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a b s t r a c t 

This paper studies the resource allocation problem with convex objective functions, subject to individual 

resource constraints, equality constraints, and integer constraints. The goal is to minimize the total cost 

when allocating the total resource D to n agents. We propose a novel min-heap and optimization relax- 

ation based centralized algorithm and prove that it has a computational complexity of O(n log n + n log D ) 

when the resource constraints of individual agents are [0, D ], which outperforms the best known multi- 

phase algorithm with O(n log n log D ) . By extending the centralized algorithm, we present a consensus 

based distributed optimization algorithm to solve the same problem. It is shown that the proposed dis- 

tributed algorithm converges to a global minimizer provided that the digraph (representing the interac- 

tion topology of the agents) is strongly connected. All the updates used in the distributed algorithm rely 

only on local knowledge. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The resource allocation problem (RAP) deals with how to allo-

ate available resources to a number of users, called agents. Many

ptimization problems in the financial markets, smart grids, wire-

ess sensor networks, military ad hoc networks, and cloud systems,

an be modeled as a RAP. Examples include economic dispatch

roblems [1] , power regulation [2] and take or pay fuel supply

roblems [3] . Moveover, in many practical examples (e.g., joint re-

lenishment problem [4] , software-testing resources allocation [5] ,

nd many others in [6–8] ), the resources allocated to agents can

nly be integer numbers. 

To formulate the integer resource allocation problem(iRAP),

onsider a network of n agents. For each agent i ∈ { 1 , . . . , n } , we

ssociate a variable x i ∈ N and a corresponding cost function F i ( x i ).

he iRAP is the optimization problem aiming to find an opti-
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1673344. K. Cai’s work was supported by Program to Disseminate Tenure Track- 
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al integer x i to minimize 
x 1 , ... ,x n 

∑ n 
i =1 F i (x i ) under a collective equality

onstraint 
∑ n 

i =1 x i = D and individual inequality (state) constraints

 i ≤ x i ≤ x i , where x i , x i and D are given integers. The physical de-

cription of D is that there exists a fixed homogeneous pool with

 resource units. The lower and upper bounds x i and x i indicate

he capability of each agent. 

Although many centralized optimization algorithms exist for

his problem, it is to reduce the computational complexity that

otivates us to revisit the problem. Besides, due to significant

ommunications overhead required for collecting information from

ll the agents in large-scale networks and lacking of robustness

nd privacy (by requiring individual agents to provide information)

1] , it is desired to design distributed algorithms for solving the

RAP. Thus in this paper, we first design a fast centralized algo-

ithm for solving the iRAP and analyze its computational complex-

ty, and next design a distributed algorithm for the iRAP based on

nly locally available information. 

Since the iRAP with integer constraints can be exactly solved

y a simple greedy algorithm with a computational complexity of

(D log n ) [9] , the study of computational complexity becomes one

f the main issues for the iRAP. In real applications, D is always

ar greater than n . Thus, the problem to reduce the computational

omplexity O(D log n ) is to reduce the complexity factor caused

y D . [10] proposes a Lagrange multiplier based algorithm with a

http://dx.doi.org/10.1016/j.neucom.2017.03.089
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computational complexity of O(n 2 ( log D ) 2 ) , which is better than

O(D log n ) when D � n 2 . In addition, a polynomial-time algorithm

[11] is proposed and runs in O(n ( log D ) 2 ) , which is far better than

the algorithm in [10] when D � n � 1. More recently, [12] pro-

poses a multi-phase algorithm (a modified polynomial-time al-

gorithm) that reduces the computational complexity by requiring

O(n log n log D ) . 

The first key theoretical contribution of our work is the propo-

sition of a novel min-heap and optimization relaxation (iRAP relax-

ation) based centralized algorithm that runs in O(n log n + n log D ) ,

which substantially reduces the computational complexity in com-

parison with the existing algorithms in the literature. We first

notice the fact that the relaxation for the iRAP (iRAP without

integer constraints) converges exponentially, which means an

approximate relaxation solution can be obtained when it runs

in O(nlognD ) with the state constraints 0 ≤ x i ≤ D . Besides, we

explore the relation between the relaxation solution and the

optimal solution, based on which we design a method to adjust

the relaxation solution to an optimal solution. We show that the

adjusting procedure runs in n iterations. In addition, during the

adjusting procedure, we need to utilize the minimum value of

F i (x i ) − F i (x i + 1) and F i (x i − 1) − F i (x i ) . Thus, we use a min-heap to

obtain the minimum value, which has a computational complexity

of O( log n ) when executing deletion or addition. In total, we show

that the computational complexity of the proposed algorithm

is O(n log n + n log D ) . In comparison, our work achieves better

computational complexity than the existing algorithm in [12] . 

By extending the centralized algorithm, we design a distributed

algorithm for the iRAP. The difference between the distributed

algorithm and the centralized one is that all the updates used in

the distributed algorithm must be obtained in distributed ways.

Since the initial variables of the centralized algorithm are the

approximate relaxation solution, we need to design a distributed

algorithm for the iRAP relaxation as well. In order to characterize

the network constraints for information exchanging in distributed

RAPs, graphs are adopted to describe inter-agent communication

topologies. The undirected graph model is considered in [13–16] ,

which means that each agent communicates with its neighbors in

a bidirectional manner. As an application, a distributed resource

allocation scheme for sensor networks with undirected graphs

is proposed in [17] . However, communications are sometimes

unidirectional, e.g., directional antennas and different types of

omnidirectional antenna may be used in sensor networks. Besides,

directed networks reduce the energy consumption and avoid

potential risks because of the radiation region decreasing [18] .

Thus, we adopt digraphs as a network model in this paper. More

recently, a distributed bisection algorithm [19] , a ratio consensus

based decentralized algorithm [20] , and a surplus based consensus

algorithm [1] are developed to overcome the difficulties due to

directional information flow in multi-agent networks to obtain

the relaxation solution. However, global knowledge, which usually

cannot be known in a distributed setting, is required for the

algorithms or for the design of some critical parameters in these

algorithms. To overcome this, a fully distributed algorithm is

designed in our previous work [21] . 

The second key theoretical contribution of our work is to design

a distributed algorithm based on the non-negative surplus based

algorithm [21] . We employ the relaxation solution that is obtained

from the non-negative surplus based algorithm [21] , and adjust

the relaxation solution to an optimal solution. During the adjusting

procedure, we notice that some parameters need to be updated in

distributed ways. A variety of consensus algorithms are recalled to

update these parameters at each iteration. 

The remainder of this paper is organized as follows. In

Section 2 , preliminaries and problem formulation are introduced.
 x  
n Section 3.1 , a min-heap and iRAP relaxation based central-

zed algorithm is designed and its computational complexity is

nalyzed. A distributed algorithm to solve the iRAP and its prac-

ical implementation are described in Section 4 . At last, simulation

esults are presented in Section 5 . We summarize our paper and

tate further research problems in Section 6 . 

Notation: R denotes the set of real numbers. N denotes the set

f integer numbers. 1 n represents the n -dimensional vector of ones

nd I n represents the identity matrix of order n . The symbol | · |

enotes the cardinality of a set. For a real number x ∈ R , � x � de-

otes the smallest integer greater than or equal to x , and � x 	 de-

otes the largest integer less than or equal to x . Moreover, [ x ] − is

efined as 

 x ] − = 

{
x x ≤ 0 , 

0 x > 0 . 

f x is a vector, [ x ] − means that every entry of x takes the above

unction. For any v 1 , v 2 ∈ R 

m ×n , we say v 1 
 v 2 if all the entries of

 1 − v 2 are nonnegative and v 1 � v 2 if all the entries of v 1 − v 2 are

onpositive. 

Denote inf as the positive infinity value, and −in f as the nega-

ive infinity value. 

. Preliminaries and problem formulation 

.1. Preliminaries for graphs 

A directed graph (digraph) G = (V, E ) consists of a non-empty

nite set V of elements called nodes and a finite set E of ordered

airs of nodes called edges . In G, a node i is said to be reachable

rom a node j if there exists a path from j to i . Moreover, G is said

o be strongly connected if every node is reachable from every other

ode. 

For each node i ∈ V, let N 

+ 
i 

:= { j ∈ V : ( j, i ) ∈ E} denote the set

f its in-neighbors , and let N 

−
i 

:= { l ∈ V : (i, l) ∈ E} denote the set

f its out-neighbors . Note that at any time k , N 

+ 
i 

� = N 

−
i 

generally.

n addition, i �∈ N 

+ 
i 

and i �∈ N 

−
i 

. Let d + 
i 

:= |N 

+ 
i 
| be its in-degree and

et d −
i 

:= |N 

−
i 
| be its out-degree . 

.2. Resource allocation problem with integer resources 

We consider a resource allocation problem over a network of

utonomous agents with integer resources. The network is mod-

led as a digraph G = (V, E ) with node set V = { 1 , 2 , . . . , n } and

dge set E ⊆ V × V . By this model, each agent is only capable of re-

eiving messages from its in-neighbors and transmitting messages

o its out-neighbors. 

Each agent i of the network is associated with a local variable

resource) x i ∈ N and a convex cost function F i : N → R . The local

ariable (resource) x i ∈ N is subject to an inequality constraint x i ≤
 i ≤ x i . Besides, the sum of multiple variables (resources) across the

etwork is fixed. Unlike the resource allocation problem presented

n [21] , the variable in each agent is restricted to be integer in this

aper. To sum up, the optimal resource allocation problem with

nteger resources (iRAP) is stated as follows: 

inimize 
x 1 , ... ,x n 

n ∑ 

i =1 

F i (x i ) (1a)

ubject to: 

x i ≤ x i ≤ x i , ∀ i, (individual state constraints) (1b)

n ∑ 

i =1 

x i = D, (equality constraint) (1c)

 i ∈ N , ∀ i. (integer constraints) (1d)
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In order to make the problem solvable, D must satisfy 
∑ n 

i =1 x i <

 < 

∑ n 
i =1 x i , and D must be an integer constant. Since the individ-

al state constraints are equivalent to � x i � ≤ x i ≤ � x i 	 . Thus, with-

ut loss of generality, we suppose that x i , x i ∈ N . 

We can think of D as the total amount of resource. 

In this paper, we are interested in reducing the computational

omplexity of centralized algorithms for solving iRAP (1), where

ll information is aggregated into one node to do the computa-

ion. Moreover, we are also interested in distributed algorithms for

olving iRAP (1), where each agent is only allowed to conduct local

omputation via received information from its in-neighbors. Thus,

he local information structure imposed by the digraph should be

onsidered as part of the distributed problem formulation. 

If we consider F i (x i ) : R → R , then it is assumed that the func-

ions F i are strictly convex and twice continuously differentiable

ith the second derivatives that are bounded below as in [1,13] . 

ssumption 1. The function F i ( x i ) is twice continuously differen-

iable in R and the second derivative is lower-bounded in the in-

erval [ x i , x i ] , i.e., 

dF 2 
i 
(x i ) 

dx 2 
i 

≥ l i > 0 , ∀ x i ≤ x i ≤ x i , 

here l i is a constant. 

Moreover, the following assumption is made for the digraph G
o design distributed algorithm. 

ssumption 2. The digraph G is strongly connected. 

. Centralized algorithm 

In this section, we are going to develop a centralized algorithm

ith fast convergence rate to solve the integer resource allocation

roblem (iRAP) (1). A centralized method means that there exists a

entral agent to collect all information from other agents, and the

omputation is only done by the central agent. 

The naive way to solve an optimization problem with integer

ariables is to simply remove the integer constraints, solve the cor-

esponding optimization problem, and then round the entries of

he solution to the original optimization problem with integer con-

traints. However, for most optimization problems, not only may

his solution not be optimal, it may not even be feasible. Thus,

ore processes are needed to obtain an optimal solution for RAP

1). 

To simplify the statements, we call the problem after removing

he integer constraints from iRAP (1) as the iRAP relaxation prob-

em in this paper. The optimal solution of the iRAP relaxation prob-

em is called as the relaxation solution . 

.1. Min-Heap and iRAP relaxation based algorithm 

We first notice that if the initial state is very close to the op-

imal solutions of iRAP (1), an optimal solution can be quickly

btained by using a modification of the classical min-heap based

reedy method. Besides, we find that the relaxation solution is

ery close to the optimal solutions. In addition, we notice that the

elaxation solution can be exponentially obtained in a centralized

ay. 

Based on these ideas, we present a min-heap and iRAP relax-

tion based algorithm to solve iRAP (1), which is divided into two

rocesses. The first process is to obtain the relaxation solution. The

econd process is to obtain an optimal solution with an approxi-

ate relaxation solution as its initial state. 

To formulate these two processes, we provide some useful

efinitions. 
First, for each agent i , we define the incremental cost function.

 i (x i ) := 

dF i (x i ) 

dx i 
. (2) 

he optimal solution ˆ x ∗
i 

satisfies to the iRAP relaxation: 

 

 

 

J i ( ̂  x ∗
i 
) = λ∗ for x i < 

ˆ x ∗
i 

< x i , 

J i ( ̂  x ∗
i 
) ≤ λ∗ for x ∗

i 
= x i , 

J i ( ̂  x ∗
i 
) ≥ λ∗ for x ∗

i 
= x i , 

(3) 

here λ∗ ∈ R is the optimal Lagrange multiplier, and ˆ x ∗
i 

∈ R is the

ptimal solution [19] . From (3) , we define a projection function for

to show the relation between the Lagrange multiplier and deci-

ion variables 

i (λ) = 

⎧ ⎨ ⎩ 

x i if λ > J i ( x i ) , 

J −1 
i 

(λ) if J i ( x i ) ≤ λ ≤ J i ( x i ) , 

x i if λ < J i ( x i ) , 

(4) 

Next, we introduce the definition of min-heap [22] that is an

mportant concept in the centralized method. A min-heap contains

wo heaps (or each element of min-heap contains two parame-

ers): a heap δ that all elements in it are sorted from the small-

st to the largest, and a corresponding heap δID recording the ID

f nodes. For example, for a heap δ = [ δ1 , · · · , δn , δ1 ≤ · · · ≤ δn ] ,
ID 
i 

= j means that δi is the parameter for node j . We can create

in-heap by the typical heap sort method, for which the compu-

ational complexity is O(n log n ) . 

After introducing these definitions, we present the first algo-

ithm ( Algorithm 1 ) to solve the iRAP relaxation problem, i.e., to

btain the relaxation solution. 

lgorithm 1 Modified bisection algorithm to the iRAP relaxation

roblem. 

nitialization: 

1: Set a small constant ε. 

2: Create a min-heap δ1 to store J i ( x i ) . 

3: Use the min-heap to find p(2 ≤ p ≤ n ) such that 
∑ n 

i =1 φi (δ
1 
p ) ≥

D and 

∑ n 
i =1 φi (δ

1 
p−1 

) < D . 

4: if we can not find p

5: then w 1 = δ1 
n , w 1 = in f . 

6: else if 
∑ n 

i =1 φi (δ
1 
p ) = D 

7: then w 1 = w 1 = δ1 
p . 

8: else w 1 = δ1 
p−1 , w 1 = δ1 

p . 

9: end if 

10: Similarly, create a min-heap δ2 to store J i ( x i ) and obtain w 2 and

w 2 . 

11: λ = max { w 1 , w 2 } , λ = min { w 1 , w 2 } . 
pdate: 

1: do 

2: λ∗ = 

λ+ λ
2 

3: ˜ x ∗
i 

= φi (λ
∗) 

4: x sum 

= 

∑ n 
i =1 ̃  x ∗

i 
5: if x sum 

< D . 

6: then λ = λ∗. 

7: else λ = λ∗

8: end if 

9: while | x sum 

− D | > ε 

In Algorithm 1 , we notice that ˜ x ∗
i 

always satisfies the optimal

onstraint (3) . Besides, if ε = 0 , ˜ x ∗
i 

satisfies the constraint (1c) as

he iteration step tends to infinity. In our paper, in order to ter-

inate the algorithm in finite steps and have a smaller computa-

ional complexity, we take ε equaling to a proper small constant,
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for example, ε = 1 . This termination condition implies that ˜ x ∗
i 

is an

approximate relaxation solution. 

Next, we present the second algorithm ( Algorithm 2 ) to solve

iRAP (1) by using the round-down of the approximate relaxation

solution as its initial state. 

Algorithm 2 Min-heap Based Algorithm. 

Initialization: 

1: x i = � ̃ x ∗
i 
	 where � ̃ x ∗

i 
	 is obtained by the modified bisection

method ( Algorithm 1 ). Update x sum 

= 

∑ n 
i =1 x i . 

2: Create a min-heap δ1 with n elements to store in f if x i ≥ x i ,

and to store F i (x i + 1) − F i (x i ) otherwise . δID 1 records ID . 

3: Create a min-heap δ2 with n elements to store in f if x i ≤ x i ,

and to store F i (x i − 1) − F i (x i ) otherwise . δID 2 records ID . 

Update: 

step 1: adjust x sum 

to D . 

1: while x sum 

� = D 

2: if x sum 

< D 

3: then i = δID 1 
1 

. 

4: Update x i = x i + 1 . 

5: Update (deletion and addition) min-heaps. 

6: x sum 

= x sum 

+ 1 . 

7: else if x sum 

> D 

8: then Similarly, update i = δID 2 
1 

, x i = x i − 1 , x sum 

= x sum 

− 1 ,

and min-heaps. 

9: end if 

10: end while 

step 2: find one of the optimal solutions. 

1: Initialization: δ = δ1 
1 + δ2 

1 
2: while δ < 0 

3: i = δID 1 
1 

, j = δID 2 
1 

. 

4: Update x i = x i + 1 and x j = x j − 1 . 

5: Update min-heaps. 

6: δ = δ1 
1 

+ δ2 
1 

. 

7: end while 

In Algorithm 2 , we first create two min-heaps and use � ̃  x ∗
i 
	 to

initialize these min-heaps. Second, we adjust x sum 

to D by using

these min-heaps. At last, an optimal solution is obtained through

the iteration of step 2. The following theorem shows the conver-

gence of Algorithm 2 . 

Theorem 1. Suppose Assumption 1 holds. Algorithm 2 leads to one of

the globally optimal solutions to iRAP (1). 

The proof of Theorem 1 is given in Appendix . 

Remark 1. The update process of min-heap uses two auxiliary

heaps to record the ID information and includes deletion and addi-

tion operating, for which the computational complexity is O( log n )

[22] . 

Remark 2. Considering Algorithm 2 , we can obtain that the com-

parison x sum 

> D is not needed in the ideal situation (i.e., ˜ x ∗
i 

= ˆ x ∗
i 
).

However, the bisection method in Algorithm 1 is ended in finite

steps. Thus, the initial state x may have a small offset from the

ideal one. We need to add the comparison x sum 

> D in Algorithm 2 .

Remark 3. The relaxation solution is the unique optimal solution

of the iRAP relaxation problem. However, there may exist multi-

ple solutions for iRAP (1). Algorithm 2 leads to one of the globally

optimal solutions depending on the initial state. 

3.2. Computational complexity analysis 

In this section, we analyze the computational complexity of

Algorithm 2 . To clearly describe this, we need some notations. De-
ote x = [ x 1 , . . . , x n ] . Without special declaration, x ∗ = [ x ∗1 , . . . , x 
∗
n ]

s a globally optimal solution obtained by Algorithm 2 in this

ection. 

To analyze the computational complexity, we need to show the

ffect of the initial state on the convergence rate, i.e., to know the

umbers of iteration of the two steps in Algorithm 2 . In the follow-

ng two lemmas, we provide an analytical result for the changing

mount of each iteration, and the relation between the relaxation

olution and the optimal solutions. 

emma 1. The 1-norm ‖ x ∗ − x ‖ 1 decreases by 1 for each iteration of

he first step and decreases by 2 for each iteration of the second step

f Algorithm 2 . 

emma 2. Denote S as the set containing all possible globally opti-

al solutions to iRAP (1). For any x ∗ = [ x ∗
1 
, . . . , x ∗n ] ∈ S, it satisfies the

roperty that (∀ i ∈ V) x ∗
i 

≥ � ̂ x ∗
i 
	 or (∀ i ∈ V) x ∗

i 
≤ � ̂ x ∗

i 
� . 

The proof of Lemmas 1 and 2 are given in Appendix . 

Based on Lemmas 1 and 2 , we present the numbers of iteration

eeded by Algorithm 2 in the following theorem. 

heorem 2. If ˜ x ∗
i 

= ˆ x ∗
i 
, Algorithm 2 leads to a globally optimal so-

ution by iterating the first step D − ∑ n 
i =1 � ̂ x ∗

i 
	 times and the second

tep less than or equal to 
∑ n 

i =1 � ̂ x ∗
i 
� − D times. 

roof: From the termination condition x sum 

� = D of the first

tep, we obtain that the first step iterates D − ∑ n 
i =1 � ̂ x ∗

i 
	 times in

lgorithm 2 . 

Next, we prove that the second step iterates less than or equal

o 
∑ n 

i =1 � ̂ x ∗
i 
� − D times. Lemma 2 shows that there exist two cases.

e consider the two cases respectively in the following. 

Case 1: (∀ i ∈ V) x ∗
i 

≥ � ̂ x ∗
i 
	 . 

From Lemma 1 , ‖ x ∗ − x ‖ 1 decreases by 1 for each iteration

f the first step. Together with the facts that ‖ x ∗ − � ̂ x ∗
i 
	‖ 1 =

 − ∑ n 
i =1 � ̂ x ∗

i 
	 and the first step iterates D − ∑ n 

i =1 � ̂ x ∗
i 
	 times in

lgorithm 2 , we find out that x = [ x 1 , . . . , x n ] obtained by the first

tep is x ∗. Thus, the second step will not become active. 

Case 2: (∀ i ∈ V) x ∗
i 

≤ � ̂ x ∗
i 
� . 

Since ‖ x ∗ − x ‖ 1 decreases by 1 for each iteration of the

rst step, x i obtained by the first step is � ̂  x ∗
i 
	 or � ̂ x ∗

i 
� . With-

ut loss of generality, we assume x obtained by the first step

s [ � ̂ x ∗
1 
	 , . . . , � ̂ x ∗p 	 , � ̂ x ∗

p+1 
� , . . . , � ̂ x ∗n � ] , p = 

∑ n 
i =1 � ̂ x ∗

i 
� − D, denoted as

 ( k 0 ). 

Together with (∀ i ∈ V) x ∗
i 

≤ � ̂ x ∗
i 
� , we obtain that ‖ x ∗ − x (k 0 ) ‖ 1 ≤

( 
∑ n 

i =1 � ̂ x ∗
i 
� − D ) . Besides, we have shown in Lemma 1 that ‖ x ∗ −

 ‖ 1 decreases by 2 for each iteration of the second step. Then,

e obtain that the second step iterates less than or equal to
2( 

∑ n 
i =1 � ̂ x ∗

i 
�−D ) 

2 = 

∑ n 
i =1 � ̂ x ∗

i 
� − D times. �

omputational complexity analysis: In this part, we analyze the

omputational complexity of the min-heap and iRAP relaxation

ased algorithm and compare it to a recent work. To analyze

his, we consider the case that x i = 0 and x i = D in [12] . Since

lgorithm 2 uses ˜ x ∗
i 

as its initial state, we need to analyze the

omputational complexity of Algorithm 1 at first. Considering the

nitialization part of Algorithm 1 , since searching for a min-heap

eeds a computational complexity of O( log n ) and each step of

he search runs in O(n ) , the computational complexity of the ini-

ialization part of Algorithm 1 is O(n log n ) . The update part of

lgorithm 1 runs a computational complexity of O(n log nD ) if ε =
 , and the coefficient of nD is less than or equal to max i ∈V 

l i 
l i 

from

he property of bisection, where l i is the upper bound and l i is the

ower bound of the second derivative of F i ( x i ) in the interval [ x i , x i ] .

n practice, this coefficient is always less than nD . Thus, we first

btain the initial state of Algorithm 2 by the modified bisection

ethod with a computational complexity of O(n log D + n log n ) . 
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Algorithm 3 Nonnegative-surplus based distributed optimization 

algorithm. 

Initialization: 

(1) Choose x i (0) ∈ [ x i , x i ] and s i (0) 
 0 for all i such that 
∑ n 

i =1 

(x i (0) + s i (0)) = D ;
(2) Choose λi (0) such that λi (0) = J i (x i (0)) . 

Update: 

λi (k + 1) = λi (k ) + 

[ ∑ 

j∈N + 
i 

a i (λ j (k ) − λi (k )) 

] 

−

+ εi s i (k ) , ( 6a) 

x i (k + 1) = φi (λi (k + 1)) , ( 6b) 

s i (k + 1) = b i s i (k ) + 

∑ 

j∈N + 
i 

b j s j (k ) − (x i (k + 1) − x i (k )) , ( 6c) 

where the parameters in the algorithm are chosen as follows: a i = 

1 
d + 

i 
+1 

, b i = 

1 
d −

i 
+1 

and εi = c i b i with c i ∈ (0 , l i ) . 
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Next, we analyze the computational complexity of

lgorithm 2 with the initial state ˜ x ∗
i 
. Since we choose ε = 1 ,

he initial state x i = � ̃ x ∗
i 
	 is either � ̂ x ∗

i 
	 − 1 , � ̂ x ∗

i 
	 or � ̂ x ∗

i 
	 + 1 .

hile |� ̃ x ∗
i 
	 − � ̂ x ∗

i 
	| ≤ 1 , we find the two steps iterate less than

 n times with the initial state � ̃  x ∗
i 
	 according to Lemma 1 . Both

he first step and the second step need two min-heaps. Since the

omputational complexity of deletion or addition for a min-heap

s O( log n ) , the computational complexity of these two steps are

(n log n ) . 

Thus, the total computational complexity of the min-heap and

RAP relaxation based algorithm is O(n log D + n log n ) . If n � D ,

he computational complexity is O(n log D ) , which is better than

he computational complexity O(n log D log n ) that is shown in

12] . 

emark 4. In fact, if the cost functions are quadratic functions

nd x i ∈ [0, D ], by noticing the fact that 
∑ n 

i =1 φi (λ) = αλ + β dur-

ng the update of Algorithm 1 , where α and β can be calculated

y simple summations after initializing λ and λ. Thus, the com-

utational complexity of Algorithm 1 can be reduced to O( log D +
 log n ) . The total computational complexity of the min-heap and

RAP relaxation based algorithm is O( log D + n log n ) . 

. Distributed algorithm 

In this section, we provide a distributed algorithm to find an

ptimal solution of iRAP (1). By extending the centralized al-

orithm, we first design a consensus and iRAP relaxation based

istributed algorithm. Second, the convergence rate of the pro-

osed distributed algorithm is analyzed. At last, termination cri-

eria are presented for practical implementation of the distributed

lgorithm. 

.1. Consensus and iRAP relaxation based distributed algorithm 

In the centralized algorithm, a modified bisection algorithm

s presented to provide a solution to the iRAP relaxation prob-

em, which is then used as the initial state to solve the iRAP

ased on iterations of min-heaps. Notice that if both the solu-

ion to the iRAP relaxation and the min-heap based iteration

an be found in a distributed manner, a distributed extension

f the centralized algorithm to solve iRAP (1) can then be

esigned. 

Thus, similar to the centralized algorithm, we present a con-

ensus and iRAP relaxation based algorithm to solve iRAP (1)

n a distributed way, which is divided into two processes. The

rst process is to obtain the relaxation solution in a distributed

ay. The second process is to design a distributed succes-

ive approximation algorithm to obtain an optimal solution of

RAP (1) with an approximate relaxation solution as its initial

tate. 

To design a distributed algorithm for the iRAP relaxation prob-

em, we assume that each node holds an estimate of λ, denoting as

i . The estimate of λi needs to achieve consensus by a distributed

lgorithm. Before we present the distributed algorithm, we define

 projection function for λi to show the relation between the esti-

ate of Lagrange multiplier and decision variables in the following.

i (λi ) = 

⎧ ⎨ ⎩ 

x i if λi > J i ( x i ) , 

J −1 
i 

(λi ) if J i ( x i ) ≤ λi ≤ J i ( x i ) , 

x i if λi < J i ( x i ) . 

(5) 

We are now ready to present a nonnegative-surplus based al-

orithm ( Algorithm 3 ) to solve the iRAP relaxation problem, which

as developed in [21] . 
The operator [ ·] − for the item 

∑ 

j∈N + 
i 

(k ) a i (k )(λ j (k ) − λi (k )) in

lgorithm 3 ensures non-negative s i , so we call Algorithm 3 a

onnegative-surplus based algorithm . 

emma 3 ( Theorem 1 in [21] ) . Suppose Assumptions 1 and 2 hold.

lgorithm 3 leads to the unique globally optimal solution to the iRAP

elaxation problem. 

Lemma 3 implies that we can obtain the relaxation solution by

lgorithm 3 with infinite number of iterations. Similar to the cen-

ralized algorithm, we denote ˆ x ∗ = [ ̂ x ∗1 , . . . , ̂  x ∗n ] T ∈ R 

n as the relax-

tion solution and ˜ x ∗ = [ ̃ x ∗
1 
, . . . , ̃  x ∗n ] T ∈ R 

n as an approximate relax-

tion solution obtained by Algorithm 3 with a proper termination

riterion. 

Next, we present a distributed successive approximation al-

orithm ( Algorithm 4 ) to solve iRAP (1). In the initialization of

lgorithm 4 , we choose the initial state as the round down of

he approximate relaxation solution obtained by Algorithm 3 . Be-

ides, in order to get D 
n , we assume that D is known by one of the

odes. In addition, we assume that random parameters r 1 , . . . , r n 
atisfy ( ∀ i � = j ) r i � = r j such that there exists only a node updat-

ng its state for each iteration of the first step and there exist

nly two nodes updating their states for each iteration of the sec-

nd step. In the first step, we adjust the sum of x i to D , and
 n 
i =1 x i increase or decrease one for each iteration. In the second

tep, we check whether there exist x i > x i and x j < x j , i � = j satis-

ying F i (x i + 1) + F j (x j − 1) < F i (x i ) + F j (x j ) so that the update ap-

roaches to an optimal solution iteratively. The following theorem

hows the convergence of Algorithm 4 . 

heorem 3. Suppose Assumptions 1 and 2 hold. Algorithm 4 leads to

ne of the globally optimal solutions to iRAP (1). 

roof: The only difference between this theorem and Theorem 1 is

hat the updates in Algorithm 2 are based on min-heaps, and

he updates in Algorithm 2 are based on distributed consensus

lgorithms. The main stream remains the same as the proof of

heorem 1 . �
As Algorithm 4 is expected to be a fully distributed algorithm,

he computation of a number of variables in Algorithm 4 such as

 a v g , 
D 
n , δ, ω , etc. should also be done in a distributed manner.

e firstly present a nonnegative-surplus based average consensus

lgorithm over digraphs ( Algorithm 5 ) to compute x a v g and 

D 
n , and

how its convergence in the lemma below. 
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Algorithm 4 Successive approximation algorithm. 

Initialization: 

1: Choose the initial state x i = � ̃ x ∗
i 
	 . 

2: Each node selects a random parameter r i . 

3: Each node gets D 
n . 

Update: 

step 1: adjust x sum 

= 

∑ n 
i =1 x i to D 

1: do 

2: Compute x a v g = 

∑ n 
i =1 x i 
n . 

3: if x a v g > 

D 
n 

4: then δi = in f for x i = x i 
and δi = F i (x i − 1) − F i (x i ) for x i > x i ; 

5: Compute δ = min i ∈V δi ; 

6: w i = in f for δi � = δ and w i = r i otherwise ; 

7: Compute w = min i ∈V w i ; 

8: Update x i = x i − 1 for w i = w . 

9: else if x a v g < 

D 
n 

10: then δi = in f for x i = x i and δi = F i (x i + 1) − F i (x i ) for x i < 

x i ; Similarly, compute δ, set w i , compute w and update x i = 

x i + 1 for w i = w . 

11: end if 

12: while x a v g � = 

D 
n 

step 2: find an optimal solution. 

1: do 

2: δ1 
i 

= in f for x i = x i , δ1 
i 

= F i (x i − 1) − F i (x i ) for x i > x i ; Com- 

pute δ1 = min i ∈V δ1 
i 

; 

3: Similarly, compute δ2 = min i ∈V δ2 
i 

= min i ∈{ i | x i < x i } F i (x i + 1) −
F i (x i ) ; 

4: if δ1 + δ2 
< 0 

5: w 

1 
i 

= in f for δ1 
i 

� = δ1 
and w 

1 
i 

= r i otherwise ; 

6: Compute w 

1 = min i ∈V w 

1 
i 
; 

7: w 

2 
i 

= in f for δ2 
i 

� = δ2 
and w 

2 
i 

= r i otherwise ; 

8: Compute w 

2 = min i ∈V w 

2 
i 
; 

9: Update x i = x i − 1 for w 

1 
i 

= w 

1 ; 

10: Update x j = x j + 1 for w 

2 
j 
= w 

2 . 

11: end if 

12: while δ1 + δ2 
< 0 

Algorithm 5 Nonnegative surplus based average consensus algo- 

rithm. 

Initialization: For any initial value y i (0) , choose s i (0) = 0 . 

Update: 

y i (k + 1) = y i (k ) + 

[ ∑ 

j∈N + 
i 

a i (y j (k ) − y i (k )) 

] 

−

+ εi s i (k ) , ( 7a) 

s i (k + 1) = b i s i (k ) + 

∑ 

j∈N + 
i 

b j s j (k ) − (y i (k + 1) − y i (k )) , ( 7b) 

where the parameters in the algorithm are chosen as follows: a i = 

1 
d + 

i 
+1 

, b i = 

1 
d −

i 
+1 

and εi = ̂

 c i b i with ̂

 c i ∈ (0 , 1) . 

 

 

 

 

 

Algorithm 6 Minimum and maximum consensus algorithm. 

Initialization: z i (0) . 

Minimum Update: z i (k + 1) = min j∈{ i } ⋃ 

N + 
i 

z j (k ) 

Maximum Update: z i (k + 1) = max j∈{ i } ⋃ 

N + 
i 

z j (k ) 
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Lemma 4 ( Theorem 1 in [23] ) . Suppose Assumption 2 holds.

Algorithm 5 leads to average consensus of the parameters y i . 

Secondly, we present a minimum/maximum consensus algo-

rithm over digraphs ( Algorithm 6 ) to compute δ, w , δ1 
, δ2 

, w 

1 , and

w 

2 . The minimum/maximum state is broadcast to all nodes by it-

erating equal to or less than n times when the graph is strongly

connected [24] . 
emark 5. It is worth to point out that Algorithm 5 is a special

ase of Algorithm 3 . The average consensus is the optimal solu-

ion to the problem of optimizing the sum of the cost functions 
x 2 

i 
2 

ithout state constraints. For such special case, λi = x i . 

emark 6. There are also other methods to achieve average

onsensus (e.g., the push-sum algorithm in [25] ) and mini-

um/maximum consensus (e.g., max-min consensus algorithms in

26] .) 

.2. Convergence rate 

In this section, we show how the initial state in Algorithm 4 af-

ects the convergence rate. In other words, we would like to figure

ut the numbers of iteration of the two steps in Algorithm 4 with

he initial state x i = � ̂ x ∗
i 
	 . After that, we discuss the computational

omplexity of the consensus and iRAP relaxation based distributed

lgorithm. 

We first present a lemma to show the changing amount after

ach iteration of Algorithm 4 , which is similar to Lemma 1 . 

emma 5. Denote x ∗ = [ x ∗
1 
, . . . , x ∗n ] as the globally optimal solution

btained by Algorithm 4 . The 1-norm ‖ x ∗ − x ‖ 1 decreases by 1 for

ach iteration of the first step and decreases by 2 for each iteration of

he second step of Algorithm 4 . 

roof: The proof of goes the same as the one of Lemma 1 . �
Lemma 5 shows that Algorithm 4 is a successive approxima-

ion algorithm because it provides positive reinforcement for state

hanges that are successive steps towards an optimal solution. To-

ether with the relation between the relaxation solution and the

ptimal solutions in Lemma 2 , we show the numbers of iteration

eeded by Algorithm 4 in the following theorem. 

heorem 4. If the initial state is x i = � ̂ x ∗
i 
	 , Algorithm 4 leads to

 globally optimal solution by iterating the first step D − ∑ n 
i =1 � ̂ x ∗

i 
	

imes and iterating the second step less than or equal to 
∑ n 

i =1 � ̂ x ∗
i 
� −

 times. 

roof: Since Lemmas 2 and 5 hold for the distributed algorithm,

t can be proved in the same way as the proof of Theorem 2 . �
At last, we discuss the computational complexity of the

istributed algorithm. Suppose that the network traffics of

lgorithms 3 and 5 with certain termination criteria are O(g(n, D ))

nd O(g(n )) , respectively. Since Algorithm 6 is a finite step con-

ensus and iterates less than or equal to n times, the network

raffic of this algorithm is O(n 
∑ n 

i =1 d 
+ 
i 
) . The average computation

omplexity for each node by the consensus and iRAP relaxation

ased algorithm is O( g(n,D ) 
n + g(n ) + n 

∑ n 
i =1 d 

+ 
i 
) , which depends on

he convergence speed of Algorithm 3 and 5 and the topology

tructure. 

emark 7. From Lemma 5 , we obtain that the convergence rate is

losely related to the initial state. Lemma 2 shows that the glob-

lly optimal solutions are very close to ˆ x ∗ = [ ̂ x ∗
1 
, . . . , ̂  x ∗n ] . Thus, it

s better to use an approximate relaxation solution obtained by

lgorithm 3 as the initial state than a random one. 

emark 8. Lemma 2 also shows that the optimal solutions will

ot diverge to infinity if we remove one side of the state con-

traints or both sides of the state constraints. Together with the
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Table 1 

Performance of Algorithm 2 and multi-phase algorithm in [12] . 

n 

D 10 20 30 50 

10 3 T old 0.0025 0.0050 0.0078 0.0116 

T 0.0 0 04 0.0 0 085 0.0012 0.0022 

T reduce 84% 83% 84.62% 82% 

10 4 T old 0.0040 0.0095 0.0144 0.0241 

T 0.0 0 041 0.0 0 088 0.0013 0.0023 

T reduce 89.75% 90.74% 90.97% 90.46% 

10 5 T old 0.0053 0.0123 0.0192 0.0348 

T 0.0 0 042 0.0 0 089 0.0014 0.0023 

T reduce 92.08% 92.76% 92.71% 93.4% 

10 6 T old 0.0065 0.0159 0.0246 0.0489 

T 0.0 0 044 0.0 0 09 0.0015 0.0023 

T reduce 93.23% 94.34% 93.9% 95.3% 

Fig. 1. The numbers of iteration ( y -axis) until ‖ x (k ) − x ∗‖ < 0 . 1 . 
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hanging amount of each iteration shown in Lemma 5 , we can still

btain that Algorithm 4 terminates in finite steps. Our proof of

lgorithm 4 is still applicable. Thus, our algorithm is suitable for

he case without state constraints. 

.3. Termination criteria for distributed algorithms 

Since Algorithms 5 and 6 are used in Algorithm 4 and the initial

tate x i = � ̃ x ∗
i 
	 is obtained by Algorithm 3 , to obtain an optimal

olution for iRAP (1) in finite times, we need to design termination

riteria for Algorithms 3, 5 , and 6 . In the following, we provide

roper termination criteria for practical implementation of these

lgorithms, and show that an optimal solution for iRAP (1) can still

e obtained with these termination criteria. Before showing these

ermination criteria, we assume each node has an estimate of (or

nows) n . 

First, we give a termination criterion for Algorithm 6 . Since

lgorithm 6 is a finite step consensus algorithm and iterates less

han or equal to n times, the termination criterion is to terminate

lgorithm 6 in n times of iteration. 

Next, we design a termination criterion for Algorithm 3 . Add

uxiliary variables ε > 0 and κ i for each nodes. We define 

i (k ) = 

⎧ ⎨ ⎩ 

1 if 

∑ 

j∈{ i } ⋃ 

N + 
i 
| λ j (k ) − λi (k ) | + | s j (k ) | 

1 + d + 
i 

< 

ε 

n 

, 

0 otherwise . 

(8) 

ompute min i ∈V κi (k ) by the minimum consensus algorithm. If the

inimum consensus result is 1 (i.e., (∀ i ∈ V) κi (k ) = 1 ), we termi-

ate Algorithm 3 . Unlike the termination criterion for Algorithm 6 ,

he termination criterion for Algorithm 3 may cause small errors

rom the ideal consensus value. Since Algorithm 5 is a special

ase of Algorithm 3 , we use the same termination criterion for

lgorithm 5 as Algorithm 3 . 

At last, we show that a globally optimal solution can still be

chieved under these termination criteria, i.e., the errors caused by

ermination criteria do not affect the convergence of Algorithm 4 ,

ut only affect the initial state of Algorithm 4 , which is supported

y the following argument. . In Algorithm 4 , x a v g and 

D 
n are calcu-

ated by Algorithm 5 , which are used for comparison. Notice that

 and 

∑ n 
i =1 x i are integers, for which the tolerate error is 1, which

mplies that the tolerate error between x a v g and 

D 
n is 1 

n . Thus, we

ake ε ≤ 0.5, which is enough for us to do a comparison between

 a v g and 

D 
n . In total, by choosing suitable auxiliary variables for ter-

ination criteria, a globally optimal solution can still be achieved

y Algorithm 4 . 

. Simulation examples 

In this section, we provide simulation examples to illustrate our

roposed algorithms. 

.1. Computational complexity comparison 

In this subsection, we test the efficiency of our proposed cen-

ralized algorithm by reporting its running times. The performance

etrics include the running time ( T ), the time reduction ( T reduce )

y comparing with the best known multi-phase algorithm (Algo-

ithm 2) in [12] ). Denote the running time for our algorithm as T ,

he running time for the algorithm in [12] ) as T old . All algorithms

re implemented in Matlab R2010b on Intel Core i7-4710MQ dual-

ore 2.50GHz PC. The timing functions are tic and toc . 

The cost function associated with each agent i takes the

uadratic form F i (x i ) = a i x 
2 
i 

+ b i x i + c i , where a i , b i , and c i are ran-

omly selected from (0, 1) for each agent i . We simulate for D ∈
10 3 10 4 10 5 10 6 ] T and n ∈ [10203050] T . For each fixed pair ( n , D ),
e carry out 50 experiments with random quadratic functions, and

alculate the average running times for comparison. The simulation

esults are recorded in Table 1 . 

Since the cost functions are quadratic functions, the computa-

ional complexity of Algorithm 2 is O( log D + n log n ) . The influ-

nce of D is very small, as shown in Table 1 . Table 1 also shows

he larger D is, the more reduction will be increased by our algo-

ithm. 

.2. A three-agents ring network example 

In this subsection, we consider a three-nodes example with the

nformation flow 1 → 2 → 3 → 1 to demonstrate Algorithm 4 .

he cost functions are taken from the simple example in [12] ,

hich are F 1 (x 1 ) = 

x 1 (x 1 +1) 
2 , F 2 (x 2 ) = x 2 (x 2 + 1) + 0 . 1 , and F 3 (x 3 ) =

3 x 3 (x 3 +1) 
2 + 0 . 2 . The total resource is D = 12 . The state constraints

re 0 ≤ x i ≤ D . In Fig. 1 , we set the termination criterion as

 x (k ) − x ∗‖ < 0 . 1 , which terminates in 50 steps. The estimation of

 

∗ obtained from Algorithm 3 is [6 . 7643 . 2421 . 94] T . Then we set

he initial state of Algorithm 4 as [631] T . The updates of x i ’s are

ecorded in Fig. 2 . In this example, the first step of Algorithm 4 it-

rates two times for the first step, and the second step iter-

tes zero time. The obtained optimal solution satisfies that (∀ i ∈
) x ∗

i 
≥ � ̂ x ∗

i 
	 . By comparing with the result of exhaustive testing, we

nd out that the result obtained by our Algorithm is an optimal

olution. 
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Fig. 2. Trajectory of x by Algorithm 4 . 
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6. Conclusions 

The resource allocation problem is a classical fundamental

problem in optimization theory and widely applied in practice. In

this paper, we first propose a novel min-heap and iRAP relaxation

based centralized algorithm and prove that it has a computational

complexity of O(n log n + n log D ) when the resource constraints

are 0 ≤ x i ≤ D , which outperforms the best known multi-phase

algorithm running with a O(n log n log D ) computational complex-

ity. By extending the main idea of the centralized algorithm, a con-

sensus based distributed algorithm is developed for a very general

network setup over strongly connected digraphs. Moreover, termi-

nation criteria are also provided for practical implementation of

the distributed algorithm. 

Future works may include exploring inherent mechanisms for

global convergence of distributed algorithms with a faster conver-

gence rate. Besides, Assumption 1 in this paper indicates that the

cost functions are strictly convex. Relaxation of this assumption is

a further step towards general non-convex optimization problems.

Moreover, the iRAP relaxation based algorithm may not be suitable

for more general nonlinear/linear programming problems. Thus,

further research may focus on optimization problems with inte-

ger constraints by applying the idea of the iRAP relaxation based

algorithms developed in this paper. 

Appendix 

Proof of Theorem 1 : In Algorithm 2 , each iteration of the second

step updates x = [ x 1 , . . . , x n ] 
T , and reduces 

∑ n 
i =1 F i (x i ) . Thus, the

most recent x does not equal to any historical x . Since the vari-

ables are bounded by the state constraints and integer constraints,

the second step will terminate in finite times. 

Thus, the remaining issue is to argue whether the solution ob-

tained by Algorithm 2 is one of the globally optimal solutions.

Denote the solution obtained by Algorithm 2 as x ∗ = [ x ∗
1 
, . . . , x ∗n ] .

Suppose on the contrary there exists x ′ = [ x ′ 1 , · · · , x ′ n ] satisfying

(1b) (1c) (1d) and 

∑ n 
i =1 F i (x ′ 

i 
) < 

∑ n 
i =1 F i (x ∗

i 
) . 

Without loss of generality, we assume that x ′ 
i 
> x ∗

i 
for i ∈

{ 1 , · · · , p} , p < n, and x ′ 
i 
< x ∗

i 
for i ∈ { p + 1 , . . . , q } , q ≤ n, and as-

sume that the remaining nodes hold x ′ 
i 
= x ∗

i 
. From the equality

constraint (1c) , we obtain 

∑ q 
i =1 

(x ′ 
i 
− x ∗

i 
) = 0 . Thus, 

∑ n 
i =1 F i (x ′ 

i 
) −
 n 
i =1 F i (x ∗

i 
) can be rewritten as 

n 
 

i =1 

F i (x ′ i ) −
n ∑ 

i =1 

F i (x ∗i ) 

= 

p ∑ 

i =1 

F i (x ′ i ) − F i (x ′ i − 1) + · · · + F i (x ∗i + 1) − F i (x ∗i ) 

+ 

q ∑ 

i = p+1 

F i (x ′ i ) − F i (x ′ i + 1) + · · · + F i (x ∗i − 1) − F i (x ∗i ) 

= F 1 (x ′ 1 ) − F 1 (x ′ 1 − 1) + F p+1 (x ′ p+1 ) − F p+1 (x ′ p+1 + 1) 

+ · · ·
+ F i (x i + 1) − F i (x i ) + F j (x j − 1) − F j (x j ) 

+ · · ·
+ F p (x ∗p + 1) − F 1 (x ∗p ) + F q (x ∗q − 1) − F q (x ∗q ) 

here i ∈ { 1 , . . . , p} , j ∈ { p + 1 , . . . , q } , x ∗
i 

≤ x i < x ′ 
i 

and x ′ 
j 
< x j ≤ x ∗

j 
. 

Since 
∑ n 

i =1 F i (x ′ 
i 
) < 

∑ n 
i =1 F i (x ∗

i 
) , there exist i ∈ { 1 , . . . , p} and j ∈

 p + 1 , . . . , q } such that 

 i (x i + 1) − F i (x i ) + F j (x j − 1) − F j (x j ) < 0 . 

rom the update of Algorithm 2 , we know 

 i (x ∗i ) + F j (x ∗j ) ≤ F i (x ∗i + 1) + F j (x ∗j − 1) . 

hen we obtain 

F i (x ∗i + 1) − F i (x ∗i ) > F i (x i + 1) − F i (x i ) 

r F j (x ∗j − 1) − F j (x ∗j ) > F j (x j − 1) − F j (x j ) . 

A contradiction to that all F i ( x i ) are strictly convex functions

s reached. Thus, x ∗ = [ x ∗1 , . . . , x 
∗
n ] is one of the globally optimal

olutions. �
roof of Lemma 1 : Since there are two steps in Algorithm 2 , the

roof of this lemma can be divided into two parts. Denote x (k ) =
 x 1 (k ) , . . . , x n (k )] as the k -th iteration of each step. 

Considering the first step: Our goal is to prove ‖ x ∗ − x (k + 1) ‖ 1 −
 x ∗ − x (k ) ‖ 1 = −1 . Since |‖ x ∗ − x (k + 1) ‖ 1 − ‖ x ∗ − x (k ) ‖ 1 | = 1 , we

uppose on the contrary ‖ x ∗ − x (k + 1) ‖ 1 − ‖ x ∗ − x (k ) ‖ 1 = 1 at

ome k . This means that there exists a i such that | x ∗
i 

− x i (k + 1) | −
 x ∗

i 
− x i (k ) | = 1 and | x i (k + 1) − x i (k ) | = 1 . 

Without loss of generality, we assume D − ∑ n 
i =1 x i (k ) > 0 . 

Case 1: x i (k + 1) > x ∗
i 
. Then x i (k + 1) = x i (k ) + 1 . For this case,

here exists a j ( j � = i ) such that x j (k + 1) = x j (k ) < x ∗
j 
. Since x ∗ is a

lobally optimal solution, we obtain 

 i (x ∗i ) + F j (x ∗j ) ≤ F i (x ∗i + 1) + F j (x ∗j − 1) . 

rom the iteration of the first step in Algorithm 2 , we know 

 i (x i (k ) + 1) − F i (x i (k )) ≤ F j (x j (k ) + 1) − F j (x j (k )) . 

hen we obtain 

F i (x ∗i + 1) − F i (x ∗i ) ≥ F i (x i (k ) + 1) − F i (x i (k )) 

r F j (x ∗j − 1) − F j (x ∗j ) ≥ F j (x j (k )) − F j (x j (k ) + 1) . 

 contradiction to that all F i ( x i ) are strictly convex functions is

eached. 

Case 2: x i (k + 1) < x ∗
i 
.Then x i (k + 1) = x i (k ) − 1 . A contradiction

o the property | D − ∑ n 
i =1 x i (k ) | − | D − ∑ n 

i =1 x i (k + 1) | = 1 of the

pdate rule is reached. 

In conclusion, ‖ x ∗ − x ‖ 1 decreases by 1 for each iteration of the

rst step. 

Considering the second step: Suppose on the contrary that ‖ x ∗ −
 ‖ 1 dose not decrease by 2 for each iteration of the second step.

his means that the following three cases may happen. 

Case 1: There exist i and j ( i � = j ), such that x j (k ) < x ∗
j 
, x i (k ) > x ∗

i 
,

 j (k + 1) = x j (k ) − 1 , and x i (k + 1) = x i (k ) + 1 . 
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From the iteration of the second step in Algorithm 2 , we first

btain 

 i (x i (k ) + 1) + F j (x j (k ) − 1) < F j (x j (k )) + F i (x i (k )) . 

ogether with 

 i (x ∗i ) + F j (x ∗j ) ≤ F i (x ∗i + 1) + F j (x ∗j − 1) , 

e obtain 

F i (x ∗i + 1) − F i (x ∗i ) > F i (x i (k ) + 1) − F i (x i (k )) 

r F j (x ∗j − 1) − F j (x ∗j ) > F j (x j (k ) − 1) − F j (x j (k )) . 

A contradiction to that all F i ( x i ) are strictly convex functions is

hen reached. 

Case 2: There exist i and i 0 ( i 0 � = i ), such that x i 0 (k ) > x ∗
i 0 

, x i (k ) ≥
 

∗
i 
, x i 0 (k + 1) = x i 0 (k ) − 1 , and x i (k + 1) = x i (k ) + 1 . 

By the fact that 
∑ n 

i =1 x i (k ) = D, there exists a j ( j � = i and j � = i 0 )

uch that x j (k ) < x ∗
j 

and 

 j (x i (k )) − F j (x i (k ) + 1) < F j (x j (k ) + 1) − F j (x j (k )) . 

ogether with 

 i (x ∗i ) + F j (x ∗j ) ≤ F i (x ∗i + 1) + F j (x ∗j − 1) , 

e obtain 

F i (x ∗i + 1) − F i (x ∗i ) > F i (x i (k ) + 1) − F i (x i (k )) 

r F j (x ∗j − 1) − F j (x ∗j ) > F j (x j (k )) − F j (x j (k ) + 1) . 

 contradiction to that all F i ( x i ) are strictly convex functions is

hen reached. 

Case 3: There exist j and j 0 ( j 0 � = j ), such that x j 0 (k ) < x ∗
j 0 

,

 j (k ) ≤ x ∗
j 
, x j 0 (k + 1) = x j 0 (k ) + 1 , and x j (k + 1) = x j (k ) − 1 . With

he similar proof as for case 2, the same conclusion follows. 

In conclusion, ‖ x ∗ − x ‖ 1 decreases by 2 for each iteration of the

econd step. �
roof of Lemma 2 : Suppose on the contrary that there exists a

lobally optimal solution x ∗ not satisfying (∀ i ∈ V) x ∗
i 

≥ � ̂ x ∗
i 
	 and

(∀ i ∈ V) x ∗
i 

≤ � ̂ x ∗
i 
� . Without loss of generality, we assume x ∗

i 
<

 ̂ x ∗
i 
	 and x ∗

j 
> � ̂ x ∗

j 
� , i � = j. 

Since x ∗ is a globally optimal solution, we obtain 

 i (x ∗i ) + F j (x ∗j ) ≤ F i (x ∗i + 1) + F j (x ∗j − 1) . 

y the strictly convex property, we have 

F i (x ∗i ) − F i (x ∗i + 1) ≥ F i ( ̂  x ∗i − 1) − F i ( ̂  x ∗i ) 

nd F i (x ∗j − 1) − F i (x ∗j ) ≤ F i ( ̂  x ∗j ) − F i ( ̂  x ∗j + 1) . 

Then we obtain 

 i ( ̂  x ∗i − 1) + F i ( ̂  x ∗j + 1) ≤ F i ( ̂  x ∗i ) + F i ( ̂  x ∗j ) . 

t contradicts to ˆ x ∗ = [ ̂ x ∗1 , . . . , ̂  x ∗n ] T is the unique globally optimal

olution to the RAP without integer constraints. Thus, (∀ i ∈ V) x ∗
i 

≥
 ̂ x ∗

i 
	 or (∀ i ∈ V) x ∗

i 
≤ � ̂ x ∗

i 
� is proved. �
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