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Supervisory Control Theory with Event Forcing
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Abstract—In the Ramadge-Wonham supervisory control the-
ory the only interaction mechanism between supervisor and
plant is that the supervisor may enable/disable events from
the plant and the plant makes a final decision about which of
the enabled events is actually taking place. In this paper, the
interaction between supervisor and plant is enriched by allowing
the supervisor to force specific events (called forcible events) that
are allowed to preempt uncontrollable events. A notion of forcible-
controllability is defined that captures the interplay between
controllability of a supervisor w.r.t. the uncontrollable events
provided by a plant in the setting with event forcing. Existence
of a maximally permissive, forcibly-controllable, nonblocking
supervisor is shown and an algorithm is provided that computes
such a supervisor. The approach is illustrated by two small case
studies.

Index Terms—Discrete event systems, finite automata, forcible
events, forcible controllability supervisory control, nonblocking.

I. INTRODUCTION

THE main interaction mechanism between a supervisor
and the plant it controls in supervisory control theory

(SCT) [1], [2] is the mechanism of enabling/disabling events
offered by the plant. In such a setting the supervisor indicates
which of the events that are enabled in the plant are allowed
to occur, but the supervisor does not dictate which of these
allowed events will occur.

One can observe that in many implementations of supervi-
sory controllers a different interaction involving event forcing
is used between supervisor and plant.

We mention two important consequences of this ‘mismatch’
between this assumption in SCT and the actual setting in
implementations: (1) a proper supervisory controller does not
necessarily result in a proper implementation (especially w.r.t.
the infamous property of nonblocking there are complications),
and (2) loss of permissiveness because final choice of executed
event is assumed to be in the plant. In [3], [4], [5], the
mismatch between a proper supervisory controller and an
implementation is discussed in detail.

In this paper we study the second consequence in more
detail. We propose a SCT that does not only allow en-
abling/disabling by the supervisor, but also, for some events,
allows forcing of such an event. Forcing of an event results
in preemption of other events and may thus contribute to
obtaining proper supervisors.

In [6], supervisory control of untimed discrete event systems
with forcible events is studied. In [6, Example 2], a version of
controllability was introduced (when interpreted in a setting
with uncontrollable events) which requires that a sublanguage
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is closed under all uncontrollable events available in the plant
or allows for a single forced event only. A clear difference
with our definition is that we generally allow multiple forcible
events to be available for the sake of maximal freedom of
choices. In [6], this specific condition that only one forcible
event is considered an acceptable continuation is not further
elaborated outside that example.

In [1, section 3.8] forcible events are introduced also for a
setting without timing. It is argued (informally) that forcible
events are a modeling issue by showing how synthesis in
the context of forcible events can be achieved by traditional
synthesis on a transformed plant. Drawbacks of this approach
are the possible increase of the number of states in the state
space on which synthesis is to be performed, and the fact
that the transformation as suggested takes place on the state
space and not on the individual plant components typically
used in modeling an uncontrolled system. This paper considers
the same setting, but studies a direct synthesis algorithm for
the setting of supervisory control with forcible events (thus
countering both disadvantages).

In extensions of SCT with notions of timing, such as
different types of Timed DES [7], [8], [9], [10], [11] and
TA [12], forcible events are introduced to preempt progress
of time (which is generally considered uncontrollable). In all
these works, the result is an adapted notion of controllability
where progress of time is consider uncontrollable only in cases
where no forcible events are enabled. A main difference with
our approach is that we consider the status of every event as
being either controllable or uncontrollable as fixed and given.
Additionally, events may be forcible, which allows them to be
used by the supervisor to preempt events (not only progress
of time, but also other events).

In [7], a distinction is made between strongly preemptive
forcing, where a forcible event preempts any other eligible
event, and weakly preemptive forcing, where premption is
only assumed w.r.t. the passage of time. In [8], [9], weakly
preemptive forcing is considered. In contract, the notion of
preemption adopted in our paper is that of strong preemp-
tion with the side note that a supervisor may have multiple
forcible event alternatives instead of exactly one. A notion of
controllability is defined that depending on the eligibility of
a forcible event treats the event tick as uncontrollable or not
(uncontrollable when no forcible event is eligible).

In [10], the supervisory control of a plant is studied where
the interaction between supervisor and plant is assumed to
result in delays. Time is modeled by means of a tick event,
and forcible events are used to preempt this tick event (and
no other events). The notion of controllability used in [10]
aligns well with the notion defined in this paper. Although the
synthesis algorithm presented in [10] is quite different from
the version in this paper, the underlying idea that a tick event
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may be preempted by a forcible event is recognizable and
also the situation that during synthesis all forcible events may
disappear resulting in these states being bad states after all is
there.

In both [11] and [12], forcible events are used to preempt
the progress of time in a context of timed automata. In such
automata the progress of time is, in contrast with Timed
DES, described by real-valued clocks and separated from the
occurrence of events.

In [13], forcible events are used in the context of hybrid
automata. The treatment is restricted to the setting where all
forcible events are also controllable, an assumption that is not
adopted in the present paper.

In [14], existence and synthesis of safe and nonblocking di-
rected control for discrete event systems is studied. A directed
controller selects at most one controllable event to be executed
from each system state. Our forcibly-controllable supervisor is
possibly more permissive than a directed controller as multiple
controllable events may still be allowed in order to maximize
permissiveness in the sense of choosing alternative forcible
events.

In [4], supervised control is applied. In supervised control a
supervisor is meant to be implemented together with a separate
controller. The supervisor is used to monitor the behavior of
the plant and disables some events, whereas the controller
forces some of the events enabled by the supervisor to occur
in the plant. Forcible events are used in [4], but not for the
synthesis of a maximally permissive supervisor, but for the
implementation of such a supervisor as a controller. In all the
four case studies mentioned in the paper all controllable events
were assumed to be forcible by the controller.

In [15], the authors point to three reasons for limited
applicability of supervisory control theory. One of these three
reasons is that the model interpretation of SCT does not
connect well with applications: “The logical plant model
proposed in supervisory control theory assumes a plant that
‘generates’ events spontaneously unless it is prevented from
doing so. The control mechanism available to the supervisor
is the ability to prevent the occurrence of some events, called
controllable events. This model is not appropriate for most
real systems. In fact, real systems usually react to commands
as inputs with responses as outputs.” The authors assume an
input-output model where the supervisor has to be controllable
and the plant has to be complete for commands issued by the
supervisor.

In the present paper, we enrich the traditional options for a
supervisor to enable/disable events with the option to preempt
events by forcing some event to occur. We however, do not
assume that the plant is complete for such commands as
[15] does. Instead we formulate a new forcible-controllability
property that the supervisor must satisfy.

The contributions of this paper can be summarized as
follows:

1) In this paper we provide a basic untimed supervisory
control framework where besides the traditional en-
abling/disabling of events generated by the plant also
event forcing is considered.

2) We formulate a notion of forcible controllability that
captures the interplay between controllability of a su-
pervisor w.r.t. the uncontrollable events provided by a
plant in the setting where forcing of events may be used
to preempt such uncontrollable events.

3) We provide the basic properties of forcible-
controllability and show that a maximally permissive
forcibly-controllable supervisor exists.

4) We provide a synthesis algorithm that computes such a
supervisor for a given plant automaton.

Structure of the paper: In Section II some preliminar-
ies about supervisory control theory are introduced that are
related to the subject material of this paper, and the forcing
supervisory control problem is formulated. Then, in Section
III, the notion of forcible-controllability is introduced that is
crucial in capturing the interplay between plant and (forcing)
supervisor. Properties of this notion are discussed in detail,
and it is proved that this notion is necessary and sufficient for
the solvability of the formulated forcing supervisory control
problem. In Section IV it is shown that the supremal forcibly-
controllable sublanguage of a given language exists, which
provides a maximally permissive solution to the forcing super-
visory control problem. Section V presents an algorithm for
computing the maximally permissive supervisor and states its
properties such as termination and correctness. Sections VI and
VII illustrate the outcome of the algorithm and showcase the
benefit of introducing event forcing. The paper is concluded
in Section VIII.

II. FORCIBLE EVENTS AND FORCING SUPERVISORY
CONTROL

Consider that a plant to be controlled is modeled by a finite
automaton P = (Q,Σ, δ, q0, Qm) where Q is a finite set of
states, Σ is a finite set of events partitioned into controllable
events Σc and uncontrollable events Σu, δ : Q × Σ → Q is
a partial transition function, q0 ∈ Q is the initial state, and
Qm ⊆ Q is the set of marker states. A controllable event
c ∈ Σc can be disabled by an external agent (supervisor),
whereas an uncontrollable event u ∈ Σu cannot be disabled.

Plant P generates a closed language L(P ) and a marked
language Lm(P ), as defined in the usual way [1].

Definition 1 (Nonblocking). A finite automaton P =
(Q,Σ, δ, q0, Qm) is called nonblocking if L(P ) = Lm(P ).

For a string s ∈ L(P ), let EP (s) := {σ ∈ Σ | sσ ∈ L(P )}
be the subset of eligible events that can occur after s in P .

Definition 2 (Controllable sublanguage). Given a (nonblock-
ing) plant P , a sublanguage F ⊆ Lm(P ) is controllable w.r.t.
P if

(∀s ∈ F , ∀u ∈ Σu) [u ∈ EP (s) =⇒ su ∈ F ].

Controllable sublanguages are closed under union (see e.g.,
[1]). Thus given an arbitrary language F ⊆ Lm(P ), there
exists the supremal controllable sublanguage of F .

Now bring in a subset of forcible events Σf ⊆ Σ. A
forcible event f ∈ Σf can be forced by an external agent
in order to preempt other event occurrences. Thus forcible
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Fig. 1. Control mechanisms for supervisory control.

events provide a new mechanism for control, which is distinct
from controllable events (that can be disabled themselves but
cannot preempt other events).

A forcible event f ∈ Σf can be either controllable or
uncontrollable. If f ∈ Σf ∩ Σc, then f can either be forced
or be disabled. For example, ‘cross street’ can be an event
that a pedestrian can force (by accelerating upon a slowly
approaching car) or disabled (i.e. giving up crossing upon a
fast approaching car). On the other hand, if f ∈ Σf ∩Σu, then
f can be forced but cannot be disabled. An example of such
an uncontrollable forcible event is ‘land plane’, which may be
forced (say within 15 minutes) but cannot be prevented (plane
has to land eventually) [1].

With this added forcing mechanism, we define the corre-
sponding supervisory control for plant P which is any function
V : L(P ) → Pwr(Σ) (here Pwr(·) denotes powerset). Let
us analyze the characteristics of this supervisory control V .
Consider a strings s ∈ L(P ), and let c, fc, u, fu respectively
be a nonforcible controllable, forcible controllable, nonforcible
uncontrollable, forcible uncontrollable event. As displayed in
Fig. 1, we discuss two cases.

Case 1: EP (s) ∩ Σf = ∅, i.e. no forcible event is eligible
after s. In this case, only controllable events may be disabled
(e.g. c in Fig. 1, Case 1).

Case 2: EP (s) ∩ Σf ̸= ∅, i.e., there exists at least one
forcible event eligible after s. In this case, the eligible forcible
event(s) may be either forced or not forced. When all the
eligible forcible events are not forced (see Fig. 1(i), Case 2),
again only controllable events may be disabled (e.g., c, fc in
Fig. 1(i)). On the other hand, if an eligible forcible event is
forced (see Fig. 1(ii), Case 2), then all the other eligible events
after s are preempted. Since in general there are multiple
forcible events that may be forced after s (e.g., fc, fu in
Fig. 1(ii)), we will define the supervisory control function
to include all such forcible events for the sake of maximal
freedom of choice. In implementation, one of these forcible
events will be chosen (say by an external forcing agent) such
that other events are preempted; our model will leave such
a choice nondeterministic (much like the nondeterministic

occurrence of one event among multiple enabled events, e.g.,
u, fu in Fig. 1(i)). It is also noted that disabling a forcible
controllable event is also possible (e.g., fc in Fig. 1(ii)), and
such disabled forcible events cannot be forced. On the other
hand, a forcible uncontrollable event cannot be disabled (e.g.,
fu in Fig. 1(ii)), and such forcible events may be either forced
or not forced.

With the above discussion on possible scenarios of disabling
and forcing control mechanisms, we define the supervisory
control V : L(P )→ Pwr(Σ) such that

V (s) =

{
Σu ∪ Σ′

c if EP (s) ∩ Σf = ∅,

either Σu ∪ Σ′
c or Σ′

f if EP (s) ∩ Σf ̸= ∅.

(1)

Here Σ′
c ⊆ Σc, Σ′

f ⊆ Σf . The first line corresponds to Case 1
above, whereas the second line to Case 2. In the second line,
‘either Σu∪Σ′

c’ is when none of the eligible forcible events are
forced (Fig. 1(i)), while ‘or Σ′

f ’ is when at least one eligible
forcible event is forced (Fig. 1(ii)).

Write V/P for the closed-loop system where the plant P
is under the supervisory control of V . The closed language
generated by V/P is defined as follows:

(i) ϵ ∈ L(V/P );
(ii) s ∈ L(V/P ), σ ∈ V (s), sσ ∈ L(P )⇒ sσ ∈ L(V/P );

(iii) no other strings belong to L(V/P ).
Let F ⊆ Lm(P ). The marked language of V/P w.r.t. F is

Lm(V/P ) := L(V/P ) ∩ F.

We say that V/P is nonblocking if

L(V/P ) = Lm(V/P ).

Now we are ready to formulate the forcing supervisory
control problem.

Problem 1 (Forcing supervisory control problem). Given a
plant P and a specification ∅ ̸= F ⊆ Lm(P ), design a
supervisory control V : L(P )→ Pwr(Σ) such that

(i) V/G is nonblocking;
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(ii) Lm(V/G) = F .

In words, Problem 1 is after a supervisory control that
not only renders the closed-loop system nonblocking but also
synthesizes the imposed specification.

III. FORCIBLY-CONTROLLABLE SUBLANGUAGES

s
To solve Problem 1, the following new language property

is key.

Definition 3 (Forcibly-controllable sublanguage). Given a
(nonblocking) plant P , a sublanguage F ⊆ Lm(P ) is forcibly-
controllable w.r.t. P if

(∀s ∈ F )

(∀u ∈ Σu) [u ∈ EP (s) =⇒ su ∈ F ]
∨
(∃f ∈ Σf ) [sf ∈ F ] ∧ (∀σ ∈ Σ \ Σf ) [sσ ̸∈ F ]

 .

In words, a sublanguage F is forcibly-controllable if either
F is controllable or there exists a forcible event that keeps F
invariant by preempting all non-forcible events.

Thus by definition, if a sublanguage F is controllable, F
is also forcibly-controllable. The difference between these
two properties is illustrated in Fig. 2(ii) and (iv). While
controllability does not allow uncontrollable event u to take
string s out of F (Fig. 2(ii)), forcible-controllability allows
so if there exists a forcible event f after s to keep sf inside
F by preempting u (Fig. 2(iv)). Based on Fig. 2(iv), it is
readily seen that a forcibly-controllable sublanguage need not
be controllable.

Now that we have seen that controllability involves pure
disabling, forcible-controllability invovles both disabling and
forcing, it is natural to define another language property which
involves pure forcing. In the following, we define this language
property – forcible sublanguages – which is not needed in our
main development but interesting in itself as compared to the
other language properties.

Definition 4 (Forcible sublanguage). Given a (nonblocking)
plant P , a sublanguage F ⊆ Lm(P ) is forcible w.r.t. P if

(∀s ∈ F )

(∀σ ∈ Σ) [σ ∈ EP (s) =⇒ sσ ∈ F ]
∨
(∃f ∈ Σf ) [sf ∈ F ] ∧ (∀σ ∈ Σ \ Σf ) [sσ ̸∈ F ]

 .

Compared to Definition 3, forcible sublanguage is defined
by only replacing the universal quantification on the first line
with u ∈ Σu by σ ∈ Σ. This change means that whenever
a string s is taken out of F by any event σ, controllable or
uncontrollable, there must exist at least one forcible event f
after s to keep sf inside F by preempting σ. This is illustrated
in Fig. 2(v) and (vi).

Thus by definition, if a sublanguage F is forcible, F is
also forcibly-controllable. But the reverse need not be true:
a forcibly-controllable sublanguage allows s to exit F by a
controllable event without the presence of a forcible event
(Fig. 2(iii)), which is not allowed by a forcible sublanguage.

In addition, it is not difficult to see that forcible sublan-
guages and controllable sublanguagess generally are not re-
lated. A forcible sublanguage need not be controllable, because

the scenario in Fig. 2(vi) is allowed by a forcible sublanguage
but not by a controllable sublanguage. Conversely, since the
scenario in Fig. 2(i) is allowed by controllable sublanguage
but not by forcible sublanguage, a controllable sublanguage
need not be forcible.

We summarize the above relationships among the three
language properties.

Fact 1. Let plant P be a finite automaton over Σ = Σc ∪Σu

and a forcible event set Σf ⊆ Σ. Also let F ⊆ Lm(P ).

1) If F is controllable, it is also forcibly-controllable.
2) If F is forcible, it is also forcibly-controllable.
3) There are focibly-controllable sublanguages that are not

controllable.
4) There are forcibly-controllable sublanguages that are not

forcible.
5) There are controllable sublanguages that are not forcible.
6) There are forcible sublanguages that are not controllable.

At this point, it is also convenient to state the following
facts about the three language properties.

Fact 2. Let plant P be a finite automaton over Σ = Σc ∪Σu

and a forcible event set Σf ⊆ Σ.

1) The empty language ∅ is controllable, forcibly-
controllable, and forcible.

2) The closed language L(P ) is controllable, forcibly-
controllable, and forcible.

3) Let Σf = ∅. Then F is forcibly-controllable iff F is
controllable.

4) Let Σc = ∅. Then F is controllable iff F is forcible iff
F is forcibly-controllable.

5) Let Σu = ∅. Any sublanguage F ⊆ Lm(P ) is
controllable and forcibly-controllable.

Proof.

1) Since ∅ = ∅, by Definitions 2, 3, and 4, the empty lan-
guage is vacuously controllable, forcibly-controllable,
and forcible.

2) Since L(P ) = L(P ), we have both L(P ) ⊆ L(P ) and
sσ ∈ L(P ) =⇒ sσ ∈ L(P ) for any s and σ. Therefor
by definition L(P ) is controllable, forcibly-controllable,
and forcible.

3) For Σf = ∅, the second line of logic formula in Defi-
nition 3 is always false. Thus the definition of forcible-
controllability reduces to the definition of controllability,
and the conclusion holds.

4) For Σc = ∅ we have Σ = Σu. In this case the definitions
of forcible-controllability and forcibility are identical,
and hence the conclusion holds.

5) Let Σu = ∅ and F ⊆ Lm(P ). According to the logic
formulas in the definitions of controllable and forcibly-
controllable sublanguages, F is vacuously controllable
and forcibly-controllable.

Now we state the main result of this section, which charac-
terizes solvability of Problem 1 by forcible-controllability.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023 5

controllable

c

s

(red arrow) controllable events that can be disabled

(dotted arrow) events that are preempted by forcible events

(i)

F

L(P )

u

s

F

L(P )

sublanguage

c

s

F

L(P )

f

s

F

L(P )

forcibly controllable
sublanguage

u

sublanguage

c

s

F

L(P )

f

s

F

L(P )

forcible

u

f

(ii)

(iii)

(iv)

(v)

(vi)

c ∈ Σc, u ∈ Σu, f ∈ Σf

Fig. 2. Comparisons among controllable, forcibly-controllable, and forcible sublanguages.

Theorem 1. Consider a plant P and a specification ∅ ̸=
F ⊆ Lm(P ). There exists a supervisory control V : L(P )→
Pwr(Σ) such that V/P is nonblocking and Lm(V/P ) = F
iff F is forcibly-controllable.

The result of Theorem 1, as well as its proof below, is a
direct generalization of the fundamental result of supervisory
control theory [16] by adding the new control mechanism of
forcible events. In the proof, for convenience we introduce
the notation EF (s) = {σ ∈ Σ | sσ ∈ F}, which collects the
events that can continue after a string s in F . If F ⊆ Lm(P ),
then EF (s) ⊆ EP (s).

Proof. Define a supervisory control V : L(P ) → Pwr(Σ)
according to

V (s) =


Σu ∪ {σ ∈ Σc | sσ ∈ F} if

[
EF (s) ∩ Σf = ∅

∨ (∀σ ∈ Σu) [σ ∈ EP (s)⇒ sσ ∈ F ]
]

{σ ∈ Σf | sσ ∈ F} if
[
EF (s) ∩ Σf ̸= ∅

∧ (∃σ ∈ Σu) [σ ∈ EP (s) ∧ sσ /∈ F ]
]
.

(2)

Since EF (s) ∩ Σf ̸= ∅ implies EP (s) ∩ Σf ̸= ∅, this V is
indeed a supervisory control as defined in Equation (1). This
supervisory control V will force a forcible event f after string
s only when f ∈ EF (s) and there is an uncontrollable event
u s.t. su ∈ L(P ) \ F (i.e. controllability fails).

(Sufficiency) We claim that with the above V in (2),

L(V/P ) = F .

Before proving this claim, we point out that once this claim
is established, the desired conclusion follows immediately:

Lm(V/P ) = F = L(V/P ) (V/P is nonblocking)

Lm(V/P ) = L(V/P ) ∩ F = F ∩ F = F.

Now we prove the claim, by induction on the length of strings.
For the base case, since the empty string ϵ belongs to both

L(V/P ) (by definition) and F (since F ̸= ∅), the conclusion
holds. Now let s ∈ Σ∗ and suppose that

s ∈ L(V/P )⇔ s ∈ F .

Let σ ∈ Σ. First suppose sσ ∈ L(V/P ); it will be shown
sσ ∈ F . By the definition of L(V/P ), we have

s ∈ L(V/P ), σ ∈ V (s), σ ∈ EP (s).

We also have by hypothesis that s ∈ F . Now we consider two
cases, according to the supervisory control V in Equation (2).
Case 1: EF (s)∩Σf = ∅∨(∀σ ∈ Σu) [σ ∈ EP (s)⇒ sσ ∈ F ].

In this case, if σ ∈ Σu and EF (s) ∩ Σf = ∅, since F is
forcibly controllable and σ ∈ EP (s), we have sσ ∈ F (first
logic formula in Definition 3). If σ ∈ Σu and (∀σ ∈ Σu) [σ ∈
EP (s)⇒ sσ ∈ F ], since σ ∈ EP (s), we again have sσ ∈ F .
Finally if σ ∈ Σc, since σ ∈ V (s), we have sσ ∈ F (by V (s)
in Equation (2)).
Case 2: EF (s)∩Σf ̸= ∅∧ (∃σ ∈ Σu) [σ ∈ EP (s)∧sσ /∈ F ].

In this case, since σ ∈ V (s), we have σ ∈ Σf and sσ ∈ F .
Therefore in both cases above, we have established sσ ∈ F .

Conversely suppose sσ ∈ F ; we show sσ ∈ L(V/P ). It
follows from sσ ∈ F that

sσ ∈ L(P ) (F ⊆ L(P ))

s ∈ F (F is closed)
s ∈ L(V/P ) (hypothesis).

Hence to show sσ ∈ L(V/P ), all we need to show is σ ∈
V (s). Again we consider two cases like above.
Case 1: EF (s)∩Σf = ∅∨(∀σ ∈ Σu) [σ ∈ EP (s)⇒ sσ ∈ F ].

In this case, if σ ∈ Σu, then σ ∈ V (s) (by V (s) in Equation
(2)). If σ ∈ Σc, since sσ ∈ F , it again follows from V (s) in
Equation (2) that σ ∈ V (s).
Case 2: EF (s)∩Σf ̸= ∅∧ (∃σ ∈ Σu) [σ ∈ EP (s)∧sσ /∈ F ].

In this case, since sσ ∈ F and F is forcibly-controllable (in
particular the second logic formula in Definition 3), we have
σ ∈ Σf . Hence σ ∈ V (s).
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Therefore in both cases above, we have established sσ ∈ V (s),
and thereby sσ ∈ L(V/P ) is proved. This finishes the
induction step, and the proof of sufficiency is now complete.

(Necessity) Suppose that Lm(V/P ) = L(V/P ) and
Lm(V/P ) = F . It will be shown that F is forcibly-
controllable. By the above assumption, we have L(V/P ) =
Lm(V/P ) = F . Let s ∈ F . Then s ∈ L(V/P ). Below we
consider two cases (as done in the sufficiency proof).
Case 1: EF (s)∩Σf = ∅∨(∀σ ∈ Σu) [σ ∈ EP (s)⇒ sσ ∈ F ].

If EP (s) ∩ Σf = ∅, let σ ∈ Σu and σ ∈ EP (s). Then
σ ∈ V (s) and sσ ∈ L(P ). It follows from the definition of
L(V/P ) that sσ ∈ L(V/P ). Hence sσ ∈ F . This shows that
F is controllable, and therefore is forcibly-controllable. On
the other hand, if (∀σ ∈ Σu) [σ ∈ EP (s) ⇒ sσ ∈ F ], by
definition F is forcibly-controllable.
Case 2: EF (s)∩Σf ̸= ∅∧ (∃σ ∈ Σu) [σ ∈ EP (s)∧sσ /∈ F ].

In this case, since EF (s) ∩ Σf ̸= ∅, there exists f ∈
EP (s) ∩ Σf . This means that (∃f ∈ Σf )sf ∈ F . Moreover,
let σ ∈ Σ \ Σf . Then by definition of V (s) in (2), we
have σ /∈ V (s). So sσ /∈ L(V/P ) = F . This proves
(∀σ ∈ Σ \ Σf )sσ /∈ F . Therefore by Definition 3, F is
forcibly-controllable.

Theorem 1 provides a necessary and sufficient condition
for the existence of a nonblocking supervisory control V that
realizes an imposed specification F , as required in Problem 1.
This supervisory control V may be implemented by a finite
automaton S in the same way as [1, section 3.6], such that
the synchronous product of plant P and S is nonblocking and
represents the specification F . This automaton S is called a
supervisor.

IV. SUPREMAL FORCIBLY-CONTROLLABLE
SUBLANGUAGES

In the preceding section, we know from Theorem 1 that
Problem 1 is solvable whenever the specification F ⊆ Lm(P )
is forcibly-controllable. In this section, we inquire: what if F
is not forcibly-controllable? In this case, does there exist an
‘optimal’ supervisor in a sense of maximal permissiveness?

Let F ⊆ Lm(P ). Whether or not F is forcibly controllable,
write the family

F(F ) := {K ⊆ F | K is forcibly-controllable w.r.t. P}.
(3)

In words, F(F ) is the collection of all subsets of F that are
forcibly-controllable. Note that F(F ) is nonempty because the
empty language ∅ belongs to it (see Fact 2 above). Moreover,
the next result asserts that F(F ) is closed under set unions.

Proposition 1. Consider F(F ) in (3). If K1,K2 ∈ F(F ),
then K1 ∪K2 ∈ F(F ).

Proof. Let K1 and K2 be forcibly-controllable sublanguages
of F w.r.t. P . First K1 ∪K2 is evidently a sublanguage of F .
Now let s ∈ K1 ∪K2. We need to show that (∀σ ∈ Σu) [sσ ∈
L(P ) =⇒ sσ ∈ K1 ∪K2] ∨ ((∃f ∈ Σf ) [sf ∈ K1 ∪K2] ∧
(∀σ ∈ Σ \ Σf ) [sσ ̸∈ K1 ∪K2]). This is equivalent to show
that if

¬(∀σ ∈ Σu) [sσ ∈ L(P ) =⇒ sσ ∈ K1 ∪K2] (4)

then (∃f ∈ Σf ) [sf ∈ K1 ∪K2] ∧ (∀σ ∈ Σ \ Σf ) [sσ ̸∈
K1 ∪K2].

Suppose that (4) holds. Since s ∈ K1 ∪K2, we have s ∈ K1

or s ∈ K2. In the following we consider the case s ∈ K1; the
other case s ∈ K2 is analogous. Since s ∈ K1 and K1 is
forcibly-controllable, we have

• (∀σ ∈ Σu) [sσ ∈ L(P ) =⇒ sσ ∈ K1], or
• (∃f ∈ Σf ) [sf ∈ K1] ∧ (∀σ ∈ Σ \ Σf ) [sσ ̸∈ K1].

The first case is impossible due to (4). Thus we only need to
consider the second case. It follows from (∃f ∈ Σf ) [sf ∈
K1] that (∃f ∈ Σf ) [sf ∈ K1 ∪K2]. Now let σ ∈ Σ \ Σf .
Thus sσ /∈ K1. To show that sσ /∈ K1 ∪K2, we must prove
sσ /∈ K2. Suppose on the contrary that sσ ∈ K2; then s ∈ K2.
Since K2 is also forcibly-controllable, we have

• (∀σ ∈ Σu) [sσ ∈ L(P ) =⇒ sσ ∈ K2], or
• (∃f ∈ Σf ) [sf ∈ K2] ∧ (∀σ ∈ Σ \ Σf ) [sσ ̸∈ K2].

The first case is again impossible due to (4). From the second
case, we derive sσ /∈ K2, which directly contradicts the
assumption that sσ ∈ K2. Therefore sσ /∈ K2 after all, and
consequently sσ /∈ K1 ∪K2. This establishes that K1∪K2 is
forcibly-controllable.

Based on Proposition 1, F(F ) in (3) is closed under set
unions, and therefore contains a unique supremal element
which is the union of all members in F(F ):

supF(F ) :=
⋃
{K | K ∈ F(F )}. (5)

This supF(F ) is the largest forcibly-controllable sublanguage
of F ⊆ Lm(P ). If F was already forcibly-controllable, then
supF(F ) = F .

Theorem 2. Consider a plant P and a specification ∅ ̸=
F ⊆ Lm(P ). Let Fsup := supF(F ). If Fsup ̸= ∅, then there
exists a supervisory control Vsup : L(P )→ Pwr(Σ) such that
Vsup/P is nonblocking and Lm(Vsup/P ) = F .

Proof. Since Fsup is forcibly-controllable and nonempty, the
conclusion follows from Theorem 1.

Theorem 2 generalizes the classical result in [17] with the
forcing mechanism incorporated. The supervisory control Vsup

in Theorem 2 realizing the supremal forcibly-controllable sub-
language of F may also be implemented by a finite automaton,
or a supervisor (cf. discussion at the end of Section III). Owing
to ‘supremum’ of the realized language Fsup, we call this
supervisor the maximally permissive supervisor. In the next
section, we present an algorithm to synthesize such maximally
permissive supervisors.

Remark 1. We underline an important point about ‘maximal
permissiveness’. The ‘maximally permissive supervisor’ we
just mentioned has maximal permissiveness in two meanings.
For the first (obvious) one, the language realized by this
supervisor is the supremal forcibly-controllable sublanguage
Fsup. The second meaning of maximal permissiveness is
that this supervisor permits ‘maximal freedom’ of choosing
forcible events for preempting. Indeed, whenever preempting
is needed, all forcible events that can keep the supremal Fsup

invariant are available in this suprevisor to be chosen. Having
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said the above, we point out that in implementation of forcing
control, eventually only one forcible event (possibly among
multiple valid choices) is chosen. In other words, one can only
force one forcible event at a time, and in this sense ‘maximal
permissiveness’ is not possessed by our supervisor. In fact in
this case, a maximally permissive supervisor generally does
not exist. For theoretic soundness and correspondence with
the conventional supervisory control, we adopt the term ‘max-
imally permissive supervisor’ as that realizes the supremal
forcibly-controllable sublanguage Fsup.

Before ending this section, we collect several facts on
forcibly-controllable and forcible sublanguages. Not all of
them are needed in the sequel, but they are interesting in their
own right.

Fact 3. Let plant P be a finite automaton over Σ = Σc ∪Σu

and a forcible event set Σf ⊆ Σ. Also let F ⊆ Lm(P ).
1) The union of forcibly-controllable sublanguages of F is

also a forcibly-controllable sublanguage of F .
2) The union of forcible sublanguages of F is also a

forcible sublanguage of F .
3) The intersection of forcibly-controllable sublanguages of

F is not necessarily a forcibly-controllable sublanguage
of F .

4) The intersection of forcible sublanguages of F is not
necessarily a forcible sublanguage of F .

The first fact above is Proposition 1, while the second
about forcible sublanguages is a straightforward corollary of
Proposition 1. The third and fourth facts are illustrated by
Example 1 below. These facts together indicate (in terms of
algebraic structures) that the set of all forcibly-controllable (or
forcible) sublanguages of a given language F is a complete
upper semilattice with the set union operation of the complete
lattice of all sublanguages of F .

Example 1. Consider plant P with L(P ) = Lm(P ) =
{ε, f1, f2, u} and F = {ε, f1, f2}; here f1, f2 are forcible
and u is uncontrollable. Also consider two sublanguages
K1 = {ε, f1} and K2 = {ε, f2} of F . Now, it can be
verified that both K1 and K2 are forcibly-controllable and
forcible (without controllable events, forcible-controllability
and forcibility are equivalent: Fact 2). However, K1 ∩K2 =
{ε} is neither forcibly-controllable nor forcible (due to the ab-
sence of forcible events and the presence of the uncontrollable
event u enabled after ε in the plant).

V. SYNTHESIZING THE MAXIMALLY PERMISSIVE
FORCIBLY-CONTROLLABLE NONBLOCKING SUPERVISOR

In this section we present an algorithm to compute maxi-
mally permissive supervisors introduced in the preceding sec-
tion (see in particular Theorem 2 and the paragraph following
Theorem 2).

So far we have considered the setting where a plant automa-
ton P and a specification language F ⊆ Lm(P ) are given.
Now assume that F is a regular sublanguage, so F can be
represented by a finite automaton. It is well-known that the
conventional synthesis problem with a regular specification

language is easily transformed into a synthesis problem where
only a plant automaton is considered by applying a so-called
plantification transformation on the finite automaton repre-
senting the specification [18]. This leads to the simplified (but
equivalent) problem of supervisory control synthesis below.

Problem 2 (Synthesis of maximally permissive forcibly-con-
trollable nonblocking supervisor). Given a plant automaton
P = (Q,Σ, δ, q0, Qm) with sets Σu ⊆ Σ of uncontrollable
events and Σf ⊆ Σ of forcible events, synthesize a maximally
permissive, forcibly-controllable, nonblocking supervisor S for
P .

In Algorithm 1 below, a maximally permissive, forcibly-
controllabe, nonblocking supervisor is computed starting from
the plant automaton (as is common in SCT). Its structure is
based on the well-known algorithm for synthesis of maxi-
mally permissive supervisors for EFA (without using variables
though) [19]. Besides sets of nonblocking and bad states, in
this case also sets of states Fk and F j

k where forcing is applied
are maintained.

Controllable sublanguages have the transitivity property,
i.e., whenever F1 is a controllable sublanguage of F2 and
F2 is a controllable sublanguage of F3, then also F1 is a
controllable sublanguage of F3. A similar useful property does
not hold for forcibly-controllable sublanguages. Consider the
languages F1 = {ε}, F2 = {f}, and F3 = {f, u} where
f ∈ Σf and u ∈ Σu. It is easily verified that F1 is a
forcibly-controllable sublanguage of F2 and F2 is a forcibly-
controllable sublanguage of F3. However F1 is not a forcibly-
controllable sublanguage of F3.

The reason for the absence of this property is the situation
that a forcible event (f ) that has been used to preempt an
uncontrollable event (u) is later disabled (which means that
the uncontrollable event in hindsight cannot be preempted and
thus has to be maintained.

This difference between traditional SCT and SCT with
forcible events results in the need to maintain a set of states
from which forcing (by a forcible event) has been used to
preempt an uncontrollable transition to a bad state. As soon
as all forcible events from such a forcing state need to be
disabled (because they all lead to a bad state) the forcing state
itself becomes bad (Line 17).

Theorem 3 (Termination). Algorithm 1 terminates.

Proof. First, consider the iteration represented by the repeat-
until in Lines 8 - 11. In each execution of the body of this
repeat-until either a state is added to a set NB l+1

k+1 (compared
to the set of nonblocking states computed in the previous exe-
cution of that body NB l

k+1), or the set NB l+1
k+1 is the same as

the set NB l
k+1. The latter leads to termination, and the former

can only take place finitely often since NB l
k+1 ⊆ Qk ⊆ Q for

all k and l and the set of states Q is finite.
Second, consider the iteration represented by the repeat-

until in Lines 16 - 20. Again, as in the previous case, each
execution of the body of the repeat-until results in adding at
least one state to the set Bj+1

k+1 (compared to the ‘previous’
set Bj

k+1) or results in the same set of bad states. The former
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Algorithm 1 Supervisory controller synthesis for maximally permissive, forcibly-controllable, nonblocking supervisor
Input: plant P = (Q,Σ, δ, q0, Qm), uncontrollable events Σu, forcible events Σf

Output: S is maximally permissive, forcibly-controllable, nonblocking supervisor for P if it exists, and empty supervisor
otherwise

1: Q0 ← Q
2: F0 ← ∅
3: δ0 ← δ S0 ← (Q0,Σ, δ0, q0, Q0 ∩Qm)
4: k ← 0
5: repeat
6: NB0

k+1 ← Qm ∩Qk

7: l← 0
8: repeat
9: NBl+1

k+1 ← NBl
k+1

∪ {q ∈ Qk | (∃σ ∈ Σ) [δk(q, σ) ∈ NBl
k+1]}

10: l← l + 1
11: until NBl

k+1 = NBl−1
k+1

12: NBk+1 ← NBl
k+1

13: B0
k+1 ← Qk \NBk+1

14: F 0
k+1 ← Fk ∩Qk

15: j ← 0
16: repeat

17: Bj+1
k+1 ← Bj

k+1 ∪
{
q ∈ Qk

∣∣∣∣(∃u ∈ Σu) [δk(q, u) ∈ Bj
k+1]

∧(∀f ∈ Σf ) [δk(q, f) ∈ Bj
k+1]

}
18: F j+1

k+1 ← F j
k+1 ∪

{
q ∈ Qk

∣∣∣∣(∃u ∈ Σu) [δk(q, u) ∈ Bj
k+1] ∧

(∃f ∈ Σf ) [δk(q, f) ̸∈ Bj
k+1]

}
19: j ← j + 1
20: until Bj

k+1 = Bj−1
k+1 ∧ (∀q ∈ F j

k+1 \B
j
k+1) [(∃f ∈ Σf ) [δk(q, f) ̸∈ Bj

k+1]]

21: Bk+1 ← Bj
k+1

22: Fk+1 ← F j
k+1

23: Qk+1 ← Qk \Bk+1

24: δk+1 ← (δk ∩ (Qk+1 × Σ×Qk+1)) \ (Fk+1 × Σ \ Σf ×Qk+1) Sk+1 ← (Qk+1,Σ, δk+1, q0, Qm ∩Qk+1)
25: k ← k + 1
26: until Qk = Qk−1 ∧ δk = δk−1

situation can only take place finitely often as Bj
k+1 ⊆ Qk ⊆ Q

for all k and j. The latter situation leads to termination in case
the other condition of the guard in Line 20 is satisfied. If that
condition is not satisfied, then (∃q ∈ F j

k+1 \B
j
k+1) [(∀f ∈

Σf ) [δk(q, f) ∈ Bj
k+1]]. But then, in the next execution of the

body of the repeat-until, at least one state is added to the set
of bad states of that iteration.

Finally, consider the outermost repeat-until construction
(Lines 5 - 26). Invariantly it is the case that Qk+1 ⊆ Qk and
δk+1 ⊆ δk for all k. Now, given the computations of Qk+1 in
Line 23 and δk+1 in Line 24, there are three cases:

• Qk+1 ⊂ Qk

• δk+1 ⊂ δk
• Qk+1 = Qk and δk+1 = δk.

Therefore, either the repeat-until terminates because the first
two cases can only be repeated finitely often (there is only
a finite number of states and a finite number of transitions in
the input plant), or the termination condition of the repeat-until
becomes true and the repeat-until terminates.

Theorem 4 (Correctness). Algorithm 1 computes a maximally
permissive, forcibly-controllable, nonblocking supervisor.

Proof. For presenting the proof (of forcible-controllability) we
introduce thought variables Sk = (Qk,Σ, δk, q0, Qk ∩ Qm)
which represent the subautomata of P derived after iteration k
of the outer iteration. See the green lines of code and note that
the variables Sk are never used to update any other variable,
nor to evaluate a condition in the control flow of the pseudo
code. Consequently, these lines have no impact on the outcome
of the algorithm and are only used for facilitating the proof.

Nonblocking: Upon termination of Algorithm 1, say after
K iterations, we have QK = QK−1 and δK = δK−1. This
can only be the case if BK = ∅ and therefore only if
NBK = QK . So, if we prove that NBK = {q ∈ QK−1 |
q is nonblocking } then we are done, since QK−1 = QK .
The pseudo code computing the sets of nonblocking states is
fairly standard and it has been shown before that indeed the
set of nonblocking states is computed. See for example [19]
or [20] for a statement to this effect.

Forcible-controllability: We will prove that the output of
the algorithm is forcibly-controllable w.r.t. the input plant P .
First, we prove the properties presented in Equations 6 and 7
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below.
(∀0 ≤ k ≤ K, ∀q ∈ Fk \Bk)

[(∃f ∈ Σf ) [δk(q, f) ∈ Qk]
∧
(∀n ∈ Σ \ Σf ) [¬δk(q, n)!]].

(6)

The proof of the property in Equation 6 is by induction
on k. For the base case k = 0 this follows immediately
from the fact that F0 = ∅ (Line 2). For the induction
case, assume that (∀q ∈ Fk \ Bk) [(∃f ∈ Σf ) [δk(q, f) ∈
Qk] ∧ (∀n ∈ Σ \ Σf ) [¬δk(q, n)!]]. Let q ∈ Fk+1 \ Bk+1.
Then, q ∈ F J

k+1 and q ̸∈ BJ
k+1 for the J that corre-

sponds with the value of j upon termination of this iteration
of the repeat-until statement in Lines 16 - 20. Then, also
(∀q ∈ F J

k+1 \ BJ
k+1) [(∃f ∈ Σf ) [δk(q, f) ̸∈ BJ

k+1]] as this
is part of the termination condition of the repeat-until. Then,
as q ∈ F J

k+1 \ BJ
k+1, we have (∃f ∈ Σf ) [δk(q, f) ̸∈ BJ

k+1].
Then also, following Line 23, (∃f ∈ Σf ) [δk(q, f) ∈ Qk+1].
Let n ∈ Σ \ Σf . As q ∈ Fk+1, from Line 24, it follows that
¬δk+1(q, n)!. Consequently, Equation 6 holds.

(∀0 ≤ k ≤ K, ∀q ∈ Qk \ Fk, ∀u ∈ Σu)
[δ0(q, u) ∈ Q0 =⇒ δk(q, u) ∈ Qk]

(7)

The proof of this property is by induction on k. The base
case k = 0 follows trivially. For the induction step, assume
that (∀q ∈ Qk\Fk, ∀u ∈ Σu) [δ0(q, u) ∈ Q0 =⇒ δk(q, u) ∈
Qk]. Let q ∈ Qk+1\Fk+1 and u ∈ Σu. Assume that δ0(q, u) ∈
Q0. As q ̸∈ Fk+1, it follows that δk+1(q, u) = δk(q, u) pro-
vided that δk+1(q, u) ∈ Qk+1. Towards a contradiction assume
that δk(q, u) ∈ Qk \ Qk+1. Then δk(q, u) ∈ Bk+1. Then
δk(q, u) ∈ BJ

k+1 and because of the termination condition
of the repeat-until, also δk(q, u) ∈ BJ−1

k+1 . But then, either
q ∈ BJ

k+1 or q ∈ F J
k+1. This contradicts the assumption that

q ∈ Qk+1 \ Fk+1.
Together the properties in Equation 6 and Equation 7, show

that each Sk as produced during the execution of the algorithm
is forcibly-controllable w.r.t. P . Each of the states of Sk, i.e.,
the set Qk, either respects controllability (Equation 7 holds for
the states from Qk \ Fk) or is forcing and respects Equation
6 (for states from Fk that are in Qk).

Maximally permissive: Suppose there is a larger non-
blocking, forcibly-controllable subautomaton S′ for P . Then,
it contains a state that S does not, or, if the former does not
hold (and both S′ and S have the same set of states), it contains
a transition between states they both have that S does not
have. Maximal permissiveness is achieved by construction. In
the algorithm, states or transitions are only removed if there
is necessity for that.

Let us consider the former case. S′ contains a state that is
not present in S. Then this state is removed (in the computation
of S) in some invocation of Line 23. Thus this state is in Bk+1,
i.e., a bad state. We need to show that any addition of a state
to the set of bad states cannot be avoided since otherwise
the resulting supervisor violates nonblockingness or forcible-
controllability. Proof of this follows the same reasoning as in
the underlying algorithm used for synthesis of EFA [19].

Now, let us consider the latter case. A transition is present
in S′ but not in S. This has to be due to Line 24. Therefor

this concerns a transition from a forcing state labelled by an
nonforcible event. Since the source state is forcing (i.e. if it
does not exercise its forcing action it is deemed to be bad) we
know that this transition would violate forcible-controllability.

Theorem 5 (Complexity). Algorithm 1 has worst-case time
complexity O(|Q|2 |Σ|).

Proof. The black part of the algorithm is basically the standard
algorithm for supervisory control synthesis without event
forcing and it has been established to have a worst-case
time complexity of O(|Q|2 |Σ|) in [21]. Obviously, the red
additions (for the purpose of forcing supervisory control)
do not negatively, nor positively, affect this worst-case time
complexity.

Remark 2. When Algorithm 1 is applied with Σf = ∅,
it in fact computes the maximally permissive, controllable,
nonblocking supervisor. All sets of states where forcing is
applied are empty and hence the red additions to the bad
state computation do not add anything. Moreover, there is no
need to change the transition relation (and the subscript can
be removed).

Remark 3. Replacing all occurrences of the set Σu in Algo-
rithm 1 (in Lines 17 and 18) by Σ results in an algorithm for
the maximally permissive, forcible, nonblocking supervisor.

VI. CASE STUDY - SMALL MANUFACTURING LINE

We consider the example of the small manufacturing line
that was also used in [1, section 3.8]. There are two machines
(M1 and M2) and one (plantified) specification (namely that
finishing processing on machine M1 and starting processing
on machine M2 alternate). See Fig. 3 for the graphically
represented automata. The specification has been formulated
in such a way that it is controllable (and hence forcibly-
controllable as well). For now, we consider only the event
start M2 representing the start of processing on machine M2

as forcible.

BusyIdle

M1

start M1

end M1

BusyIdle

M2

start M2

end M2

0R 1 2

end M1

start M2

end M1

start M1 start M1

end M2 end M2

Fig. 3. Automata for the machines and the specification in the small
manufacturing line.
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Remark 4. The self-loops in the specification automaton are
not necessary. We have added them in this case, because as a
consequence the number of states in the synchronous product
is smaller and that facilitates graphical representation of that
synchronous product.

Fig. 4 presents a number of relevant automata:
• the synchronous product of the three automata from

Fig. 3 by considering all states and transitions regardless
their color. This automaton is the input for the synthesis
procedure.

• the traditional supervisor (no forcing at all), is obtained
by considering only the black colored states and transi-
tions. The states BI1 and BB1 have been made unreach-
able by disabling the incoming start M1 events.

• the forcing supervisor in the case that only event
start M2 is forcible is obtained by considering the black
and blue states and transitions. The red and cyan states
and transitions are omitted by synthesis. Note that this is
the same result as predicted in [1, Section 3.8].

• the forcing supervisor in the case that also event end M2

is forcible is given by all but the red states and transitions.
Both the synchronous product and the traditional supervisor

have been obtained by applying the Compositional Interchange
Format (CIF) [22], [23]. CIF is part of the Eclipse Supervi-
sory Control Engineering Toolkit (ESCET™) project.1 Both
forcing supervisors have been computed manually following
Algorithm 1.

This example suggests, and our intuitions support this
observation, that using additional forcible events generally
results in more permissive supervisors.

VII. CASE STUDY - SMALL FACTORY

In this section, both the traditional supervisor and forcing
supervisor (for all controllable events) are provided for the
small factory as discussed in [1]. The plant consists of two
machines, namely M1 and M2 (see Fig. 5 for the automata
representing the plant components). These machines can start
and end processing (by means of controllable events start Mi,
for i = 1, 2), but can also break down (uncontrollably with
events break Mi, for i = 1, 2) when in the working state (W ).
In case of a breakdown, a repair can be achieved (controllable
events repair Mi, for i = 1, 2) upon which the system starts
again in the idle state (I). The supervisors developed are
supposed to achieve the requirements given by means of the
controllable automata specifications2 given in Fig. 63. The first
requirement captures that the two machines are placed in line
with a single-space buffer in between. Note that this buffer is
not modeled explicitly. The second requirement states that in
case both machines break down, priority has to be given to
repairing machine M2.

1See http://eclipse.org/escet. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are
trademarks of Eclipse Foundation, Inc.

2A controllable automaton is one whose marked language is controllable
w.r.t. the plant.

3The models for the plant components and requirements are based on
those provided in [1] with easier to interpret names for events and where
the automata specifications are made controllable (where needed).
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Fig. 4. Automaton representing the synchronous product and, using colors
as described in the text, three different supervisors.

IM1 W D

start M1

end M1

break M1

repair M1

IM2 W D

start M2

end M2

break M2

repair M2

Fig. 5. Automata representing the machines M1 and M2 in the small factory.

R1

end M1

start M2

end M1

R2

repair M1

break M2

repair M2

Fig. 6. Controllable specification automata for the small factory.
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Application of supervisory control synthesis Algorithm 1 to
this system (consisting of plant components and controllable
requirements) where all (and only) the controllable events
are considered forcible) results in a supervisor that can be
represented by the automaton in Fig. 7.

In the figure, the green states are those where forcing of
an event is used to prevent reaching a state that is unsafe via
an uncontrollable event. In the conventional supervisor those
states are made unreachable by preventing their incoming
controllable events (the red transitions labelled by the event
start M1). So in the nonforcing supervisor, the green state
and the red transitions are absent. Thus the forcing supervisor
indeed allows behaviors that are prohibited by the nonforcing
supervisor.

As can be seen from the figure, the forcing is achieved by
using the forcible evens start M2 and repair M2. Therefore,
in case the controllable events involving machine M1 are not
forcible, the same forcing supervisor results.

VIII. CONCLUSIONS

In this paper, the setting of supervisory control theory has
been enriched with the possibility for a supervisor to force
events in order to preempt uncontrollable events from leading
the plant into undesired states. This has required an adaptation
of the notion of controllability to forcible-controllability. This
notion and its properties have been studied in detail and a
supervisory control problem for obtaining a maximally permis-
sive, foricbly-controllable, nonblocking supervisory controller
has been posed and solved. The approach has been illustrated
with two case studies from literature.

Our future work is twofold. In one direction, we aim to
extend this framework with forcing to tackle other fundamental
problems in supervisory control; these include partial observa-
tion [24], timed systems [7], and supervisor localization [25].
In the other direction, with the forcing mechanism which is the
principal control mechanism used in continuous-time control
theory, we are interested in establishing connections as well
as contrasts between the two types of control theory; special
attention will be given to several basic control-theoretic ideas
including reachability, stability, and control-barriers [26].
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Fig. 7. Forcing supervisor for the small factory.
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