
Automatica 49 (2013) 2786–2794
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Supervision localization of timed discrete-event systems✩

Renyuan Zhang a, Kai Cai b, Yongmei Gan a,1, Zhaoan Wang a, W.M. Wonham b

a School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

a r t i c l e i n f o

Article history:
Received 19 September 2012
Received in revised form
7 May 2013
Accepted 13 May 2013
Available online 17 June 2013

Keywords:
Supervisor localization
Supervisory control
Automata
Timed discrete-event systems
Real-time systems

a b s t r a c t

We study supervisor localization for real-time discrete-event systems (DES) in the Brandin–Wonham
framework of timed supervisory control. We view a real-time DES as comprised of asynchronous agents
which are coupled through imposed logical and temporal specifications; the essence of supervisor
localization is the decomposition of monolithic (global) control action into local control strategies for
these individual agents. This study extends our previous work on supervisor localization for untimed
DES, in that monolithic timed control action typically includes not only disabling action as in the untimed
case, but also ‘‘clock preempting’’ action which enforces prescribed temporal behavior. The latter action
is executed by a class of special events, called ‘‘forcible’’ events; accordingly, we localize monolithic
preemptive action with respect to these events. We demonstrate the new features of timed supervisor
localization with a manufacturing cell case study and discuss a distributed control implementation.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently we developed a top-down approach, called supervisor
localization (Cai & Wonham, 2010a,b) to the distributed control of
untimed discrete-event systems (DES) in the Ramadge–Wonham
(RW) supervisory control framework (Ramadge &Wonham, 1987;
Wonham, 2012). We view the plant to be controlled as comprised
of independent asynchronous agents which are coupled implicitly
through logical control specifications. To make the agents smart
and semi-autonomous, our localization algorithm allocates exter-
nal supervisory control action to individual agents as their inter-
nal control strategies, while preserving the optimality (maximal
permissiveness) and nonblocking properties of the overall mono-
lithic (global) controlled behavior. Under the localization scheme,
each agent controls only its own events, although it may very well
need to observe events originating in other (typically neighboring)
agents.

✩ This work was supported in part by the State Key Laboratory of Electrical
Insulation and Power Equipment (China) and by the Natural Sciences and
Engineering Research Council (Canada), Grant no. 7399. Part of the material in this
paper was presented in Proc. American Control Conference 2013. This paper was
recommended for publication in revised form by Associate Editor Jan Komenda
under the direction of Editor Ian R. Petersen.

E-mail addresses: r.yuan.zhang@gmail.com (R. Zhang), kai.cai@scg.utoronto.ca
(K. Cai), ymgan@mail.xjtu.edu.cn (Y. Gan), zawang@mail.xjtu.edu.cn (Z. Wang),
wonham@control.utoronto.ca (W.M. Wonham).
1 Tel.: +86 29 8266 6241; fax: +86 29 8266 5223.

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.05.015
In this paper we extend the supervisor localization theory to
a class of real-time DES and address distributed control prob-
lems therein. Many time-critical applications can be modeled as
real-time DES, such as communication channels, sensor networks,
scheduling and resource management (Leung, Lee, & Son, 2007).
Typical timing features include communication delays and opera-
tional hard deadlines. The correctness and optimality of real-time
DES depend not only on the system’s logical behavior, but also on
the times at which various actions are executed. Moreover, rapid
advances in embedded, mobile computation and communication
technologies (Leung et al., 2007, Part III) have enabled distributed
implementation of control algorithms. These developments jointly
motivate this study of supervisor localization for real-time DES.

A variety of real-time DESmodels and approaches are available.
Notable works include Brave and Heymann’s ‘‘clock automata’’
(Brave & Heymann, 1988), Ostroff’s ‘‘timed transition models’’
(Ostroff, 1990), Brandin andWonham’s timed DES (TDES) (Brandin
& Wonham, 1994), and Cofer and Garg’s model based on ‘‘timed
Petri nets’’ (Cofer & Garg, 1996). We adopt Brandin andWonham’s
TDES (or BW model) as the framework for developing a timed
supervisor localization theory for two reasons. First, the BW
model is a direct extension from the RW framework (where
our untimed localization theory is based), retaining the central
concepts of controllability, andmaximally permissive nonblocking
supervision. This feature facilitates developing a timed counterpart
of supervisor localization. Second, the BW model captures a
variety of timing issues in a useful range of real-time discrete-
event control problems (Brandin & Wonham, 1994), (Wonham,
2012, Chapter 9). While it may be possible to develop supervisor

http://dx.doi.org/10.1016/j.automatica.2013.05.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.automatica.2013.05.015&domain=pdf
mailto:r.yuan.zhang@gmail.com
mailto:kai.cai@scg.utoronto.ca
mailto:ymgan@mail.xjtu.edu.cn
mailto:zawang@mail.xjtu.edu.cn
mailto:wonham@control.utoronto.ca
http://dx.doi.org/10.1016/j.automatica.2013.05.015

R. Zhang et al. / Automatica 49 (2013) 2786–2794 2787
localization in an alternative framework, as a preliminary step into
real-time supervisor localization we choose the BW model for its
close relation with previous work.

The principal contribution of this paper is the development
of a timed supervisor localization theory in the BW TDES frame-
work, which extends the untimed counterpart in Cai andWonham
(2010a) and Cai and Wonham (2010b). In this timed localization,
a novel feature is ‘‘event forcing’’ as a means of control, in addi-
tion to the usual ‘‘event disabling’’. Specifically, ‘‘forcible’’ events
are present in the BWmodel as events that can be relied on, when
subject to some temporal specification, to ‘‘preempt the tick of the
clock’’, as explained further in Section 2. Correspondingly, in lo-
calizing the monolithic supervisor’s control action, we localize not
only its disabling action as in the untimed case, but also its pre-
emptive action with respect to individual forcible events. Central
to the latter are several new ideas: ‘‘local preemptor’’, ‘‘preemption
consistency relation’’, and ‘‘preemption cover’’. We will prove that
localized disabling and preemptive behaviors collectively achieve
the same global optimal and nonblocking controlled behavior as
the monolithic supervisor does. The proof relies on the new pre-
emption concepts and also controllability for TDES. Moreover, the
derived local controllers typically have much smaller state size
than the monolithic supervisor, and hence their disabling and pre-
emptive logics are often more transparent. We demonstrate this
empirical result by a case study of a manufacturing cell (Brandin &
Wonham, 1994).

The paper is organized as follows. Section 2 provides a review
of the BW TDES framework. Section 3 formulates the timed super-
visor localization problem, and Section 4 presents a constructive
solution procedure. Section 5 studies a manufacturing cell exam-
ple, and finally, Section 6 draws conclusions.

2. Preliminaries on timed DES

This section reviews the TDES model proposed by Brandin and
Wonham (1994), andWonham (2012, Chapter 9). First consider the
untimed DES model

Gact = (A, Σact, δact, a0, Am). (1)

Here A is the finite set of activities, Σact is the finite set of events,
δact : A×Σact → A is the (partial) activity transition function, a0 ∈ A
is the initial activity, and Am ⊆ A is the set of marker activities. Let
N denote the set of natural numbers {0, 1, 2, . . .}. We introduce
time into Gact by assigning to each event σ ∈ Σact a lower time
bound lσ ∈ N and an upper time bound uσ ∈ N ∪ {∞}, such that
lσ ≤ uσ ; typically, lσ represents a delay in communication or in
control enforcement, while uσ is often a hard deadline imposed
by legal specification or physical necessity. With these assigned
time bounds, the event set Σact is partitioned into two subsets:
Σact = Σspe∪̇Σrem (∪̇ denotes disjoint union) with Σspe := {σ ∈

Σact|uσ ∈ N} andΣrem := {σ ∈ Σact|uσ = ∞}; here ‘‘spe’’ denotes
‘‘prospective’’, i.e. σ will occur within some prospective time (with
a finite upper bound), while ‘‘rem’’ denotes ‘‘remote’’, i.e. σ will
occur at some indefinite time (with no upper bound), or possibly
will never occur at all.

A distinguished event, written as tick, is introduced which
represents ‘‘tick of the global clock’’. Attach to each event σ ∈ Σact
a (countdown) timer tσ ∈ N, whose default value tσ0 is set to be

tσ0 :=


uσ if σ ∈ Σspe,
lσ if σ ∈ Σrem.

(2)

When timer tσ > 0, it decreases by 1 (counting down) if event tick
occurs, and when tσ = 0, event σ must occur (resp. may occur) if
σ ∈ Σspe (resp. if σ ∈ Σrem). Note that while tick is a global event,
each timer tσ is local (with respect to the event σ). Also define the
timer interval Tσ by

Tσ :=


[0, uσ] if σ ∈ Σspe,
[0, lσ] if σ ∈ Σrem.

(3)

Based on (1)–(3), the TDES model G is given by

G := (Q , Σ, δ, q0,Qm), (4)

where Q := A ×


{Tσ |σ ∈ Σact} (


denotes Cartesian product)
is the finite set of states, a state q ∈ Q being of the form q =

(a, {tσ |σ ∈ Σact}) (i.e. a (1+|Σact|)-tuple);Σ := Σact∪̇{tick} is the
finite set of events; δ : Q × Σ → Q is the (partial) state transition
function; q0 = (a0, {tσ0|σ ∈ Σact}) (tσ0 as in (2)) is the initial
state; and Qm ⊆ Am ×


{Tσ |σ ∈ Σact} is the set of marker states.

Starting from q0, TDES G executes state transitions in accordance
with its transition function δ. Let q = (a, {tα|α ∈ Σact}) ∈ Q and
σ ∈ Σact; δ is defined at (q, σ), written as δ(q, σ)!, if δact of Gact
is defined at (a, σ) (i.e. δact(a, σ)!) and timer tσ satisfies (i) 0 ≤

tσ ≤ uσ − lσ when σ ∈ Σspe, and (ii) tσ = 0 when σ ∈ Σrem. The
new state q′

= δ(q, σ) is given by q′
= (δact(a, σ), {t ′α|α ∈ Σact}),

where t ′σ is set to be its default value tσ0 as in (2); for other timers
tα, α ≠ σ , the reader is referred to detailed updating rules given
in Brandin andWonham (1994) andWonham (2012). On the other
hand, δ(q, tick)! if no timer of a prospective event is zero, and q′

=

δ(q, tick) = (a, {t ′α|α ∈ Σact}), i.e. there is no change in the activity
component a of q, while the rules for updating timers are again
referred to Brandin and Wonham (1994) and Wonham (2012).

Let Σ∗ be the set of all finite strings of elements in Σ =

Σact∪̇{tick}, including the empty string ϵ. For Σ ′
⊆ Σ , the natural

projection P : Σ∗
→ Σ ′∗ is defined by

P(ϵ) = ϵ, ϵ is the empty string;

P(σ) =


ϵ, if σ ∉ Σ ′,
σ , if σ ∈ Σ ′

;

P(sσ) = P(s)P(σ), s ∈ Σ∗, σ ∈ Σ .

(5)

As usual, P is extended to P : Pwr(Σ∗) → Pwr(Σ ′∗), where Pwr(·)
denotes powerset. Write P−1

: Pwr(Σ ′∗) → Pwr(Σ∗) for the
inverse-image function of P .

We introduce the languages generated by TDES G in (4). The
transition function δ is extended to δ : Q × Σ∗

→ Q in the usual
way. The closed behavior of G is the language L(G) := {s ∈ Σ∗

|δ
(q0, s)!}, and the marked behavior is Lm(G) := {s ∈ L(G)|δ(q0, s) ∈

Qm}. We say that G is nonblocking if the prefix closure (Wonham,
2012) L̄m(G) satisfies L̄m(G) = L(G).

To use TDES G in (4) for supervisory control, it is necessary to
specify certain transitions that can be controlled by an external
supervisor. First, as in the untimed theory (Wonham, 2012), we
need a subset of events that may be disabled. Since disabling an
event usually requires preventing that event indefinitely from
occurring, only remote events belong to this category. Thus let
a new subset Σhib ⊆ Σrem denote the prohibitible events; the
supervisor is allowed to disable any prohibitible event. Next, and
specific to TDES, we bring in another category of events which can
preempt event tick. Note that tick may not be disabled, inasmuch
as no control technology can stop the global clock indefinitely. On
this basis let a new subset Σfor ⊆ Σact denote the forcible events;
a forcible event is one that preempts event tick: if, at a state q of
G, tick is defined and so are one or more forcible events, then tick
can be effectively erased from the current list of defined events
(contrast with indefinite erasure).2 There is no particular relation

2 Onemay also think of forcible events as being able to occur so fast that they can
occur between ticks. For a more general use of forcible events, see Golaszewski and
Ramadge (1987).

2788 R. Zhang et al. / Automatica 49 (2013) 2786–2794
postulated a priori between Σfor and any of Σhib, Σrem or Σspe; in
particular, a remote event may be both forcible and prohibitible.
It is now convenient to define the controllable event set Σc :=

Σhib ∪̇ {tick}. Here designating both Σhib and tick controllable is
to simplify terminology. We emphasize that events in Σhib can be
disabled indefinitely, while tick may be preempted only by events
in Σfor. The uncontrollable event set Σu is Σu := Σ − Σc =

Σspe∪̇(Σrem − Σhib).
We introduce the notion of controllability as follows. For a

string s ∈ L(G), define EligG(s) := {σ ∈ Σ |sσ ∈ L(G)} to be
the subset of events ‘eligible’ to occur (i.e. defined) at the state
q = δ(q0, s). Consider an arbitrary language F ⊆ L(G) and a string
s ∈ F ; similarly define the eligible event subset EligF (s) := {σ ∈

Σ |sσ ∈ F}. We say F is controllablewrt. G in (4) if, for all s ∈ F ,

EligF (s) ⊇


EligG(s) ∩ (Σu∪̇{tick}) if EligF (s) ∩ Σfor = ∅,
EligG(s) ∩ Σu if EligF (s) ∩ Σfor ≠ ∅.

(6)

Thus F controllable means that an event σ is eligible to occur in F
if (i) σ is currently eligible in G, and (ii) either σ is uncontrollable
or σ = tick when there is no forcible event currently eligible in
F . Recall that in the untimed supervisory control theory (Ramadge
& Wonham, 1987; Wonham, 2012), F controllable means that the
occurrence of an uncontrollable event in G will not cause a string
s ∈ F to exit from F ; the difference in TDES is that the special event
tick (formally controllable) can be preempted only by a forcible
event when the forcible event is eligible to occur.

Whether or not F is controllable, we denote by C(F) the set
of all controllable sublanguages of F . Then C(F) is nonempty,
closed under arbitrary set unions, and thus contains a unique
supremal element denoted by supC(F) (Brandin &Wonham, 1994;
Wonham, 2012). Now consider a specification language E ⊆ Σ∗

imposed on the timed behavior of G; E may represent a logical
and/or temporal requirement. Let3 SUP = (X, Σ, ξ , x0, Xm) be the
correspondingmonolithic supervisor that is optimal (i.e., maximally
permissive) and nonblocking in the following sense: SUP’s marked
language Lm(SUP) is

Lm(SUP) = supC(E ∩ Lm(G)) ⊆ Lm(G) (7)

andmoreover its closed language L(SUP) is L(SUP) = Lm(SUP).We
note that in order to achieve optimal and nonblocking supervision,
SUP should correctly disable prohibitible events and preempt tick
via forcible events.

3. Formulation of localization problem

Let TDES G in (4) be the plant to be controlled, and E be a
specification language. Synthesize as in (7) the monolithic optimal
and nonblocking supervisor SUP; throughout the paperwe assume
that Lm(SUP) ≠ ∅. Supervisor SUP’s control action includes (i)
disabling prohibitible events in Σhib and (ii) preempting tick via
forcible events in Σfor. This section formulates the localization of
SUP’s control action with respect to each prohibitible event as
well as to each forcible event; an illustration of localization is
provided in Fig. 1. Compared to Cai and Wonham (2010a), the
present supervisor localization is an extension from untimed DES to
TDES. As will be seen below, the treatment of prohibitible events
is the timed counterpart of the treatment of controllable events
in Cai and Wonham (2010a); on the other hand, the localization
of forcible events’ preemptive action is specific to TDES, and we
introduce below the new concept ‘‘local preemptor’’. Further, we
will discuss applying supervisor localization to the distributed
control of multi-agent TDES.

3 SUP need not be a (strict) TDES as defined in (4). It can be any automatonwhose
event set contains tick; we refer to such automata as generalized TDES.
Fig. 1. Supervisor localization example for illustration: let Σhib = {σ1, σ2, σ3},
Σfor = {σ3, σ4, σ5}; note σ3 ∈ Σhib ∩ Σfor . Localization of SUP’s control action
includes two parts: (i) localizing its disabling action into three local controllers
LOCC

σi
, i = 1, 2, 3, and (ii) localizing its preemptive action into three local

preemptors LOCP
σj
, j = 3, 4, 5.

First, let α ∈ Σfor be an arbitrary forcible event. We say that
LOCP

α = (Yα, Σα, ζα, y0,α, Ym,α),4 Σα ⊆ Σ , is a local preemptor
(for α) if α is defined at every state of LOCP

α where event tick is
preempted. Let Pα : Σ∗

→ Σ∗
α be the natural projection as in

(5). Then in terms of language, the above condition means that for
every s ∈ Σ∗ there holds

s.tick ∈ L(G) and s ∈ P−1
α L(LOCP

α) and

s.tick ∉ P−1
α L(LOCP

α) ⇒ sα ∈ L(G) ∩ P−1
α L(LOCP

α).

Notation s.tick means that event tick occurs after string s and will
be used henceforth. The left side of the above implication means
that event tick is preempted in LOCP

α after string s (after s event
tick is defined in L(G) but not in LOCP

α), and the right side says
that forcible event α is defined in LOCP

α (and in L(G)) after s.
That is, forcible event α acts to preempt tick. The event set Σα of
LOCP

α in general satisfies {α, tick} ⊆ Σα ⊆ Σ; in typical cases,
however, both subset containments are strict, as will be illustrated
in Section 5. Also, for simplicity we assume that the lower and
upper time bounds of events in Σα coincide with the bounds on
the corresponding events in Σ (this is, in fact, guaranteed by the
localization procedure presented below in Section 4). It is worth
emphasizing thatΣα (precisely defined below) is not fixed a priori,
but will be systematically determined, as part of our localization
result, to ensure correct preemptive action.

Next, let β ∈ Σhib be an arbitrary prohibitible event. We say
that LOCC

β = (Yβ , Σβ , ζβ , y0,β , Ym,β), Σβ ⊆ Σ , is a local controller
(for β) if LOCC

β can disable only event β . Let Pβ : Σ∗
→ Σ∗

β be the
natural projection as in (5). Then in terms of language, the above
condition means that for all s ∈ Σ∗ and σ ∈ Σ , there holds (cf. Cai
& Wonham, 2010a)

sσ ∈ L(G) and s ∈ P−1
α L(LOCC

β) and

sσ ∉ P−1
α L(LOCC

β) ⇒ σ = β.

The event setΣβ of LOCC
β in general satisfies {β} ⊆ Σβ ⊆ Σ .5 Like

Σα above, Σβ will be generated as part of our localization result
to guarantee correct disabling action; again, the events in Σβ are
assumed to have the same lower and upper time bounds as the
corresponding events in Σ .

Now we formulate the Supervisor Localization Problem. Con-
struct a set of local preemptors {LOCP

α|α ∈ Σfor} and a set of local
controllers {LOCC

β |β ∈ Σhib}, with

L(LOC) :=

 
α∈Σfor

P−1
α L(LOCP

α)


∩

 
β∈Σhib

P−1
β L(LOCC

β)


(8)

4 LOCP
α is a generalized TDES; we further explain this below in Section 4.

5 Event set Σβ need not contain event tick, since LOCC
β ’s disabling action may be

purely logical and irrelevant to time.

R. Zhang et al. / Automatica 49 (2013) 2786–2794 2789
Fig. 2. Example of distributed control by allocating local preemptors/controllers.
Continuing the example in Fig. 1, let plant G be composed of three agents Gk with
event sets Σk, k ∈ [1, 3]. Suppose σ1, σ2 ∈ Σ1, σ2, σ3 ∈ Σ2 , and σ3, σ4, σ5 ∈ Σ3;
thus G1 and G2 share event σ2 , and G2 and G3 share event σ3 . Then a convenient
allocation is displayed, where each local controller/preemptor is owned by exactly
one agent. The allocation creates a distributed control architecture for the multi-
agent plant, in which each agent acts semi-autonomously while interacting with
other agents through communication of shared events.

Lm(LOC) :=

 
α∈Σfor

P−1
α Lm(LOCP

α)



∩

 
β∈Σhib

P−1
β Lm(LOCC

β)


(9)

such that LOC is control equivalent to SUP (with respect to G) in the
following sense:

L(G) ∩ L(LOC) = L(SUP),

Lm(G) ∩ Lm(LOC) = Lm(SUP).

Using a set of local preemptors and local controllers that is con-
trol equivalent to SUP, we can build an optimal and nonblock-
ing distributed control architecture for a multi-agent TDES plant.
Let the plant G with event set Σ be composed6 of n component
TDES (or agents) Gk with Σk (k ∈ [1, n]).7 According to (4),
Σk = Σact,k∪̇{tick} (event tick is shared by all agents); thus Σ =n

k=1 Σact,k∪̇{tick}. In addition to tick, we also allow the Σact,k to
share events. Now let Σfor,k, Σhib,k ⊆ Σk be the forcible event set
and prohibitible event set, respectively, of agent Gk; then Σfor =n

k=1 Σfor,k and Σhib =
n

k=1 Σhib,k. For each forcible event α ∈

Σfor there is a local preemptor LOCP
α , and for each prohibitible

event β ∈ Σhib there is a local controller LOCC
β . These local pre-

emptors/controllers need to be allocated among individual agents,
for each agent may have multiple forcible/prohibitible events. A
convenient allocation is to let each local controller/preemptor be
owned by exactly one agent; an example is displayed in Fig. 2.
Choosing this or (obvious) alternative ways of allocation would be
case-dependent.

4. Procedure of supervisor localization

We solve the Supervisor Localization Problem of TDES by devel-
oping a localization procedure for the supervisor’s preemptive and

6 Composition of multiple TDES involves first taking synchronous product of the
untimed DES and then unifying the time bounds of shared events (Brandin &
Wonham, 1994; Wonham, 2012).
7 Note that each Gk may contain multiple forcible and/or prohibitible events.
disabling action, respectively. The procedure extends the untimed
counterpart in Cai and Wonham (2010a). In particular, localizing
the supervisor’s preemption of event tick with respect to each in-
dividual forcible event is novel in the current TDES setup, forwhich
we introduce below two new ideas ‘‘preemption consistency rela-
tion’’ and ‘‘preemption cover’’.

Given a TDES plant G = (Q , Σ, δ, q0,Qm) (as in (4)) and a cor-
responding monolithic supervisor SUP = (X, Σ, ξ , x0, Xm) with
respect to an imposed specification, we present the localization of
SUP’s preemptive and disabling action in the sequel.

4.1. Localization of preemptive action

Fix an arbitrary forcible event α ∈ Σfor. First define Etick : X →

{1, 0} according to

Etick(x) = 1 iff ξ(x, tick)!. (10)

Thus Etick(x) = 1 means that tick is defined at state x in SUP. Next
define Fα : X → {1, 0} according to Fα(x) = 1 iff

ξ(x, α)! and ¬ξ(x, tick)! and (∃s ∈ Σ∗)
ξ(x0, s) = x and δ(q0, s.tick)!


. (11)

So Fα(x) = 1 means that forcible event α is defined at state x (i.e.
ξ(x, α)!), which effectively preempts the occurrence of event tick
(i.e. tick is not defined at x in SUP but is defined at some state in
the plant G corresponding to x via string s). It should be noted that
at state x, α need not be the only forcible event that preempts tick,
for there can be other forcible events, say α′, defined at x. In that
case, by (11) Fα′(x) = 1 as well.

Based on the preemption information captured by Etick and Fα

above, we define the following binary relation RP
α (for α) on X ,

called ‘preemption consistency’. This relation determines if two
states of SUP have consistent preemptive action with respect to
the forcible event α.

Definition 1. Let RP
α ⊆ X × X . We say that RP

α is a preemption
consistency relation with respect to α ∈ Σfor if for every x, x′

∈

X, (x, x′) ∈ RP
α iff

Etick(x) · Fα(x′) = 0 = Etick(x′) · Fα(x). (12)

Thus a pair of states (x, x′) in SUP is not preemption consistent
with respect to α onlywhen tick is defined at x but is preempted by
α at x′, or vice versa. Otherwise, x and x′ are preemption consistent,
i.e. (x, x′) ∈ RP

α . It is easily verified that RP
α is reflexive and

symmetric, but not transitive; an illustration is provided in Fig. 3.
Hence RP

α is not an equivalence relation. This fact leads to the
following definition of a preemption cover. Recall that a cover on
a set X is a family of nonempty subsets (or cells) of X whose union
is X .

Definition 2. Let I be some index set, and CP
α = {Xi ⊆ X |i ∈ I} a

cover on X . We say that CP
α is a preemption cover with respect to α

if

(i) (∀i ∈ I, ∀x, x′
∈ Xi)(x, x′) ∈ RP

α,

(ii) (∀i ∈ I, ∀σ ∈ Σ)

(∃x ∈ Xi)ξ(x, σ)!

⇒

(∃j ∈ I)(∀x′

∈ Xi)ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj


. (13)

2790 R. Zhang et al. / Automatica 49 (2013) 2786–2794
Fig. 3. Preemption consistency relation is not transitive: (x0, x1) ∈ RP
α, (x1, x2) ∈

RP
α , but (x0, x2) ∉ RP

α .

A preemption cover CP
α lumps states of SUP into (possibly

overlapping) cells Xi, i ∈ I . According to (i) all states that reside
in a cell Xi must be pairwise preemption consistent, and (ii) for
every event σ ∈ Σ , all states that can be reached from any states
in Xi by a one-step transition σ must be covered by the same cell
Xj. Inductively, two states x, x′ belong to a common cell ofCP

α if and
only if x and x′ are preemption consistent, and two future states, say
y and y′, that can be reached respectively from x and x′ by a given
string are again preemption consistent. We say that a preemption
cover CP

α is a preemption congruence if CP
α happens to be a partition

on X , namely its cells are pairwise disjoint.
Having defined a preemption cover CP

α on X , we construct,
below, a local preemptor LOCP

α = (Yα, Σα, ζα, y0,α, Ym,α) for the
forcible event α to preempt tick.

(Step 1) The state set is Yα := I , with each state y ∈ Yα being
a cell Xi of the cover CP

α . In particular, the initial state y0,α is a
cell Xi0 where x0 belongs, i.e. x0 ∈ Xi0, and the marker state set
Ym,α := {i ∈ I|Xi ∩ Xm ≠ ∅}.

(Step 2) For the event set Σα , define the transition function
ζ ′
α : I × Σ → I over the entire event set Σ by ζ ′

α(i, σ) = j if

(∃x ∈ Xi)ξ(x, σ) ∈ Xj and

(∀x′
∈ Xi)


ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj


.

(14)

Choose Σα to be the union of {α, tick} with other events which are
not selfloop transitions of ζ ′

α , i.e.

Σα := {α, tick}∪̇{σ ∈ Σ − {α, tick} | (∃i, j ∈ I)

i ≠ j and ζ ′

α(i, σ) = j}. (15)

Intuitively, only those non-selfloop transitions may affect deci-
sions on tick preemption, and thus the events that are only self-
loops may be removed. Note that {α, tick} ⊆ Σα ⊆ Σ .

(Step 3) Define the transition function ζα to be the restriction of
ζ ′
α to Σα; namely ζα : I × Σα → I according to ζα(i, σ) = ζ ′

α(i, σ)
for every i ∈ I and σ ∈ Σα .

We note that LOCP
α thus constructed is not a TDES as defined

in (4), for its states do not contain timer information. LOCP
α is a

generalized TDES because its event set Σα contains tick. We will
be concerned only with its behavior, namely its closed andmarked
languages. Also note that, owing to possible overlapping of cells
in the cover CP

α , the choices of y0,α and ζα may not be unique,
and consequently LOCP

α may not be unique. In that case we pick
an arbitrary instance of LOCP

α . If CP
α happens to be a preemption

congruence, then LOCP
α is unique.

By the same procedure, we generate a set of local preemptors
LOCP

α , one for each forcible event α ∈ Σfor. We will verify below
that these generated preemptors collectively achieve the same
preemptive action of event tick as the monolithic supervisor SUP
does.
4.2. Localization of disabling action

Next,we turn to the localization of SUP’s disabling action,which
is analogous to the treatment in Cai and Wonham (2010a). Fix an
arbitrary prohibitible event β ∈ Σhib. First define Eβ : X → {1, 0}
according to Eβ(x) = 1 iff ξ(x, β)!. So Eβ(x) = 1 means that β is
defined at state x in SUP. Next define Dβ : X → {1, 0} according to
Dβ(x) = 1 iff

¬ξ(x, β)! and (∃s ∈ Σ∗) (ξ(x0, s) = x and δ(q0, sβ)!) . (16)

Thus Dβ(x) = 1 means that β must be disabled at x (i.e. β is
disabled at x in SUP but is defined at some state in the plant G
corresponding to x via string s). In addition, defineM : X → {1, 0}
according to M(x) = 1 iff x ∈ Xm. Thus M(x) = 1 means that state
x is marked in SUP. Finally define T : X → {1, 0} according to

T (x) = 1 iff (∃s ∈ Σ∗)ξ(x0, s) = x and δ(q0, s) ∈ Qm.

So T (x) = 1 means that some state, corresponding to x via s, is
marked in G. Note that for each x ∈ X , it follows from Lm(SUP) ⊆

Lm(G) that T (x) = 0 ⇒ M(x) = 0 and M(x) = 1 ⇒ T (x) = 1 (Cai
& Wonham, 2010a).

We now define the binary relation RC
β ⊆ X × X , called control

consistencywith respect to prohibitible event β (cf. Cai &Wonham,
2010a), according to (x, x′) ∈ RC

β iff

(i) Eβ(x) · Dβ(x′) = 0 = Eβ(x′) · Dβ(x),

(ii) T (x) = T (x′) ⇒ M(x) = M(x′). (17)

Thus a pair of states (x, x′) in SUP satisfies (x, x′) ∈ RC
β if (i)

event β is defined at one state, but not disabled at the other, and
(ii) x and x′ are both marked or both unmarked in SUP, provided
both are marked or unmarked in G. It is easily verified that RC

β

is generally not transitive (Cai & Wonham, 2010a), thus not an
equivalence relation. Now let I be some index set, and CC

β = {Xi ⊆

X |i ∈ I} a cover on X . Similar to Definition 2, we define CC
β to be a

control cover with respect to β if

(i) (∀i ∈ I, ∀x, x′
∈ Xi)(x, x′) ∈ RC

β ,

(ii) (∀i ∈ I, ∀σ ∈ Σ)

(∃x ∈ Xi)ξ(x, σ)!

⇒

(∃j ∈ I)(∀x′

∈ Xi)ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj


. (18)

Note that the only difference between control cover and preemp-
tion cover in Definition 2 is the binary relation (control consistency
RC

β or preemption consistency RP
α) used in condition (i).

With the control cover CC
β on X , we construct by the same

steps (Step 1)–(Step 3), above, a local controller LOCC
β = (Yβ , Σβ ,

ζβ , y0,β , Ym,β) for prohibitible eventβ . Here, the choice of event set
Σβ is (cf. (15))

Σβ := {β}∪̇{σ ∈ Σ − {β} | (∃i, j ∈ I)

i ≠ j and ζ ′

β(i, σ) = j}. (19)

Σβ need not contain event tick, as noted in Footnote 5. In the
sameway, we generate a set of local controllers LOCC

β , one for each
prohibitible event β ∈ Σhib. We will verify that the collective
disabling action of these local controllers is identical to that of SUP.

4.3. Main result

Here is the main result of this section, which states that
the local preemptors and controllers generated by the proposed
localization procedure collectively achieve the monolithic optimal
and nonblocking supervision.

R. Zhang et al. / Automatica 49 (2013) 2786–2794 2791
Theorem 3. The set of local preemptors {LOCP
α|α ∈ Σfor} and the

set of local controllers {LOCC
β |β ∈ Σhib} constructed above solve the

Supervisor Localization Problem; that is,

L(G) ∩ L(LOC) = L(SUP), (20)
Lm(G) ∩ Lm(LOC) = Lm(SUP). (21)

where L(LOC) and Lm(LOC) are as defined in (8) and (9), respectively.

Since for every preemption cover (resp. control cover), the pre-
sented procedure constructs a local preemptor (resp. preemp-
tion cover), Theorem 3 asserts that every set of preemption and
control covers together generates a solution to the Supervisor
Localization Problem. In particular, a set of state-minimal local pre-
emptors (resp. local controllers), possibly non-unique, can in prin-
ciple be defined from a set of suitable preemption covers (resp.
control covers). The minimal state problem, however, is known to
be NP-hard (Su & Wonham, 2004). In Cai and Wonham (2010a)
we proposed, nevertheless, a polynomial-time localization algo-
rithmwhich computes congruences instead of covers, and empiri-
cal evidence was given that significant state size reduction can of-
ten be achieved. That localization algorithm (see Cai & Wonham,
2010a, Section III-B) for untimed DES can easily be adapted in the
current TDES case, the onlymodification being to use the new defi-
nitions of preemption and control consistency given in Sections 4.1
and 4.2.

So far we have focused on localization of the monolithic super-
visor. In fact, the developed localization procedure may be applied
to decompose amodular (decentralized or hierarchical) supervisor
just as well. Thus when a TDES is large-scale and the monolithic
supervisor not feasibly computable, we may in principle combine
localization with an effective modular supervisory synthesis: first
compute a set of modular supervisors which achieves the same be-
havior as the monolithic supervisor, and then apply localization to
decompose each modular supervisor in the set. This is done in Cai
andWonham (2010a) and Cai andWonham (2010b) for large-scale
untimed DES and we aim to work out the timed counterpart in fu-
ture research.

We now provide the Proof of Theorem 3. Eq. (21) and the (⊇)
direction of (20) may be verified analogously as in Cai and Won-
ham (2010a). Here we prove (⊆) in (20), which involves the TDES
controllability definition, preemption consistency, and control
consistency.

Proof of Theorem 3 (⊆, (20)). We show this by induction. First,
the empty string ϵ belongs to L(G), L(LOC), and L(SUP), because
these languages are all nonempty. Next, suppose s ∈ L(G) ∩

L(LOC), s ∈ L(SUP), and sσ ∈ L(G) ∩ L(LOC) for an arbitrary event
σ ∈ Σ . It will be proved that sσ ∈ L(SUP). Since Σ = Σu ∪̇ Σc =

Σu ∪̇ {tick} ∪̇ Σhib, we consider the following three cases.
(i) Let σ ∈ Σu. Since Lm(SUP) is controllable (see (6)), and sσ ∈

L(G) (i.e. σ ∈ EligG(s)), we have σ ∈ EligLm(SUP)(s). That is, sσ ∈

Lm(SUP) = L(SUP).
(ii) Let σ = tick. We will show tick ∈ EligLm(SUP)(s) to con-

clude that s.tick ∈ Lm(SUP) = L(SUP). By the hypothesis that
s, s.tick ∈ L(LOC) and Eq. (8), for every forcible event α ∈ Σfor
there holds s, s.tick ∈ P−1

α L(LOCP
α), i.e. Pα(s), Pα(s) tick ∈ L(LOCP

α).
Recall LOCP

α = (Yα, Σα, ζα, y0,α, Ym,α), and let i := ζα(y0,α, Pα(s))
and j := ζα(i, tick). By definition of ζ ′

α in (14), any σ ∉ Σα (defined
in (15)) is only a selfloop transition of ζ ′

α; hence ζ ′
α(y0,α, s) = i. By

(14) again, there exist x, x′
∈ Xi and x′′

∈ Xj such that ξ(x0, s) = x
and ξ(x′, tick) = x′′ in SUP.

Now that x, x′ belong to the same cell Xi, by the preemption
cover definition (Definition 2) x and x′ must be preemption consis-
tent, i.e. (x, x′) ∈ RP

α . Since ξ(x′, tick)!, by (10) we have Etick(x′) =

1. Thus the requirement Etick(x′) · Fα(x) = 0 (Definition 1) yields
Fig. 4. Manufacturing cell.

that Fα(x) = 0. The latter, by (11), gives rise to the following
three cases: (Case 1) ¬ξ(x, α)!, (Case 2) ξ(x, tick)!, or (Case 3)
(¬∃s ∈ Σ∗)


ξ(x0, s) = x and δ(q0, s.tick)!


. First, Case 3 is impos-

sible, because by the hypothesis that s ∈ L(SUP) and s.tick ∈ L(G)
we have ξ(x0, s)! and δ(q0, s.tick)!. Next, Case 2 means directly
tick ∈ EligLm(SUP)(s). Finally, Case 1 implies α ∉ EligLm(SUP)(s); note
that this holds for all α ∈ Σfor. Hence EligLm(SUP)(s) ∩ Σfor = ∅.
Then by the fact that SUP is controllable, we derive from (6) that
tick ∈ EligLm(SUP)(s).

(iii) Let σ ∈ Σhib. By the hypothesis s, sσ ∈ L(LOC) and Eq.
(8), we have s, sσ ∈ P−1

σ L(LOCC
σ), i.e. Pσ (s), Pσ (s)σ ∈ L(LOCC

σ). As
in (ii), let i := ζσ (y0,σ , Pσ (s)) = ζ ′

σ (y0,σ , s) and j := ζσ (i, σ). By
the definition of ζ ′

σ in (14), there exist x, x′
∈ Xi, x′′

∈ Xj such that
ξ(x0, s) = x and ξ(x′, σ) = x′′. Since x, x′ belong to the same cellXi,
by the control cover definition x and x′ must be control consistent,
i.e. (x, x′) ∈ RC

σ . That ξ(x′, σ)! implies that Eσ (x′) = 1. Thus the
requirement Eσ (x′)·Dσ (x) = 0 yields thatDσ (x) = 0. The latter, by
(16), gives rise to the following two cases: (Case 1) ξ(x, σ)!, or (Case
2) (¬∃s ∈ Σ∗)ξ(x0, s) = x and δ(q0, sσ)!. Case 2 is impossible, be-
cause by the hypothesis that s ∈ L(SUP) and sσ ∈ L(G) we have
ξ(x0, s)! and δ(q0, sσ)!. But in Case 1, ξ(x, σ)! i.e. sσ ∈ L(SUP). �

5. Case study: manufacturing cell

We illustrate supervisor localization in TDES by studying a
manufacturing cell example, taken from Brandin and Wonham
(1994),Wonham (2012, Section 9.11). As displayed in Fig. 4, the cell
consists of two machines, MACH1 and MACH2, an input conveyor
CONV1 as an infinite source of workpieces, and output conveyor
CONV2 as an infinite sink. Each machine processes two types of
parts, P1 and P2. Each type of part is routed as shown in Fig. 4. The
untimed DES models of the machines are also displayed in Fig. 4;
here αij (i, j ∈ [1, 2]) is the event ‘‘MACHi starts to work on a Pj-
part’’, while βij (i, j ∈ [1, 2]) is ‘‘MACHi finishes working on a Pj-
part’’. Assign lower and upper time bounds to each event, with the
notation (event, lower bound, upper bound), as follows:

MACH1’s timed events :

(α11, 1, ∞) (β11, 3, 3) (α12, 1, ∞) (β12, 2, 2)
MACH2’s timed events :

(α21, 1, ∞) (β21, 1, 1) (α22, 1, ∞) (β22, 4, 4).

So αij are remote events (upper bound ∞) and βij prospective
events (finite upper bounds). Now the TDES models of the two
machines can be generated (Wonham, 2012, p. 425). Their joint
behavior is the synchronous product of the two TDES, which is the
plant to be controlled.

To impose behavioral constraints on the two machines’ joint
behavior,we take the eventsαij to be both prohibitible and forcible,
i.e. Σhib = Σfor = {αij|i, j = 1, 2}, and the βij to be uncontrollable,
i.e. Σu = {βij|i, j = 1, 2}. We impose the following logical control
specifications as well as a temporal specification: (S1) A P1-part
must be processed first byMACH1 and then byMACH2. (S2) A P2-
part must be processed first by MACH2 and then by MACH1. (S3)
One P1-part and one P2-part must be processed in a production

2792 R. Zhang et al. / Automatica 49 (2013) 2786–2794
Fig. 5. Control specifications: logical and temporal. The marked state 3 of SPEC3
corresponds to the completion of a production cycle: one P1-part and one P2-part
are processed by both machines.

Fig. 6. Monolithic optimal and nonblocking supervisor SUP.

cycle. (S4) A production cycle must be completed in at most 8 time
units.8

These four specifications are formalized as automata SPEC1,
SPEC2, SPEC3, and SPEC4, respectively, as displayed in Fig. 5.
The temporal specification SPEC4 is simply an 8-tick sequence,
with all states marked; SPEC4 forces any TDES with which it is
synchronized to halt after atmost 8 ticks, i.e. after 8 ticks to execute
no further event whatever except event tick. Thus it extracts the
marked strings (if any) which satisfy this constraint, namely the
‘tasks’ of TDES that can be accomplished in at most 8 ticks (which
turns out to be exactly one production cycle according to Brandin
& Wonham, 1994, Wonham, 2012).

Now the plant to be controlled is the synchronous product of
TDES MACH1 and MACH2 (Wonham, 2012, p. 425), and the over-
all control specification is the synchronous product of automata
SPEC1–SPEC4 in Fig. 5. We compute as in (7) the corresponding
monolithic optimal and nonblocking supervisor SUP; the compu-
tation is done by the supcon command in XPTTCT (Wonham, 2008).
SUP has 19 states and 21 transitions, as displayed in Fig. 6. We
see that SUP represents the behavior that the manufacturing cell

8 We choose ‘‘8 time units’’ because it is, according to Brandin and Wonham
(1994) and Wonham (2012), the minimal time to complete one production cycle.
Thus this temporal specification is a time-minimization requirement.
accomplishes exactly one working cycle, within 8 ticks, producing
one P1-part and one P2-part. Each event is executed exactly once,
and each forcible event preempts tick immediately after it becomes
eligible.

We now apply supervisor localization to decompose the mono-
lithic supervisor SUP into local preemptors and local controllers,
respectively for each forcible event and each prohibitible event.
Specifically, since Σhib = Σfor = {αij|i, j = 1, 2}, we will compute
a local preemptor and a local controller for each αij, responsible for
αij’s tick-preemptive action and its disabling action, respectively.
This computation can be done by an algorithm adapted from Cai
andWonham (2010a) (as discussed in Section 4.3); here, however,
owing to the simple (chain-like) structure of SUP (Fig. 6), local pre-
emptors/controllers can be derived by inspection.We demonstrate
such a derivation below, which results in a local preemptor LOCP

α11
for the forcible (and prohibitible) event α11. Other derivations of
local preemptors/controllers are similar.

To derive a local preemptor LOCP
α11

for event α11, we find
a preemption cover CP

α11
for α11 on SUP’s state set as follows.

Initialize CP
α11

to be CP
α11

=

[0], [1], [2], . . . , [18]


, i.e. each cell

contains exactly one state of SUP. Subsequently,wemerge asmany
cells together as possible according to Definitions 1 and 2, while
maintaining CP

α11
to be a preemption cover.

(i) Cells [0] and [1] cannot be merged. Since Etick(0) = 1 (event
tick is defined at state 0) and Fα11(1) = 1 (tick is preempted
by α11 at state 1), the pair of states (0, 1) is not preemption
consistent, i.e. (0, 1) ∉ RP

α11
. Consequently, merging cells

[0] and [1] violates requirement (i) of preemption cover
(Definition 2).

(ii) Cells [1], [3] and cells [2], [4] can be merged. For cells [2] and
[4], we have Fα11(2) = 0, Etick(2) = 0 (tick is preempted at
state 2, but by α22 not by α11) and Etick(4) = 1, Fα11(4) = 0
(event tick is defined at state 4). Thus (2, 4) ∈ RP

α11
, which

satisfies requirement (i) of preemption cover. Moreover since
no common event is defined on states 2 and 4, requirement
(ii) of preemption cover is trivially satisfied. Therefore cells
[2], [4] can be merged.

For cells [1] and [3], we have Fα11(1) = Fα11(3) = 1 (tick
is preempted by α11 at both states 1 and 3) and Etick(1) =

Etick(3) = 0. Thus (1, 3) ∈ RP
α11

, which satisfies requirement
(i) of preemption cover. Now event α11 is defined at both
states 1 and 3, but it leads to states 2 and 4 respectively,
which have been verified to be preemption consistent. Hence,
requirement (ii) of preemption cover is also satisfied, and cells
[1], [3] can be merged.
By merging the above two pairs of cells, we derive CP

α11
=

[0], [1, 3], [2, 4], [5], . . . , [18]

.

(iii) Cells [2, 4], [5], . . . , [18] can all be merged together. Note, in-
deed, that Fα11(·) = 0 for all these states (no tick preemption
byα11). On checking the preemption consistency and preemp-
tion cover definitions as above, we conclude that the final pre-
emption cover is CP

α11
=

[0], [1, 3], [2, 4, 5, . . . , 18]


. It is in

fact a preemption congruence.

Having found the preemption cover CP
α11

, we apply (Step 1)–
(Step 3) in Section 4.1 to construct a local preemptor LOCP

α11
, with

transition structure displayed in Fig. 7. Note that the event set
of LOCP

α11
is exactly {α11, tick}, which means that LOCP

α11
does

not need to observe any external events in order to execute its
preemptive action. Similarly, we derive other local preemptors and
local controllers, all displayed in Figs. 7 and 8. Here, for example,
the event set of LOCP

α12
is {α12, tick, β22}; so eventβ22 originating in

MACH2 has to be observed by LOCP
α12

. We have then verified that
their joint behavior (via synchronous product) is identical to the

R. Zhang et al. / Automatica 49 (2013) 2786–2794 2793
Fig. 7. Local preemptors for individual forcible events. The alphabet of each local
preemptor is the set of events displayed in each automaton.

Fig. 8. Local controllers for individual prohibitible events. The alphabet of each
local controller is the set of events displayed in each automaton.

Fig. 9. Distributed control architecture.

monolithic optimal and nonblocking behavior of SUP, i.e. (20) and
(21) hold.

We see that each local preemptor/controller has fewer states,
with a simpler structure, than the monolithic SUP; this renders
each one’s preemptive/disabling action more transparent. For ex-
ample, the local preemptor LOCP

α11
(resp. LOCP

α22
) in Fig. 7 means

that after one tick, forcible event α11 preempts event tick and
MACH1 starts to work on a P1-part (resp. α22 preempts tick and
MACH2works on a P2-part). This is possible becauseα11 (resp.α22)
has lower timebound1 andbecomes eligible to occur after one tick.
For another example, the local preemptor LOCP

α21
in Fig. 7 specifies

that after the occurrence ofα12 followed by a tick, forcible eventα21
preempts tick and MACH2 starts to work on a P1-part. This pre-
emption is due to the fact that α21 has lower time bound 1 and
becomes eligible to occur after the occurrence of β22 plus one tick
(according to Fig. 6 event α22 first occurs inMACH2, which implies
from the untimedmodel in Fig. 4 the event order α22 ·β22 ·α21). But
the occurrence of α12 implies that β22 has just occurred (see Fig. 6).

Finally, with the derived set of local preemptors and controllers,
we build a distributed control architecture for this manufactur-
ing cell; see Fig. 9. Each machine acquires those local preemp-
tors/controllers wrt. its own distinct forcible/prohibitible events,
thereby being capable of executing local preemptive/disabling ac-
tions. For these local actions to jointly achieve the same controlled
behavior as the monolithic supervisor does, communicating the
‘critical’ events α12 and β22 between the two machines is essen-
tial. The critical events are obtained by intersecting the alphabet of
one machine and the alphabets of local preemptors/controllers of
the other.
6. Conclusions

We have established supervisor localization in the Brandin–
Wonham timed DES framework. Under this localization scheme,
each individual agent disables its own prohibitible events and
preempts event tick via its own forcible events; overall, these
local control actions collectively achieve monolithic optimal and
nonblocking supervision. In future research, we aim to combine
the localization approach with an effective modular supervisor
synthesis to address large-scale real-time DES.

References

Brandin, B., & Wonham, W. M. (1994). Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2), 329–342.

Brave, Y., & Heymann, M. (1988). Formulation and control of real time discrete
event processes. In Proc. 27th IEEE conf. on decision and control (pp. 1131–1132).
Austin, TX.

Cai, K., & Wonham, W. M. (2010a). Supervisor localization: a top-down approach
to distributed control of discrete-event systems. IEEE Transactions on Automatic
Control, 55(3), 605–618.

Cai, K., & Wonham, W. M. (2010b). Supervisor localization for large discrete-
event systems: case study production cell. International Journal of Advanced
Manufacturing Technology, 50(9–12), 1189–1202.

Cofer, D. D., & Garg, V. K. (1996). Supervisory control of real-time discrete-event
systems using lattice theory. IEEE Transactions on Automatic Control, 41(2),
199–209.

Golaszewski, C. H., & Ramadge, P. J. (1987). Control of discrete event processes with
forced events. In Proc. 26th IEEE conf. on decision and control (pp. 247–251).

Leung, J., Lee, I., & Son, S. (Eds.) (2007).Handbook of real-time and embedded systems.
Chapman & Hall/CRC.

Ostroff, J. S. (1990). Deciding properties of timed transition models. IEEE
Transactions on Parallel and Distributed Systems, 1(2), 170–183.

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory control of a class of discrete
event process. SIAM Journal on Control and Optimization, 25(1), 206–230.

Su, R., & Wonham, W. M. (2004). Supervisor reduction for discrete-event systems.
Discrete Event Dynamic Systems, 14(1), 31–53.

Wonham, W. M. (2008). Design software: XPTTCT. System Control Group, ECE Dept,
University of Toronto, Available at: http://www.control.utoronto.ca/DES.

Wonham, W. M. (2012). Supervisory control of discrete-event systems. Systems
Control Group, ECE Dept, University of Toronto, Available at: http://www.
control.utoronto.ca/DES.

Renyuan Zhang received the B.Eng. degree in Electrical
Engineering fromXi’an Jiaotong University, Xi’an, Shaanxi,
China, in 2007, and is currently pursuing the Ph.D. degree
in Electrical Engineering from Xi’an Jiaotong University.
From Sept. 2011 to Dec. 2012, he studied in Department
of Electrical and Computer Engineering in University of
Toronto. His research interest is investigating delay-robust
property in distributed control of untimed discrete-event
systems and timed discrete-event systems.

Kai Cai received the B. Eng. degree in Electrical Engineer-
ing from Zhejiang University (China) in 2006, the M.A.Sc.
degree in Electrical and Computer Engineering from the
University of Toronto (Canada) in 2008, and the Ph.D. de-
gree in Systems Science from Tokyo Institute of Technol-
ogy (Japan) in 2011. He is currently a Postdoctoral Fellow
in Systems Control, with the Department of Electrical and
Computer Engineering of the University of Toronto. His re-
search interests are distributed control of multi-agent sys-
tems and distributed control of discrete-event systems.

YongmeiGan received the B.S. andM.S. degrees fromXi’an
Technology University, Xi’an, China, in 1993 and 1996,
respectively, and the Ph.D. degree from Northwestern
Polytechnical University in 1999. Since 2000, she has been
with the school of Electrical Engineering, Xi’an Jiaotong
University, where she is currently an Associate Professor.
She has authored or coauthored more than 60 technical
papers in modeling and simulation of control systems,
robust control, and supervisory control of discrete-event
systems.

http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref1
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref3
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref4
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref5
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref7
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref8
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref9
http://refhub.elsevier.com/S0005-1098(13)00285-9/sbref10
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

2794 R. Zhang et al. / Automatica 49 (2013) 2786–2794
Zhaoan Wang received the B.S. and M.S. degrees from
Xi’an Jiaotong University, Xi’an, China, in 1970 and 1982,
respectively, and the Ph.D. degree from Osaka University,
Osaka, Japan, in 1989. Since 1982, he has been with Xi’an
Jiaotong University, where he is currently a Professor. He
has been active in industrial and government consulting,
and in university research on power systems and control
theory, and has publishedmore than 150 technical papers.
W.M.Wonham received the B. Eng. degree in engineering
physics from McGill University in 1956, and the Ph.D. in
control engineering from theUniversity of Cambridge (UK)
in 1961. From1961 to 1969 hewas associatedwith several
US research groups in control. Since 1970 he has been a
faculty member in Systems Control, with the Department
of Electrical and Computer Engineering of the University
of Toronto. Wonham’s research interests have included
stochastic control and filtering, geometric multivariable
control, and discrete-event systems.

	Supervision localization of timed discrete-event systems
	Introduction
	Preliminaries on timed DES
	Formulation of localization problem
	Procedure of supervisor localization
	Localization of preemptive action
	Localization of disabling action
	Main result

	Case study: manufacturing cell
	Conclusions
	References

