
s" € L(SUP'), i.e. n(yo, s")! such that Ps’ = to; thus

Ui o ly” € n'(yo, 0}

= U{n’(y’, a)ls € =*,y = n(yo, s), Ps =t} (according to (22))

= {(n((m(yo.s), v)|v € T, n(n(yo.s),v)!, Ps =1, Pv = a}
= {n(yo, sv)|sv € =, n(yg, sv)!, P(sv) = ta}
# ) (since n(yo, s)! and Ps’ = ta),
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i.e. there exists y € n’(yo. ¢) such that #'(y, «)!. Then, P,y = y dueto y = P,n’'(yo, t).
Hence, n(y, o) = Pon/(y, o) # @, i.e., n(y, @)!. So, ta € L(QCSUP)).

(iii) L,,(QCSUP’) C PL,,(SUP)

Forany t € *,if t € L,,(QCSUP’), then Ty € ¥Y) y = n(yg,1) & y € Y. By (i), we
conclude that t € PL(SUP'). Thus, n'(y, t) # @. Because QCSUP’ is deterministic, we
know that y = P,n’(yo,1). So, Pyn'(yo, 1) € Y. Further, n’(yo, 1) N Y, # @, ie., there
exists s € X'* such that (v, s)! & n(yg,s) € Y, & Ps =t. Hence, s € L,,(SUP’), thus
t = Ps € PL,(SUP).

(iv) PL,,(SUP) C L,,(QCSUP)

For any t € X*,if t € PL,,(SUP'), then n'(yo,1)! & n'(yo,t) N Y, # @. By (ii),
t € L(QCSUP), i.e., Ty € Y) n(yg, )! & y = n(yg, t). Since QCSUP’ is deterministic,
y = P,n'(y0,1). We conclude that P,n'(yo,t) € Y, from n'(yo,1) N Y, # @. Hence,
y €Yy, ie,t € L,(QCSUP).

2. We prove that QCSUP’ is a canonical(minimal-state) generator.
Let v be a congruence on Y defined according to: y = y’ (mod v) provided

i (VteZ)nk. ! ey, t)!
(i) (VMteZ)ny.t)eY, e nQ,t)eYn.

With reference to (Wonham 2014b, Proposition 2.5.1), projection (mod v) reduces QCSUP’
to a state-minimal generator.

Define P, : Y — Y /v and write v o p = ker (P, o P,). Next we will prove that v o p is
a quasi-congruence on Y i.e., forall y,y' € Y,

Pyo Py(y)=P,oPy(y) = (Ya € )P, 0o Pyn(y,a) = P, o Pon(y', ).

Now

Pyo Py(y) = P,o Py(y)
= Py(Pp(y)) = Pv(Pp(y/))
= Py(n(Py(y)), @) = Py(n(P,(y)), @)

(cf. (ii) of Proposition 2.5.1 in (Wonham 2014b))

= Pi(n(y, ) = Py(n(y’, )
= Py(P,(n'(y, @) = Py(P,(n' (¥, @)
= Pyo Ppi(y, @) = Pyo P/ (v, @)
Hence, v o p is a quasi-congruence on Y. Obviously, v o p is coarser than p. However, p
is the supremal quasi-congruence on Y, so for any y, y’ € Y, if P,(P,()) = P,(P,(y")),
ie., (y,y") € vop,then (y,y’) € p, which means that P,(y) = P,(y’). Hence, v = L

(namely all its cells are singletons).
We have shown that QCSUP’ is a canonical generator.
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Appendix B: Delay-robustness of decentralized controllers

Here we show that the verification tool for delay-robustness of distributed controllers can
be used without change to verify the delay-robustness of decentralized supervisors.

Let G be the DES to be controlled, and LOC; and LOC, be two decentralized con-
trollers, which achieve global supervision with zero-delay communication. Let ¥;, ¥;, be
the event set and observable event set of LOC;, respectively (i = 1,2). Assume event
r € X1 N (¥ — X1,), which is not observed by LOC|, but is observed by LOC,.
Hence, r should be transmitted to LOC;. We use the channel CH(2, r, 1), as shown in
Fig. 1, to transmit r and use r’ to represent that LOC, receives the occurrence of r.
Then, replacing r by r’, we obtain LOC/I. Let SUP = Sync(G,LOC;, LOC,), SUP' =
Sync(G, LOC}, CH(2, r, 1), LOC5), and QCSUP’ = Supqc(SUP’, Null[r']). Finally, by
Theorem 1, if SUP &~ QCSUP’, SUP is delay-robust with respect to r, or LOC; and LOC;
achieve global supervision with unbounded delay communication.

Appendix C: Proof of Theorem 2

The relevant natural projections are
P (% Ufd, BYUZE)* - TF
P": (T U{BIUZp)* = =%

Thus P’ (resp. P”) nulls {o/, B’} (resp. {8'}) U{r'|r' € Tg/}.
For the proof we assume that

P'L(SUP) = L(SUP) (24a)
P'L,,(SUP)) = L,,(SUP) (24b)
P’ has the observer property with respect to SUP’ and SUP. (24¢)

It must be shown that the counterpart properties hold for P” and SUP”, namely

P"L(SUP") = L(SUP) (25a)
P"L,,(SUP") = L,,(SUP) (25b)
P” has the observer property with respect to SUP” and SUP. (25¢)

We need the following lemmas.

Lemmal (o insertion) Lets” = x.a.x.B.x.8'.x € L(SUP") where the (generally distinct)
strings written x are free of a, B, B'. Then s’ := x.a.a’.x.8.x.8'.x € L(SUP).

Proof Immediate from the definition of the relevant synchronous products.
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Evidently Lemma 1 extends to multiple appearances of «, 8, 8’ and arbitrary possible
orderings of the o with respect to the 8, 8’; and holds with L replaced by L,, throughout.

Lemma 2 (o' deletion) Lett' = x.a.y.a'.z.8.2.8'.z € L,,(SUP’), where the strings x, y, 2
are free of a, o', B, B'. Thent" := x.a.y.z.8.2.8".z € L,,(SUP").

Proof Recall that the synchronous products defining L, (SUP’) and L, (SUP”) differ only
in that the latter omits the factor CH(E, «, 1), and in SUP’{ o appears as in SUP; (and
not as «’). The string y is of form, say a.b;.az.by, where aj,ap € (E;)* and by, by €
Ez,, hence by definition of synchronous product can be re-ordered as aj.a,.b;.b> without
affecting membership of ¢’ in L, (SUP’); next c..y can be re-ordered in ¢’ as a;.az.a.b;.b,
and then a.y.a’ can be re-ordered as ay.as.a.a’.by.by, again preserving membership of ¢’/
in L,,(SUP’). In this new ordering it is clear that deletion of &’ converts ¢’ to a string ¢” in
L,,(SUP”). Reversing the ordering restores our original t”, proving the claim.

Proof of Theorem 2 For (25a) suppose s” = x.a.x.f.x.8".x € L(SUP”). By Lemma 1,
s’ = x.a.0’ . x.B.x.8 .x € L(SUP'), so by (24a) P'(s’) € L(SUP). Evidently P"(s") =
P’(s’) as required. For the reverse inclusion, if s = x.«e.x.8.x € L(SUP) then applying
Lemma 1 to s with 8 we get that s” = x.a.x.8.8".x € L(SUP”) and then s = P"(s") , as
claimed. The argument for (25b) is similar. For the observer property we have by (24c¢) that

(Vs € L(SUP))(Yv € %) P'(s).v € L,,(SUP) =
@ e (EN))s'V € L,(SUP) & P'(V)=v
and must verify the counterpart (25¢), namely

(vs” € L(SUP")(Yv € %) P"(s").v e L,,(SUP) =
@@ e (2")*s" v € L,,(SUP”) & P" (V") = v.

For the proof let s” € L(SUP”), v € ©*, P"(s").v € L,,(SUP). By Lemma 1 with o/~
insertion we obtain s’ € L(SUP’) such that P'(s") = P”(s"), so P'(s").v € L,,(SUP),
and by (24c) there is v € (2')* with s’.v" € L,,(SUP’) and P’'(v') = v. Thus v’ is of the
form v’ = y.a.y.a’.y.B.y.8".y (possibly with multiple o’s and B’s in various interleavings).
Define v = Q(v’) where Q projects o’ to the empty string €. Then P”(v") = P"Q (V') =
P'(v") = v. Also, by Lemma 2, s".v" = Q(s’.v") € QL,,(SUP') C L,,(SUP”). Thus v"
has the properties required in (25¢), which completes the proof.
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