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Transformational Supervisor Localization
Sander Thuijsman , Kai Cai , Senior Member, IEEE , and Michel Reniers , Senior Member, IEEE

Abstract—Supervisor localization can be applied to dis-
tribute a monolithic supervisor into local supervisors.
Performing supervisor localization can be computation-
ally costly. In this letter, we consider systems that evolve
over time. We study how to reuse the results from a
previous supervisor localization, to more efficiently com-
pute local supervisors when the system is adapted. We call
this approach transformational supervisor localization, and
present algorithms for the procedure. The efficiency of the
procedure is experimentally evaluated.

Index Terms—Discrete-event systems, supervisory con-
trol, model/controller reduction, computational methods,
automata.

I. INTRODUCTION

SUPERVISORY control theory, as introduced by Ramadge
and Wonham [1], is a model-based approach to control

discrete event (dynamic) systems. Typically, cyber-physical
systems are modeled. By applying supervisor synthesis on a
model of an uncontrolled system (plant) and system require-
ments, a correct-by-construction supervisor is obtained. This
supervisor enables/disables events such that the requirements
are always adhered to, and some more behavioral proper-
ties apply to the controlled system such as: nonblockingness,
controllability, and maximal permissiveness [2]. The most
straightforward approach is monolithic supervisor synthesis,
which computes a single global supervisor that controls all
components and enforces all requirements.

Large, global controllers may be undesirable in practice.
As such, many modern control systems are distributed over
a number of agents [3]. These agents may act locally based
on their own observations and control strategies. Through
supervisor localization (SL) [4], local supervisors for the
individual agents are computed from the monolithic super-
visor, that together achieve the same controlled behavior as
the monolithic supervisor. SL is an extension to supervisor
reduction, which converts a supervisor automaton to a smaller
automaton (with less states) that is control equivalent to the
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original automaton [5]. We present preliminaries on supervisor
localization/reduction in Section II.

In this letter, we slightly modify the SL algorithm
from [4], [5] to be able to initialize it in a way such that it has
to do less calculations/loops, which benefits the method that
we are going to introduce. Furthermore, because it is desirable
to obtain small (in terms of number of states) local supervisors,
we show that the local supervisors obtained by SL are maxi-
mally reduced. These novel extensions to SL are presented in
Section III.

In recent work, transformational approaches for supervisory
control algorithms, such as transformational supervisor syn-
thesis [6] and transformational nonblocking verification [7],
are investigated. Such transformational approaches deal with
cyber-physical systems that evolve over time. Results of
previous computations, such as synthesis or verification, may
not be valid anymore once the system is adapted. In this case,
transformational methods can be applied that reuse the output
of previous calculations to more efficiently compute the result
of some algorithm, rather than computing it from scratch. The
general idea is that the previous result is transformed into the
new result, using knowledge on how the system is adapted.

In this letter, we investigate transformational supervisor
localization (TSL). We assume a base model, on which (T)
SL has already been performed. The base model is adapted
such that a variant model is obtained. The goal is to use
the localization output of the base model, to more efficiently
compute local supervisors for the variant model. The formal
problem definition is given in Section IV. We present algo-
rithms for TSL and prove their correctness in Section V. The
computational benefit of TSL is evaluated by a use case in
Section VI.

II. PRELIMINARIES

In the following we discuss the preliminaries on SL. We first
provide automata definitions for plant and (monolithic) super-
visor. The plant is assumed to be a composition of agents.
The goal is to generate local supervisors that each supervise
an agent. This is done by grouping states of the monolithic
supervisor into cells, that are consistent in the enablement and
disablement of events controlled by the respective agent. These
cells are the states of the local supervisor. Together, the behav-
ior of the system under control by the local supervisors is the
same as that of the monolithic supervisor. For details we refer
to [4].

The plant is defined by a finite state automaton G =
(Q, �, δ, q0, Qm), where Q is the finite state set, � is the
finite event set, q0 is the initial state, and Qm is the subset of
marked states. δ : Q × � → Q is the (partial) transition func-
tion. We denote δ(q, σ )! if δ(q, σ ) is defined. We extend this
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notation to δ : Q × �∗ → Q, and write δ(q, s) for s ∈ �∗ to
indicate sequences of transitions. We consider the case that G
is formed by a composition of n agents, that each have local
events:

⋃̇
k∈{1,...,n}�k = �, from which a subset are locally

controllable �c,k ⊆ �k. We assume a monolithic supervi-
sor is provided for plant G, defined by finite state automaton
S = (X, �, ξ, x0, Xm). For the purpose of the algorithms in
this letter, we assume the states are numbered/indexed, i.e.,
X = {x0, x1, . . .}.

We use the following functions [4]:
• E : X → 2� , where E(x) = {σ ∈ �|ξ(x, σ )!}
• Dk : X → 2�c,k , and Dk(x) = {σ ∈ �c,k|¬ξ(x, σ )!∧(∃s ∈

�∗) : (ξ(x0, s) = x ∧ δ(q0, sσ)!)}
• M : X → {0, 1}, where M(x) = 1 iff x ∈ Xm
• T : X → {0, 1}, where T(x) = 1 iff (∃s ∈

�∗) : (ξ(x0, s) = x ∧ δ(q0, s) ∈ Qm)

E indicates events enabled by the supervisor in state x. Dk indi-
cates the events from �c,k disabled by the supervisor in state x.
M determines if a state is marked in S, and T determines if
some corresponding state is marked in G.

We define control consistency relation Rk ⊆ X × X (for
agent k): for every x, x′ ∈ X, (x, x′) ∈ Rk iff:

E(x) ∩ Dk(x
′) = ∅ = E(x′) ∩ Dk(x) (1)

T(x) = T(x′) =⇒ M(x) = M(x′) (2)

Cover Ck = {Xi ⊆ X|i ∈ Ik} with suitable index set Ik is
called a control cover with respect to some �k iff:

(i) (∀i ∈ Ik,∀x, x′ ∈ Xi)(x, x′) ∈ Rk

(ii) (∀i ∈ Ik,∀σ ∈ �)
[(

(∃x ∈ Xi)ξ(x, σ )!
)

=⇒ (
(∃j ∈ Ik)(∀x′ ∈ Xi)ξ(x′, σ )! =⇒ ξ(x′, σ ) ∈ Xj

)]

If a control cover C is a partition on X, it is called a control
congruence.

In this letter we frequently address a singleton cover C =
{{x}|x ∈ X}, which trivially always is a control congruence.

We call a set of states in a cover a cell. In our notation we
use [x]C to refer to the set of states contained in the same cell
as x in cover C, or simply [x] if there is no ambiguity.

Given a control congruence Ck, a local supervisor LOCk
is computed as follows (simplified from [5]): LOCk =
(Ck, �, ηk, y0,k, Ym,k), where: ηk : Ck × � → Ck, with
ηk(π1, σ ) = π2 iff (∃x ∈ π1) : ξ(x, σ ) ∈ π2; y0,k = [x0];
and Ym,k = {[x]|x ∈ Xm}. A local supervisor is deterministic
as a result of condition (ii) for the control cover.

The set of local supervisors {LOCk|1≤k≤n} constructed in
this way is control equivalent to S with respect to G [4]:

L(G) ∩
⋂

1≤k≤nL(LOCk) = L(S) ∩ L(G) (3)

Lm(G) ∩
⋂

1≤k≤nLm(LOCk) = Lm(S) ∩ Lm(G) (4)

L(A) and Lm(A) respectively denote the language and the
marked language of automaton A [2].

III. SUPERVISOR LOCALIZATION

In the process of SL, for each agent, a control congruence
is computed and subsequently the local supervisor is gener-
ated. We can use the definitions and functions from Section II
to perform the localization algorithm, shown in Algorithm 1,

Algorithm 1 localize
Input: G, S, �c,k, initial Ck
Output: Control congruence Ck

1: for i = 0 to |X| − 2 do
2: if i > min({m|xm ∈ [xi]}) then continue; end
3: for j = i + 1 to |X| − 1 do
4: if j > min({m|xm ∈ [xj]}) then continue; end
5: W = ∅
6: (flag, W) = check_merge(xi, xj, W, i, ξ, Ck)
7: if flag then
8: Ck =

{
[x] ∪ ⋃{[x′]|{(x, x′), (x′, x)} ∩ W �= ∅}

∣
∣
∣[x], [x′] ∈ Ck

}

9: end
10: end
11: end
12: return Ck

Algorithm 2 check_merge
Input: xi, xj, waiting list W, i, ξ , Ck
Output: mergeability Boolean flag, W

1: for all xp ∈ [xi] ∪ ⋃{[x]|{(x, x′
i), (x

′
i, x)} ∩ W �= ∅,

x′
i ∈ [xi]} do

2: for all xq ∈ [xj] ∪ ⋃{[x]|{(x, x′
j), (x

′
j, x)} ∩ W �= ∅,

x′
j ∈ [xj]} do

3: if {(xp, xq), (xq, xp)} ∩ W �= ∅ then continue; end
4: if (xp, xq) �∈ Rk then return (false, W); end
5: W = W ∪ {(xp, xq)}
6: for all σ ∈ E(xp) ∩ E(xq)
7: if [ξ(xp, σ )] = [ξ(xq, σ )] or

{(ξ(xp, σ ), ξ(xq, σ )), (ξ(xq, σ ), ξ(xp, σ ))} ∩ W �= ∅
then continue; end

8: if min({m|xm ∈ [ξ(xp, σ )]}) < i or
min({m|xm ∈ [ξ(xq, σ )]}) < i

then return (false, W); end
9: (flag, W) = check_merge(ξ(xp, σ ), ξ(xq, σ ), W, i,

ξ, Ck)
10: if not flag then return (false, W); end
11: end
12: end
13: end
14: return (true, W)

which makes calls to Algorithm 2 [4].1 Note that, e.g., the
X on line 1 implicitly originates from automaton S. A ‘con-
tinue’ ends current execution and the function goes to the next
iteration of the nearest enclosing for-loop. A ‘return’ ends cur-
rent call to the algorithm and the specified values are returned
to the parent routine.

Example 1: We consider the supervisor automaton shown
in Fig. 1(a). The states are represented by circles. The dangling
incoming arrow indicates x0 is the initial state. Transitions
are shown by arrows between states with the respective event
label. To simplify the examples, no states are marked and all
events are controllable.

We consider the case that there is an agent (numbered
1) whose set of local controllable events includes all events,
i.e., �c,1=�1=�={a, b, c, d, e}. Let us consider the case
that the supervisor disables event c in state x0, and dis-
ables event a in state x2. There are no disablements in
the other states, i.e., the supervisor permits the same events

1Relative to [4], [5] some minor changes have been made to lines 1,2, and
7 of Algorithm 2 for correctness.
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Fig. 1. Automata of Example 1.

as the plant in those states. So, D1(x0)={c}, D1(x2)={a},
D1(x1)=D1(x3)=D1(x4)=∅.

To compute the local supervisor, we perform the localization
algorithm initialized with a singleton cover {{x0}, . . . , {x4}}.
First, mergeability of x0 and x1 is checked. These states are
not mergeable, since event c is disabled in x0 but enabled in
x1. Also x0 and x2 are not mergeable. x0 is mergeable with x3
and they are subsequently merged. Next, {x0, x3} is merged
with x4 to form cell {x0, x3, x4}. Finally x1 and x2 are merged,
and no more merges are possible so the algorithm terminates.
Using the resulting control congruence, a local supervisor is
constructed, which is displayed in Fig. 1(b).

In [4] the localization algorithm is initiated with a single-
ton cover. However, in this letter we will also initialize the
algorithm with non-singleton covers, to benefit the efficiency
of the transformational method that we are going to introduce.
We present Lemma 1 on this initialization.

Lemma 1: If Algorithm 1 is initiated with a control con-
gruence Ck,init, the output cover Ck is a control congruence.

Proof: Correctness of Algorithm 1 initiated by a singleton
cover is proven in [5]. The singleton cover is a special instance
of a control congruence. The same proof of [5] applies here,
when we generalize the algorithm to be initialized with any
control congruence.

It is desirable to have small (in terms of number of
states) local supervisors. Therefore, we want to compute con-
trol congruences which cannot be reduced further, i.e., any
further merging of cells would result in an invalid con-
trol cover. We call such a cover maximally reduced, see
Definition 1. Reducedness of the control congruences obtained
by Algorithm 1 is addressed in Lemma 2.

Definition 1: Cover Ck is maximally reduced w.r.t.
G, S, �c,k iff ∀π1, π2 ∈ Ck, if π1 �=π2, then (Ck \ {π1, π2}) ∪
{π1 ∪ π2} is not a control congruence w.r.t. G, S, �c,k.

Lemma 2: Ck obtained by Algorithm 1, is maximally
reduced w.r.t. G, S, �c,k.

Proof: Algorithm 1 iterates over all pairs of states, and only
skips pairs of states when mergeability between some pair
of states contained in the respective cells has already been
checked. Thus, if Algorithm 1 outputs a control congruence
containing individual cells π1 and π2, then mergeability has
been checked between some pair of states x1 ∈ π1, x2 ∈ π2.
Let us say x1, x2 respectively were in cells ρ1, ρ2 at the point
their mergeability was checked. Since x1 and x2 were not
merged, check_merge has returned false for this evalua-
tion, which means that some pair of states x3, x4 respectively
in ρ1, ρ2 were not mergeable. Since Algorithm 1 only merges
cells (i.e., never splits a cell), we know that for the resulting

control congruence x3 ∈ ρ1 ⊆ π1 and x4 ∈ ρ2 ⊆ π2. Since
x3 and x4 are not mergeable, π1 and π2 cannot be merged to
form a control congruence.

Note that Lemma 2 does not mean that the smallest control
congruence is found by Algorithm 1. A control congruence
(and resulting local supervisor) is generally non-unique, and
which is found by Algorithm 1 depends on the order in which
mergeability of the states is checked, which depends on their
indexing. Unfortunately, finding a control congruence with the
smallest number of cells is an NP-hard problem [5].

Lemmas 1 and 2 are applicable for supervisor local-
ization [4] and supervisor reduction [5] (which also uses
Algorithms 1 and 2, i.e., not only applicable to the transfor-
mational approach we present next.

IV. PROBLEM DEFINITION

We assume a base system G consisting of n agents, a
supervisor S, and a partition

⋃̇
k∈{1,...,n}�c,k = �c ⊆ � of

controllable events. This base system has been localized, i.e.,
a control congruence Ck was obtained for each agent k.

Now the system changes to variant system G′ consisting
of n′ agents, a supervisor S′, and a partition of controllable
events

⋃̇
k∈{1,...,n′}�′

c,k = �′
c ⊆ �′. We compute C′

k and LOC′
k

for all k from 1 to n′ based on the control congruences of
the base system, rather than starting localization from scratch.
We call this procedure transformational supervisor localiza-
tion (TSL). TSL is to correctly localize the variant system, as
defined in Problem 1. Note that in this problem definition, any
adaptation can be made to the base system (that generates a
well-defined variant system).

Problem 1: Use Ck for k from 1 to n of the base system G, S
to transformationally compute new local supervisors LOC′

k for
all k from 1 to n′ that are control equivalent (Equations 3
and 4) to S′ with respect to G′.

Since a set of local supervisors can be constructed from a
set of control covers, in our work we mainly focus on find-
ing control covers (in this case, control congruences) for the
variant system in a transformational approach.

Furthermore, it is desirable to have small local supervi-
sors. Therefore, TSL will compute maximally reduced control
covers to use in the construction of the local supervisors.

V. TRANSFORMATIONAL SUPERVISOR LOCALIZATION

In this section, we first discuss an algorithm that is used
to transform a cover Ck to a control congruence in case the
system has been adapted. Next, we use this algorithm in the
general procedure used for TSL.

A. Isolating Conflicts
We consider the case that a control congruence Ck has been

computed for some base system S = (X, �, ξ, x0, Xm), G =
(Q, �, δ, q0, Qm). Now the system is adapted to form variant
system S′ = (X′, �′, ξ ′, x′

0, X′
m), G′ = (Q′, �′, δ′, q′

0, Q′
m). In

our notation, we use E′, D′
k, . . . , to indicate that the function

E, Dk, . . . , are applied to the variant automaton. I.e., E′ is a
function E′ : X′ → 2�′

.
Algorithm 3 constructs a control congruence C′

k based on Ck.
First, states that are removed from X to create X′ are removed
from the cells they were in Ck. New states are added as sin-
gleton cells. Next, the algorithm looks for states x that do not
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Algorithm 3 isolate

Input: Ck, S, G′, S′, �′
c,k

Output: C′
k

1: C′
k = {π \ (X \ X′)|π ∈ Ck} ∪ ⋃{{x}|x ∈ X′ \ X}

2: flag = true
3: while flag do
4: flag = false
5: for all x ∈ X′ ∩ X do
6: if ∃x′ ∈ [x]C′

k
:

(
(x, x′) �∈ R′

k ∨ (∃σ ∈ E′(x) ∩
E′(x′)) : ([ξ ′(x, σ )]C′

k
�= [ξ ′(x′, σ )]C′

k
)
)

then
7: flag = true
8: C′

k = (C′
k \ {[x]C′

k
}) ∪ {[x]C′

k
\ {x}} ∪ {{x}}

9: end
10: end
11: end
12: return C′

k

Fig. 2. Isolated state x0.

satisfy condition (i) or (ii) of a control cover from Section II
anymore with a state x′ in the same cell. If such a state x
is found, it is isolated: it is removed from its initial cell and
placed in a singleton cell. Note that conditions (i) and (ii) are
always satisfied for states in a singleton cell. Finally, all states
that induce such a control consistency conflict are isolated,
and the resulting cover is a control congruence.

We first present Example 2 to demonstrate the functioning
of Algorithm 3. Next, we prove correctness of Algorithm 3 in
Theorem 1.

Example 2: Let us consider the case the system of
Example 1 is adapted. In addition to the disablements
D1(x0)={c}, D1(x2)={a} in the base system, the variant system
has an additional disablement: D1(x3)={a}. As a result, for the
variant system (x0, x3) �∈ R1. Therefore, the cover found in
Example 1 is not valid anymore. This conflict is found in line
6 of Algorithm 3, and subsequently x0 (or x3 depending on
order of iteration) is removed from its previous cell and placed
in a singleton cell. No more conflicts exist in the resulting
cover. Constructing a local supervisor for this cover yields the
automaton shown in Fig. 2.

Theorem 1: Given N = |X ∩ X′|, Algorithm 3 terminates,
has a worst-case time complexity of O(|�|·N3), and the
generated cover C′

k is a control congruence w.r.t. G′, S′, �′
c,k.

Proof: A state in a singleton cell is trivially control con-
sistent. If in the for-loop (lines 5-10) a state is found that is
not control consistent with another state in the same cell, it
is placed in a singleton cell and removed from its original
cell, and the algorithm iterates over all states in X ∩ X′ again.
Eventually, since N is finite, there are no more non-control
consistent states, the for-loop terminates with flag = false, the
while-loop breaks, and the algorithm terminates.

Checking the if-condition on line 6 has a worst-case
cost of |�|·N. The for-loop (lines 5-10) is performed N
times in worst-case. The while-loop (lines 3-11) is performed

Algorithm 4 TSL

Input: {Ck|1 ≤ k ≤ n}, S, G′, S′, {�′
c,k|1 ≤ k ≤ n′}, M

Output: {LOC′
k|1 ≤ k ≤ n′}, {C′

k|1 ≤ k ≤ n′}
1: for k = 1 to n′ do
2: if M(k) �= 0 then
3: C′

k,init = isolate(CM(k), S, G′, S′, �′
c,k)

4: else
5: C′

k,init = {{x}|x ∈ X′}
6: end
7: C′

k = localize(G′, S′, �′
c,k, C′

k,init)

8: Compute LOC′
k based on C′

k
9: end

10: return {LOC′
k|1 ≤ k ≤ n′}, {C′

k|1 ≤ k ≤ n′}

N times in worst-case. Therefore, the time complexity is
O(|�|·N3).2

The while-loop only breaks when conditions (i) and (ii) are
both met for all states in X ∩ X′. Also all states in X′ \ X are
control consistent as they are placed in singleton cells. There
is no overlap between cells in C′

k as all cells in X′\X are placed
in singleton cells and no merges are performed for states in
X ∩ X′, which are initially partitioned by Ck. Thus, C′

k is a
control congruence w.r.t. G′, S′, �′

c,k.

B. General Procedure
In this section we present the TSL procedure, show in

Theorem 2 that TSL solves Problem 1, and in Theorem 3
that the resulting control congruences are maximally reduced.

The TSL procedure is sketched in pseudo-code in
Algorithm 4. We assume a mapping M : {1, . . . , n′} →
{0, . . . , n}, that maps every agent in the variant system to either
an agent of the base system, or to ‘0’. If M(k)=0, it means
no base control cover is selected and the initial control con-
gruence is set to a singleton cover. In case M(k) is nonzero,
control congruence CM(k) is selected from the base system to
perform isolate to find an initial control congruence. After
performing isolate, the resulting cover might not be max-
imally reduced. This is why, after performing isolate, the
cover is used to initialize localize in order to merge cells
whenever possible. The reasoning for the TSL procedure is
that isolate produces a control congruence in which gener-
ally states will already be merged into cells, limiting the work
that needs to be done during localize. This is demonstrated
in Example 3. TSL also returns covers {C′

k|1 ≤ k ≤ n′} so that
they can be used in a next TSL if the system is further adapted.

Example 3: This is a continuation of Example 2, in which a
variant system was presented to the base system of Example 1,
and isolate was performed to compute a control congru-
ence for the variant system, yielding the local supervisor of
Fig. 2. However, the cover can be further reduced, resulting in
a local supervisor with less states. We perform localize ini-
tialized with the cover found in Example 2. {x0} cannot merge
with {x1, x2} for multiple reasons: x1 and x2 both enable event
c, which is disabled in x0, and x0 enables event a, which is
disabled in x2. {x0} cannot merge with {x3, x4} as x0 enables

2To achieve this cost in implementation, instead of storing cells as state
sets, a cell index number is stored for each state. A state can be isolated by
simply assigning it with a new cell index. Since all cells are non-overlapping,
comparing whether two cells are the same can be done by comparing the cell
index of one state from each cell.
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Fig. 3. Local supervisor of variant system.

Fig. 4. CMT room layout of a level [9].

a, which is disabled in x3 in the variant system. {x1, x2} can
be merged with {x3, x4}: there are no conflicts. After merg-
ing these cells, no further merges are possible, leading to
control congruence {{x0}, {x1, x2, x3, x4}}. Constructing a local
supervisor for this cover yields the automaton in Fig. 3.

Theorem 2: Algorithm 4 terminates, has worst-case com-
plexity O(n′·|�′|·|X′|4), and solves Problem 1.

Proof: Algorithm 4 terminates because isolate
(Theorem 1) and localize [4], [5] terminate.

In worst-case, isolate is called n′ times, and its complex-
ity is O(|�′|·|X ∩ X′|3) (Theorem 1). localize is called n′
times, and its complexity is O(|�′|·|X′|4) [4], [5]. Therefore,
the complexity of TSL is O(n′·|�′|·|X′|4).

For each agent in the variant system, localize is initiated
with a control congruence, since line 3 constructs a control
congruence (Theorem 1) and the singleton cover constructed
in line 5 is a control congruence. Thus, the covers computed by
localize are control congruences following from Lemma 1.
It is shown in [4] that local supervisors constructed from
control congruences satisfy Problem 1.

Clearly, SL and TSL have the same complexity. The idea
is that TSL is quicker in practice, when the variant system is
sufficiently similar to the base system. Unfortunately, at the
moment we can not predict whether TSL will be quicker than
SL. We present some experiments in Section VI to study the
computational benefit in practice.

In addition to correctness of the result, TSL also produces
maximally reduced control congruences.

Theorem 3: All C′
k ∈ {C′

k|1 ≤ k ≤ n′} obtained by
Algorithm 4 are maximally reduced w.r.t. G′, S′, �′

c,k.
Proof: Every control congruence C′

k that is returned by
Algorithm 4 is constructed by performing Algorithm 1.
Control congruences constructed by Algorithm 1 are maxi-
mally reduced (Lemma 2). Thus, the theorem holds.

VI. CASE STUDY: CAT AND MOUSE TOWER

As a case study to evaluate the efficiency of TSL relative
to SL, we take the Cat and Mouse Tower (CMT) from [8].
There are n floors, and on each floor of the tower there are five
rooms as shown in Fig. 4. Cats and mice can move between the
rooms as indicated by the arrows. Between each level there
is a connection for both cats and mice. This connection is
between room j of level 5 · i + j to room j of level 5 · i + j + 1,
for i ∈ N0, j ∈ {1, 2, 3, 4, 5}, and 5 · i + j < n. So room
1 level 1 is connected to room 1 level 2; room 2 level 2 is
connected to room 2 level 3; and so forth, essentially forming
a spiraling staircase. All doors can be controlled, except for
the bidirectional cat door between rooms 2 and 4. There are

k cats and k mice, and consequently each room can also hold
between 0 and k cats and/or mice. The cats start in room
1 of level 1, and the mice start in room 5 of level n. The
requirement of this system is that there can never be a cat and
a mouse in the same room at the same time.

As base system, we take a tower with four levels, one cat,
and one mouse. The monolithic supervisor of this system has
362 states and 1159 transitions. For localization, we consider
each level as a separate agent. An agent controls all events of
the cat and mouse that originate in that level, e.g., the level
1 agent controls all doors on that level, and the movements
from level 1 room 1 to level 2 room 1 (but not the other way
around; these are controlled by the level 2 agent).

We construct five variant systems (each modifies the base
system directly, i.e., the adaptations are not cumulative):

1) Removed cat door from room 3 to room 4 on level 2.
2) Made all doors controllable.
3) Added requirement that cats should never reach level 4.
4) Removed room 5 of level 1.
5) Added a room 6 to level 1 with bidirectional controllable

doors for cat and mouse to room 5 of level 1.
The models and a proof-of-concept implementation of the

algorithms have been made in MATLAB.3 We performed SL
for the base system, and SL and TSL for each variant system.
For TSL, each agent (floor) of the variant system is mapped
to the same floor in the base system. A standard personal
computer with i7 processor was used. MATLAB used less
than 2 GB of memory. Since we draw conclusions on relative
and not absolute runtimes, the conclusions are not influenced
by the hardware. Because the results are influenced by state
indexing order, the experiments are performed for ten random
index orders and mean values over those runs are presented.

In the left side of Table I we compare the computation
time in seconds of performing SL and TSL for the agents
in the variant system. To provide further detail, we show how
much time of performing TSL is spent on the isolate and
localize portion of the procedure. The percentage change
comparing TSL to SL is displayed, where a negative or posi-
tive value respectively indicates how much quicker or slower
TSL is compared to SL.

In the right side of Table I we compare the number of cells
between the result of SL and TSL for the agents in the variant
system. The numbers under ‘initial guess’ indicate the number
of cells of C′

k after line 1 of isolate, before any states are
isolated. The numbers under ‘isolated’ indicate the number of
cells after completing isolate, but before localize is
performed.

For the first variant system, we observe that no states need
to be isolated during isolate and no further merges of cells
can be performed when performing localize initialized by
the control cover of the base system. Compared to performing
SL initialized by a singleton cover, TSL is much quicker. For
the second variant system, there is much less computational
benefit. Here, a local system is found were TSL is slower than
SL, i.e., in this case localization is quicker when initialized by
a singleton cover. At the moment, we have no way to predict
when this will be the case. We observe that for this system a
lot of states need to be isolated for all subsystems. Even so,
isolation is performed relatively quickly. Because the isolated

3All used models and algorithms can be found here:
https://github.com/sbthuijsman/TSL.
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TABLE I
CMT EXPERIMENTAL RESULTS

cover is relatively close to the singleton cover (which has 375
cells), TSL runtimes are relatively close to the SL runtimes.
Another observation is that TSL computes covers with more
cells than SL, because it starts with a coarser cover which
limits the cell merges that can be made during localize.
For variant systems 3, 4, and 5 TSL is consistently quicker
than SL, even though for variant system 5 a lot of states require
to be isolated.

The same experiments have been performed for larger
instances of CMT, with 6 levels (842 states) and 8 levels
(1525 states). Because of space constraints we cannot fully
present those results in this letter, they are available in the
repository linked above. The same conclusions can be made
for these larger instances. Respectively, the average percent-
age change over all local systems for CMT with 4, 6, and 8
levels, were −61%, −54%, and −57%.

From a monolithic point of view the adaptations made to
the CMT system are considerable (reflected in the change in
number of states and transitions). Regardless, these experi-
ments suggest that TSL is more efficient than performing SL
from scratch.

VII. CONCLUSION

We presented a TSL procedure, that reuses control con-
gruences from a previous SL to more efficiently compute
these control congruences for a system once it is adapted.

Correctness of the algorithms is shown, and examples are pro-
vided. The method is evaluated by means of some experiments
on the CMT system. For these experiments, the runtime of
TSL is shown to be lower than SL.
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