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Abstract— This paper studies the current-state opacity and
the initial-state opacity verification of distributed discrete event
systems. The distributed system’s global system is the parallel
composition of multiple local systems: each of which represents
a sub-component. We propose sufficient conditions for the
global system’s opacity based only on the opacity of the local
systems. We also present efficient approaches for the opacity
verification problem that only rely on the intruder’s observer
automata of the local DESs.

I. INTRODUCTION

Security is a crucial issue in many applications, especially
for distributed systems with multiple components that com-
municate across a network. As a result, methodologies to
protect data privacy from malicious intruders are needed.
In this work, we consider the concept of system opacity: a
property that indicates whether or not a given “secret” about
the system is detectable by the intruder based on the observed
system’s behaviors. Opacity was proposed for analyzing
security protocols in [1]. This concept is introduced to the
discrete event systems (DES) community in [2] for petri-nets,
and in [3] for transition systems, and has been a hot research
topic in the DES community in recent year. Several notions
of opacity have been proposed and studied in the literature
[4], [5], [6], [7], [8].

This work studies the opacity verification of distributed
discrete event systems, which are systems with modular
structure as illustrated in Fig. 1. Opacity verification for mod-
ular systems is known to be decidable but computationally
expensive: its complexity has shown to be in EXPSPACE-
complete for general cases, and PSPACE-complete if all
events shared by any local DESs are observable [9]. The
common technique for modular systems opacity verification
is to construct data structures that estimate the intruder’s
global DES information based on observed event sequences.
These data structures can be large, especially for distributed
DESs with several local components. Motivated by this
problem, we study local opacity verification: to verify the
global DES by estimating the intruder’s information based
only on local DESs. We propose sufficient conditions and
their corresponding efficient approaches for the global DES’s
opacity without constructing an observer automaton of the
global DES. We focus on current-state opacity (CSO) and
initial-state opacity (ISO) verification. Our results for these
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Fig. 1. An overview of our distributed architecture with two local DESs.
The global DES G is the parallel composition of local DESs. The secret
state set S is a set of states of G. We assume that the events shared by the
local DESs are observable by the intruder (Σ1∩Σ2 ⊆ Σobs ). The objective
of the intruder is to detect if the current state (for the CSO problem) or the
initial state (for the ISO problem) of G is in S (see Section III). Note that
this architecture can be extended to n local DESs.

two types of opacity will establish a foundation for studying
other opacity notions in the future.

Reduced complexity opacity verification techniques for
modular DESs by considering its local components was
proposed for ISO in [10], and for CSO in [11] and [12].
However, our setting is different from the previous works.
The objective of [10] and [12] is to ensure that local secret
states of all local DESs are protected confidentially. In both
works, the secret of the whole system is revealed if a secret
state of any local DES is revealed. Instead, in this work,
we consider the secret of the global system defined as a
subset of the global system’s states, as depicted in Fig. 1.
Our work is also different from [11], which considers each
observation map for each local DES. Using these maps,
the intruder observes the global DES through the event
sequences of all local DESs. In our work, the intruder has
only one observation map and observes the global DES’s
event sequences directly. These differences are significant, as
one cannot straightforwardly generalize our setting to those
in the previous works.

The rest of this paper is organized as follows. In Section II,
we proposed a distributed architecture of a global DES with
several local DESs as its components. In Section III, we
present the notions of CSO and ISO, and introduce the
concept of local opacity verification. Then, in Section IV,
we present sufficient conditions for the opacity of the global
DES based only on the local DESs. Using the sufficient
conditions in Section IV, we propose approaches to verify
the global DES using the intruder’s observer automata for
local DESs. Finally, Section VI presents the conclusion.

II. DISTRIBUTED DISCRETE EVENT SYSTEMS

We study a distributed discrete event system (DES), which
we call the global DES, consisting of n local DESs. Fig. 1
depicts an overview of the architecture with two local DESs.



A. Local and Global Systems

For each i ∈ {1, . . . , n}, we model the local DES Gi as

Gi = (Xi,Σi, δi, Xin,i),

where Xi is the set of states, Σi is the set of events, δi :
Xi×Σi ⇀ Xi is a partial transition function, and Xin,i ⊆ Xi

is the set of initial states. We use the notation δi(x, σ)! for
“δi(x, σ) is defined”. We also write ΣGi (resp. δGi ) for Σi

(resp. δi) when we specifically refer to it as the event set
(resp. the transition function) of the DES Gi.

The global DES is a distributed system that consists of all
n local DESs as its components, constructed by the parallel
composition of their local DESs.

Definition 1 ([13]): Given two DESs Gi and Gj , their
parallel composition is the DES

Gi ‖ Gj = (Xi ×Xj ,ΣGi‖Gj
, δGi‖Gj

, Xin,i ×Xin,j),

where ΣGi‖Gj
= ΣGi

∪ ΣGj
and the transition function

δGi‖Gj
: Xi×Xj×ΣGi‖Gj

⇀ Xi×Xj is defined as follows.

δGi‖Gj
(xi, xj , σ) =



(δGi
(xi, σ), δGj

(xj , σ)) (1a)
if δGi

(xi, σ)! and δGj
(xj , σ)!

(δGi
(xi, σ), xj) (1b)
if δGi

(xi, σ)! and σ /∈ ΣGj

(xi, δGj
(xj , σ)) (1c)

if δGj
(xj , σ)! and σ /∈ ΣGi

undefined otherwise. (1d)
Let Gi ‖ Gj ‖ Gk = Gi ‖ (Gj ‖ Gk). From Definition 1,

the parallel composition of two DESs is also a DES. More-
over, the composition is associative and commutative up to a
reordering of the state components in composed states [13],
i.e., Gi ‖ (Gj ‖ Gk) = (Gi ‖ Gj) ‖ Gk, and Gi ‖ Gj can be
obtained from Gj ‖ Gi by reordering the state components.
In this work, as we consider indexed local DESs, we can
treat Gi ‖ Gj and Gj ‖ Gi as equivalent.

The global DES is the parallel composition

G = (X ,ΣG ,∆,Xin) = G1 ‖ . . . ‖ Gn,

where X = X1 × · · · × Xn, ΣG = Σ1 ∪ · · · ∪ Σn, Xin =
Xin,1 × · · · ×Xin,n, and ∆ = δG1‖G2‖...‖Gn

.

B. Extended Transition Functions and Event Sequences

For any DES G = (X,ΣG, δG, Xin), which can either be
a local DES or a composition of local DESs, we extend its
transition function δG to δ∗G : X × (ΣG)∗ ⇀ X in the usual
way. Namely, δ∗G(x, ε) = x and for all (β, σ) ∈ Σ∗G × ΣG,

δ∗G(x, βσ) =


δG(δ∗G(x, β), σ) if δ∗G(x, β)! and

δG(δ∗G(x, β), σ)!

undefined otherwise.
(2)

An event sequence α is generated by G if there exists
x ∈ Xin such that δ∗G(x, α)!. Let |α| = k denote the length
of the even sequences α = σ1 . . . σk ∈ Σ∗. As ΣG ⊆ ΣG , let
πG : Σ∗G → Σ∗G be the natural mapping from event sequences
generated by the global DES G to those generated by the DES

G. More precisely, πG(σ) = ε if σ = ε or σ ∈ ΣG \ ΣG,
πG(σ) = σ if σ ∈ ΣG, and πG(βσ) = πG(β)πG(σ) for all
(β, σ) ∈ Σ∗G×ΣG . For notational convenience, we also use πi
for denoting the mapping πGi

, for i ∈ {1, . . . , n}. Thereby,
we can use πi to map each event sequence generated by the
global DES G to its corresponding sequence generated by the
local DES Gi. For all global state x = (x1, . . . , xn) ∈ X ,
let x[i] denote the local state xi ∈ Xi.

From Definition 1, we have the following Lemma.
Lemma 1: For any x ∈ Xin and any α ∈ Σ∗,

∆∗(x, α)! if and only if (δ∗i (x[i], πi(α))!,∀i ∈ {1, . . . n}).
(3)

Moreover, if ∆∗(x, α)!,

∆∗(x, α) = (δ∗1(x[1], π1(α)), . . . , δ∗n(x[n], πn(α))) (4)

III. PROBLEM FORMULATION

A. Notion of Opacity

Let Σobs ⊆ ΣG be the set of of observable events, and
πobs : Σ∗G → Σ∗obs be the observation map from each
event sequence generated by the global DES G to the event
sequence observed by the intruder. Notice that πi◦πobs(α) =
πobs ◦ πi(α), for all α ∈ Σ∗G and all i ∈ {1, . . . , n}.

In this paper, we consider two notions of opacity: current-
state opacity (CSO) and initial-state opacity (ISO), which are
two basic types of opacity properties in the literature [5]. The
study of these two types of opacity will lay a foundation for
investigation of more complicated opacity notions. Consider
G = (X,ΣG, δG, Xin), which can either be a local DES or
a composition of local DESs.

Definition 2 (CSO): Given a set S ⊆ X of secret states,
the DES G is current-state opaque (CSO) w.r.t. S if, for all
(x, α) ∈ Xin × Σ∗G such that δ∗G(x, α) ∈ S, there exists
(x′, α′) ∈ Xin × Σ∗G such that δ∗G(x′, α′) ∈ X \ S and
πobs(α) = πobs(α′).

Definition 3 (ISO): Given a set S ⊆ Xin of secret initial
states, the DES G is initial-state opaque (ISO) w.r.t. S if for
all (x, α) ∈ S × Σ∗G with δ∗G(x, α)!, there exists (x′, α′) ∈
(X \ S)× Σ∗G with δ∗G(x′, α′)! and πobs(α) = πobs(α′).

The intuitions of the two notions of opacity are as follows.
CSO (resp. ISO) requires that for each even sequence α
going to (resp. starting from) a secret state, there must exists
another sequence α′ with the same observation (πobs(α) =
πobs(α′)) going to (resp. starting from) a non-secret state.

By Definitions 2 and 3, we have Lemmas 2 and 3, which
state that we can verify the opacity w.r.t. a set S by consid-
ering its subsets S1, . . . , Sm such that S = S1 ∪ · · · ∪ Sm.

Lemma 2: Suppose that for all i ∈ {1, . . . ,m} and all
(x, α) ∈ Xin × Σ∗G such that δ∗G(x, α) ∈ Si, there exists
(x′, α′) ∈ Xin×Σ∗G with δ∗G(x′, α′) ∈ X \S and πobs(α) =
πobs(α′). Then, G is CSO w.r.t. S

Lemma 3: Suppose that for all i ∈ {1, . . . ,m} and all
(x, α) ∈ Si×Σ∗G such that δ∗G(x, α)!, there exists (x′, α′) ∈
(Xin \ S) × Σ∗G with δ∗G(x′, α′)! and πobs(α) = πobs(α′).
Then, G is ISO w.r.t. S

Lemma 2 (resp. Lemma 3) implies that: if for all even
sequence α going to (resp. starting from) a secret subset Si,



there exists another sequence α′ with the same observation
going to (resp. starting from) a non-secret state X \ S, then
the DES G is opaque. These two lemmas follows from
Definitions 2 and 3 and the fact that S = S1 ∪ · · · ∪ Sm.

B. Opacity Verification Problem

The goal of this work is to verify whether or not the global
DES G is opaque (CSO, ISO) w.r.t. a given set S .

Definition 4 (Opacity verification problem): Given local
DESs G1, . . . , Gn, an observation map πobs , and a secret
subset S ⊆ X of global states, verify whether the global
DES G =‖i∈{1,...,n} Gi is opaque (CSO, ISO) w.r.t. S .

Opacity verification for modular systems is decidable
but costly [9]. One technique for modular systems opacity
verification is to construct an observer automaton that es-
timate the intruder’s information of the global DES based
on observed event sequences, which can be large, especially
for the system with many local DESs. Therefore, in this
work, we consider local opacity verification: to verify the
global DES without constructing an observer automaton for
the global DES. In Sections IV and V, we propose sufficient
conditions and corresponding efficient approaches for the
opacity verification problem based only on the observer
automata of local DESs.

IV. LOCAL OPACITY VERIFICATION

A. Assumption on Shared Events

We first introduce an assumption on shared event, which
is necessary for our results. We assume that events shared
by at least two local DESs are observable by the intruder,
as depicted in Fig. 1. This assumption is common for DESs
with modular structure [10], [14].

Assumption 1: For all σ ∈ ΣG , we have σ ∈ Σobs if there
exist i, j ∈ {1, . . . , n} such that i 6= j and σ ∈ Σi ∩ Σj .

Note that we allow internal events of local DESs to be
observable, i.e., we do not require (Σi\

⋃
j 6=i Σj)∩Σobs = ∅.

Assumption 1 is a necessary condition for local opacity
verification. We will discuss this matter in details later on in
Remarks 1 and 3. Under this assumption, we have Lemma
4, which is crucial for our results in the next sections.
The intuition of this lemma is that: an event sequence α′i
generated by a local DES Gi can be projected to a sequence
of the global DES (not blocked by the parallel composition)
if there exists at least one sequence α generated by the global
DES with πobs ◦ πi(α) = πobs(α′i).

Lemma 4: Given a secret subset S ⊆ X of global states,
we assume that Assumption 1 holds and there exists (x, α) ∈
Xin×Σ∗G such that ∆∗(x, α)!. Then, for any (x′i, α

′
i) ∈ Xin,i×

Σ∗i satisfying

δ∗i (x′i, α
′
i)! and πobs(α′i) = πobs ◦ πi(α), (5)

there exists α′ ∈ Σ∗G such that πobs(α′) = πobs(α) and

∆∗(x[1], . . . , x[i− 1], x′i, x[i+ 1], . . . , x[n], α′)

= (s1, . . . , si−1, δ
∗
i (x′i, α

′
i), si+1, . . . , sn),

(6)

where sj = δ∗j (x[j], πj(α)) for all j ∈ {1, . . . , n}.

Proof: Since the parallel composition operation is
commutative and associative, we assume without loss of
generality that Gi = G1 and G = G1 ‖ GJ , where
GJ =‖k∈{2,...,n} Gk. Therefore, we can write x = (x[1], xJ),
where xJ = (x[2], . . . , x[n]). We will prove the lemma by
induction on the length of α.

For the base step, we consider the case where α = ε. For
any (x′1, α

′
1) ∈ Xin,1 × Σ∗1 such that

δ∗1(x′1, α
′
1)! and πobs(α′1) = πobs ◦ π1(α) = ε,

we have α′1 ∈ (Σ1 \
⋃

k∈{1,...,n}Σk)∗ by Assumption 1. By
(1b) and Lemma 1,

∆∗(x′1, xJ , α
′
1) = (δ∗1(x′1, α

′
1), s2, . . . , sn),

which implies (6).
For the induction hypothesis, we assume that if |α| < k,

then, for all (x′1, α
′
1) ∈ Xin,1×Σ∗1 satisfying (5), there exists

α′ ∈ Σ∗G satisfying πobs(α′) = πobs(α) and (6).
For the inductive step, let α = βσ, where σ ∈ ΣG and
|β| < k. Since ∆∗(x, α)!, we have δ∗GJ (xJ , πGJ (α))! by
Lemma 1. Furthermore, ∆∗(x, β)! and ∆(∆∗(x, β), σ)! by
(2). Let us consider any (x′1, α

′
1) ∈ Xin,1 × Σ∗1 that satisfies

(5). To show (6), we consider the following cases.
• Case 1: σ ∈ ΣGJ \ Σ1. In this case, πobs(α′1) = πobs ◦
π1(α) = πobs ◦ π1(β). By the induction hypothesis,
there exists β′ ∈ Σ∗G such that πobs(β′) = πobs(β) and

∆∗(x′1, xJ , β
′) = (δ∗1(x′1, α

′
1), δ∗GJ (xJ , πGJ (β))) (7)

By setting α′ = β′σ, we have πobs(α′) = πobs(β′σ) =
πobs(βσ) = πobs(α). Moreover, since σ /∈ Σ1, by (1c),
(7), and Lemma 1,

∆∗(x′1, xJ , α
′) = ∆∗(x′1, xJ , β

′σ)

= (δ∗1(x′1, α
′
1), δ∗GJ (xJ , πGJ (βσ)))

= (δ∗1(x′1, α
′
1), δ∗GJ (xJ , πGJ (α)))

= (δ∗1(x′1, α
′
1), s2, . . . , sn).

Thus, (6) holds in this case.
• Case 2: σ ∈ Σ1∩ΣGJ . By Assumption 1, πobs◦π1(σ) =
σ and πobs ◦π1(α) = πobs ◦π1(β)σ. By (5), there exists
β′1 ∈ Σ∗1 such that β′1σ = α′1 and

πobs(β′1)σ = πobs(α′1) = πobs ◦ π1(α) = πobs ◦ π1(β)σ.

Therefore, πobs(β′1) = πobs ◦ π1(β). By the induction
hypothesis, there exists β′ with πobs(β′) = πobs(β) and

∆∗(x′1, xJ , β
′) = (δ∗1(x′1, β

′
1), δ∗GJ (xJ , πGJ (β))). (8)

By setting α′ = β′σ, we have πobs(α′) = πobs(β′)σ =
πobs(β)σ = πobs(α). By (1a), (8), and Lemma 1,

∆∗(x′1, xJ , α
′) = ∆∗(x′1, xJ , β

′σ)

= (δ∗1(x′1, β
′
1σ), δ∗GJ (xJ , πGJ (α)))

= (δ∗1(x′1, α
′
1), s2, . . . , sn),

which implies (6).
• Case 3: σ ∈ (Σ1 \ΣGJ )∩Σobs . As σ ∈ Σ1 ∩Σobs , we

have πobs◦π1(σ) = σ and πobs◦π1(α) = πobs◦π1(β)σ.



It can be shown in the same way as in Case 2 that there
exist β′1 ∈ Σ∗1 and β′ ∈ Σ∗G satisfying (8), α′1 = β′1σ,
and πobs(β′) = πobs(β). Moreover, since σ /∈ ΣGJ , we
have πGJ (α) = πGJ (β).
By setting α′ = β′σ, we have πobs(α′) = πobs(β)σ =
πobs(α). Then, by (1b), (8), and Lemma 1,

∆∗(x′1, xJ , α
′) = (δ∗1(x′1, β

′
1σ), δ∗GJ (xJ , πGJ (β)))

= (δ∗1(x′1, α
′
1), δ∗GJ (xJ , πGJ (α)))

= (δ∗1(x′1, α
′
1), s2, . . . , sn),

which implies (6).
• Case 4: σ ∈ Σ1 \ (ΣGJ ∪ Σobs). In this case, we have
πobs(σ) = ε, which implies that πobs ◦ π1(σ) = ε
and πobs(α′1) = πobs ◦ π1(α) = πobs ◦ π1(β). By the
induction hypothesis, there exists β′ satisfying (7) and
πobs(β′) = πobs(β). Since σ ∈ Σ1 \ ΣGJ , we have

δ∗GJ (xJ , πGJ (α)) = δ∗GJ (xJ , πGJ (βσ))

= δ∗GJ (xJ , πGJ (β)).
(9)

Since πobs(σ) = ε, we have

πobs(β′) = πobs(β′)πobs(σ) = πobs(βσ) = πobs(α).

By setting α′ = β′, we have πobs(α′) = πobs(α). Then,
by (1b), (7), (9), and Lemma 1,

∆∗(x′1, xJ , α
′) = ∆∗(x′1, xJ , β

′)

= (δ∗1(x′1, α
′
1), δ∗GJ (xJ , πGJ (β)))

= (δ∗1(x′1, α
′
1), δ∗GJ (xJ , πGJ (α)))

= (δ∗1(x′1, α
′
1), s2, . . . , sn),

which implies (6).
As (6) holds for all cases, the induction is concluded.

B. Local Current-state Opacity

This section introduces sufficient conditions for the CSO
of the global DES, based on the local DESs. For a set S of
global secret states, let S[i] = {s[i] | s ∈ S} be the set of
its corresponding local secret states in the local DES Gi.

Theorem 1: We assume Assumption 1. Given a secret
subset S ⊆ X of global states, if there exists i ∈ {1, . . . , n}
where Gi is CSO w.r.t. S[i], then G is also CSO w.r.t. S.

Proof: We assume that Gi is CSO w.r.t. S[i] and will
show that G is CSO w.r.t. S. Let us consider any

(x, α) ∈ Xin × Σ∗G such that ∆∗(x, α) = s ∈ S.

By Lemma 1, δ∗i (x[i], πi(α)) = s[i] ∈ S[i]. Since Gi is CSO
w.r.t. S[i], by Definition 2, there exists (x′i, α

′
i) ∈ Xi × Σ∗i

such that

πobs(α′i) = πobs ◦ πi(α) and δ∗i (x′i, α
′
i) ∈ Xi \ S[i].

By Lemma 4, there exists α′ with πobs(α) = πobs(α′) and

∆∗(x[1], . . . , x[i− 1], x′i, x[i+ 1], . . . , x[n], α′)

= (s[1], . . . , s[i− 1], δ∗i (x′i, α
′
i), s[i+ 1], . . . , s[n])

∈ X \ S.
Thereby, G is CSO w.r.t. S and the theorem holds.

Fig. 2. Two local DESs and the accessible part of their parallel composition.
The DES G1 is CSO w.r.t {s1}, but G1 ‖ G2 is not CSO w.r.t. {(s1, s2)}.

Fig. 3. Two local DESs and the accessible part of their parallel composition.
Σobs = {a, b}. The DESs G1 and G2 are not CSO w.r.t. {s1, t1}
and {s2, t2}, respectively, but their composition G1 ‖ G2 is CSO w.r.t.
{(s1, s2), (s1, t2), (t1, s2), (t1, t2)}.

Remark 1: Assumption 1 is a necessary condition for
Theorem 1. In the example DES in Fig. 2, in which the
shared event b is not observable, G1 is CSO w.r.t. {s1}
but G1 ‖ G2 is not CSO w.r.t. {s1, s2}. In this example,
the shared event b is blocked by the parallel composition.
Such an event blocking is generally difficult to detect without
constructing any part of G, which we aim to avoid.

Remark 2: The inverse of the implication in Theorem 1
does not hold. In other words, the global DES G being CSO
w.r.t. S does not imply the existence of a local DES Gi that
is CSO w.r.t. S[i] = {s[i] | s ∈ S}. We provide two counter
examples in Fig. 3 and Fig. 4. In both examples, each local
DES Gi, i ∈ {1, 2}, is not CSO w.r.t. S[i], but the global
DES G is CSO w.r.t. S. From both examples, we can see
that the inverse of the implication in Theorem 1 does not
hold even if S = S[i] × . . . × S[n]. Notice that, in Fig. 3,
the global DES becomes CSO thanks to unobservable local
events c and d. In Fig. 4, the event sequence reaching the
secret state (t1, t2) is blocked by the parallel composition.
As discussed in Remark 1, detecting such a blocked event
sequence is difficult without constructing any part of G.

As presented above, Theorem 1 provides a sufficient
condition for the opacity of the global DES. If there is no
local DES Gi that is CSO w.r.t. S[i], it is still possible that
G is CSO w.r.t. S. Using Lemma 2, we propose another
sufficient condition for the CSO of G by considering its secret
subsets S1, . . . ,Sm ∈ S where S = S1 ∪ . . . ∪ Sm.

Theorem 2: We assume Assumption 1. Consider a set of
secret global states S = S1∪. . .∪Sm ⊆ X . Let S[i] = {s[i] |
s ∈ S} and Sj [i] = {s[i] | s ∈ Sj} for all j ∈ {1, . . . ,m}.
Suppose that, for all global secret subset Sj∈{1,...,m}, there
exists a local DES Gi∈{1,...,n} such that:

∀(xi, αi) ∈ Xi,in × Σ∗i , δ
∗
i (xi, αi) ∈ Sj [i],

∃(x′i, α′i) ∈ Xi,in × Σ∗i ,δ
∗
i (x′i, α

′
i) ∈ Xi \ S[i]

and πobs(α′i) = πobs(αi).

(10)



Fig. 4. Two local DESs and the accessible part of their parallel composition.
All events are observable. The DESs G1 and G2 are not CSO w.r.t. {t1}
and {t2}, respectively, but G1 ‖ G2 is CSO w.r.t. {(t1, t2)}.

Then, G is CSO w.r.t. S.
Proof: Let us consider each secret subset Sj∈{1,...,m}

and let Gi∈{1,...,n} be the local DES that satisfy (10).
Consider any

(x, α) ∈ Xin × Σ∗G such that ∆∗(x, α) = s ∈ Sj . (11)

By Lemma 1, δ∗i (x[i], πi(α)) = s[i] ∈ Sj [i]. By (10), there
exists (x′i, α

′
i) ∈ Xi × Σ∗i such that

πobs(α′i) = πobs ◦ πi(α) and δ∗i (x′i, α
′
i) ∈ Xi \ S[i].

By Lemma 4, there exists α′ with πobs(α) = πobs(α′) and

∆∗(x[1], . . . , x[i− 1], δ∗i (x′i, α
′
i), x[i+ 1], . . . , x[n], α′)

∈ X \ S. (12)

By Lemma 2, (11) and (12), the global DES G is CSO w.r.t.
S and the theorem holds.

Theorem 2 also provides a sufficient condition. Its inverse
of the implication does not hold, as shown in the counter
example in Fig. 4. However, we show in Section V that we
can use this theorem to verify the global DES in some cases.

C. Local Initial-state Opacity

In this section, we show that the presented results for CSO
also hold for ISO.

Theorem 3: We assume Assumption 1. Given a secret
subset S ⊆ Xin of global initial states, if there exists i ∈
{1, . . . , n} such that Gi is ISO w.r.t. S[i] = {s[i] | s ∈ S},
then G is also ISO w.r.t. S.

Proof: Suppose that Assumption 1 holds and Gi is ISO
w.r.t. S[i]. Consider any pair

(x, α) ∈ S × Σ∗G such that ∆∗(x, α)!. (13)

By Lemma 1, δ∗(x[i], πi(α))!. Since x[i] ∈ S[i] and Gi is
ISO w.r.t. S[i], there exists (x′i, α

′
i) ∈ (Xi \ S[i])×Σ∗i with

δ∗(x′i, α
′
i)! and πobs(α′i) = πobs ◦ πi(α).

Let x′ = x[1], . . . , x[i−1], x′i, x[i+ 1], . . . , x[n]. By Lemma
4, there exists α′ such that

∆∗(x′, α′)! and πobs(α) = πobs(α′). (14)

Notice that x′ ∈ X \ S because x′i ∈ Xi \ S[i]. Therefore,
the lemma holds by (13), (14), and Definition 3.

Remark 3: Assumption 1 is a necessary condition for
Theorem 3. From the example in Fig. 5, G2 is ISO w.r.t
{s2}, but G1 ‖ G2 is not ISO w.r.t. {(s1, s2)}.

Remark 4: The inverse of the implication in Theorem 3
also does not hold. The global DES G being ISO w.r.t. S
does not imply the existence of a local DES Gi that is ISO
w.r.t. S[i] = {s[i] | s ∈ S}. Fig. 6 provides a counter

Fig. 5. Two local DESs and the accessible part of their parallel composition.
Initial states of G1 (resp. G2) are s1 and t1 (resp. s2 and t2). The DES
G2 is ISO w.r.t {s2}, but G1 ‖ G2 is not ISO w.r.t. {(s1, s2)}.

Fig. 6. Two local DESs and the accessible part of their parallel composition.
Initial states of G1 (resp. G2) are s1 and t1 (resp. s2 and t2). The event
a is observable. The DESs G1 and G2 are both not ISO w.r.t {s1, t1} and
{s2, t2}, respectively, but G1 ‖ G2 is ISO w.r.t. {(s1, s2), (t1, t2)}.

example. Both local DESs G1 and G2 are not ISO w.r.t
{s1, t1} and {s2, t2}, respectively, but G1 ‖ G2 is ISO w.r.t.
{(s1, s2), (t1, t2)}.

In the same way as in Theorem 2, we propose another
sufficient condition in for the ISO of G by considering its
secret subsets S1, . . . ,Sm ∈ S where S = S1 ∪ . . . ∪ Sm.

Theorem 4: We assume Assumption 1. Consider a set of
secret global initial states S = S1 ∪ . . . ∪ Sm ⊆ Xin. Let
S[i] = {s[i] | s ∈ S} and Sj [i] = {s[i] | s ∈ Sj} for all
j ∈ {1, . . . ,m}. Suppose that for all global secret subset
Sj∈{1,...,m}, there exists a local DES Gi∈{1,...,n} such that:

∀(xi, αi) ∈ Sj [i]×Σ∗i , δi(xi, αi)!,

∃(x′i, α′i) ∈ (Xi\S[i])× Σ∗i , δi(x
′
i, α
′
i)!

and πobs(α′i) = πobs(αi).

(15)

Then, G is ISO w.r.t. S.
Proof: Consider any secret subset Sj∈{1,...,m} and let

Gi∈{1,...,n} be the local DES that satisfy (15). Consider any

(x, α) ∈ Sj × Σ∗G such that ∆∗(x, α)! (16)

By Lemma 1, δ∗i (x[i], πi(α))! and x[i] ∈ Sj [i]. By (15), there
exists (x′i, α

′
i) ∈ (Xi \ S[i])× Σ∗i such that

πobs(α′i) = πobs ◦ πi(α) and δ∗i (x′i, α
′
i)!

Let x′ = x[1], . . . , x[i−1], x′i, x[i+ 1], . . . , x[n]. By Lemma
4, there exists α′ such that

∆∗(x′, α′)! and πobs(α) = πobs(α′). (17)

Notice that x′ ∈ X \S because x′i ∈ Xi \S[i]. By Lemma 3,
(16) and (17), the global DES G is ISO w.r.t. S.

The inverse of the implication in Theorem 3 also does not
hold, as it can be shown using the counter example in Fig. 6.



Fig. 7. Two agents sharing one resource. The events “1request”, “2request”,
and “reload” are not observable by the intruder.

V. OPACITY VERIFICATION OF GLOBAL SYSTEM

In section IV, we presented the sufficient conditions of
the opacity (CSO and ISO) of the global system G, by
only considering the local DESs Gi, i ∈ {1, . . . , n}. The
straightforward way to use Theorems 1 and 3 is to verify
each local DES using existing opacity verification algorithms
(e.g. [15]). Then, if there exists a local DES Gi that is
opaque w.r.t. S[i], the global DES G is also opaque w.r.t.
S thanks to Theorems 1 and 3. By using this technique, we
only need to construct the intruder’s observer automata [13]
for each local DES Gi, not the global DES G. As a result,
we can reduce the size of the intruder’s observer automata
from O(2|X1|×...×|Xn|) (for G) to O(2|X1| + . . .+ 2|Xn|).

For example, let us consider the global DES Agent1 ‖
Agent2 ‖ Resource of the DESs in Fig. 7. Suppose that
(1wait , 2use, 2 ) is the only secret state. By the observer
automaton in Fig. 8 (a), we know that Agent1 is CSO w.r.t.
{1wait}. Thus, by Theorem 1, the global system is also CSO.

As discussed in Remarks 2 and 4, Theorems 1 and 3
provide only sufficient conditions for the opacity of the
global DES. If there is no local DES Gi that is opaque
w.r.t. S[i], it is still possible that G is opaque w.r.t. S. By
Theorems 2 and 4, we can try to verify the opacity of G
by verifying the opacity of each Gi w.r.t. {s}, for all secret
state s ∈ S . Let us again consider the global DES of the
DESs in Fig. 7, but this time let the secret set be S =
{(1wait , 2use, 2 ), (1use, 2wait , 1 )(1end , 2end , free)}. For
this case, we cannot simply verify the global DES by
verifying local DESs w.r.t. theirs corresponding local secret
sets, e.g., Agent1 is not CSO w.r.t. {1wait , 1use, 1end}.
Let S1 = {(1wait , 2use, 2 )}, S2 = {(1use, 2wait , 1 )}, and
S3 = {(1end , 2end , free)}. Let G1, G2, and G3 be the
local DESs Agent1 , Agent2 , and Resource, respectively.
Using the observer automata in Fig. 8, we have the following
properties.

1) S1[1] = {1wait}. For the event sequence 1request
with δ1(1idle, 1request) = 1wait ∈ S1[1], we have
δ1(1idle, ε) = 1idle /∈ S[1] = {1wait , 1use, 1end}
and πobs(1request) = πobs(ε) = ε.

2) S2[2] = {2wait}. For the event sequence 2request
with δ2(2idle, 2request) = 2wait ∈ S2[2], we have
δ2(2idle, ε) = 2idle /∈ S[2] = {2wait , 2use, 2end}

Fig. 8. Intruder’s CSO observer automata for local DESs in Fig. 7.

and πobs(2request) = πobs(ε) = ε.
3) S3[3] = {free}. For all α ∈ Σ∗3 such that

δ3(ready , α) = free ∈ S3[3], we have α′ = α reload
where δ3(ready , α′) = ready /∈ S[3] = {1, 2, free}
and πobs(α) = πobs(α′).

Therefore, by Theorem 2, the global DES is CSO w.r.t S.
Thus, for this case, we can verify the global DES using the
observer automata of the local DESs.

VI. CONCLUSIONS

We study the current-state opacity (CSO) and the initial-
state opacity (ISO) verification of a distributed DES. The
distributed DES, which we call the global DES, is the parallel
composition of n local DESs. By assuming that the intruder
observes the events shared between local DESs, we proposed
sufficient conditions for the opacity (CSO and ISO) of the
global DES, by considering only the opacity of local DESs.
Using these sufficient conditions, we introduced efficient
methodologies to verify the global DES’s opacity without
constructing the intruder’s observer automaton of the global
DES. For future work, we will study the verification of
other system opacity concepts and the opacity enforcement
of distributed DESs.
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