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A Distributed Algorithm for Resource Allocation
Over Dynamic Digraphs
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Abstract—This paper studies a distributed resource allocation
problem for a multiagent network with a time-varying digraph.
Each agent in the network is associated with a local variable (re-
source) and a convex cost function. The goal is to collectively min-
imize the total cost in a distributed fashion, subject to individual
resource constraints, and collective equality constraints. The main
challenge of the problem is due to the local information structure
imposed by the time-varying digraph that should be considered
as part of the problem formulation. This paper develops a non-
negative surplus-based distributed optimization algorithm. It is
shown that the proposed distributed algorithm converges to the
global minimizer provided that the time-varying digraph is jointly
strongly connected. Also, all the parameters used in the proposed
algorithm rely only on local knowledge.

Index Terms—Distributed optimization, resource allocation,
multi-agent systems.

I. INTRODUCTION

THE resource allocation problem deals with how to allocate
available resources to a number of users, called agents. In

this paper, we deal with the multiple resource allocation problem
modelling a collection of independent resources. That is, con-
sidering a network of n agents, for each agent i ∈ {1, · · · , n},
we associate a variable xi ∈ R and a corresponding cost func-
tion Fi(xi). The resource allocation problem is the optimization
problem aiming to find optimal xi to minimize

x1 ,...,xn

∑n
i=1 Fi(xi)
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under the collective equality constraints Cx = d and individual
inequality (state) constraints xi ≤ xi ≤ xi , where xi and xi are
given constants, d is a given vector, and C is a non-negative
matrix with each column having only one non-zero entry. This
problem can address applications where multiple resources are
to be allocated, for example, in energy management systems two
resources (generation and demand) are typically allocated [1],
[2]). This problem can also model the special case where there
is only one resource to be allocated, e.g., economic dispatch
problems [3], power regulation [4] and take-or-pay fuel supply
problems [5].

Although many centralized optimization algorithms exist for
this problem, they are not suitable for large-scale networks due
to significant communications and computational overhead re-
quired for collecting information from all the agents in the
network. Additional disadvantages of the centralized approach
include required global knowledge of the whole network, lack
of robustness due to time-varying nature of the network, and
lack of privacy (by requiring individual agents to provide infor-
mation) [3]. These disadvantages motivate the need of study for
distributed resource allocation problems.

In order to characterize the network constraints for infor-
mation exchanging in distributed resource allocation problems,
graphs are usually adopted to describe inter-agent communi-
cation topologies. The undirected graph model is considered
in [6]–[10], which means that each agent communicates with
its neighbors in a bidirectional manner. However, as in many
applications (e.g., in smart grid [11]) using wireless networks,
communications between some agents in the network may be
unidirectional due to the use of directional antennas or due to the
heterogeneous nature of the wireless communication nodes [12].
Besides, there are inevitable factors leading to directed commu-
nication due to packet loss and communication interference in
wireless networks. In energy related applications, considering
directed communication can also strengthen the scalability of
distributed energy management [1]. Therefore, a directed net-
work is unavoidable [3], [13], [14]. Moreover, as the commu-
nication links between some nodes may become disconnected
sometimes due to external interference, a time-varying directed
graph model is a more practical one, which includes the static
undirected graph model as a special one. In other words, dis-
tributed algorithms need to be developed, which should work
for time-varying directed networks rather than only for static
undirected networks.

Distributed algorithms have been studied to solve the resource
allocation problems since the center-free algorithms firstly pro-
posed in [15]. The flow control problem has a similar optimiza-
tion problem formulation to the resource allocation problem.
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However, the algorithms in [16]–[18], developed to solve the
flow control problem, involve calculation of a global quantity
at each iteration, and therefore may not be suitable for large,
scalable networks. As a special type of resource allocation prob-
lems, the communication graph and the underlying flow graph
are the same in flow control, i.e., the collective equality con-
straints are related to the communication graph. Different from
flow control, we are more interested in the resource allocation
problem, for which the communication graph and the collec-
tive equality constraints are separate in this paper. For the re-
source allocation problem without individual state constraints,
distributed algorithms are studied under static undirected graphs
in [6], [19] and under time-varying undirected graphs in [20],
respectively. For the resource allocation problem with individ-
ual state constraints, consensus based distributed algorithms
are proposed for undirected graphs [7], [8] and balanced di-
graphs [21]. However, for a directed network, it usually does
not satisfy the balanced property, which makes these algorithms
not applicable. More recently, a distributed bisection algorithm
[14], a ratio consensus based decentralized algorithm [13], and
a surplus based consensus algorithm [3] are developed to han-
dle such situations. However, global knowledge, which usually
cannot be known in a distributed setting, is required for the al-
gorithms or for the design of some critical parameters in these
algorithms. In [13], each agent needs to know the cost function
parameters of all other agents, while in [3] a critical parameter
named the learning gain can be designed only after knowing
some global information of the network and is supposed to be
sufficiently small. Moreover, the algorithms presented in [3],
[13], [14] assume static topology, which makes them not ap-
plicable when the network becomes time-varying due to link
losses. For a time-varying digraph, the main difficulty lies in the
aspect that information exchanging is dynamic and may be uni-
directional for some pairs of nodes, thus rendering distributed
algorithms hard to be designed with provable convergence
properties.

In the optimization literature, there are similar optimization
problems as the resource allocation problem, which aim to
minimize
x1 ,...,xn

∑n
i=1 Fi(xi) subject to coupled inequality/equality

constraints [22]–[24]. However, again, balanced digraphs are as-
sumed in [22] and undirected graphs are assumed in [23], [24].
Apart from these optimization problems with the individual cost
function Fi(xi) depending on individual variable xi , there are
also optimization problems (i.e., minimize

x1 ,...,xd

∑n
i=1 Fi(x)) with

the individual cost function Fi(x) depending on global variable
x. For this setup without state constraints, distributed subgradi-
ent methods are developed in [25] and [26] over time-varying
undirected graphs and static balanced graphs, respectively. By
taking into consideration of state constraints, distributed op-
timization algorithms have been studied in [27] and [28] for
time-varying balanced graphs and for static undirected graphs.
So far, most works are concerned with distributed optimization
problems in undirected and/or balanced multi-agent networks
with only a few exceptions [29], [30] that consider directed and
time-varying directed multi-agent networks. Since the ideas for
solving the resource allocation problem are closely related to
a dual version of distributed gradient descent [3], [13], [14],
the distributed subgradient methods in [29], [30] are helpful

for solving the resource allocation problem with proper mod-
ifications. However, each node needs to know some global
information of constraints. Moreover, high computation and
communication costs may be incurred by these modifications.

Considering the absence of a distributed algorithm for the
resource allocation problem in time-varying and directed multi-
agent networks, this paper aims to solve the distributed resource
allocation problem over time-varying directed networks. Based
on a surplus idea for consensus, a fully distributed algorithm is
proposed to solve the distributed resource allocation problem,
for which the time-varying directed topology is also a part of the
constraints to the problem. The meaning of a fully distributed
algorithm is two-fold. First, the design of the parameters used
in each iteration for each agent is only based on local knowl-
edge available to it. Second, the iteration is carried out by each
agent using only information transmitted from its neighbors. We
then show that the distributed algorithm ensures global conver-
gence to the optimal resource allocation solution. The idea is
inspired by the surplus based averaging algorithm over digraphs
[31]. But the fundamental difference is that the Lyapunov func-
tion based analysis developed in [31] is no longer applicable
for the convergence analysis of our algorithm due to individual
state constraints. This paper develops a new technique based
on monotonicity analysis and shows that the convergence of
our algorithm is guaranteed provided that the time-varying di-
graph is jointly strongly connected. Compared with these exist-
ing distributed algorithms for the resource allocation problem,
our work removes the need of doubly stochastic matrices and
provides provable convergence results for time-varying and di-
rected multi-agent networks.

This paper is organized as follows. In Section II, prelimi-
naries and problem formulation are introduced. In Section III,
a nonnegative-surplus based distributed algorithm for solving
the resource allocation problem is designed. Convergence anal-
ysis is given in Section IV. Feasible analysis and initialization
are discussed in V. At last, simulation results are presented in
Section VI and we summarize our paper and state further re-
search problems in Section VII.

Notation: R denotes the set of real numbers. N denotes the
set of integer numbers. 1n represents the n-dimensional vector
of ones and In represents the identity matrix of order n. The
symbol | · | denotes the cardinality of a set. For a vector v =
[v1 , . . . , vn ]� ∈ Rn , the following notation is used:

min(v) := min
i
vi , max(v) := max

i
vi .

For a matrixX ∈ Rm×n , we use min(X) to denote the vector
[min(X1∗), · · · ,min(Xm∗)]� and use max(X) to denote the
vector [max(X1∗), · · · ,max(Xm∗)]�, whereX1∗, . . . , Xm∗ are
the row vectors ofX . For a real number x ∈ R, �x� denotes the
smallest integer greater than or equal to x. Moreover, [x]− is
defined as

[x]− =
{
x x ≤ 0,
0 x > 0.

If x is a vector, [x]− means that every entry of x takes the
above function. For any v1 , v2 ∈ Rm×n , we say v1 � v2 if all
the entries of v1 − v2 are nonnegative and v1 	 v2 if all the
entries of v1 − v2 are nonpositive.
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The gradient of a function f(x) at a point x ∈ Rr is defined
to be the column vector

∇f(x) =
[
∂f(x)
∂x1

, · · · , ∂f(x)
∂xr

]�
.

The Hessian of f(x) at x is defined to be the symmetric r × r
matrix having ∂2f(x)/∂xi∂xj as the ij-th element:

∇2f(x) =
[
∂2f(x)
∂xi∂xj

]

r×r
.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries for Graphs

A directed graph (digraph) G = (V, E) consists of a non-
empty finite set V of elements called nodes and a finite set E
of ordered pairs of nodes called edges . In G, a node i is said
to be reachable from a node j if there exists a path from j to
i. Moreover, G is said to be strongly connected if every node is
reachable from every other node.

A time-varying digraph G(k) = (V, E(k)) represents a di-
graph whose edge set changes over time. For a time inter-
val [k1 , k2 ], the union digraph is defined as G([k1 , k2 ]) :=
(V,⋃k∈[k1 ,k2 ] E(k)). A time-varying digraph G(k) = (V, E(k))
is said to be jointly strongly connected if there exists K such
that for every k0 the union digraph G([k0 , k0 +K)) is strongly
connected. We call K the period of G(k).

For each node i ∈ V , let N+
i (k) := {j ∈ V : (j, i) ∈ E(k)}

denote the set of its in-neighbors , and let N−
i (k) := {l ∈ V :

(i, l) ∈ E(k)} denote the set of its out-neighbors . Note that at
any time k,N+

i (k) �= N−
i (k) generally. In addition, i �∈ N+

i (k)
and i �∈ N−

i (k). Let d+
i (k) := |N+

i (k)| be its in-degree and let
d−i (k) := |N−

i (k)| be its out-degree .

B. Distributed Resource Allocation Problem

We consider a distributed resource allocation problem over
a network of autonomous agents. The network is modelled
as a time-varying digraph G(k) = (V, E(k)) with node set
V = {1, 2, . . . , n} and edge set E(k) ⊆ V × V . By this model,
each agent is only capable of receiving messages from its in-
neighbors and transmitting messages to its out-neighbors. More-
over, the neighboring relationship also changes over time due to
unpredictable packet losses or deliberate operations.

Each agent i of the network is associated with a local vari-
able (resource) xi ∈ R and a convex cost function Fi : R → R.
The local variable (resource) xi ∈ R is subject to an inequality
constraint xi ≤ xi ≤ xi . Moreover, the sums of combinations
of multiple variables (resources) across the network are fixed.
To sum up, the optimal resource allocation problem is stated as
follows.

minimize
x1 ,...,xn

n∑

i=1

Fi(xi) (1a)

subject to:

xi ≤ xi ≤ xi,∀i, (individual state constraints) (1b)

Cx = d, (collective equality constraints) (1c)

where x = [x1 , · · · , xn ]�, d = [d1 , · · · , dm ]�, and C ∈ Rm×n
with every column having only one entry being 1 and others
being 0. We can think of di , i = 1, . . . ,m, as the total amount
of a type of resources, that is only allowed to be allocated to a
subset of agents.

In this paper, we are interested in distributed algorithms for
solving this general problem (1), where each agent is only al-
lowed to conduct local computation via received information
from its in-neighbors. Thus, the local information structure im-
posed by the time-varying digraph should be considered as part
of the problem formulation, which makes the problem extraordi-
narily challenging. We assume that the functions Fi are strongly
convex and twice continuously differentiable with the second
derivatives that are bounded below as in [3], [6].

Assumption 1: The function Fi(xi) is twice continuously
differentiable in R and the second derivative is lower-bounded
in the interval [xi, xi ], i.e.,

dF 2
i (xi)
dx2

i

≥ li > 0, ∀xi ≤ xi ≤ xi,

where li is a constant. �
Moreover, the following assumption is made for the time-

varying digraph G(k).
Assumption 2: The time-varying digraph G(k) is jointly

strongly connected with period K. �
Remark 1: If a solution exists and satisfies (1b) and (1c), we

call it a feasible solution to the resource allocation problem (1).
As each column of C has only one nonzero entry, it can be ver-
ified that there is a feasible solution for the resource allocation
problem (1) if and only if

Cx 	 d 	 Cx

where x = [x1 , · · · , xn ]� and x = [x1 , · · · , xn ]�. �

III. NONNEGATIVE-SURPLUS BASED ALGORITHM

In this section, we are going to develop a distributed algorithm
to solve the resource allocation problem (1).

For each agent i, we define the incremental cost function

Ji(xi) :=
dFi(xi)
dxi

. (2)

Moreover, we denote

f(x) =
n∑

i=1

Fi(xi),

h(x) = d− Cx, and

g(x) = [x1 − x1 , · · · , xn − xn , x1 − x1 , · · · , xn − xn ]�.

Let X = {x|h(x) = 0, g(x) 	 0} be the set of all feasible so-
lutions. The Lagrangian function is constructed as

L(x, ν, μ) =
n∑

i=1

Fi(xi) − ν�(Cx− d)

+
n∑

i=1

μi(xi − xi) +
n∑

i=1

μn+i(xi − xi),
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Fig. 1. Information exchanging in Algorithm 1.

where ν and μ = [· · · , μi, · · · , μn+i , · · · ]� are the Lagrange
multipliers.

Now, we present the optimality condition for the resource
allocation problem (1), which can be simply obtained from the
Lagrangian equivalence.

Lemma 1: (Proposition 1.29, 1.30, Page 71, [32]) Under As-
sumption 1, x∗ is the globally optimal solution to the resource
allocation problem (1) and (ν∗, μ∗) are the optimal Lagrange
multipliers if and only if

⎧
⎨

⎩

Ji(x∗i ) = C�
∗iν

∗ for xi < x∗i < xi,

Ji(x∗i ) ≤ C�
∗iν

∗ for x∗i = xi,

Ji(x∗i ) ≥ C�
∗iν

∗ for x∗i = xi,

(3)

where C∗i denotes the i-th column of C. �
The condition (3) can also be written in the following equiv-

alent form: For every i,

x∗i = φi(C�
∗iν

∗) (4)

where

φi(C�
∗iν

∗) :=

⎧
⎨

⎩

xi if C�
∗iν

∗ > Ji(xi)
J−1
i (C�

∗iν
∗) if Ji(xi) ≤ C�

∗iν
∗ ≤ Ji(xi)

xi if C�
∗iν

∗ < Ji(xi)
(5)

with J−1
i (·) being the inverse function of Ji(xi). From (4), we

know that if the optimal Lagrange multiplier ν∗ is obtained,
then the globally optimal solution x∗i can be obtained in a dis-
tributed manner. Based on this observation, our main idea is to
let each agent have its own copy of the Lagrange multiplier, say
λi ∈ Rm , and update λi such that all λi reach consensus at ν∗.
Also, at each step, each agent calculates its estimate xi about
the optimal x∗i according to the projection map xi = φi(C�

∗iλi),
which confines the estimate xi in the interval [xi, xi ]. How-
ever, due to asymmetrical information flow in the time-varying
digraph model and also due to the nonlinear projection map
xi = φi(C�

∗iλi), the estimate [x1 , . . . , xn ]� at each step may
not be a feasible solution to (1c) though it starts with a feasible
solution of (1c). In order to overcome this challenge, a surplus
variable si ∈ Rm is introduced for each agent i to temporar-
ily store the resulting bias that will then be averaged with its
neighbors such that it vanishes asymptotically. These ideas are
summarized in the algorithm below.

The operator [·]− for the item
∑

j∈N+
i (k) ai(k)(λj (k) −

λi(k)) in Algorithm 1 ensures non-negative si as shown in the
following lemma. So we call Algorithm 1 a nonnegative-surplus
based algorithm .

Lemma 2: For Algorithm 1, if si(0) � 0 for all i ∈ V , then
si(k) � 0 for all i ∈ V and k ≥ 0. �

Algorithm 1: Nonnegative-Surplus Based Algorithm.
Initialization:
(1) Choose

xi(0) ∈ [xi, xi ] and si(0) � 0 for all i (6)

such that

Cx(0) +
n∑

i=1

s(0) = d; (7)

(2) Choose λi(0) such that

C�
∗iλi(0) = Ji(xi(0)). (8)

Update:

λi(k + 1) = λi(k) +

⎡

⎣
∑

j∈N+
i (k)

ai(k)(λj (k) − λi(k))

⎤

⎦

−

+ εi(k)si(k), (9a)

xi(k + 1) = φi(C�
∗iλi(k + 1)), (9b)

si(k + 1) = bi(k)si(k) +
∑

j∈N+
i (k)

bj (k)sj (k)

− C∗i(xi(k + 1) − xi(k)), (9c)

where the parameters in the algorithm are chosen as follo-
ws: ai(k) = 1

d+
i (k)+1

, bi(k) = 1
d−i (k)+1 and εi(k) = ĉibi(k)

with ĉi ∈ (0, li).

The proof of Lemma 2 is given in the appendix.
In the following, we briefly explain how Algorithm 1 is im-

plemented in a distributed fashion based on information ex-
change among neighbors. For Algorithm 1, each agent i only
needs to know its in-degree d+

i (k) and out-degree d−i (k). In
addition, each agent i receives λj (k) and bj (k)sj (k) from its
in-neighbors, and transmits λi(k) and bi(k)si(k) to its out-
neighbors. See Fig. 1 for an example on what information being
exchanged in the network.

Moreover, the design of the parameters used in Algorithm 1
does not require any global knowledge of the network, but local
knowledge from itself and its neighbors.

Remark 2: Recall that in Algorithm 1,

ai(k) =
1

d+
i (k) + 1

, bi(k) =
1

d−i (k) + 1
, and εi(k) = ĉibi(k)

with ĉi being a constant in (0, li). So ai(k), bi(k), and εi(k) are
uniformly bounded from below. That is, there exist �a , �b , �c >
0 such that

�a ≤ ai(k) ≤ 1, �b ≤ bi(k) ≤ 1, and �c ≤ εi(k) < li.

Note that for any constant ĉi ∈ (0, li), there exists �d > 0 such
that

�d ≤ (1 − ĉi/li)bi(k) < 1.

In the following, we denote � := min{�a , �b , �c , �d}. �
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Remark 3: For a static digraph model, a similar idea using
a surplus variable is considered in [3] to solve the resource
allocation problem. However, it has two limitations. First, the
algorithm in [3] may not converge when the digraph becomes
time-varying as shown in our simulation section later. Second,
a critical parameter requires global knowledge of the whole
network in the design step; Otherwise, the convergence may
not be guaranteed. Our algorithm, however, does not have such
drawbacks. �

Remark 4: In different applications, there may or may not
exist self-loops. We note, however, that our algorithm uses
only relative information between agents, and as a result there
is no change to the algorithm whether with or without self-
loops. (Relative information of an agent with respect to itself
is zero.) �

IV. CONVERGENCE ANALYSIS

In this section, we show that the nonnegative-surplus based
algorithm (Algorithm 1) converges and provides the globally
optimal solution to the resource allocation problem (1).

Theorem 1: Suppose Assumptions 1 and 2 hold. Algorithm 1
converges to the globally optimal solution to the resource allo-
cation problems (1). �

To prove Theorem 1, we present several technical lemmas, but
the proofs of these technical lemmas are given in the appendix.

The first lemma shows that the collective equality constraints
hold by counting into the surplus values when the agents run
Algorithm 1.

Lemma 3: Cx(k) +
∑n

i=1 si(k) = d for all k. �
The second lemma shows that every component of the surplus

vector si(k) is upper bounded under Algorithm 1.
Lemma 4: Suppose Assumption 2 holds. Then for all i ∈ V

and k ≥ 0, it holds that

si(k) 	 min(λ(k + Δ + 1)) − min(λ(k + Δ))
�Δ+1 , (10)

where Δ = (n− 1)K. �
The following lemma presents several properties about

λi(k). In what follows, we denote λ := [λ1 , · · · , λn ] and
s := [s1 , · · · , sn ], which are m× n matrices.

Lemma 5: For Algorithm 1, the following holds:
1) Every component of min(λ(k)) is non-decreasing with

respect to k;
2) There exists a vector λ̄ ∈ Rm such that min(λ(k)) 	 λ̄;
3) There exists a constant vector σ = [σ1 , · · · , σm ]� ∈ Rm

such that limk→∞ min(λ(k)) = σ. �
Now we are ready to present the main proof for Theorem 1
Proof of Theorem 1: From Lemma 4 and Lemma 5, it can be

inferred that

lim
k→∞

s(k) = 0.

Next, we show that all λi converge to the same vector. Look
at each component of si and λi and denote by shi and λhi the
h-th component of si and λi , respectively. Moreover, denote
λh∗ = [λh1 , · · · , λhn ] and denote sh∗ = [sh1 , · · · , shn ]. Thus,
it is equivalent to show that for every h = 1, . . . ,m, all λhi
converge to the same value.

First, we show the limit of every λhi(k) exists, that is, λhi is
bounded and not oscillatory. For any i ∈ V and k ≥ k0 ≥ 0, by
(9a) we obtain

λhi(k) ≤ λhi(k0) +
k−1∑

k ′=k0

εi(k′)shi(k′)

≤ λhi(k0) + ghi(k0), (11)

where

ghi(k) :=
∞∑

k ′=k

εi(k′)shi(k′).

The following proof is divided into three steps.
Step 1: To show that ghi(k) is bounded and limk→∞ ghi(k) =

0 for every i.
By the fact that shi(k) ≥ 0, we obtain ghi(k) ≥ 0. Then from

Lemma 4, it follows that

ghi(k) =
∞∑

k ′=k

εi(k′)shi(k′)

≤ li

∞∑

k ′=k

min(λh∗(k′ + Δ + 1)) − min(λh∗(k′ + Δ))
�Δ+1

= li
limk ′→∞ min(λh∗(k′ + Δ + 1))−min(λh∗(k + Δ))

�Δ+1

= li
σh − min(λh∗(k + Δ))

�Δ+1 .

Using Lemma 5, it is then clear that ghi(k) is bounded and
limk→∞ ghi(k) = 0.

Step 2: To show that λhi(k) is bounded for any i.
Recall that

min(λh∗(k)) ≤ λhi(k) ≤ λhi(k0) + ghi(k0).

Since ghi(k) is bounded and min(λh∗(k)) is non-decreasing,
it can be obtained that λhi(k) is bounded.

Step 3: To show that λhi(k) is not oscillatory for any i.
Suppose on the contrary that there exists an agent i ∈ V

such that λhi(k) is oscillating. Then we can construct two sub-
sequences {k′0 , k′1 , . . .} and {k′′0 , k′′1 , . . .} such that k′j > k′′j for
any j = 0, 1, . . ., and {λhi(k′j )} and {λhi(k′′j )} have two differ-
ent limits, i.e., limj→∞ λhi(k′j ) = a, limj→∞ λhi(k′′j ) = b, and
a �= b. Without loss of generality, we assume a > b. Then from
(11) we can get that

lim
j→∞

ghi(k′′j ) ≥ lim
j→∞

(λhi(k′j ) − λhi(k′′j )) = a− b > 0,

a contradiction to limk→∞ ghi(k) = 0. Thus, we conclude that
λhi(k) has a limit for any i.

Second, we show that all λhi(k) converge to σh .
There are two possible cases.
1) λhi(k) converge to the same value for all i;
2) λhi(k) converge to different values for different i.
Consider case (i) and recall that limk→∞ min(λh∗(k)) = σh .

It can be directly obtained that

lim
k→∞

λh∗(k) = σh1�
n .
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Next we prove that case (ii) will not happen. We suppose
on the contrary that λhi(k)’s converge to different values for
different i. Again with the fact that limk→∞ min(λh∗(k)) = σh ,
there exists i such that

lim
k→∞

λhi(k) > σh.

Then we can relabel the nodes if necessary such that
⎧
⎪⎪⎨

⎪⎪⎩

limk→∞ λhi(k) = σh1 , i = 1, . . . , n1
limk→∞ λhi(k) = σh2 , i = n1 + 1, . . . , n2

...
limk→∞ λhi(k) = σhp , i = np−1 + 1, . . . , n

and

σh1 > σh2 > . . . > σhp = σh.

We choose

ε =
1
5
�(σh1 − σh2)

and it is certain that there exists a k1 such that for any k > k1 ,
⎧
⎪⎨

⎪⎩

σh1 − ε < λhi(k) < σh1 + ε, i = 1, . . . , n1
...

σhp − ε < λhi(k) < σhp + ε, i = np−1 + 1, . . . , n

Since G(k) is jointly strongly connected with period K, for any
interval [k, k +K) (k > k1), there exists a k′ ∈ [k, k +K), i ∈
{1, . . . , n1} and i′ ∈ {n1 + 1, . . . , n} such that (i′, i) ∈ E(k′).
Then from (9a), we have

εi(k′)shi(k′)

= λhi(k′ + 1) − λhi(k′) −
⎡

⎣
∑

j∈N+
i

ai(λhj (k′) − λhi(k′))

⎤

⎦

−

> −4ε+ �(σh1 − σh2)

= ε > 0,

a contradiction to limk→∞ shi(k) = 0.
To conclude,

lim
k→∞

λh∗(k) = σh1�
n .

Together with the fact h can be any value in {1, · · · ,m}, we
obtain

lim
k→∞

λ(k) = σ1�
n .

Therefore, the conclusion follows. �

V. INITIALIZATION AND FEASIBILITY ANALYSIS

In this section, we come to discuss how to find an initializa-
tion for Algorithm 1 and also investigate on how to verify the
existence of a solution to the resource allocation problem (1).
To provide an initialization for Algorithm 1 is equivalent to find
a feasible solution satisfying (1b) and (1c). In this section, we
will provide a distributed algorithm for the initialization of Al-
gorithm 1 as well as for the feasibility test to check whether the
resource allocation problem (1) has a solution.

The following lemma states what we need.

Lemma 6: IfCx 	 d 	 Cx, then the optimal solution to the
following optimization problem:

minimize
x1 ,...,xn

n∑

i=1

F̄i(xi) (12a)

subject to

Cx = d, (12b)

where F̄i(xi) = 1
2

(
xi−xi
xi−xi

)2
, is a feasible solution satisfying

(1b) and (1c). �
Proof: For the h-th row of C, without loss of generality, we

assume that Chi = 1 for i ∈ {h1 , · · · , hp} and Chi = 0 for i �∈
{h1 , · · · , hp}.

By Lemma 1, we know that if x∗ is the optimal solution to
(12), then the following holds:

x∗h1
− xh1

xh1 − xh1

= · · · =
x∗hp − xhp
xhp − xhp

=
dh − ∑hp

i=h1
xi

∑hp
i=h1

xi −
∑hp

i=h1
xi
.

(13)

By the condition Cx 	 d 	 Cx and also the assumption that
every column of C has only one entry being 1, it follows that

0 ≤ dh − ∑hp
i=h1

xi
∑hp

i=h1
xi −

∑hp
i=h1

xi
≤ 1,

which implies

xi ≤ x∗i ≤ xi, ∀i.
So it is a feasible solution satisfying (1b) and (1c). �
Note that the optimization problem (12) is a special case of (1)

without individual state constraints. Moreover, the cost function
in (12a) is of particular form

F̄i(xi) =
1
2

(
xi − xi
xi − xi

)2

.

Thus, the optimization problem (12) can be solved in a dis-
tributed way by almost the same algorithm as Algorithm 1. But
since there is no individual state constraint for the optimization
problem (12), the initialization starts with a feasible solution
only satisfying (1c) and the projection map (9b) in Algorithm 1
also changes. The following algorithm summarizes the idea.

For the initialization in Algorithm 2, leader election is one
approach. That is, m tokens are passed in the network. If any
agent j with nonzero cij (the (i, j)-th entry of C) gets token i,
and also knows di (the i-th entry of d), then it chooses

xj (0) = di

and stops passing token i. For those who do not get any token,
they choose their initial states to be 0.

An alternative distributed approach is to use “integer consen-
sus” [33]. Suppose that each agent has a unique ID, an integer
number. For those who know di , running the integer consensus
algorithm will let them reach the same integer. The agent whose
ID is the same as the integer wins and sets its initial state to
be di .

As Algorithm 2 is a special form of Algorithm 1, the con-
vergence is also guaranteed by the same analysis as done in
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Algorithm 2: Distributed Algorithm for Problem (12).
Initialization:
Choose si(0) = 0 and xi(0), i = 1, . . . , n, such that

Cx(0) = d.

Moreover, choose ηi(0), i = 1, . . . , n, such that

C�
∗iηi(0) =

dF̄i(xi)
dxi

|xi =xi (0) :=
xi(0) − xi
xi − xi

.

Update:

ηi(k + 1) = ηi(k) +

⎡

⎣
∑

j∈N+
i (k)

ai(k)(ηj (k) − ηi(k))

⎤

⎦

−

+ εi(k)si(k), (14a)

xi(k + 1)=ψi(C�
∗iηi(k + 1)) :=(xi − xi)C

�
∗iηi(k + 1)+xi,

(14b)

si(k + 1) = bi(k)si(k) +
∑

j∈N+
i (k)

bj (k)sj (k)

− C∗i(xi(k + 1) − xi(k)), (14c)

where the parameters in the algorithm are chosen as
follows: ai(k) = 1

d+
i (k)+1

, bi(k) = 1
d−i (k)+1 and

εi(k) = ci l̄ibi(k) with ci ∈ (0, 1) and l̄i = 1
xi−xi .

TABLE I
SIMULATION PARAMETERS

Section IV. That is, all ηi(k) in Algorithm 2 converge to the op-
timal Lagrange multiplier. We denoted η∗ = limk→∞ ηi(k) for
all i. The following lemma tells whether the resource allocation
problem (1) has a solution.

Lemma 7: If 0 ≤ C�
∗iη

∗ ≤ 1 for all i, then the resource allo-
cation problem (1) has a feasible solution; Otherwise, it has no
feasible solution.

Proof: By Algorithm 2, we obtain thatC�
∗iη

∗ = x∗
i−xi
xi−xi . Thus,

if 0 ≤ C�
∗iη

∗ ≤ 1 for all i, it follows from the formula (13) in
the proof of Lemma 6 that

(∀h ∈ {1, · · · ,m}) Ch∗xi ≤ dh ≤ Ch∗xi,

which can be rewritten as

Cx 	 d 	 Cx.

As pointed out in Remark 1, the resource allocation problem (1)
has a feasible solution if and only if

Cx 	 d 	 Cx.

Therefore, the resource allocation problem (1) has a feasible
solution.

Fig. 2. A time-varying digraph G(k) that switches among three different
topologies G1 , G2 and G3 , i.e., (∀k ≥ 0)G(3k) = G1 , G(3k + 1) = G2 and
G(3k + 2) = G3 .

TABLE II
INITIAL CONDITIONS

On the contrary, if there exists i such that C�
∗iη

∗ >
1 or C�

∗iη
∗ < 0, then from (13) we know that there exists a row

h such that

dh > Ch∗xi or dh < Ch∗xi.

Therefore, the resource allocation problem (1) has no feasible
solution. �

Remark 5: From the above analysis, we can know that if
eqs. (1b)-(1c) has a unique solution, then this unique solution
must take its value on the boundary of the interval [xi, xi ] for all i
and Algorithm 2 takes infinite number of steps to find this unique
feasible solution. But for this case, this unique solution is also the
globally optimal solution to the resource allocation problem (1)
and there is no need of running Algorithm 1. For other cases, if
there is more than one feasible solution satisfying eqs. (1b)-(1c),
then the optimal solution to the optimization problem (12) must
take its value in the interior of [xi, xi ] for all i, which means that
at some step k∗, allC�

∗iηi(k
∗) must be strictly inside the interval

(0, 1) for all i. Therefore, although it is not possible to know
the explicit iteration number, a practical way can be adopted
by each agent to stop Algorithm 2 when a valid initialization
is ready to pick. For example, a very small positive parameter
ϑ can be used to indicate whether Algorithm 2 converges close
enough to the optimal solution to the problem (12) by checking
whether ‖si(k∗)‖ ≤ ϑ for all i at step k∗ and remains inside
for sufficient long time. If so, xi(k∗) and si(k∗) obtained from
Algorithm 2 can be used as the initialization for Algorithm 1.
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Fig. 3. The simulation trajectories of the estimated Lagrange multiplier, individual state, surplus, and sum of xi ’s.

VI. SIMULATION EXAMPLES

In this section, we provide simulation examples to illustrate
our proposed algorithms. Different from flow control with in-
terrelated communication graph and collective equality con-
straints, these examples below imply that the communication
graph and the collective equality constraints are separate in the
resource allocation problem we study.

A. A Four-Agents Network Example

First, we consider a network with four agents, labeled as
1, 2, 3, and 4. We summarize the state constraints and cost func-
tions in Table I and the four agents are chosen from three types
described in Table I. Note that the cost functions are strictly
convex. Agent 1 and 2 are of Type A, agent 3 is of Type B, and
agent 4 is of Type C. As an illustrative example, we consider
a time-varying digraph G(k) switching among three different
topologies as shown in Fig. 2.

We carry out a simulation with the following single collective
equality constraint

4∑

i=1

xi = 6.

We set the initial conditions as in Table II.
The simulation results of Algorithm 1 are shown in Fig. 3. It

can be checked that the optimal solution is: λ∗ = 11.98, x∗1 =
2, x∗2 = 2, x∗3 = 1, x∗4 = 1. From the simulation results, we can
see that by running Algorithm 1, all λi’s converge to the opti-
mal Lagrange multiplier λ∗ as shown in the top-left sub-figure
of Fig. 3. Each agent’s state xi converges to the optimal value x∗i
as shown in the top-right sub-figure. The bottom-left sub-figure
shows that all the surplus values si’s converge to 0 as desired.
The sum of all xi’s is shown in the bottom-right, which con-
verges to the constant in the collective equality constraint. For
this simulation example, isolated agents exist when the topology
becomes G3 , during which λi(k) are non-decreasing.

We also plot the difference between xi(k) and J−1
i (λi) in

Fig. 4, from which we can see that the individual state constraint

Fig. 4. The difference between xi (k) and J−1
i (λi (k)).

takes effect for those steps, during which the difference are non-
zero.

Recall that ĉi can be written as ĉi = cili with ci ∈ (0, 1).
Thus, to observe how the choice of ĉi affects the convergence
rate of Algorithm 1, simulations are carried out for this example
with different ci . The simulation result plotted in Fig. 5 describes
the relation between the number of iterations and the choice of
ci chosen from 0.01 to 0.99. It can be observed that the larger ci
is, the faster Algorithm 1 converges, which coincides with the
intuition behind.

B. Simulations for Large-Scale Networks

In this subsection, we present several simulations to show
the performance of our proposed algorithms for large-scale net-
works and compare with other existing algorithms.

In the first simulation, we consider a network of n = 200
agents. We randomly assign (n−1)2

4 directed edges at each
step. The cost function associated with each agent i takes the
quadratic form Fi(xi) = (xi−αi )2

2βi
+ γi , where αi, βi , and γi
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Fig. 5. The number of iterations (y-axis) for different ci until ‖x(k) − x∗‖ <
0.05.

Fig. 6. The error norm ‖x(k) − x∗‖ (y-axis) with respect to the iteration step
(x-axis) for a network of 200 agents.

are randomly selected from (0, 1) for each agent i. The indi-
vidual state constraint is supposed to be the same for all the
agents, namely, all constrained in [−1, 1]. Moreover, the col-
lective equality constraint takes the vector of all 1’s as C and
d = 10. Algorithm 1 is run for this example with ci = 0.5 for
all i. The simulation result is shown in Fig. 6, which plots the
average error ‖x(k) − x∗‖ of 50 executions with respect to the
iteration step. This simulation demonstrates that our proposed
algorithm works well for large-scale networks.

In the second simulation, we consider a network of n = 50
agents. The cost functions and the state constraints adopt the
same setup as in the first simulation. Three scenarios are simu-
lated: (a) Consider a static digraph with (n−1)2

2 directed edges
randomly assigned for the network and use the parameter
ci = 0.2 for all i; (b) Consider a static digraph with (n−1)2

2
directed edges randomly assigned for the network and use the
parameter ci = 0.9 for all i; (c) Consider a time-varying di-
graph with (n−1)2

4 directed edges randomly assigned at each

Fig. 7. Comparison of our algorithm with non-negative surplus and the
algorithm with surplus in [3] for a network of 50 agents.

step for the network and use the parameter ci = 0.2 for all i.
For each scenario, both our algorithm (Algorithm 1) and the
algorithm from [3] are run, where the parameter ε in the algo-
rithm in [3] uses a value converted from the parameter ci in our
algorithm. The simulation results are plotted in Fig. 7, where the
red curves are the error norm resulted from our algorithm and
the blue curves are the error norm resulted from the algorithm
in [3]. From the simulations, we can see that our algorithm con-
verges to the optimal solution in all these three scenarios. The
algorithm in [3] converges to the optimal solution for scenario
a), which has a small parameter ci , but it does not converge
to the optimal solution for a large parameter ci . Moreover, the
error norm becomes oscillating and does not converge to zero
when the digraph becomes time-varying.

At last, we show the scaling law of the period K and its
influence on the convergence rate. Again, a network of n = 50
agents is considered. When counting the number of iterations,
the termination condition ‖x(k) − x∗‖ < 0.05 is used. The plot
in Fig. 8 is the averaged counting of 50 executions with respect
to the period K from 1 to 10. The simulation shows that the
number of iterations is nearly of linear growth with respect to
the period K of a jointly strongly connected digraph.

C. Simulations for the IEEE 39-Bus system

In this subsection, we present a simulation for the IEEE
39-bus system with 10 generation units and 18 demand-side
devices (Fig. 1 in [1]). The parameters are adopted from Table I
in [2]. In smart grid, demands can be divided into two types:
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Fig. 8. The scaling law of K and its influence on the convergence rate.

Fig. 9. The error norm ‖x(k) − x∗‖ (y-axis) with respect to the iteration step
(x-axis) for the IEEE 39-Bus system.

responsive demands and traditional demands [34]. The respon-
sive demands have their own cost functions and state constraints,
while the traditional demands are commonly fixed. In this exam-
ple, we assume that the 18 demand-side devices are responsive
demands and there exist extra traditional demands connecting
to this system. That is, C is a 2 × n matrix. Moreover, the
estimates about the total generation, the total amount of tradi-
tional demands, and the total amount of responsive demands are
d1 = 100, d3 = 10, and d2 = d1 − d3 = 90, respectively. Thus,
set C1i = 1, C2i = 0 for i ≤ 10 and C1i = 0, C2i = 1 for i >
10, and set xi(0) = 0, s1i(0) = 100, s2i(0) = 90 for i = 1 and
xi(0) = 0, s1i(0) = 0, s2i(0) = 0, otherwise . The simulation
result is plotted in Fig. 9, which shows the convergence towards
the optimal resource allocation solution.

VII. CONCLUSION

The distributed resource allocation problem has received
increasing attention in recent years. However, most existing
works assume either time-invariant or balanced communication
topologies. This paper, however, removes the strong assumption
on time-invariant or balanced topologies and develops a fully
distributed algorithm for solving the resource allocation prob-
lem over arbitrary strongly connected digraphs. We introduce
a nonnegative surplus to make the collective state constraints
asymptotically satisfied and propose distributed iteration rules
to steer the states to the optimal solution. The parameters used
in the iterations do not require global knowledge, yet global
convergence is assured.

Intuitively, a signed surplus scheme may lead to better con-
vergence rate than our proposed nonnegative surplus scheme.
However, it is still challenging on how to ensure global con-
vergence by using only local knowledge for the design of the
algorithm parameters. Further work will be continued to ex-
plore the inherent mechanisms for global convergence of dis-
tributed algorithms based on signed surplus variables. Besides,
Assumption 1 indicates that the cost functions are strictly con-
vex. Relaxation of this assumption is a further step towards
general non-convex optimization problems. Moreover, by ex-
ploring further the inherent mechanism for using the surplus, it
may become possible to solve the problem of allocating mul-
tiple resources that are coupled together. The main idea relies
on how to update the surplus vector to ensure the convergence
towards zero by projecting each individual’s estimate about its
own optimal amount of resources to the feasible solution space.

APPENDIX

The function φi(C�
∗iλi) defined in (5) holds the following

property, which is useful in the following proofs.
Lemma A.1: For each i ∈ V , if a ≥ b, then

0 ≤ φi(a) − φi(b) ≤ 1
li

(a− b),

where li is the constant in Assumption 1. �
Proof: By Assumption 1, we know that Ji(xi) is an increas-

ing function, so is J−1
i (yi). Thus, it follows from d2Fi/dx

2
i ≥ li

in Assumption 1 that 0 < dJ−1
i (yi)/dyi ≤ 1/li . For any a ≥ b,

from (5) it is known that φi(a) − φi(b) ≥ 0. On the other hand,
by 0 < dJ−1

i (yi)/dyi ≤ 1
li

it can be inferred that

φi(a) − φi(b) ≤ 1
li

(a− b). �

Proof of Lemma 2: By (9a) it follows that

λi(k + 1) − λi(k) 	 εi(k)si(k).

Then if C�
∗iλi(k + 1) ≥ C�

∗iλi(k), it follows from Lemma A.1
that

xi(k + 1) − xi(k) = φi(C�
∗iλi(k + 1)) − φi(C�

∗iλi(k))

≤ 1
li

(C�
∗iλi(k + 1) − C�

∗iλi(k)) ≤
εi(k)C�

∗isi(k)
li

.

Moreover, notice there exist and only exist one positive
value 1 for each column of C, and other elements are 0; without
loss of generality, assume Ch0 i = 1. Then, together with (9c),
we have

si(k + 1)�bi(k)si(k) +
∑

j∈N+
i (k)

bj (k)sj (k)−C∗i
εi(k)
li

sh0 j (k)

⇒

sh0 i(k + 1)≥(1 − ci)bi(k)sh0 i(k) +
∑

j∈N+
i (k)

bj (k)sh0 j (k)

shi(k + 1) ≥ bi(k)shi(k) +
∑

j∈N+
i (k)

bj (k)shj (k), h �= h0

(15)



2610 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 10, MAY 15, 2017

On the other hand, if C�
∗iλi(k + 1) < C�

∗iλi(k), it can be
obtained straightforward from (9c) that

si(k + 1) � bi(k)si(k) +
∑

j∈N+
i (k)

bj (k)sj (k). (16)

Both (1 − ci)bi(k) and bj (k)’s are positive. Hence, the con-
clusion that if si(0) � 0 for all i ∈ V , then

si(k) � 0 for all i ∈ V and k ≥ 0. �

Proof of Lemma 3: By (9c), we obtain that

Cx(k + 1) +
n∑

i=1

si(k + 1)

=
n∑

i=1

(si(k + 1) + C∗ixi(k + 1))

=
n∑

i=1

bi(k)si(k) +
n∑

i=1

∑

j∈N+
i (k)

bj (k)sj (k) +
n∑

i=1

C∗ix(k)

=
n∑

i=1

bi(k)si(k) +
n∑

i=1

∑

j∈N−
i (k)

bi(k)si(k) + Cx(k)

= Cx(k) +
n∑

i=1

si(k).

Thus, the conclusion follows. �
Proof of Lemma 4: For the time-varying digraph G(k), we

define the binary adjacency matrix A(k) = [eij (k)], where
eij (k) = 1 if edge (j, i) exists at time k, and eij (k) = 0 oth-
erwise. Moreover, recall that s = [s1 , · · · , sn ]. Then it can be
concluded from (15) in the proof of Lemma 2 that

s�(k + 1) � � [I +A(k)] s�(k), (17)

By repeatedly using (17), we know that for any k′ > k ≥ 0,

s�(k′) � �k
′−k [I +A(k′ − 1)] [I +A(k′ − 2)]

· · · [I +A(k)] s�(k)

� �k
′−k [I +A(k) + · · · +A(k′ − 1)] s�(k). (18)

It then follows from (18) that

si(k′) � �k
′−k si(k) for any i. (19)

For any k ≥ 0, we consider the sequence of graphs G(k),
G(k + 1), . . . ,G(k + Δ) where Δ = (n− 1)K. Denote

Gm :=G([k + (m− 1)K, k +mK − 1]) for m=1, . . . , n−1.

In addition, we denote

Âm := A(k + (m− 1)K) + · · · +A(k +mK − 1),

which is the adjacency matrix of Gm . By Assumption 2 that
G(k) is jointly strongly connected, we know that G1 , . . . ,Gn−1
are all strongly connected with the same node set. Then it is
clear that for any two nodes i and j, there exists a path j →
lm−1 → · · · l1 → i of length m ∈ {1, . . . , n− 1}, for which
edge (j, lm−1) ∈ G(n−m ) , . . ., edge (l2 , l1) ∈ G(n−2) , and final

edge (l1 , i) ∈ G(n−1) . It means by graph theory that the (i, j)-th
entry of the matrix product

Θ = [I + Â(n−1) ][I + Â(n−2) ] · · · [I + Â(n−m ) ]

is positive. Then it follows from the inequality

s�(k + Δ) � �mKΘs�(k + (n−m− 1)K)

that

si(k + Δ) � �mK sj (k + (n−m− 1)K). (20)

Combining (19) and (20) leads to

si(k + Δ) � �Δsj (k) for any i and j. (21)

Looking at each component of si and λi . Denote shi and λhi
as the h-th component of si and λi , h ∈ {1, · · · ,m}. Denote
λh∗ = [λh1 , · · · , λhn ], sh∗ = [sh1 , · · · , shn ]. For any k ≥ 0, let
i∗ ∈ V be the node such that

λhi∗(k + Δ + 1) = min(λh∗(k + Δ + 1)). (22)

Then by (21), it follows that

shi(k) ≤ shi∗(k + Δ)
�Δ , ∀i ∈ V. (23)

Moreover, since λi(k) + [
∑

j∈N+
i (k) ai(k)(λj (k) − λi

(k))]− is a convex combination of λi(k) and λj (k)(j ∈
N+
i (k)), we get

λhi(k)

+

⎡

⎣
∑

j∈N+
i (k)

ai(k)(λhj (k) − λhi(k))

⎤

⎦

−

≥ min
j∈{i}⋃ N+

i (k)
λhj (k).

So by (9a), for any i ∈ V and k ≥ 0, the following inequality
holds:

λhi(k + 1) ≥ min
j∈{i}⋃ N+

i (k)
λhj (k) + εi(k)shi(k)

≥ min(λh∗(k)) + εi(k)shi(k)

≥ min(λh∗(k)) + �shi(k).

(24)

Recalling (22) and replacing i by i∗ and k by k + Δ in (24), we
obtain

shi∗(k + Δ) ≤ min(λh∗(k + Δ + 1)) − min(λh∗(k + Δ))
�

(25)
Plugging (25) into (23),

shi(k) ≤ min(λh∗(k + Δ + 1)) − min(λh∗(k + Δ))
�Δ+1

Together with the fact h can be any value in {1, · · · ,m}, the
conclusion is reached. �

Proof of Lemma 5:
1) By Lemma 2 and (24) it can be obtained that

λi(k + 1) � min(λ(k)),

which implies that every entry of min(λ(k)) is non-decreasing
with respect to k.
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2) Consider any h ∈ {1, . . . ,m}. We let λh be the h-th com-
ponent of λ and let λh∗ be the h-th row vector of λ. To
prove 2), suppose on the contrary that for some h and for
any λh , there exists k such that

min(λh∗(k)) > λh.

Without loss of generality, we assume that the h-th row vector
of C is Ch∗ = [1�

n1
0�
n−n1

], n1 ≤ n.
Now we choose a particular λ = η such that

C�
∗iη > Ji(xi), ∀i ∈ [1, · · · , n1 ].

Then, together with the component-wise non-decreasing prop-
erty of min(λ(k)), it follows that there exists a k0 such that for
all k ≥ k0 ,

C�
∗iλi(k) > C�

∗iη > Ji(xi), ∀i ∈ [1, · · · , n1 ].

Thus, by (9b), we have

xi(k) = xi, ∀i ∈ [1, · · · , n1 ] and ∀k ≥ k0 .

Recall from Remark 1 that dh ≤ Ch∗x, where dh is the h-th
component of d. So from the fact that

Ch∗x(k) +
n∑

i=1

shi(k) = dh ,

we attain
n∑

i=1

shi(k) ≤ 0, ∀k ≥ k0 .

It follows from Lemma 2 that
n∑

i=1

shi(k) ≥ 0.

So the only possible case is that
n∑

i=1

shi(k) = 0, ∀k ≥ k0 . (26)

We will show in the following that this is also not possible.
If (26) holds, then by the nonnegative properties of si , it

follows that

shi(k) = 0, ∀i ∈ V and ∀k ≥ k0 .

Thus, from (9a), we know for all i and for all k ≥ k0 ,

λhi(k + 1) = λhi(k)

+

⎡

⎣
∑

j∈N+
i (k)

ai(k)(λhj (k) − λhi(k))

⎤

⎦

−

,

where λhi is the (h, i)-th entry of λ. This implies λhi(k) ≤
λhi(k0), ∀k ≥ k0 , a contradiction to the assumption that
min(λh∗(k)) has no upper bound.

3) From 2), there exists a vector λ ∈ Rm such that
min(λ(k)) 	 λ. We let σ := sup(min(λ)). Then accord-
ing to the component-wise non-decreasing property in 1),
it follows that

lim
k→∞

min(λ(k)) = σ. �
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