Contents lists available at ScienceDirect

European
Journal
of Control

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

Bounded-time nonblocking supervisory control of timed discrete-event
systems™

Renyuan Zhang 2®-*, Junhua Gou?, Yabo Zhu?, Bei Yang?, Kai Cai®

® School of Automation, Northwestern Polytechnical University, Xi'an, China
b Control and Artificial Intelligence Group, Department of Core Informatics, Osaka Metropolitan University, Osaka, Japan

ARTICLE INFO ABSTRACT

Recommended by T. Parisini Recently an automaton property of quantitative nonblockingness was proposed in supervisory control of
untimed discrete-event systems (DES), which gquantifies the standard nonblocking property by capturing the
practical requirement that all tasks be completed within a bounded number of steps. However, in practice
tasks may be further required to be completed in specific time. To meet this new requirement, in this
paper we introduce the concept of bounded-time nonblockingness, which extends the concept of guantitative
nonblockingness from untimed DES to timed DES. This property requires that each task must be completed
within a bounded time counted by the number of ricks, rather than bounded number of transition steps in
quantitative nonblockingness. Accordingly, we formulate a new bounded-time nonblocking supervisory control
problem (BTNSCP) of timed DES, and characterize its solvability in terms of a new concept of bounded-time
language completability. Then we present an approach to compute the maximally permissive solution to the new

Keywords:

Timed discrete-event systems
Nonblocking supervisory control
Bounded-time nonblockingness
Bounded-time language completability

BTNSCP.

1. Introduction

In standard supervisory control of (timed) discrete-event systems
(DES) (Brandin & Wonham, 1994; Cai & Wonham, 2020; Cassandras
& Lafortune, 2008; Ramadge & Wonham, 1987, 1989; Wonham &
Cai, 2019; Wonham, Cai, & Rudie, 2018; Wonham & Ramadge, 1987),
and other extensions and applications on nonblocking supervisory con-
trol (e.g. Balemi, Hoffmann, Gyugyi, Wong-Toi, and Franklin (1993),
Brandin and Charbonnier (1994), Fabian and Kumar (1997), Kumar
and Shayman (1994), Ma and Wonham (2006), Malik (2003), Malik
and Leduc (2008)), the plant to be controlled is modeled by finite-
state automata and marker states are used to represent ‘desired states’.
A desired state can be a goal location, a start/home configuration, or
a task completion (Eilenberg, 1974; Wonham & Cai, 2019). Besides
enforcing all imposed control specifications, a nonblocking supervisor
ensures that every system trajectory can reach a marker state (in a finite
number of steps). As a result, the system under supervision may always
be able to reach a goal, return home, or complete a task.

The nonblocking property only qualitatively guarantees finite reach-
ability of marker states. There is no given bound on the number of
steps or time for reaching marker states, so it can take an arbitrarily

large (though finite) number of steps or time before a marker state is
reached. Consequently, this qualitatively nonblocking property might
not be sufficient for many practical purposes, especially when there
are prescribed bounds (of transition steps or time) for reaching desired
states. To address this issue, recently Zhang, Wang, and Cai (2021)
and Zhang , Wang , Wang, and Cai (2024) proposed a quantitatively
nonblocking property to capture the practical requirement that marker
states be reached within a prescribed number of (transition) steps.
By this property, in the worst case, each reachable state can reach a
marker state in no more than a prescribed number of steps. However, in
many practical cases, tasks (represented by marker states) may often be
required to be completed within a specific bounded time. For example,
a rescue vehicle is required not only to reach a goal location but to do
so within a given time; a warehouse AGV is expected not only to return
to a self-charging area but to do so periodically with a predetermined
period; and a production machine is required not only to complete a
task (e.g. processing a workpiece) but also to do so within a prescribed
time. In Section 2 below, we will present a more detailed motivation
example.

* This work was supported in part by the Key Research and Development Projects of Shaanxi Province under grant no. 2024GX-ZDCYL-02-06, the Industrial
Key Research and Development Projects of Shaanxi Province under grant no. 2024CY2-GJHX-91, the National Key Research and Development Program of China
under Grant no. 2022YFB4702200, and JSPS KAKENHI under grant no. 22KK0155.

* Corresponding author.

E-mail addresses: ryzhang@nwpu.edu.cn (R. Zhang), kai.cai@eng.osaka-cu.ac.jp (K. Cai).

https://doi.org/10.1016/j.ejcon.2025.101266

Received 8 February 2025; Received in revised form 5 May 2025; Accepted 10 June 2025

R. Zhang et al

With the above motivation, we extend the concept of quantitative
nonblockingness from untimed DES (the elapse of time is not explicitly
modeled) to the framework of timed DES (TDES) (Brandin & Wonham,
1994; Wonham & Cai, 2019), where the occurrence of a time unit is
described by the occurrence of a tick event. Thus the bound of time for
reaching a subset of marker states can be represented by the number
of ticks. In this framework, we measure the ‘maximal time’ between
the reachable states and the specific subset of marker states, and this
is done by counting the number of ticks (rather than the number of all
events) in every string leading a reachable state to one of the marker
states in the specified subset. More specifically, consider a TDES plant
modeled by a tick-automaton (which is a finite-state automaton with
a special tick event), a cover {Q, ;i € I} (I is an index set) on
the set of marker states of the tick-automaton, and let N, be a finite
positive integer which denotes the required number of ricks to reach
marker states in Q,,;. We define a bounded-time nonblocking property
(with respect to {(Q,,;, N;)|i € I}) of the tick-automaton if from every
reachable state of this rick-automaton, the number of ticks included
in each string that leads the reachable state to marker states in Q,,; is
smaller or equal to N,. That is, in the worst case, for every marker state
subset Q,,;, every reachable state can reach Q,,; in no more than N;
ticks following any string.

Moreover, we formulate a new bounded-time nonblocking supervisory
control problem of TDES by requiring a supervisory control solution to
be implementable by a bounded-time nonblocking rick-automaton. To
solve this problem, we present a necessary and sufficient condition
by identifying a language property called bounded-time completability.
The latter roughly means that in the worst case, for every sublan-
guage K; (i € I) (defined according to a particular type of task
corresponding to Q,,;) of a given language K, every string in the
closure of K can be extended to a string in the sublanguage K; in no
more than N; ticks. Further we show that this bounded-time language
completability is closed under arbitrary set unions, and together with
language controllability which is also closed under unions, a maxi-
mally permissive solution exists for the newly formulated bounded-time
nonblocking supervisory control problem of TDES. Finally we design
effective algorithms for the computation of such an optimal solution.

Detailed literature review on work related to quantitative nonblock-
ingness of untimed DES is referred in Zhang et al. (2021), Zhang, Wang,
et al. (2024). For TDES, time-bounded liveness is similar to our concept
of bounded-time nonblockingness; time-bounded liveness is introduced
in Berard et al. (2001) to express and verify constraints on the delays
described by exact time, and there are algorithms (e.g. Bonakdar-
pour and Kulkarni (2006)) and tools (e.g. KRONORS (Daws, Olivero,
Tripakis, & SergioYovine, 2002)) that can verify the time-bounded
liveness. However, unlike our supervisory control problems of TDES,
uncontrollable events and maximal permissiveness of control strategies
are not considered. Other related works including multi-step opac-
ity (Zhang, Xia, & Fu, 2024), initial-state observability (Zhang, Xia, Fu,
& Chen, 2022) and reachability analysis (Zhang, Xia, Chen, Yang, &
Chen, 2020) are also reported in the literature.

The contributions of this paper are as follows.

« First, for a given set of tasks each represented by a subset Q,,;
of marker states and associated with a positive integer N;, we
propose a new property of fick-automaton, called bounded-time
nonblockingness. This property quantifies the standard nonblock-
ing property by capturing the practical requirement that each
task be completed within the bounded N; ricks, which extends
the concept of quantitative nonblockingness in untimed DES by
counting the occurrences of the event tick.

Second, we formulate a new bounded-time nonblocking supervi-
sory control problem of TDES, and characterize its solvability by
a bounded-time language completability in addition to language
controllability. This problem and its solvability condition are
again generalizations of the standard supervisory control problem
and solvability condition, and extensions of the quantitatively
nonblocking supervisory control problem.

« Third, we prove that the language property of bounded-time
completability is closed under arbitrary set unions, and develop
an automaton-based algorithm to compute the supremal bounded-
time completable sublanguage. Comparing with the algorithm
in Zhang, Wang, et al. (2024) for computing the supremal quanti-
tatively completable sublanguage, the range of the counter d and
the rules for updating d are different; the details are explained in
Section 4.

Fourth, we present a fixpoint algorithm to compute the supre-
mal controllable and bounded-time completable sublanguage of
a given (specification) language, which synthesizes an optimal
(maximally permissive) supervisory control solution for the bou-
nded-time nonblocking supervisory control problem of TDES.
Moreover, this solution algorithm is of polynomial complexity.

The rest of this paper is organized as follows. Section 2 reviews
the nonblocking supervisory control theory of TDES and presents a
motivating example for this work. Section 3 introduces the new con-
cept of bounded-time nonblocking tick-automaton, and formulates the
bounded-time nonblocking supervisory control problem (BTNSCP) of
TDES. Section 4 presents a necessary and sufficient condition for the
solvability of BTNSCP in terms of a new concept of bounded-time
language completability, and develops an algorithm to compute the
supremal bounded-time completable sublanguage. Section 5 presents a
solution to the bounded-time nonblocking supervisory control problem.
Finally Section 6 states our conclusion.

2. Preliminaries and motivating example

In this section, we review the standard nonblocking supervisory
control theory of TDES in the Brandin-Wonham framework (Brandin
& Wonham, 1994)(Wonham & Cai, 2019, Chapter 9), and present a
motivating example for our work.

2.1. Nonblocking supervisory control of TDES

First consider the untimed DES model G, = (A, £, 6,0 @y A;p);
here A is the finite set of activities, X ., the finite set of events, 5, :
Ax Z,, — A the (partial) transition function, a; € A the initial activity,
and A, C A the set of marker activities. Let N denote the set of natural
numbers {0, 1,2, ...}, and introduce time into G, by assigning to each
event ¢ € X, a lower bound I;, € N and an upper bound u;, €
MU {oo}, such that I, < ug,- Also introduce a distinguished event,
written fick, to represent “tick of the global clock”. Then the TDES
model is described by a fick-automaton

G :=(0.Z.6,4).0,). M

which is constructed from G, (the detailed construction rules are
referred to Brandin and Wonham (1994) and Wonham and Cai (2019,
Chapter 9)) such that Q is the finite set of states, ¥ := X, U{tick} the
finite set of events, § : O X £ — Q the (partial) state transition function,
gy the initial state, and Q,, the set of marker states.

Let X* be the set of all finite strings of elements in X = X, ,U{tick},
including the empty string e¢. The transition function § is extended
to§ : O XZ* - Q in the usual way. The closed behavior of G is
the language L(G) := {5 € X*|d(gy.s)!} and the marked behavior is
L,(G) := s € L(G)|5(gp.5) € Q,,} C L(G). Let K C =* be a language;
its prefix closure is K := {s € Z*|(3t € X*) st € K}. K is said to be
L, (G)-closed if K n L,,(G) = K.

For tick-automaton G as in (1), a state ¢ € Q is reachable if there
is a string s € L(G) such that g = é(g,, s); state g € Q is coreachable if
there is a string s € X* such that (g, s)! and é(g. s) € Q,,. We say that
G is nonblocking if every reachable state in G is coreachable. In fact G
is nonblocking if and only if L, (G) = L(G).

To use G in (1) for supervisory control, first designate a subset of
events, denoted by X,;, C X, to be the prohibitable events which

act?

R. Zhang et al

can be disabled by an external supervisor. Next, and specific to TDES,
specify a subset of forcible events, denoted by X, C X,,, which can
preempt the occurrence of event tick.

Now it is convenient to define the controllable event set X, :=
X, U {tick}. The uncontrollable event setis X, := X\ X _. A supervisory
control for Gisanymap V : L(G) —» I'ywhere I' := [y C X |y 2 Z,.}.
Then the closed-loop system is denoted by V /G, with closed behavior
L(V /G) defined as follows:

(e € LV/G):
(i)s€ L(V/G) & o € V(s) & so € L(G) = s6 € LIV /G);
(iii) no other strings belong toL(V /G).

On the other hand, for any sublanguage K C L,(G), the closed-loop
system’s marked behavior L,(V /G) is given by’

L,V/G) = KnLV/G).

The closed behavior L(V /G) represents the strings generated by the
plant G under the control of V, while the marked behavior L, (V/G)
represents the strings that have some special significance, for instance
representing ‘task completion’. We say that V is nonblocking if

L,V/G)= LV/G). 2

A sublanguage K C L, (G) is controllable if, for all s € f,

Eligg(s)n (X, Uftick})
if Eligg(s)n 20 = 0,

Tlie,(s) D
Elisk® 23 prige)n =,
if Eligg(s)n X, # 0
where Eligg(s) = {o¢ € Z|so € L(G)} and Eligg(s) = {0 €

X|so € K} are the subset of eligible events after string s in L(G) and
K respectively.

The following is a central result of nonblocking supervisory control
theory (Brandin & Wonham, 1994; Wonham & Cai, 2019).

Theorem 1. Let K C L, (G), K # 0. There exists a nonblocking (marking)
TDES supervisory control V (for (K,G)) such that L, (V /G) = K if and
only if K is controllable. Moreover, if such a nonblocking TDES supervisory
control V exists, then it may be implemented by a nonblocking supervisor
SUP, ie. L, (SUP)= L, (V/G). ¢

Further, the property of language controllability is closed under set
union. Hence for any language K C L, (G) (whether or not control-
lable), the set C(K) = {K’ € K | K' is controllable wrt. (G} contains
a unique supremal element denoted by sup C(K). Whenever sup C(K) is
nonempty, by Theorem 1 there exists a nonblocking supervisory control
Viup that satisfies L,,(V;,,/G) = sup C(K) and may be implemented by a
nonblocking supervisor SUP with

L, (SUP) = L,,(Vy,y /G).

2.2. Motivating example

Nonblockingness of supervisory control V' describes a general re-
quirement that every string generated by the closed-loop system V /G
can be completed to a marked string in indefinite (finite but un-
bounded) number of transitions, which may include indefinite number
of ticks. Namely, the time needed for completing a task is unbounded.
However, in many real-world applications, it is often required that a
task be completed in a prescribed, bounded time. As an illustration,
we present the following example (adapted from Example 1 in Zhang,
Wang, et al. (2024)).

! With this definition of L, (V /G), the supervisory control V is also known
as a marking supervisory control for (K,G) (Wonham & Cai, 2019).

Charging area Ser\flce areas .

”

20 1 1 [22

A4

* 73

>

" 'Storage areas’

Fig. 1. Routes of the vehicle.

Example 1. Consider an autonomous vehicle for package collecting
and delivery in a local region. The vehicle can move in five zones
numbered 04, following the routes displayed in Fig. 1. Zone 0 is the
charging area for the vehicle to charging its battery. Zones 1 and 2
are two service areas for customers where the customers can both
receive packages from the vehicle and call the vehicle to come to
collect packages to be sent. Zones 3 and 4 are the storage areas for
incoming and outgoing packages. Namely, the task of the vehicle is to
send packages in the storage areas (zones 3 and 4) to the service areas
(zones 1 and 2), and collect packages from the service areas and store
them into the storage areas. Also, the vehicle must be able to make a
self-charging when it is running out of battery.

Each movement of the vehicle from one zone to the next is repre-
sented by two timed events: one represents the leaving from one zone
and the other represents the arriving to the next. Both events have
lower and upper bounds. As one example, assuming that the lower and
upper bounds for the vehicle leaving from zone 1 for zone 0 are 1 (rick)
and oo respectively and one time unit (a tick) represents 2 min, the
vehicle may start to move from zone 1 at any time after 1 rick elapsed.
For another example, assuming that the lower and upper bounds for
the vehicle arriving zone O from zone 1 are 1 (fick) and 2 (ticks)
respectively, the vehicle may arrive zone 0 in 1 or 2 ricks if it has left
zone 1. Similarly, we assign lower and upper times bounds to other
timed events, as displayed in Table 1.

We model the movement of the autonomous vehicle by an untimed
DES model G,, with transition graph displayed in Fig. 2. States 0
(charging area Z0), 2 and 5 (service areas Z1 and Z2) are chosen to
be the marker states, and the reaching of marker states represents
that the vehicle arrives the corresponding areas. The timed DES model
(tick-automaton) G of the vehicle can be generated according to the
construction rules in Brandin and Wonham (1994), Wonham and Cai
(2019); its transition graph is displayed as in Fig. 3. For better under-
standing the constructing rules, we consider the transitions (0, 1, 1) and
(1, 2, 2) in ATG of G as displayed in Fig. 2 for example. Before that,
as defined in Wonham and Cai (2019), the lower bound of an event
represent the delay of its occurrence and the upper bound represents
its hard deadline, namely, the event will occur after the lower bound,
but before the upper bound. First, the lower bound and upper bound
of event 1 are 1 and co respectively, thus event 1 will occur after 1
tick delay; according to the rules in Section 9.2 in Wonham and Cai
(2019), at state 0, only event 1 is defined and event 1 will occur after
1 tick, thus the transition (0, tick, 1) is added to the TTG before event
1 occurs; then at state 1, event 1 and tick may occur, and since the
upper bound of event 1 is oo, event 1 may occur at any time and we
add the transitions (1, tick, 1) and (1, 1, 2) to the TTG. Second, at state 2
of the TTG, corresponding to state 1 in ATG, only event 2 is defined and
the lower and upper bounds of event 2 are 1, namely, event 2 will and
must occur after 1 rick elapsed, thus we add the transition (2, tick, 3) and
(3.2,4) to the TTG. Other transitions can be obtained similarly, which
can be computed by the software TTCT (Wonham, 2016).

R. Zhang et al

Table 1
Event representations of each vehicle route, and the corresponding lower and upper bounds. Notation: Zi (i =
0,1,2,3,4,5) represents zone i.

route event label (lower bound, upper bound)
Leave Z0 for Z1 1 (1, o)
Arrive Z1 from Z0 2 (1,1)
Leave Z1 for Z0 11 (0, o)
Arrive Z0 from Z1 12 (1,1)
Leave Z1 for Z2 13 (0, o)
Arrive Z2 from Z1 14 (1,2)
Leave Z1 for Z4 15 (0, o)
Arrive Z4 from Z1 16 (1,1)
Leave Z2 for Z1 21 (0, o)
Arrive Z1 from Z2 22 (1,2)
Leave Z2 for Z3 23 (0, o)
Arrive Z3 from Z2 24 (1,1)
Leave Z3 for Z1 31 (0, o)
Arrive Z1 from Z3 32 (1,2)
Leave Z3 for Z2 33 (0, o)
Arrive Z2 from Z3 34 (1,1)
Leave Z3 for 74 35 (0, o)
Arrive Z4 from Z3 36 (1,2)
Leave Z4 for Z0 41 (0, o)
Arrive Z0 from Z4 42 (2,2)
Leave Z4 for Z1 43 (0, o)
Arrive Z1 from Z4 44 (1,1)
Leave Z4 for Z3 45 (0, o)
Arrive Z3 from Z4 46 (1,1)

Fig. 2. Transition graph of G_,. In the transition graph, states 0, 2, 5, 8, and 11 represent that the vehicle stays at the area Z0, Z1, Z2, Z4 and Z3 respectively; other states
represent that the vehicle is in the process of moving from one zone to the next, e.g. state 1 represents that the vehicle is in the process of moving from zone 0 to zone 1.

tick tick

Fig. 3. Transition graph of G.

R. Zhang et al

TN tick TN tick TN
[. (17 \e a
) 21} %/ \IJ I

tick
A
) 15 32
¥
. s -
[23) (7)) 26)
- tick N N~
tick tick
| 1_‘;\|
N tick N
—, |\w 1
.\15] " -
+ 16
?/II\ ~ — tick /T
\ ; 45 ex oo
2 Y 16 \2)
[45 i

Fig. 4. Transition graph of SUP.

Assume that events 1, 11, 13, 15, 21, 23, 31, 33, 35, 41, 43 and 45
are both prohibitable and forcible.

Suppose that due to road maintenance, the (directed) route

zone 3 — zone 4 — zone 1

is not usable. This constraint is imposed as a safety specification.
We further consider a temporal specification that after arriving zone 4,
the vehicle should collect or store the package, and leave this area in
1 tick. To satisfy these two specifications, a nonblocking supervisory
control can be synthesized (Brandin & Wonham, 1994; Wonham & Cai,
2019), and implemented by a nonblocking supervisor SUP as displayed
in Fig. 4. This SUP needs to (1) disable event 35 at state 22 (zone 3),
and event 43 at states 12 (zone 4) (to satisfy the safety specification);
and (2) preempt event fick at state 12 by events 41 or 45 (to satisfy
the temporal specification). Moreover, since SUP is nonblocking, every
reachable state can reach the marker states 0, 4, 11 (representing zones
0, 1 and 2 respectively) in finite number of ticks.

Now consider two additional requirements:

(i) Every package sent to customers must be delivered by the vehi-
cle to either one of the two service areas (zone 1 or 2) within
10 min (5 ticks); and whenever a customer calls for package
collection, the vehicle must reach zone 1 or 2 within 10 min;

(ii) The vehicle must be able to return to zone 0 for charging its
battery within 18 min (9 ticks).

Note that the above requirements are different from the temporal
specification: the latter imposes temporal constraints on event occur-
rences; but the above requirements impose bounded time constraints
on arriving marker states.

The nonblocking supervisor SUP in Fig. 4 fails to fulfill the above
requirements, because if the vehicle is at zone 3 (state 11), it is not
guaranteed that the vehicle can move to zone 1 (state 2) in 5 ticks (it
may stay at zone 3 in any number of ticks).

Hence, we need a new method that can count the exact time (num-
ber of ricks) needed for completing each task, and design a supervisor to
satisfy the bounded-time requirement. To address this issue, we adopt
an idea similar to that in Zhang, Wang, et al. (2024) which synthesizes
quantitatively nonblocking supervisors where the transitions caused by
all events are counted, but with a novel change that the new algorithm
must distinguish rick and non-tick events and count only rick.

Remark 1. The property of bounded-time nonblockingness requires
that each task must be completed within a bounded time from any state
counted by the number of ricks. One may consider representing the
requirement by a specification language which prohibits the occurrence
of prohibitable events after bounded number of ticks, or restricting
the number of ticks among the events leaving a marker state and
those entering the marker states. Both of these methods cannot be

easily extended to general cases, the reasons are as follows. First, in
the concept of bounded-time nonblockingness, the time bounds on
each marker state representing different tasks may be different, so we
need to construct different TTGs for each marker state. Second, the
leaving off and arriving at different marker states are represented by
different events, and thus we need an extra algorithm to find and
distinguish such events. Following the idea of representing the require-
ment of bounded-time nonblockingness by specification languages, we
propose a language formula to represent the supremal bounded-time
completable sublanguage for a given language K as in Theorem 3.
By this theorem, for any given specification K, we may obtain its
sublanguage satisfying the bounded-time completability.

3. Bounded-time nonblocking supervisory control problem of TDES

We start by introducing a new concept that quantifies the nonblock-
ing property of a tick-automaton.

Let G = (0, X,6,qy.0,,) be a tick-automaton (modeling the TDES
plant to be controlled) as in (1) and assume that G is nonblocking
(i.e. every reachable state of G is also coreachable). Bring in a cover
Q. on the marker state set Q,, as follows:

Qg =10, COuli e I}. 3

Here 7 is an index set, Q,,; # ¥ for each i € 7, and U{QM,,-U el}=0,.
This cover Qg represents a classification of different types of marker
states. For example, the three marker states 0, 4, 11 in Example 2.2
can be classified into two types: Q,,; = {4, 11} meaning completion of
a package collecting/delivery task, whereas Q,,, = {0} meaning battery
charging.

Fixi € T and let ¢ € Q \ Q,,; be an arbitrary state in Q but not
in Q,,;- We define the set of all strings that lead ¢ to Q,,; for the first
time, namely

C(q.Opy) =5 € Z*|5(g,9)! & 5(g,5) € Qp; &
(s" €5\ {s]) 8(x,5") & Oy}
If g € Q,,;, we define C(4.0,,,) = [c}.

Now associate @, ; with a finite positive integer N;, and consider an
arbitrary state in g € Q. Denote by #s(tick) the number of rick occurred
in string s. We say that state g is N;-tick coreachable (wrt. Q,, ;) if

(i) C(q.Qp,) # ¥:and

(i) (Vs € C(q.0,,,) #s(tick) < N,

Condition (i) requires that there exists at least one string s € X* leading
g to a marker state in Q,,;. Condition (ii) means that all strings that

lead ¢4 to Q,,; for the first time include at most N; ticks. Intuitively,
condition (ii) means that in the worst case, it takes N; ticks from

R. Zhang et al

state g to arrive a marker state in Q,,;. Hence if Q,,; represents a task
completion, then condition (ii) means that in the worst case, it takes N
ticks from state g to complete the task.

Remark 2. We remark here that a fick-automaton G is activity-loop-
free (Wonham & Cai, 2019) (i.e (Vg € Q)(Vs € =%, \ (€D)é(g.s) # g).
Thus all loops (the strings visiting a state repeatedly) in G include at
least one tick. It is easily verified that all the rick-automata representing
the sublanguages of L (G) are also activity-loop-free, and thus the
tick-automata mentioned in this paper are activity-loop free. ¢

Now we introduce the new concept of bounded-time nonblocking-
ness of a tick-automaton.

Definition 1. Let G = (0, X, 4,4,.0,,) be a tick-automaton, Qg =
{Qn;li € I} a cover on Q,, as defined in (3), and N; a positive
integer associated with each Q,,; € Q. We say that G is bounded-time
nonblocking wrt. {(Q,, ;, N))|i € 1} if for every i € T and every reachable
state g € Q, g is N -tick coreachable (wrt. Qm".}.

In words, a bounded-time nonblocking fick-automaton requires that
every state g can reach every subset Q,,; of marker states within N;
ticks. Compared with quantitatively nonblockingness of untimed au-
tomaton in Zhang, Wang, et al. (2024), bounded-time nonblockingness
of tick-automaton is focused on the time for reaching marker states
being bounded, rather than in Zhang, Wang, et al. (2024) that the total
number of transitions (caused by any events) for reaching marker state
are bounded.

Next we define the bounded-time nonblocking property of a super-
visory control ¥V for TDES. For this, we first introduce a new concept
called bounded-time completability.

Let K C L, (G) be a sublanguage of L _(G). For each marker state
subset Qw. € Q, define

L, (G) :={s € L,(G)|5(g. %) € Q,,;}

i.e. L, ;(G) represents the marked behavior of G wrt. Q,,;- Then for
each i € 1, define

K; := KnL,;(G). 4

For an arbitrary string s € K \ K;, define the set of strings that lead
s to K; for the first time:

Mg (s) :={te Z¥ | st e K,(Vt' €1\ {t})st’ & K, }. (5)

If already s € K, we define M ;(s) := {e].

Definition 2. Let G = (Q, X, 3, gy, Q,,) be a tick-automaton, K C L,(G)
a sublanguage, Q¢ = {Q,,,;|i € I} a cover on Q,, as defined in (3), and
N; a positive integer associated with each Q,,; € Q. For a fixed i € T,
we say that K is bounded-time completable wrt. (Q,, ;. N;) if forall s € K,

() Mg (s) # 8
(ii) (V1 € M ,(s)) #1(tick) < N,.

Moreover if K is bounded-time completable wrt. (Q
we say that K is bounded-time completable wrt. {(O,

mi*

N)forallie1,
N)li € T}.

mi?

If K is bounded-time completable wrt. {(Q,,;. N;)|i € I}, then for
every i € I, every string s € K may be extended to a string in
K(= KnL,,;(G)) by strings including at most N; ticks. Compared with
quantitative completability in Zhang, Wang, et al. (2024), the second
condition is different: here all the strings in My ;(s) are required to
include at most N; ticks, rather than have length no more than N; in
defining quantitative completability.

The following result characterizes the relation between bounded-
time completability of a language and bounded-time nonblockingness
of a tick-automaton.

mi

Proposition 1. Let G = (0, X, 6, 4. 0,,) be a tick-automaton, K C L, (G)
a sublanguage, Q¢ = {Q,,;|i € I} a cover on Q,,, and N, a positive integer
associated with each Q,,; € Q.

M IfK = L,(G) and G is bounded-time nonblocking wrt. {(Q,,;, N))|i €
1}, then K is bounded-time completable wrt. {(Q,,;, N;)|i € T}.
(i) If K € L,(G) is bounded-time completable wrt. {(Q,,;, N))|i €

I}, then there exists a tick automaton K = (X, X,&, xy, X,,,) such that
L (K) = K and K is bounded-time nonblocking wrt. {(X, ;. N)li € T},
where X, = {x,, € X,,|(3s € Z)&(xy, 5) = x,, & 84y 5) € O, }-

The proof of Proposition 1 is similar to that of Proposition 4
in Zhang, Wang, et al. (2024). According to Proposition 1, for an
arbitrary sublanguage K C L,(G) that is bounded-time completable
wrt. {(Q,,;, N))li € I}, we may construct a bounded-time nonblocking
(wrt. {(X,;. N)li € T}) tick-automaton K representing K, i.e. L, (K) =
K.

With the above bounded-time completability of a language, we
introduce the bounded-time nonblocking property of a supervisory
control for TDES.

Definition 3. Let G = (0, X, 4. g4, 0,,) be a tick-automaton, K C L, (G)
a sublanguage, Q¢ = {Q,,;li € I} a cover on Q,, as defined in (3), N,
a positive integer associated with each Q,,; € Qg, and V : L(G) = T
a (marking) TDES supervisory control (wrt. (K, G)). We say that V is
bounded-time nonblocking wrt. {(Q,,;. N;)|i € T} if

(i) Vis nonblocking; and
(i) L,(V/G) is bounded-time completable wrt.
{(@Qp- N)li € T}

In words, quantitative nonblockingness of a TDES supervisory con-
trol V requires not only ¥ being nonblocking (in the standard sense),
but also the marked behavior L, (V /G) of the closed-loop system V /G
being bounded-time completable. According to Proposition 1, L, (V /G)
can be represented by a bounded-time nonblocking tick-automaton.

We are ready to formulate the Bounded-Time Nonblocking Supervisory
Control Problem of TDES (BTNSCP):

Consider a TDES plant modeled by a tick-automaton G = (Q, £ .UZX,.. 4,
4y, 0,), a specification language E C £*, and let K := En L, (G), Qg =
{On; € Ouli € I} acover on Q,, and N; a positive integer associated
with each Q,,; € Qg. Construct a (marking) TDES supervisory control
V @ L(G) = I (for (K,G)) satisfying the following properties:

« Safety. Marked behavior of the closed-loop system V /G satisfies the
imposed specification E in the sense that L,(V /G) C En L,(G).

« Bounded-time nonblockingness.TDES supervisory control V is
bounded-time nonblocking wrt. {(Q,,;, N;)|i € T}.

« Maximal permissiveness.TDES supervisory control V does not re-
strict more behavior than necessary to satisfy safety and bounded-time
nonblockingness, i.e. for all other safe and bounded-time nonblocking
TDES supervisory controls V' it holds that L (V'/G)C L_(V /G).

i

The BTNSCP is a variation of the traditional nonblocking supervi-
sory control problem (Brandin & Wonham, 1994; Wonham & Cai, 2019)
of TDES, in that the second requirement of bounded-time nonblock-
ingness is stronger than the traditional nonblockingness. Namely, this
problem cannot be solved in general by supervisors synthesized using
the standard method.

4. Supremal bounded-time completable sublanguage and its com-
putation

To solve the BINSCP formulated in Section 3, we first present
a basic result which is a counterpart to Theorem 1 in Brandin and
Wonham (1994), Wonham and Cai (2019) and Theorem 6 in Zhang,
Wang, et al. (2024).

R. Zhang et al

Theorem 2. Consider a TDES plant modeled by tick-automaton G = (O,
ZUZ,..8,40,0,), acover Qg = {Q,; € Q,li € I} on Q,, and a positive
integer N; associated with each Q,,; € Q- Let K C L, (G), K # (. There
exists a bounded-time nonblocking (marking) TDES supervisory control V
(for (K.G)) such that L,(V/G) = K if and only if K is controllable
and bounded-time completable wrt. {(Q,,;, N))|i € I}. Moreover, if such
a bounded-time nonblocking TDES supervisory control V exists, then it
may be implemented by a bounded-time nonblocking tick-automaton QSUP,
ie L (QSUP)=L (V/G). o

Theorem 2 asserts that when the K-synthesizing supervisory con-
trol V is required to be bounded-time nonblocking, it is necessary
and sufficient to require that K be not only controllable but also
bounded-time completable. If K is indeed controllable and bounded-
time completable, then the TDES supervisory control ¥ in Theorem 2
is the solution to the BTNSCP. If K is either not controllable or not
bounded-time completable, then to achieve the third requirement of
maximal permissiveness of BTNSCP, one hopes that the supremal con-
trollable and bounded-time completable sublanguage of K exists. The
key is to investigate if for bounded-time completability the supremal
element also exists. We provide a positive answer below. Before we
proceed, the following is a proof of Theorem 2.

Proof of Theorem 2.

We first prove the first statement. The direction of (only if) is a
direct result from Theorem 1 and Definition 3. For the direction of (if),
according to Theorem 1, since K is controllable, there exists a TDES
supervisory control ¥ such that V is nonblocking and L, (V/G) = K.
Furthermore, according to Definition 3, it is derived from L, (V/G) =
K being bounded-time completable wrt. {(Q,,;, N)|i € I} that V is
bounded-time nonblocking wrt. {(Q,,;, N))|i € I}.

For the second statement, let ¥ be a bounded-time nonblocking
supervisory control that synthesizes a controllable and bounded-time
completable K, i.e. L (V/G) = K. Since K is bounded-time com-
pletable, it follows from Proposition 1 that there exists a bounded-
time nonblocking rick-automaton QSUP such that L, (QSUP) = K =
L, (V /G). This completes the proof. W

4.1. Supremal bounded-time completable sublanguage

Let G be a nonblocking tick-automaton. First, we present the fol-
lowing proposition that bounded-time language completability is closed
under arbitrary set unions.

Proposition 2. Consider a tick-automaton G = (0, X, 6. gy, 0,,), a cover
Q¢ =10pn,; € 0,li € I} on Q,, and a positive integer N; associated with
each Q,,; € Qg- Let K, K, C L, (G). If both K, and K, are bounded-time
completable wrt. {(Q,,;, N;)|i € 1}, then K := K UK, is also bounded-time
completable wrt. {(Q,,;. N))|i € T}.

Proof.

Let s € K and i € 1. According to Definition 2, to show that K
is bounded-time completable, we need to show that (i) My ;(s) # #,
i.e. there exists t € X* such that st € K; = K n L,,;(G), and (ii) for all
1 € My (s), #i(tick) < N,. Since K =K, UK, = K, UK,, either s € K,
or s € K,. We consider the case s € K; the other case is similar.

We first show that (i) holds. Since K, is bounded-time completable,
My, ;(s) # @, i.e. there exists string ¢ such that st € K; n L,,;(G) C
K n L, ;(G). Thus (i) is established.

For (ii), let 1 € M ;(s); then st € Kn L,,,(G) and for all ' €7\ {1},
st @ Kn L, (G). Since K = K; U K;, there exist the following two
cases: (a) st € K, N L, ,(G) and for all ' € 1\ {1}, st' € KN L, ,(G); (b)
ste KynL, (G) and forall ¥ €1\ (¢}, st' € Kn L, (G). For case (a),
it follows from K 2 K, that s’ & K, n L,/(G),soteM KI"-(S). Since
K, is bounded-time completable, it holds that #(tick) < N,. The same

conclusion holds for case (b) by a similar argument on K,. Hence (ii)
is established.

With (i) and (ii) as shown above, we conclude that K is bounded-
time completable. []

Now for a given sublanguage K C L,(G), whether or not K is
bounded-time completable wrt. {(Q,,;. N;)|i € I}, let

mi»

BT C(K,{(Q

mit

N)li € I}) := {K' € K | K'is bounded-time

completable wrt.{(Q,,;. N;)|li € IT})}

represent the set of sublanguages of K that are bounded-time com-
pletable wrt. {(Q,,;, N;)|i € I}. Note from Definition 2 that the empty
language # is trivially bounded-time completable, so #§ € BT C(K, {(Q,;-
N;)|i € I}) always holds. Moreover, it follows from Proposition 2 that
there exists the supremal bounded-time completable sublanguage of K
wrt. {(Q,,;, N))li € I}, given by

sup BT C(K, {(Q,;s N)li € T}) :=| JIK' | K’ € BT C(K,
Q. Npli € I1}.

To compute this sup BTC(K, {(Q
follows. Fix i € T and let

N)li € 1I}), we proceed as

it

BTC(K,(Q

mi*

N,;) :={K’' € K | K’ is bounded-time

completable wrt.(Q,, ;. N;)}

mi»

be the set of all bounded-time completable sublanguage of K wrt.
(Qpi» N;) (Definition 2). By the same reasoning as above, we have that
sup BT C(K, (Q,,;» N;)) exists. The idea of our algorithm design is to first
compute sup BT C(K,(Q,,;, N,)) for a fixed i € I, and then iterate over
all i € T until fixpoint in order to compute sup BT C(K, {(Q,,;, N)li €
I}). In the next subsection, we present an automaton-based algorithm
to compute sup BT C(K,(Q,,;, N,)) for any given language K C L, (G).

4.2. Automaton-based computation of sup BT C(K,(Q,,;» N;))

Consider a language K C L,,(G) and (Q,,,;. N;) for a fixed i € I. In
this subsection, we present a language formula for sup QC(K, (Q,,;, N;))-
To this end, we introduce several notation. For integer N, let tick™:
be the set of strings that have rick occurred no more than N; times, i.e.

tick™i 1= (1 € Z*| #tick() < N}

where #tick(r) represents the number of rick occurred in r. Next, for
language K C L,(G), subset of marker states Q,,; and integer N,, let
K; 1= Kn L, ;(G) as defined in (4), and define

K, := K, n (tick™t U K tick™) (6)

where K;tick™: := {st|s € K; &1 € tick™: }. In simple words, K, contains
two subsets of K;: the first subset includes the strings that have number
of tick no more than N;. The second subset includes the strings each of
which is a catenation of a string in K; and a string having number of
tick no more than N;.

Now let

pre(K) == {s € Z*SCK;}. 7

It is not difficult to check that pre(?(:) is prefix-closed, i.e. pre(?(:) =
pre(K;). Based on (7), we can find all the prefixes of strings in K, that
lead a string from K, \ K; to K; in no more than N, steps. As will be
confirmed by the following theorem, by the computation of pre(?(:),
we can find the supremal bounded-time completable sublanguage of K
with respect to (Q,,;, N;), i.e. sup BTC(K,(Q,, ;. N;))-

Theorem 3. Given alanguage K C L, (G), a subset Q,,; C Q,, of marker
states and a positive integer N, let K, and pre(K;) be the languages defined
in (6) and (7) respectively. Then,

sup BT C(K, (@ N)) = pre(K) n K. 8)

it

R. Zhang et al

Proof. For simplicity in notation, let K’ = pre(Z)ﬂK in this proof. First,
we prove that K’ € BTC(K,(Q,,;, N;)). Since K’ = pre(?(:) NnK CK
and the empty language is trivially bounded-time completable wrt.
(O N;), we only need to show that when K’ is nonempty, it is
bounded-time completable wrt. (Q,,;, N;)-

Let s € K’; then there must exist a string « € X* such that su €
K' € K,, thus according to the definition of M k(8 My () # @. Let
1 € X*¥, and suppose ¢ € M, (s). According to Definition 2, to show
that K’ is bounded-time completable wrt. (Q,,;. N;), we will show that
#(tick) < N;.

Since s € K’ C pre(’kT) n K, we have s € pre(f,-) and s € K.
Since t € My (s), we have st € K’ = pre(K) n K, i.e. st C K, and
st € K. By 5t € K;, we have st € K,, and for all prefix 1/ €1, st' € K,.
Also according to the definition of M., for all " € 1\ {r},s1" ¢ K'.
According to (6), st € K; n tick™: or st € K; n K;tick™i. In the former
case, it holds that #(tick) < N, directly. In the latter case, if s € K,
then r € tick™:; thus it also holds that #(tick) < N,. It is left to consider
the case that s g K, and st € K, n K;tick™:. In this case, there must
exists 1 £ k < N, such that s € K tick; namely, ¢ € tick™=*, which
derives that #(tick) < N,. Thus, we conclude that #(tick) < N;.

It remains to show that K' = pre(ﬂf&:) n K is the largest element
in BTC(K,(Q,,;- N;))- Let M € BT C(K,(Q,,;, N;)) be another element
in BT C(K,(Q,, ;- N;))- It will be shown that M C K '. Namely, for any
s € M, we show that s € K'.

Since M C K, we have s € K and thus s C E; we then need to prove
that 5 C En (tick™i U K;tick™i). Let d#s(tick) = k where k > 0, and write
s = ugtickuyticku,...tickuy. Since s € M C K and M is bourlde:d time
completable wrt. (Q,,;.N,),sC MnL, ((r) CKnL, ((r) = K,. Thus,
we show that 5 C tick™ or 5 C K,-t:ck”i. Ifk < N, it follows that
5 C tick™i; if k > N,, we prove that 5 C tick™ U K tick™:.

First, we claim that there must exist a prefix s; of s such that
sg = ugtickuyticku,...tickuy with kg < N; < k such that s, € Mn L, ,(G);
otherwise string s € My ;(¢), but #s(tick) > N;, which implies that M is
not bounded-time completable wrt. (Q,.;-N) (hence a contradiction).
By sp € M nL,;(G) € KnL,;(G) = K;, we have 5, € K; and thus
5 C E Then, string s can be written as s = \‘)u’ :Eckuk p--tickuy,
where “k € X! and satisfies that syu) mk is the preﬁx of 5. Then
i)k < ku + N;; or (ii) k > kg + N;. In case (1), we have s € K;tick™:.
Then since 5, C tick™:, we have 5 = 55 U “ll“kn‘wk“knﬂ---“Lk“knﬂl c
tick™i U K tick™i.

In the later case for the same reason that M is bounded-time
completable wrt. (Q,,;, N;), there must exist a string s, such that s, =
s"u' tic kuknﬂli{:k Uy yo--tickuy o with k; < N, 5, € M 0 L, ;(G), and
..ticku,. Repeating the above process, since

i

mis

m.i*

s = \]uk +h “Ck“knﬂlﬂ
string s is ﬁmte, s can be written as s = s,-u;nﬂI+m+h:Erkuknﬂﬁ,,,ﬂiﬂ
.ticku, with i > 0, and k < ky + k| + -~ + k; + N;, and by the same
reason above, we have s; € K, and 5 C tick™ u K;tick™ U Ktick™ =
§ C tick™ U K tick™:. Finally, we conclude that for all s € M, we have
sekn pre(kj). The proof is now complete. []

By the above theorem, sup BT C(K,(Q,,;. N;)) can be expressed by
the formula (8), and thus can be computed by the operations on
languages (union, intersection, catenation) as expressed by formulas
(4)—(8). In particular, (4), (6), and (8) can be implemented by the
product of generators representing languages K, L, ;(G), K;, tick™t and
K;tick™i, and (7) can be implemented by removing the non-marker
states of the automaton representing K’: which in turn need generators
representing languages K, tick™:, and Ktick™i. Thus the key is to
construct two generators representing tick™ and K;tick™i, respectively
(generators representing K, L,,;(G), and K; are readily constructible).

First, for tick™, we construct A; = (Y, Z,n,y,4.Y;) with ¥, =
(Y10 Y11 Y, b and my(yy . tick) = yy 4y forall 0 <i < N; — 1, and
M ,.0) =y, forall 6 € X\ {tick} and 0 <i < N,. It is easily verified
that L (A,) = tick™.

Second, since K;X™: is the catenation of two languages K; and
ZNi, a standard method in Hopcroft, Motwani, and Ullman (2014) is

to first construct two generators B, and B, representing K; and X"
respectively and then add e-transitions between the marker states of
B, and the initial state of B,. However, this combined generator is
non-deterministic, and transforming it into a deterministic generator is
exponential in the state size of the combined generator in the worst
case. More precisely, it is shown in Jirasek, Jiraskova, and Szabari
(2005), Yu, Zhuang, and Salomaa (1994) that the complexity of com-
puting the catenation K;Z™i is O((2m — k)2""'), where m and k are
respectively the numbers of the states and marker states of B, and n is
the number of states of B,. Since n = N; + 1 according to the construc-
tion of A, above, the complexity of computing K;Z™: is exponential
in N;. Hence, based purely on language operations, the complexity of
computing pre(K;) and sup BT C(K, (Q,n;- N;)) is exponential in N;.

Instead, we present in the following a polynomial algorithm (ex-
tension of Algorithm 2 (containing Algorithm 1) in Zhang, Wang,
et al. (2024) for computing the supremal quantitatively completable
sublanguage) to compute the supremal bounded-time completable sub-
language sup BT C(K, (Q,,;» N;))- The intuition is that we find for each
prefix of K the bounded-time completable strings, and remove other
non-bounded-time completable strings from the transition graph. The
detailed steps are described in Algorithm 1. In the algorithm, we
employ a last-in-first-out stack ST to store the states to be processed (a
first-in-first-out queue can also be used instead to perform a different
order of search), and for aset Z aflag F : Z — [true, false} to indicate
whether or not an element of Z has been visited: i.e. F(z) = true iff
z € Z has been visited.

In Step 5.2 of Algorithm 1 above, note that the condition 4’ >
N; means that the downstream transitions including more than N;
ticks that have never reached a marker state in 0, will be removed,
therefore guaranteeing that from an arbitrary state, at most N; ticks are
needed to reach a marker state in Q,,;

The connections and differences between the above new Algorithm
1 and the Algorithm 2 (containing Algorithm 1) in Zhang, Wang, et al.
(2024) for computing supremal quantitatively completable language
are summarized in Table 2. In particular, there are two main differ-
ences. The first difference is the definition of X]. In the new algorithm,
we have Xr.' = {(x;.d)|x; € X;,d € {0,...,N;}}, namely, d is in the
range of [0, N;], rather than [0, N; — 1] in the Algorithm 1 in Zhang,
Wang, et al. (2024). The reason is illustrated in Fig. 5. Assume that the
top subfigure represents partial transition functions of a tick-automaton
K, and let N, = 2. In the process of constructing K] (as represented
by the bottom subfigure) by Algorithm 1, from state (2,1) to state
(5,2), d = 1 is advanced to d’ = 2 since ¢ = tick. In the algorithm
in Zhang, Wang, et al. (2024) of computing the supremal quantitatively
completable sublanguage, since state 5 is not a marker state, this
transition will be removed. However, since the downstream string a.f
will lead the automaton to marker state 8 (where d' will be set to 0) and
the total number of occurred ficks is no more than 2 ricks, such states
and transitions should be reserved. Thus in Algorithm 1, by Step 5.2
the states with d’ = N, are included in K. Also by this step, the states
with d’ larger than 2 are removed from K;; e.g., transition (6, tick,7) is
removed by Step 5.2 because now d’ = 3 > N, (as represented by the
dashed lines in the transition graph of K).

The second difference is the rules for updating 4 at Step 5.1: in
Algorithm 1 above, only when o = rick will d’ be set to d+1. The reason
is that only the rick transitions are counted for satisfying bounded-time
completability; while in Algorithm 1 in Zhang, Wang, et al. (2024), the
transitions caused by all events are counted. Namely, in the above new
algorithm, the rick and non-tick events on the transitions need be dis-
tinguished for selecting different rules for updating d. However, in the
algorithm in Zhang, Wang, et al. (2024), no such event distinguishing
is needed.

Now we present an example to illustrate Algorithm 1.

2 “Trimmed’ means that all non-reachable and non-coreachable states (if
they exist) are removed Eilenberg (1974), Wonham and Cai (2019).

R. Zhang et al

Table 2

Differences and connections between Algorithm 1 in this paper and Algorithm 2 (containing Algorithm 1) in Zhang, Wang,

et al. (2024).

Differences &

Algorithm 1 in this paper

Algorithm 2 in Zhang, Wang,

conneclions el al. (2024)
Input tick-automaton G Generator G
language K language K
marker slates subset Q_; marker states subset Q_;
and positive integer N, and positive integer N,
Output Language K; Language K]
Complexity o(Q]-1X] - [Z]- N)) o(Ql-1X] - [Z] - Nj)
Range of 4 [0, N1 [0,N, - 1]
Condition of only when when any event occurs
updating 4 to d + 1 tick evenl occurs

Algorithm 1 : Algorithm of Computing sup BT C(K,(Q,,;. N;))

Input: rick-automaton G = (0, X, 48,4, Q,,), language K C L, (G),
subset Q,,; € Q, of marker states, and positive integer N,.

Output: Language K].

mi»

Step 1. Construct a tick-automaton K; =
represent K;, = Kn L
otherwise go to Step 2.

(Xi, 2.8 %0, Xip) tO
ni(G). If K; = @, output language K] = #;

Step 2. Let

X = {(x, d)lx; € X;,d € {0,.., N;} 1,

C: = @, x
F((x;,d)) =
Then push the initial state x/
F((x;.0)) = true.

= (x;4.0), and X’ = {(x.0lx; € X, .} [mtlally set
f alse for each state x; € X; and each d E {o, .. —1}.

to = (x;0.0) into stack ST, aru:l set

Step 3. If stack ST is empty, trim? the rick-automaton K| =

(X, Z.&.x] “.Xm), and go to Step 6. Otherwise, pop out the top
element (x, ;,d) of stack ST. If x,; € X, ,,, go to Step 4; otherwise, go
to Step 5.

Step 4. For each event ¢ € X defined at state x; i (e &(x; ,cr)") let
X;x 1= &(x;;,0) and do the following two steps 4 1 and 4. 2 then go
to Step 3 with updated stack ST.
Step 4.1 Add transition ((x, ;,0), 6, (x;4.0)) to £, i.e

& =& Ul 0).0, (x4, 0))}.

Step 4.2 If F((x;;,0)) =
F((x;,0)) = true.

false, push (x,;;,0) into stack ST and set

Step 5. For each event 6 € X defined at state x; ; (i.e. §(x;;,o)), do
the following three steps 5.1-5.3; then go to Step 3 with updated stack
ST.

Step 5.1 Let x;; = §(x;;,0). If 6 = tick, set d' =d+1; If ¢ # tick
and x;; € X, ,, set d’' = 0; if o # tick and x; & X, ,, set d' = d.

Step 5.2 If d’ > N,, go to Step 5.1 with the next event ¢ defined at

. Otherwise, add a new transition ((x;)0, (x;4-d") to C:, ie.

& =& Ul((x.d),0. (x4, d)}

Step 5.3 If F((x,;.d")) = false, push (x;,,d") into stack ST and set
F((x,-,k,d')) = frue.

Step 6. Output the language K| = K n L(K)).

\a' /_“\tickl/ o

/_\ tick 73
RO OO OO
tick

K, () 2—0)

tick
—4/0} a '~/I{i\ tick '\/2—,1\' o _[/3‘? tick @
N / N N
tick
) (52} —%—(62 &0
K; ki/‘ AL &Y
tick’

Fig. 5. Ilustration on the reason for defining d € [0, N,] in X!.

Example 2 (Continuing Example 2.2). Inputting rick-automaton G, lan-
guage K = L,(SUP), marker state subset Q,,, = {4,11} C Q,, and
positive integer N, = 5, Algorithm 1 generates a trimmed automaton
TSUP,, as displayed in Fig. 6.

From Fig. 6, we observe that the algorithm will terminate the search
before the sixth tick occurs. Every reachable states are guaranteed to
reach the marker states (4,0) and (11,0) in at most 5 ticks. By contrast
in SUP (displayed in Fig. 4), the strings (tick).1.tick.2 will lead state
0 to the marker state (4,0); however, they include more than 5 ticks.
Thus, in fact those strings are removed from SUP by Algorithm 1.
Also, the states and the transitions that cannot reach marker state are
removed by the trim operation at Step 3. ¢

The correctness of Algorithm 1 is confirmed by the following theo-
rem.

Theorem 4. Given a tick-automaton G, a sublanguage K C L, (G), subset
Q,.; C O,, of marker states, and positive integer N,, let K| be the language
returned by Algorithm 1. Then K| = sup BT C(K,(Q,,;. N))).

Proof. First, we prove that K] € BTC(K.(Q, . N,). We start by
showing that K C K, which can be directly obtained by Step 6.

Next we show that K] is bounded-time completable wrt. (Q,,,;, N).
For this, let K| = (X], %, f x' ” Xr.';n) be the tick-automaton generated
by Step 3 of Algonthm 1. According to Step 6, it is easily verified that

= L(K)) and K] n L, ,(G) = L,,(K/)n L,,,(G) (because K/ N L, (G) =
KN LK) N L, (G) = L,(K) N LK) N L, (G) = L,(K)n L, ,(G)). Let
s E E-?, thens € Kand s € L(K:); then there exists r € X* such that st €
LM(K:), ie. st € K!.’ N L, ;(G). According to the definition of M Kl (5),

R. Zhang et al

2w
™ tick N
-13%(9,1)—14
N
32)

tick ,—~ tick
ic /17.1\. ick

, 130)
// N _

45 /o tick
| 16..
Ay
A5 N tick
{162 }
o/

Fig. 6. Transition graph of TSUP,.

MK:'"-(S) # @; namely, condition (i) of bounded-time completability is
satisfied. Furthermore, according to the definition of M in (5), it is
derived from K| n L, ;(G) = L, (K))n L, ;(G) that for each r € M k2i(),
1€ My (s)- It is guaranteed by d’ > N, in Step 5.2 that if a string
includes more than N, ricks and has not reached a marker state in
Q> it will not be added to L(K:.'). In other words, those strings st
added to L(K:.') must satisfy that for every r € M LM(K:)".(.\‘), there holds
#i(tick) < N;. Namely, condition (ii) of bounded-time completability is
also satisfied. Hence, K: is bounded-time completable wrt. (Q,, ;. N;).
This establishes that K] € BT C(K,(Q,,;. N)))-

It remains to show that K| is the largest element in BT C(K,(Q,,,.
N,)). Let M be another element in BTC(K.(QM"., N;)),i.e. M € BTC(K,
(Q,ni> N;)). It will be shown that M C K‘.'. For this, we first prove that
McC E’ = L(K}) by induction on the length of a string s € M.

Base case: Let s = ¢ € M. Then ¢ € K and the initial state X exists
in K,. It follows from Step 2 that x: o = (%i0-0) is designated to be the
initial state of K/, and hence ¢ € L(i(:.').

Inductive case: Let s € E, 5 E L(K:), o € X, and suppose that so €
'M; we will show that so € L(K:.') as well. Since M € BT C(K,(Q,, i N,
we have (i) M C K and (ii) M is bounded-time completable wrt
(Qpn > N))- It follows from (i) that s € KNL(G) = L(K,), i.e. &i(x;,5)!. By
the same reason, &;(x, (, s6)!. Letting x; = £(x; o, 5), we derive &(x;, o).
Since s € L(K)), £/((x;,0),5)!. According to the definition of £/, there
must exist d € {0,..., N,} such that (x;,,d) = g;((x‘.,n, 0), 5). We already
know that §;(x;, o). If x; € X, ,,, according to Step 4, ::((x,-,d). o) with
d =0 is defined. If x; ¢ X, ,,, according to Step 5.1, there may exist the
following three cases: (a) o = tick; (b) o # tick and &(x;.0) € X; > (c)
6 # tick and &(x;,6) € X ,,- First, in case (a), d' = d + 1. According
to Step 5.2, d’ > N, or d’ < N,. The former is impossible because in
that case s M (since x; € X, ,, s € K or s € L,,;,(G); in both cases,
s & M) but s.tick € M will imply that it needs at least N, + 1 rticks to
lead M to M, which contradicts to the assumption that M is bounded-
time completable (Q,,;, N;). When d’ < N;, &'((x,d), o) is defined with
d’ < N,. For case (b), d’ = 0, according to Step 5.2, &'((x,d),0) is
defined with d’ = 0. For case (c), &'((x,d),o) is defined with d < N
and thus d' = d < N;. Hence, we conclude that £/((x;.d),0) is defined,
i.e. so € L(K:).

Therefore, by the above induction, MC L(K;) is established. So, we
have

mis

MCMnK (by M€ BTC(K,(Qpy N)))
C L(K))n K (according to Step 6)

CK|.

The proof is now complete.

The above theorem confirms that Algorithm 1 computes the supre-

mal bounded-time completable sublanguage sup BT C(K,(Q,, ;. N;)). The
time complexity of Algorithm 1 is O(|Q| - |X| - |Z| - N;) where |Q|
and |X| are the states number of G and rick-automaton representing
K respectively. This complexity is derived according to Steps 3 to 5,
because K, has at most |Q| - |X| - | X| transitions and each transitions
are visited at most N; times.

In this section, we have presented a language formula and an
automaton-based algorithm to compute the supremal bounded-time
completable sublanguage of a given language (or specification). How-
ever, since the controllable sublanguage of a bounded-time completable
language may not be bounded-time completable, to solve BTNSCP, we
need an algorithm to compute the supremal controllable and bounded-
time completable sublanguage.

5. Maximally permissive bounded-time nonblocking supervisory
control

In this section, we present our solution to the BTNSCP. Consider a
TDES plant modeled by tick-automaton G = (Q, £.UZX,..4.4,.0,,), and
a specification language E C X*. Let K := ENL,(G), Qg = (Q,,li € T}
be a cover on Q,, and a positive integer N; associated with each
Qm,i € QG'

Whether or not K is controllable and bounded-time completable,
let CBT C(K, {(Q,,;» N))li € I}) be the set of sublanguages of K that are
both controllable and bounded-time completable wrt. {(Q,,;. N;)|i € I},
ie.

mi

CBTC(K, {(Q
controllable and bounded-time completable wrt.
(@, N)li € 1}}.

N)lieI)) =K' CK|K'is

mi»

Since the empty language @ is trivially controllable and bounded-
time completable, the set CBTC(K, {(Q,,;. N;)li € I}) is nonempty.
Moreover, since both controllability and bounded-time completability
are closed under arbitrary set unions, CBTC(K, {(Q,;. N)li € I})
contains a unique supremal element given by

mi»

sup CBT C(K, {(Q

mi

Nliel) = Ik ck|K e

R. Zhang et al

C tick _@ 3l
/

1 e
~® tic k_./z_‘u\l

) 12

tick il
P
)
tick fu:-a\ 11 (9;\
U vz
tick ~ al .'f
) ek f
tick T a)l'll '/93
p—y ,."! -
13 IJ
ek) _j‘,“,@ pick (35) \Q]D
- 34
e 3 tick 31
: _(q—ﬂ\ ik ro
W 23 ick 2
ick Tk
s 33 tick oo M 48 48 6
_— .(E_S \3_7/ (sa
Pt tick tick -
{70 @ —_ (&) .
4 b ri'-’ CSE\I @
,C"‘\ tick T dick o
tick :3/\;-1/’ & . R thek tck lnrk
P ; tel ~
= 43 @ tick @\ e @2 e S
~.A2 - y

43 oy ek et ek q
17 58 63
p—y \

’y
Fami, tiTk T vigk e \ \
17, \8 N7 \

T) : \
J =S . 41 \
125 ek 1 15 - tick (a3) 16 |
12, A2 2 W 2/ Va
. ik 18 \
tick @. iz @llc‘k 24 A 5 D} e +(44) -
) 12 —, tick I la “"1
1N tick) '*_OJ \4_)/' 1
e o1 &
Ak 2 2 2
B
Fig. 7. Transition graph of NK.
CBTC(K,{(Q,,;. N)lie IH}. Algorithm 2 : Algorithm of Computing sup CBT C(K, {(Q,,;. N))li € I})

Our main result in this section is the following.

Theorem 5. Suppose that sup CBT C(K, {(Q,,;, N))|i € I}) # @. Then the
supervisory control V,,, such that L, (Vy,,/G) = sup CBT C(K, {(Q,,;. N))I
i € I}) € K is the solution to the BTNSCP.

it

The proof of the above result is similar to that of Theorem 10
in Zhang, Wang, et al. (2024) with supCOC(K, {(Q,,;.N)li € I})
replaced by sup CBT C(K, {(Q,,;- N)li € I}).

We proceed to design an algorithm (adapted from Algorithm 3
in Zhang, Wang, et al. (2024) for computing the supremal controllable
and quantitatively completable sublanguage) to compute this solution
sup CBTC(K, {(Q,,;, N)Ii € 1I}). The change is that the algorithm
for computing the supremal quantitatively completable sublanguage
is replaced by Algorithm 1 in Section 4.2 for computing the supre-
mal bounded-time completable sublanguage. For self-containedness, we
present the algorithm below.

The correctness of Algorithm 2 is confirmed similar to that of
Algorithm 3 in Zhang, Wang, et al. (2024) (the detailed proof is referred
to Zhang, Wang, et al. (2024)).

mi*

Theorem 6. Given a tick-automaton G, a specification language E, let
K = En L,(G), a cover Qg = {Q,; € O,li € I} on Q,, and a set
of positive integer N; each associated with a Q,,; € Q- Then Algorithm
2 terminates in a finite number of steps and outputs a language CTK such
that CTK = sup CBT C(K, {(Q,,,» N))li € I}).

The complexity of one complete iteration over all i € I in Step
2 of Algorithm 2 is 0(Q| - |X|-|Z| - []'2} N,). Since Algorithm SC
does not increase the state/transition number of N Kf" M = |1,
the complexity of each iteration including Steps 2 and 3 is again
oo - |1 X|-1X] - Hgl N,). Finally since there can be at most |Q| - | X| -
1Z] -]]::] N, iterations, the overall time complexity of Algorithm 2 is
o(del-1x1-12- 1Y, N)?).

The following example demonstrates how to synthesize supervisors
satisfying both controllability and bounded-time completability.

(I={1...M}

Input: tick-automaton G = (Q, X, 3, g4, Q,,), language K C L,,(G), cover
Q¢ = {Q,,;li € I} on marker state set Q,,, and set of positive integers
{Nliel}.

Output: Language CTK.

Step 1. Let j =1 and K/ = K (i.e. K' = K).

Step 2. Let i = 1. Let K/ = K.

Step 2.1 Apply Algorithm 1 with inputs G, Kf » @ and N, and obtain
NK! = sup BTC(K/.(Q,,. N)).

Step 2.2 If i < M, let K;‘IH = NK;", advance i to i + 1 and go to Step
2.1; otherwise (i = M), go to Step 3. _

Step 3. Apply Algorithm SC with inputs G and N K}, to compute K/*!
such that K/+! = sup C(NKJ).

Step 4. If K/*! = K/, output CTK = K/*!. Otherwise, advance j to
j+ 1 and go to Step 2.

Example 3 (Continuing Example 2.2). Consider TDES plant modeled by
tick-automaton G and nonblocking supervisor SUP displayed in Fig. 4.
First, applying Algorithm 1 with inputs G, K = L _(8UP), Q; ={Q,,, =
{4,11},0,,5, = {0}} and {N; = 5, N, = 9}, we get the supremal
bounded-time completable language NK (wrt. {(Q,,; = {4,11}, N, =
5), (Qp2 = {0}, Ny = 9)}) represented by tick-automaton NK displayed
in Fig. 7. However, it is not controllable, because event tick is disabled
at state 102, but event 22 is not forcible, which cannot preempt the
occurrence of tick. Next applying Algorithm SC with inputs G and
NK (although state 83 is a marker state, tick is preempted on it but
after event 21 is disabled, none of the forcible events is eligible at
state 83; thus states 83, 94, 95, 98, 99 and corresponding transition
arriving them are removed from NK), we get an automaton TQCSUP
as displayed Fig. 8.

It is verified that L,(TQCSUP) is both controllable and bounded-
time completable wrt. {(Q,,; = {4,11},N; = 5), (Qp2 = {0},N; =

R. Zhang et al

recif s 13

. tick
tick
ok
J

tick

tick

tick

65161610,
LAY R

tick

\3/

G

tick
= ick o j Ll 95
A z {j“‘" \38 (s } C

X ek

Fo tigk otk
1 kK
(&)
42 . .
451‘? tick /\ tick
5 /4, U uJ
- thek tick
Yy = tick / ™
) s N
13 - ke
‘2 ,_/—\ tick O tici FI
15 tick / “\ tick ,f A
& &)
tick 16 4
ick
tick 18
tick) o
15 139} &)
@ tick @ 16
w 45 S0
\H) .
2 ek @&— 9
3.
/"1; tick 24 b W/ B,
- ~ tick P 16 -
I 1) 52)
N P NS

Fig. 8. Transition graph of TQCSUP.

9)}, and thus according to Theorem 2, TQCSUP may be used as a
bounded-time nonblocking supervisor.

This supervisor TQCSUP is used to make the autonomous vehicle
provide timely services in Example 1. The control logics of TQCSUP are
as follows: (1) never move to zone 2 (corresponding to states 81 and
88) and zone 4 (corresponding to state 48, 49, 50, 51 and 52) when in
zone 3 (corresponding to states 89, 90, 91 and 92); (ii) never move to
zone 1 (corresponding to states 33, 34, 35, 36 and 37) when in zone 4;
(iii) if the vehicle is in zone 1, it is safe to move to zone 2 and zone 4 if it
has just returned from zone 0 (i.e. finished self-charging; corresponding
to states 0, 75, 116); and (iv) if the vehicle has moved to zone 2 and
3, it must return (either by moving through zone 1, or moving though
zone 4) for self-charging before the next round of service.

These logics guarantee that the two requirements ((i) and (ii) in
Example 2.2 of Section 2.2) on the vehicle are satisfied. First, every
package sent to customers can be delivered by the vehicle to one of
the two service areas (zone 1 or 2) within 10 min; and whenever
a customer calls for package collection, the vehicle can reach either
zone 1 or 2 within 10 min no matter where the vehicle is and no matter
which paths (permitted by the supervisor TQCSUP) the vehicle follows.
Second, no matter where the vehicle is, it can return to zone 0 for
self-charging within 18 min no matter which paths the vehicle follows.

6. Conclusion

In this paper, we have introduced a new concept of bounded-
time nonblockingness of rick-automaton, which requires that every task
(each represented by a subset of marker states) must be completed
in prescribed time. Moreover, we have formulated a new bounded-
time nonblocking supervisory control problem of TDES, characterized
its solution in terms of bounded-time language completability, and
developed algorithms to compute the optimal solution.

CRediT authorship contribution statement
Renyuan Zhang: Writing — review & editing, Writing — original

draft, Supervision, Project administration, Formal analysis, Conceptu-
alization. Junhua Gou: Writing — original draft. Yabo Zhu: Writing —

original draft. Bei Yang: Writing — original draft. Kai Cai: Supervision,
Formal analysis, Conceptualization.

Declaration of competing interest
We declare that we have no conflict of interest.

References

Balemi, S., Hoffmann, G., Gyugyi, P., Wong-Toi, H., & Franklin, G. (1993). Supervisory
control of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control,
38(7), 1040-1059.

Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Pelil, A., Petrucci, L., et al. (2001).
Systems and software verification. Springer-Verlag Berlin Heidelberg.

Bonakdarpour, B., & Kulkarni, S. (2006). Complexity issues in d addition of
time-bounded liveness properties: Tech. rep., Department of Computer Science and
Engineering, Michigan State University.

Brandin, B., & Charbonnier, F. (1994). The supervisory control of the automated
manufacturing system of the AIP. In Proc. rensselaer’s 4th int conf. computer
integrated facturing and ion technology (pp. 319-324).

Brandin, B., & Wonham, W. (1994). Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control, 39(2), 329-342.

Cai, K., & Wonham, W. (2020). Supervisory control of discrete-event systems. In
Encyclopedia of systems and control (2nd ed.). Springer.

Cassandras, C., & Lafortune, S. (2008). Introduction to discrete event systems (2nd ed.).
Springer.

Daws, C., Olivero, A., Tripakis, 5., & SergioYovine (2002). Kronos: A verification
tool for real-time systems. Available at https://www-verimag.imag. fr/DIST-TOOLS/
TEMPO/kronos/.

Eilenberg, S. (1974). Automata, languages and machines voluma A. Academic Press.

Fabian, M., & Kumar, R. (1997). Mutually nonblocking supervisory control of discrete
event systems. In Proc. 36th IEEE conference on decision and control (pp. 2970-2975).

Hoperoft, J., Motwani, R., & Ullman, J. (2014). Introduction to theory I
and computation. Pearson Education.

Jirdsek, J., Jirdskovd, G., & Szabari, A. (2005). State complexity of concatenation
and compl tation of regular languages. International Journal of Foundations of
Computer Science, 16(3), 511-529.

Kumar, R., & Shayman, M. (1994). Non-blocking supervisory control of deterministic
discrete event systems. In Proc. 1994 American control conference (pp. 1089-1093).

Ma, C., & Wonham, W. (2006). Nonblocking supervisory control of state tree structures.
IEEE Transactions on Automatic Control, 51(5), 782-793.

Malik, P. (2003). From supervisory control to nonblocking controllers for discrete event
systems (Ph.D. thesis), University of Kaiserslautern.

Malik, R., & Leduc, R. (2008). Generalised nonblocking. In Proc. 9th international
workshop on discrete event systems (pp. 340-345).

R. Zhang et al

Ramadge, P., & Wonham, W. (1987). Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1), 206-230.

Ramadge, P., & Wonham, W. (1989). The control of discrete event systems. The
Proceedings of IEEE, 77(1), 81-98.

Wonham, W. (2016). Design software: TTCT. Toronto, ON, Canada: Systems Control
Group, ECE DepL, University of Toronto, Available at https://github.com/TCT-
Wonham/TTCT.

Wonham, W., & Cai, K. (2019). Supervisory control of discrete-event systems. Springer.

Wonham, W., Cai, K., & Rudie, K. (2018). Supervisory control of discrete-event systems:
a brief history. Annual Reviews in Control, 45, 250-256.

Wonham, W., & Ramadge, P. (1987). On the supremal controllable sublanguage of a
given language. SIAM Journal on Control and Optimization, 25(3), 637-659.

Yu, 5., Zhuang, Q., & Salomaa, K. (1994). The state complexities of some basic
operations on regular languages. Theoretical Computer Science, 125(2), 315-328.

Zhang, R., Wang, Z., & Cai, K (2021). N-step nonblocking supervisory control of
discrete-event systems. In Proc. 2021 60th IEEE conference on decision and control
(pp. 339-344).

Zhang, R., Wang, J., Wang, Z., & Cai, K. (2024). Quantitatively nonblocking supervisory
control of discrete-event systems. Automatica, 170, Article 111879,

Zhang, Z., Xia, C., Chen, S., Yang, T., & Chen, Z. (2020). Reachability analysis of
networked finite state machine with communication losses: a switched perspective.
IEEE Journal on Selected Areas in Communications, 38(5), 845-853.

Zhang, Z., Xia, C., Fu, J., & Chen, Z. (2022). Initial-state observability of mealy-based
finite state machine with nondeterministic output functions. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 52(10), 6396-6405.

Zhang, Z., Xia, C, G, Q., & Fu, J. (2024). Multi-step state-based opacity for unam-
biguous weighted machines. Science China (Information Sciences), 67(11), Article
212204.

