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Abstract

Multi-Agent Consensus and Averaging on General Network Topology

Kai Cai

Doctor of Philosophy

Department of Computational Intelligence and Systems Science

Tokyo Institute of Technology

2011

We study two fundamental problems, consensus and averaging, in multi-agent systems

where component agents are interconnected through a network. Such problems relate

intimately to many phenomena and applications (e.g., bird flocking, oscillator syn-

chronization, and local balancing), in which all agents need to reach an agreement on

some state of their common interest. Central to solving these problems is the topol-

ogy of the interconnection network among agents, which determines who is coupled

to whom. Our principal objective is to find the most general topological conditions,

under which we design distributed algorithms to solve both problems.

First, we deal with the averaging problem in the setup where agents’ states are

real-valued, and networks static or dynamic. Novel algorithms are proposed where

additional variables, called surplus, are associated to individual agents to keep track

of their state updates. Under these algorithms, it is justified that state averaging

is ensured on general network topology. Second, we investigate both consensus and

averaging problems when agents’ states are quantized, and networks gossip-type ran-

domized. For consensus, an algorithm is designed and a necessary and sufficient

topological condition derived to guarantee convergence. For averaging, a counterpart

surplus-based algorithm is developed, which is proved again to converge to the average

on general topology. Furthermore, we analyze the convergence time of these quantized

gossip algorithms, and obtain that the upper bounds are of polynomial orders.
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Chapter 1

Introduction

From the systems theoretic viewpoint, a multi-agent system is an arbitrary collec-

tion of more-or-less autonomous agents, usually interconnected through a network.

Such systems are pervasive, across from natural phenomena (e.g., bird flocking, fish

schooling, and biochemical reactions), to scientific disciplines (e.g., oscillator synchro-

nization, distributed artificial intelligence, and game theory), as well as engineering

practice (e.g., robot teams, sensor networks, and multi-core processors). In the engi-

neering applications, particular attention is paid to the design of individual strategies

for component agents, so that they cooperatively interact with neighboring peers in

pursuit of a common collective goal (mimicking the prototypical insect colony).

In this thesis we deal with multi-agent systems potential for engineering appli-

cations. Among various issues arising in such systems, our work is devoted to t-

wo fundamental problems, consensus and averaging, which can be described as fol-

lows. Consider that every agent is associated with a numerical value, often referred

to as state. The value may represent any physical quantity of concern depending

on context, for instance speed, frequency, and temperature measurement. Through

sensing/communication, agents exchange state information with their neighbors, and

based on the obtained neighbors’ states they update their own values according to a

prescribed algorithm. The objective of consensus is to design appropriate algorithms

by which agents may update their values in an iterative fashion so that eventually

1



Chapter 1. Introduction 2

they reach an agreement on some common value. On the other hand, the averaging

problem is of a special form of consensus: It requires the agreed common value to

be the average of the values initially associated with agents. It can be seen from the

above description that the consensus and averaging problems are indeed abstractions

which potentially subsume, or at least closely relate to, a variety of concrete issues

in multi-agent systems (see Literature Survey below). Thus by studying these ab-

stractions, our aim is to explore underlying mechanisms common to a class of issues,

meanwhile without being bogged down with issue-specific details.

The algorithms used by agents to update their values are called consensus and

averaging algorithms, respectively. We restrict our attention to such algorithms of

distributed type: There is no agent taking the role of a leader, and everyone executes

the same algorithm. Central to the design of distributed consensus and averaging

algorithms is the topology of the interconnection network among agents, which de-

termines for individual agents who are their neighbors. The principal objective of

this thesis is to derive the most general conditions on network topology that permit

the existence of distributed algorithms solving the consensus and averaging problems,

respectively; and under those general conditions, construct provably correct solution

algorithms.

1.1 Literature Survey

We review the key references relevant to the main topic of this thesis. We start by

illustrating a set of subjects taken from diverse fields that may be considered from

the perspective of consensus and averaging.

Animal group behavior is the phenomenon that very simple individual actions

expands into highly sophisticated collective behavior, like bird flocking, fish schooling,

and fly swarming. Typically individual animals are not aware of the global picture,

and evidently there does not exist any sort of intentional, centralized supervision.

Emergent behavior may be viewed as a form of multi-agent consensus, because each
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animal must collaborate with its neighbors so as to achieve agreement on the position,

orientation, and speed of their motion. In 1987, Reynolds [68] wrote the celebrated

program called boids, which vividly simulates the emergent behavior in a flock of

birds. This is achieved by programming each virtual bird with merely three simple

rules: separation, alignment, and cohesion with respect to local flocking mates. More

recently, in [77] Vicsek et al. proposed a compelling model for a collection of self-driven

particles all moving in the plane with the same speed but with different headings. Each

particle’s heading is updated towards the average of its own heading plus those of its

neighbors. This local updating rule gives rise to an emergent behavior – all particles

eventually move in the same direction – which is supported by a series of intriguing

simulations.

Synchronization is a phenomenon ubiquitous in biology and physics, in which

a system of coupled oscillators spontaneously locks to a common frequency, despite

the differences in the natural frequencies of individual oscillators. Examples include

networks of pacemaker cells in the heart, groups of synchronously flashing fireflies,

and arrays of lasers. As described, synchronization may also be considered from the

consensus viewpoint, the state of interest being frequency. In the seminal work [47],

the Kuramoto model was developed to study collective synchronization of coupled

oscillators; it was found that if the coupling strength exceeds a certain threshold,

there occurs a phase transition: some oscillators synchronize while others remain

incoherent. A summary of this work is provided in [72]. It is also worth noting that

synchronization has been addressed from the perspective of stability of dynamical

systems [55,62].

Load balancing is a fundamental task in a multi-core processor or a comput-

er cluster, where individuals cooperatively equalize the distribution of workloads to

achieve optimal resource utilization. Each core or computer may initially be loaded

with different amounts of tasks queued for processing, and each balances the uneven

distribution by means of transferring tasks to its neighbors through available channels.

As such, load balancing corresponds to the multi-agent averaging problem. There is
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a large volume of literature on load balancing; notably in [1,36] balancing algorithms

that rely only on local information were proposed and analyzed.

Information fusion is an essential task in sensor networks. Suppose that each

sensor takes a measurement of some environment parameter (e.g., temperature, hu-

midity). The average of these measurements provides a sufficient statistic for many

problems of interest in sensor networks, including minimum variance estimation and

optimal detection of the parameter [63]. To compute the average measurement in

a distributed way, individual sensors must exchange information among local peers

and update their measurements based on those received from neighbors – this corre-

sponds again to the multi-agent averaging problem. Important issues of information

fusion in sensor networks include signal quantization owing to typically wireless digital

networks, limited capacity in storage memories and communication channels, and ro-

bust strategies against link failure, node malfunction, and asynchronous local clocks;

see [34,80] and the references therein.

Distributed mobile robotics is an engineering filed where many basic problems

may be regarded as consensus or averaging of certain sorts. In [2], local strategies

were proposed to gather together a group of mobile robots at a common location, or

rendezvous; this is consensus on the robots’ positions. In [73], protocols were studied

to get mobile robots to form circular and polygon formations; in this case, robots

agree on their relative distances and orientations. In [25], distributed algorithms were

designed for a team of vehicles to uniformly cover an area; thus in effect, the target

area is partitioned in the average sense. A comprehensive list of interesting problems

in distributed mobile robotics is documented in [19].

So far we have seen that the concepts of consensus and averaging appear, with

one form or another, in diverse areas of study. Rigorous theoretic treatments of

these two problems are being undertaken in the systems control community, which

have recently become a very active research topic. We turn next to introducing the

extensive developments witnessed in this community.

In systems control, research on the multi-agent consensus and averaging prob-
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lems dates back to the pioneering work [9, 76]. This work is done in the context

of parallel and distributed computing, where multiple processors iteratively perform

computations and exchange messages so that they all compute a desired value. Then

in the past decade, stimulated by new applications especially like sensor networks and

mobile robots, substantial work addressing both problems has been carried out; refer

to the survey papers [59,67] and the monographs [13,50,66].

Early efforts [11, 42, 51, 56, 61, 65, 79] primarily adopt the following setup. Every

agent is assumed to possess a real-valued state. Agents can communicate with and/or

sense the precise states of their neighbors, and based on that information they update

their own states according to a prescribed algorithm. The communication or sensing

networks connecting agents may be either static or deterministic time-varying. For

this fundamental setting, basic solution algorithms are proposed, instrumental anal-

ysis tools introduced, and essential conditions on network topology derived to ensure

consensus and averaging.

In order to further tackle the problems in more realistic scenarios, the work that

follows frequently takes into account a variety of constraints in the communication

networks among agents. A notable constraint is state quantization (as contrasted

with real valued), which is common in digital communication channels often of limit-

ed data rate. Quantization may be due also to that agents’ physical storage memories

are sometimes of finite capacity. Many quantization strategies are studied (e.g., u-

niform, logarithmic, and dynamic quantization), and particular attention is given to

the tradeoffs between the coarseness of quantization and the precision of consensus

and averaging [3, 20,21,23,28,33,49,57].

Another constraint often considered is random networks (as contrasted with de-

terministic), which potentially models many stochastic phenomena in practical net-

works, including noise, packet loss, link failure, and node malfunction. Differen-

t random models are proposed and analyzed (e.g., Erdős Rényi model, Markovian

model, and gossiping), and the design of randomized algorithms is also a popular

approach [12,29,39,54,64,74,78].
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More recently, the setup that deals simultaneously with both state quantization

and random networks has appeared and attracted much attention [16, 18, 22, 32, 45,

48, 81]. These efforts have extended the early results on consensus and averaging to

fairly practical situations. We shall discuss in more detail the above cited references

in the corresponding chapters.

1.2 Overview of the Thesis and Contributions

In this thesis, we explore the most general conditions on network topology for the

multi-agent consensus and averaging problems, and develop corresponding distributed

algorithms. For our setup, we consider both real and quantized states, and both

deterministic and random networks. The thesis is outlined as follows.

In Chapter 2, we collect basic notions in graph theory and important results in

nonnegative matrix theory which are to be referred to in the later chapters.

We begin our investigation from Chapter 3, by studying the averaging problem

in the basic setting where states are real valued, networks deterministic, and al-

so agents’ clocks synchronized. In particular, we consider that the interconnection

topology among agents is fixed for all time. In Fig. 1.1(a) we use a graph to model

the interconnection topology: Each node stands for an agent, and each edge stands

for an existing connection between two agents; here the graph is invariant at all time.

For this basic setup, we propose a distributed algorithm which is proved to guarantee

state averaging on general networks (Theorem 3.1). The essence of the algorithm is

to keep local records of individual state updates, thereby ensuring consensus on the

average despite that the state sum of agents is not preserved. This is achieved by

augmenting a new variable for each agent, which we call “surplus”. Moreover, we de-

rive bounds, in both general and special topologies, for a parameter of the algorithm

which is essential to guarantee convergence. For analysis tools, we rely on graph the-

ory and nonnegative matrix theory (summarized in Chapter 2), with the eigenvalue

perturbation theory playing a crucial role.
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(a) Deterministic static network, Chapter 3

(b) Deterministic time-varying network, Chapter 4
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(c) Random gossip network, Chapters 4, 5, and 6

time k = 0 k = 1 k = 2 · · ·

time k = 0 k = 1 k = 2 · · ·

time k = 0, 1, 2, · · ·

Figure 1.1: Network models in the thesis.

Chapter 4 progresses to target dynamic networks, where the interconnection topol-

ogy among agents is time-varying. The time-varying mechanism can be either deter-

ministic (see Fig. 1.1(b)) or random. In the random case, we consider that agents

asynchronously “gossip” with one another in the sense that only a single interaction

randomly occurs at a time (see Fig. 1.1(c)). We propose distributed algorithms in both

deterministic and random scenarios. These algorithms are based again on surplus vari-

ables, and are justified to ensure state averaging on general networks (Theorems 4.1

and 4.2). The analysis tools for the random case are the same as those in Chapter 3,

while for the deterministic case Lyapunov-type arguments are used.

In Chapters 5 and 6, we study both consensus and averaging problems in the

new setting where states are quantized, and networks randomized in the gossip sense

(Fig. 1.1(c)). To model quantization effects, each agent’s state is abstracted to be
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an integer. In Chapter 5 we propose a class of consensus and averaging algorithm-

s, respectively; for each, we derive a necessary and sufficient condition on network

topology to guarantee the corresponding convergence (Theorems 5.1 and 5.2). In

particular, the averaging algorithm is again surplus-based, and the characterizing

condition on network topology is general. Further, we discuss two parameters of the

averaging algorithm, and remark on their respective relations to convergence as well

as performance. For analysis, we employ tools from finite Markov chain theory.

Chapter 6 moves on to study the convergence time of the consensus and averaging

algorithms studied in Chapter 5. To this end, we investigate the shrinking time of the

smallest interval that contains all states for the consensus algorithm, and the decay

time of a suitable Lyapunov function for the averaging algorithm. The investigation

leads us to characterizing the convergence time by the hitting time in certain special

Markov chains. We simplify the structures of state transition by considering the

special case of complete networks, and derive polynomial upper bounds with respect

to the number of agents on convergence time (Theorems 6.1 and 6.2).

Finally, we conclude in Chapter 7 by summarizing the thesis, and propose potential

future research topics.

The contributions of the thesis are summarized as follows, and the relations to

other works in the literature shown in Table 1.1. First, in the static network model,

we propose a novel distributed algorithm to solve the multi-agent averaging problem.

The novelty lies in the augmentation of additional surplus variables which collectively

keep track of state updates. Under this algorithm, a necessary and sufficient condition

on network topology is derived to guarantee state averaging; the condition turns out

to be more general than those previously reported in the literature, in the sense that

it does not require symmetric or balanced topological structures. In addition, certain

useful tools from matrix perturbation theory are introduced to analyze and establish

convergence.

Second, in the setup of dynamic networks, we again design original distributed

algorithms based on surplus variables to solve the averaging problem. In particular,
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we consider only unidirectional (as contrasted with bidirectional) information flow

for averaging on randomized gossip-type networks; this setting seems to be new.

The topological condition we derived to ensure averaging is general: While in the

literature it is required that the network be symmetric or balanced at every moment,

our condition does not require so at any moment. This feature would potentially

simplify the implementation of our designed algorithms, and also in this sense, the

algorithms may be robust with respect to possible perturbations on network structures

(e.g., random packet loss and node failure)

Third, we pose the problems of solving both consensus and averaging in the setup

where networks are randomized (gossip type with unidirectional information flow)

and states quantized (all integers). For the consensus problem, we propose a class

of algorithms, under which we derive a necessary and sufficient condition on network

topology that guarantees convergence to some common value. For the averaging

problem, we develop again a novel surplus-based algorithm which provably ensures

state averaging on general networks. Owing to the integer constraint, the set of all

states turns out finite, and therefore the use of certain tools from finite Markov chain

theory is essential. Moreover, to demonstrate the efficiency of both consensus and

averaging algorithms, we find polynomial upper bounds for their convergence time

on complete networks. For the averaging algorithm, in particular, by studying the

corresponding transition structure we clarify the relation between the behavior of

surplus and the speed of convergence.
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Table 1.1: Relations to other works in the literature.

Balanced & strongly connected General strongly connected

network topology network topology

[12], [39], [42],

Real-valued states [54], [57], [61], Our work in Chapters 3 and 4

[65], [74], [79]

[21], [22], [23],

Quantized states [33], [45], [48], Our work in Chapters 5 and 6

[49], [57], [81]



Chapter 2

Mathematical Preliminaries

For convenience of reference, this chapter collects basic notions in graph theory and

important results in nonnegative matrix theory which will be used throughout the rest

of the thesis. As the material is standard, we shall omit proofs and refer to textbooks

for detailed developments.

2.1 Graph Theory [4, 50]

Directed and undirected graphs. A directed graph (or simply digraph) G = (V , E)

consists of a node set V and an edge set E of ordered pairs of nodes. By convention,

the direction of an edge (j, i) is from node j to i; and selfloop edges are excluded, i.e.,

(i, i) /∈ E . A path in a digraph is a finite sequence of edges: (i1, i2)(i2, i3) · · · (ik−1, ik).

The local structure of a digraph G is described by neighbor sets : For each node

i ∈ V , let N+
i := {j ∈ V : (j, i) ∈ E} denote the set of its in-neighbors, and

N−
i := {h ∈ V : (i, h) ∈ E} the set of its out-neighbors. An undirected (or symmetric)

graph G is such that (j, i) ∈ E implies (i, j) ∈ E . Clearly undirected graphs are special

cases of digraphs; and unless otherwise stated, we shall deal exclusively with digraphs.

As an illustration, in Fig. 2.1 (a) is a digraph, where for node 1, N+
1 = {2} and

N−
1 = {2, 3}. Here (b) is an undirected graph.

Connectivity in digraphs. A digraph G = (V , E) is complete if (j, i) ∈ E exists

between every pair of distinct nodes j, i ∈ V . A node i is reachable from another node

11
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1 2

3

(a)

1 2

3

(b)

Figure 2.1: Directed and undirected graphs.

(a) (b) (c)

1 1 1 222 3 33

Figure 2.2: Digraphs connectivity.

j if there exists a path from j to i. A digraph is strongly connected if every node is

reachable from every other node. Now let U be a nonempty subset of V. The subset

U is said to be closed if every node u in U is not reachable from any node v in V −U .

Intuitively, there is no edge pointing in the subset U from outside. Also, the digraph

GU = (U , E ∩ (U × U)) is called the induced subdigraph by U . A strong component

of G is a maximal induced subdigraph of G which is strongly connected. Note that

a maximal induced subdigraph need not be unique in general. Lastly, a node i ∈ V

is said a globally reachable node if every other node is reachable from i. Evidently a

digraph is strongly connected if and only if every node is globally reachable.

In Fig. 2.2, digraph (a) is strongly connected, while (b) is not, for only node 2 is

globally reachable. Digraph (c) does not have a globally reachable node.

We shall need the following result from [50, Theorem 2.1], which reveals an im-

portant relation between digraph connectivity and its structure.

Lemma 2.1. A digraph G has a globally reachable node if and only if it has a unique

closed strong component. Furthermore, this unique closed strong component is the

induced subdigraph by the set of all globally reachable nodes.

Dynamic digraphs. A dynamic digraph G(k) = (V , E(k)), k ∈ Z+, is one
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k = 0, 3, 6, . . . k = 1, 4, 7, . . . k = 2, 5, 8, . . .

1 1 1 222 3 33

Figure 2.3: Dynamic digraph.

whose node set is fixed while edge set time varying. The time-varying mechanism

can be deterministic or random; in either case, the connectivity of G(k) changes over

time. We introduce the notion of joint connectivity over some time interval [k1, k2].

Define the union digraph G([k1, k2]) :=
(
V ,
∪

k∈[k1,k2] E(k)
)
; namely, the edge set of

G([k1, k2]) is the union of those over the interval [k1, k2]. A dynamic digraph G(k) is

jointly strongly connected if there exists a finite k1 ∈ Z+ such that for every k0 ∈ Z+,

the union digraph G([k0, k0 + k1]) is strongly connected.

Consider the dynamic digraph G(k) displayed in Fig. 2.3 with three topologies

switching periodically. For example, the union digraph over the time interval [1, 2]

is G([1, 2]) = {{1, 2, 3}, {(2, 1), (2, 3), (3, 2)}}. This dynamic digraph G(k) is joint-

ly strongly connected, because fixing an arbitrary finite k1 ≥ 2, the union digraph

G([k0, k0 + k1]) is strongly connected for every k0 ∈ Z+.

2.2 Nonnegative Matrix Theory

Important matrices (e.g., adjacency matrix, Laplacian matrix, to be introduced in

Chapter 3) associated to digraphs are nonnegative. In this section, all matrices are

real and square. Main references are [8, 40].

A matrix A = (aij) ∈ Rn×n is nonnegative if all aij ≥ 0, and is positive if all

aij > 0. These are similarly defined for vectors. The spectrum of A, denoted by σ(A),

is the set of all eigenvalues; the spectral radius, ρ(A), is the maximum modulus of all

eigenvalues. Let A be nonnegative, and have constant row (resp. column) sums, then

ρ(A) is equal to the row (resp. column) sum. The well-known result below provides

an estimation for σ(A) [40, Theorem 6.1.1].
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Lemma 2.2. (Geršgorin) All the eigenvalues of a nonnegative matrix A are located

in the union of n discs:

n∪
i=1

{z ∈ C : |z − aii| ≤
n∑

j=1,j ̸=i

aij}.

A matrix A is said reducible if either n = 1, or there is a permutation matrix P

(resulting from permuting the rows of the identity matrix) such that

PAP T =

B C

0 D

 ,

where B, D are nonempty square matrices. Otherwise A is irreducible. A positive

matrix is always irreducible; the following fact [8, Theorem 2.7 of Chapter 2] charac-

terizes when a nonnegative matrix is so.

Lemma 2.3. A nonnegative matrix A = (aij) is irreducible if and only if the digraph

G(A) is strongly connected. Here G(A) is constructed from A with n nodes and with

an edge (i, j) if and only if aij > 0.

For nonnegative and irreducible matrices, the celebrated theorem [40, Theorem 8.4.4]

below states crucial properties of spectral radius.

Lemma 2.4. (Perron-Frobenius) If A is nonnegative and irreducible, then

(i) ρ(A) is a simple eigenvalue;

(ii) ρ(A) > 0, and has a positive eigenvector.

It is convenient to state here an easy corollary of the Perron-Frobenius Theorem.

Lemma 2.5. (cf. [35, Chapter XIII]) Let A be nonnegative and irreducible, and λ be

an eigenvalue of A. If there is a positive vector v such that Av = λv, then λ = ρ(A).

Finally, we turn to a special class of nonnegative matrices which we shall frequently

encounter. A nonnegative matrix A is said row stochastic if every row sums up to one,

column stochastic if every column sums up to one, and further doubly stochastic if it

is both row and column stochastic. The spectral radius of a row or column stochastic

matrix is 1; and the products of row (resp. column) stochastic matrices are again
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row (resp. column) stochastic matrices. By Lemma 2.4, if A is row (resp. column)

stochastic and irreducible, then the spectral radius 1 is a simple eigenvalue and a

corresponding right (resp. left) eigenvector is 1 := [1 · · · 1]T .



Chapter 3

Averaging on Static Digraphs

3.1 Introduction

In this chapter, we study multi-agent average consensus in its most fundamental

setting: Agents’s clocks are synchronized, and their states real valued. For this setup,

there has been an extensive and growing literature; many basic results can be found

in early work [9,42,51,56,61,65,79]. A common feature of the distributed algorithms

developed in these references is that individual agents are assumed to execute their

local protocols in a synchronized fashion (in the sense that they can act all together at

an arbitrary specified time), and be able to simultaneously sense and/or communicate

with all the neighbors within their interaction range. In particular, Olfati-Saber

and Murray [61] studied algorithms of such type to achieve average consensus on

digraphs, and justified that a balanced and strongly connected topology is necessary

and sufficient to guarantee convergence.

We generalize the result of [61] by proposing a novel synchronous algorithm, and

prove that it guarantees state averaging on arbitrary strongly connected digraphs. In

particular, the balanced topological requirement in [61] is dropped, and hence individ-

ual agents need not maintain identical amounts of flow-in and flow-out information.

The primary challenge of average consensus on arbitrary strongly connected digraphs

lies in that the state sum of the agents cannot be preserved in general, thereby causing

16
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a shift in the average value. To handle this problem, the key novelty in our approach

is to augment an additional variable for each agent, which we call “surplus”, whose

function is to record every state change of the associated agent; thus in effect, these

variables locally maintain the information of the amount of average shift. Surplus-

es are then communicated among peers across the network, and provided that the

topology is strongly connected, surplus information is accessible, either directly or

indirectly, by all the component agents.

We notice that references [7, 46] presented an alternative way of employing an

auxiliary variable to achieve averaging on general digraphs. The idea is based on

computing the stationary distribution for the Markov chain characterized by the a-

gent network. We note however that the algorithm is quite different from that of

consensus type. By contrast, our algorithm to be designed is consensus based, with

additional surplus variables to keep track of state updates. On the other hand, our

algorithm differs also from the usual ones [9, 42, 51, 56, 61, 65, 79] in that the associ-

ated matrices contain negative entries. Consequently for our analysis tools, besides

nonnegative matrix theory and algebraic graph theory, it is found that the matrix

perturbation theory is instrumental in analyzing the convergence properties. Specifi-

cally, the surpluses used in updating the states will be viewed as a perturbation term,

and it turns out that the states, being suitably perturbed, will eventually average

out. Finally, in [30, 31] the authors proposed a broadcast gossip algorithm, with an

additional variable augmented, to achieve average consensus on general digraphs. The

augmented variable is similar in mechanism to surplus, but the convergence to average

was not proved; by contrast, we provide a rigorous justification for our convergence

results.

The rest of this chapter is organized as follows. In Section 3.2 we formulate the

distributed average consensus problem. In Sections 3.3 and 3.4 we present our novel

solution algorithm, and justify that it guarantees state averaging on general strongly

connected digraphs. Further, in Section 3.5 we explore certain special graph topologies

and in Section 3.6 we provide numerical examples for demonstration.
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3.2 Problem Formulation

We model a network of n (> 1) agents by a digraph G = (V , E): Each node in

V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V ×V denotes

that agent j communicates to agent i (namely, the information flow is from j to i).

In this chapter we assume that the digraph G is static; that is, the communication

structure among agents is fixed. We will study dynamic, or time-varying, digraphs in

subsequent chapters.

At time k ∈ Z+ each agent i ∈ V has a scalar state xi(k) ∈ R; the aggregate state

is denoted by x(k) = [x1(k) · · · xn(k)]
T ∈ Rn. The average consensus problem aims at

designing distributed algorithms, where individual agents update their states using

only the local information of their neighboring agents in the digraph G such that every

state xi(k) eventually converges to the initial average value xa := 1Tx(0)/n.

To achieve state averaging on general digraphs, the main difficulty is that the

state sum 1Tx need not remain invariant, which can result in losing track of the

initial average xa. To deal with this problem, we propose associating to each agent i

an additional variable si(k) ∈ R, called surplus ; write s(k) = [s1(k) · · · sn(k)]T ∈ Rn

and set s(0) = 0. The function of surplus is to locally record the state changes of

individual agents such that 1T (x(k) + s(k)) = 1Tx(0) for all time k; in other words,

surplus keeps the quantity 1T (x + s) constant over time. The rules of how to utilize

and communicate surplus mark the distinctive feature of our averaging algorithm

compared to those in the literature [9, 42,51,56,61,65,79], as detailed in Section 3.3.

Definition 3.1. A network of agents achieves average consensus if for every initial

condition (x(0), 0), it holds that (x(k), s(k)) → (xa1, 0) as k → ∞.

Problem 3.1. Design a distributed algorithm such that the agents achieve average

consensus on general (strongly connected) digraphs.

To solve this problem, we will propose in Section 3.3 a surplus-based distributed

algorithm, under which we will justify in Section 3.4 that average consensus is achieved

for general digraphs.
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3.3 Distributed Algorithm

In this section, we first review the standard (discrete-time) consensus algorithm in the

literature [9, 42, 79]. We then propose our novel algorithm based on surplus, which

may be seen as an extension of the standard one.

3.3.1 Standard Algorithm

Consider a system of n agents each interacting with neighbors with the following

protocol [9, 42, 79]:

xi(k + 1) = xi(k) +
∑
j∈N+

i

aij(xj(k)− xi(k)), i ∈ V . (3.1)

Here N+
i is the set of in-neighbors of agent i, and aij are the updating weights such

that aij ∈ (0, 1) if j ∈ N+
i , aij = 0 otherwise, and

∑
j∈N+

i
aij < 1.

Define the adjacency matrix A of the digraph G by

A := [aij] ∈ Rn×n; (3.2)

namely the entries of A correspond to the updating weights. Then define the degree

matrix D by

D := diag(d1, . . . , dn), where di :=
n∑

j=1

aij. (3.3)

Thus the Laplacian matrix L is defined to be

L := D − A. (3.4)

One observes that L’s diagonal entries are nonnegative, off-diagonal entries nonpos-

itive, and row sums zero. With these matrices defined, the collective dynamics of n

agents can be written in a matrix form as

x(k + 1) = (I − L)x(k). (3.5)

We henceforth refer to Equation (3.5) the standard algorithm. It is easily seen that

the updating matrix I − L is nonnegative (by
∑

j∈N+
i
aij < 1), and every row sums

up to one; i.e., I − L is row stochastic.
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Figure 3.1: Illustrating example of 4 agents: topology G and neighbor sets.

Definition 3.2. A digraph G is balanced if for every i ∈ V ,
∑n

j=1 aij =
∑n

j=1 aji.

One readily verifies that the digraph G is balanced if and only if the matrix I −L

is column stochastic (therefore doubly stochastic). For the standard algorithm (3.5),

the fundamental convergence result is [61, 79]: A network of agents achieves average

consensus if and only if the digraph G is both strongly connected and balanced.

Remark 3.1. “Balanced”, together with “strongly connected”, provides a clean char-

acterization for average consensus under the standard algorithm (3.5). The balanced

requirement on topology may very well be strong, however, because it demands that

every agent keeps precisely identical amounts of input and output information. Even

though one supposes that a balanced network might be designed off line, the balance

could be easily destroyed by time delay, packet loss, or link failure in practice. Never-

theless a balanced topology is necessary for the algorithm (3.5) to average; therefore

we should, and will, explore a new algorithm, one that does not rely on the balanced

property to achieve average consensus.

Example 3.1. We illustrate that under an unbalanced digraph, the standard algo-

rithm (3.5) fails to achieve average consensus. Consider the network of 4 agents

with topology G and neighbor sets displayed in Fig. 3.1. Fixing i ∈ [1, 4], let

aij = 1/
(
card(N+

i ) + 1
)
for every j ∈ N+

i . One verifies that G is not balanced,

and computes the matrices L and I − L as follows:

L =



1/2 0 0 −1/2

−1/4 3/4 −1/4 −1/4

−1/3 0 2/3 −1/3

0 −1/3 −1/3 2/3


, I − L =



1/2 0 0 1/2

1/4 1/4 1/4 1/4

1/3 0 1/3 1/3

0 1/3 1/3 1/3


.
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Figure 3.2: Standard algorithm (3.5) fails to achieve average consensus on unbalanced

topology.

Observe that I − L is row stochastic, but not column stochastic. Now consider the

initial state x(0) = [1 2 3 4]T ; so the desired average is xa = 2.5. As displayed in

Fig. 3.2, one sees that the states indeed reach a consensus, the value of which is,

however, 2.72.

3.3.2 Surplus-Based Algorithm

Having revealed the dependence on balanced topology of the standard algorithm (3.5),

we embark on the design of a novel distributed algorithm, with the purpose to achieve

average consensus on arbitrary strongly connected digraphs.

Consider again the system of n agents represented by the digraph G. There are

three operations that every node i ∈ V performs at time k ∈ Z+.

(1) First (sending stage), node i sends its state information xi(k) and weighted surplus

bihsi(k) to each out-neighbor h ∈ N−
i ; here the sending weight bih is such that bih ∈

(0, 1) if h ∈ N−
i , bih = 0 otherwise, and

∑
h∈N−

i
bih < 1.

(2) Second (receiving stage), node i receives state information xj(k) and weighted

surplus bjisj(k) from each in-neighbor j ∈ N+
i .
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(3) Third (updating stage), node i updates its own state xi(k) and surplus si(k) as

follows:

xi(k + 1) = xi(k) +
∑
j∈N+

i

aij(xj(k)− xi(k)) + ϵsi(k), (3.6)

si(k + 1) =
(
(1−

∑
h∈N−

i

bih)si(k) +
∑
j∈N+

i

bjisj(k)
)
−
(
xi(k + 1)− xi(k)

)
. (3.7)

Here aij are the updating weights, and the parameter ϵ is a positive number which

adjusts the amount of surplus used to update the state.

Let B := [bih]
T ∈ Rn×n, where the entries are the sending weights (note that

the transpose in the notation is needed because h ∈ N−
i for bih). Define the matrix

S := (I − D̃) + B, where D̃ = diag(d̃1, . . . , d̃n) with d̃i =
∑n

h=1 bih. One verifies that

S is nonnegative (by
∑

h∈N−
i
bih < 1), and every column sums up to one; i.e., S is

column stochastic. As can be observed from (3.7), the matrix S captures the part of

update induced by sending and receiving surplus. Now write the iteration of states

(3.6) and surpluses (3.7) in a matrix form as

x(k + 1)

s(k + 1)

 = M

x(k)
s(k)

 , where M :=

I − L ϵI

L S − ϵI

 ∈ R2n×2n. (3.8)

Notice that (i) the matrix M has negative entries due to the presence of the Laplacian

matrix L in the (2, 1)-block; (ii) the column sums of M are equal to one, which

implies that the quantity x(k) + s(k) is a constant for all k ∈ Z+; and (iii) the state

evolution specified by the (1, 1)-block of M is the standard consensus algorithm (3.5).

We henceforth refer to (3.8) as the surplus-based algorithm, and will analyze its

convergence properties in Section 3.4.

Example 3.2. We demonstrate that the surplus-based algorithm (3.8) achieves av-

erage consensus on the unbalanced topology in Fig. 3.1. Fixing i ∈ [1, 4], let aij be

the same as in Example 3.1, and bih = 1/
(
card(N−

i ) + 1
)
for every h ∈ N−

i . One
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Figure 3.3: Surplus-based algorithm (3.8) achieves average consensus on unbalanced

topology.

computes that the matrix S as follows:

S =



1/3 0 0 1/4

1/3 1/2 1/3 1/4

1/3 0 1/3 1/4

0 1/2 1/3 1/4


;

so S is column stochastic. Then the matrix M is as follows:

M =



1/2 0 0 1/2 ϵ 0 0 0

1/4 1/4 1/4 1/4 0 ϵ 0 0

1/3 0 1/3 1/3 0 0 ϵ 0

0 1/3 1/3 1/3 0 0 0 ϵ

1/2 0 0 −1/2 1/3− ϵ 0 0 1/4

−1/4 3/4 −1/4 −1/4 1/3 1/2− ϵ 1/3 1/4

−1/3 0 2/3 −1/3 1/3 0 1/3− ϵ 1/4

0 −1/3 −1/3 2/3 0 1/2 1/3 1/4− ϵ



.

Observe that M has negative entries, and every column sums up to one. Set the

parameter ϵ = 0.25 and consider again the initial state x(0) = [1 2 3 4]T ; Fig. 3.3
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shows that every state converges to the desired average value 2.5, and every surplus

vanishes.

3.4 Convergence Results on General Digraphs

We present the central result of this chapter.

Theorem 3.1. Using the surplus-based algorithm (3.8) with the parameter ϵ > 0

sufficiently small, a network of agents achieves average consensus if and only if the

digraph G is strongly connected.

In other words, our new algorithm does not rely on balanced topology, as contrast-

ed with the standard algorithm (3.5). As a result, the graphical condition ensuring

average consensus is generalized to arbitrary strongly connected – a primary contri-

bution of this thesis. We should note, however, the assumption that ϵ is sufficiently

small, which will be seen crucial to guarantee convergence.

Before providing the proof of Theorem 3.1, we state a necessary and sufficient

condition for average consensus in terms of the spectrum of the matrix M .

Proposition 3.1. The surplus-based algorithm (3.8) achieves average consensus if

and only if 1 is a simple eigenvalue of M , and all other eigenvalues have moduli

smaller than one.

Proof. (Sufficiency) Since every column of M sums up to one, 1 is an eigenvalue of M

and [1T 1T ]T is a corresponding left eigenvector. Note also that M [1T 0]T = [1T 0]T ;

so [1T 0]T ∈ R2n is a right eigenvector corresponding to the eigenvalue 1. Write M in

Jordan canonical form as

M = V JV −1 =

[
y1 · · · y2n

]1 0

0 J ′



zT1
...

zT2n

 ,

where yi, zi ∈ C2n, i ∈ [1, 2n], are respectively the (generalized) right and left eigen-

vectors of M ; and J ′ ∈ C(2n−1)×(2n−1) contains the Jordan block matrices correspond-

ing to those eigenvalues with moduli smaller than one. For the eigenvalue 1 choose



Chapter 3. Averaging on Static Digraphs 25

y1 = [1T 0]T and z1 = (1/n)[1T 1T ]T ; thus zT1 y1 = 1. Now the kth power of M is

Mk = V JkV −1 = V

1 0

0 (J ′)k

V −1 → y1z
T
1 =

 1
n
11T 1

n
11T

0 0

 , as k → ∞.

Therefore x(k)
s(k)

 = Mk

x(0)
s(0)

→

 1
n
11T 1

n
11T

0 0


x(0)
s(0)


=

 1
n
11Tx(0)

0

 =

xa1

0

 , as k → ∞.

(Necessity) First we claim that the eigenvalue 1 of M is always simple. Suppose

on the contrary that the algebraic multiplicity of 1 equals two. The corresponding

geometric multiplicity, however, equals one; this can be shown by verifying rank(M −

I) = 2n − 1. Thus there exists a generalized right eigenvector u = [uT
1 uT

2 ]
T ∈ R2n

such that (M − I)2u = 0, and (M − I)u is a right eigenvector with respect to the

eigenvalue 1. Since [1T 0]T is also a right eigenvector corresponding to the eigenvalue

1, it must hold that

(M − I)u = c[1T 0]T , for some scalar c ̸= 0

⇒

−L ϵI

L S − I − ϵI


u1

u2

 = c

1
0


⇒

 −Lu1 + ϵu2 = c1

Lu1 + (S − I)u2 − ϵu2 = 0

⇒ (S − I)u2 = c1.

One may verify that rank(S−I) = n−1 but rank([S − I c1]) = n. Hence there is no

solution for u2, which in turn implies that the generalized right eigenvector u cannot

exist. This proves our claim.

Now suppose that there is an eigenvalue λ of M such that λ ̸= 1 and |λ| ≥ 1. But

this immediately implies that limk→∞ Mk does not exist (cf. [79]). Therefore, average

consensus cannot be achieved. �
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We are ready to prove Theorem 3.1. The necessity part will justify that the class of

strongly connected digraphs characterizes the existence of any distributed algorithm

that can solve average consensus. For the sufficiency part, let

M0 :=

I − L 0

L S

 and E :=

0 I

0 −I

 . (3.9)

Then M = M0 + ϵE, and we view M as being obtained by “perturbing” M0 via the

term ϵE. Concretely, we show that the eigenvalues λi of the unperturbed matrix M0

satisfy

1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2n|; (3.10)

and that after a small perturbation ϵE, the obtained matrix M has only a sim-

ple eigenvalue 1 and all other eigenvalues have moduli smaller than one. Hence by

Proposition 3.1, average consensus is achieved. It should be pointed out that, unlike

the standard algorithm (3.5), the tools in nonnegative matrix theory cannot be used

directly to analyze the spectrum of M owing to the existence of negative entries.

Proof of Theorem 3.1. (Necessity) Suppose that G is not strongly connected. Then

at least one node of G is not globally reachable. Let V∗
g denote the set of non-globally

reachable nodes, and write its cardinality card(V∗
g ) = r, r ∈ [1, n]. If r = n, i.e.

G does not have a globally reachable node, then G has at least two distinct closed

strong components (by Lemma 2.1). In this case, if the nodes in different components

have different initial states, then average consensus cannot be achieved. It is left to

consider r < n. Let Vg := V − V∗
g denote the set of all globally reachable nodes; thus

Vg is the unique closed strong component in G (again by Lemma 2.1). Consider an

initial condition (x(0), 0) such that all nodes in Vg have the same state c ∈ R, and not

all the states of the nodes in V∗
g equal c. Hence xa ̸= c. But no state or surplus update

is possible for the nodes in Vg because it is closed, and therefore average consensus

cannot be achieved.

(Sufficiency) First, we prove the assertion (3.10). Since M0 is block (lower) tri-

angular, its spectrum is σ(M0) = σ(I − L) ∪ σ(S). Recall that the matrices I − L

and S are row and column stochastic, respectively; so their spectral radii satisfy
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ρ(I − L) = ρ(S) = 1. Now owing to that G is strongly connected, I − L and S are

both irreducible by Lemma 2.3. Thus it follows from the Perron-Frobenius Theorem

(Lemma 2.4) that ρ(I−L) (resp. ρ(S)) is a simple eigenvalue of I−L (resp. S). This

implies (3.10).

Next, we will qualify the changes to the two eigenvalues λ1 = λ2 = 1 of M0 under

a small perturbation ϵE. For this we need to find their corresponding left and right

eigenvectors. One may quickly verify rank(M0−I) = 2n−2, and hence the geometric

multiplicity of this eigenvalue 1 equals two. Thus the matrix M0 can be written in

the following Jordan canonical form:

M0 = V JV −1 =

[
y1 y2 · · · y2n

]


λ1 0

0 λ2

0

0 J ′





zT1

zT2
...

zT2n


,

where yi, zi ∈ C2n, i ∈ [1, 2n], are respectively the (generalized) right and left eigen-

vectors of M0; and J ′ ∈ C(2n−2)×(2n−2) contains the Jordan block matrices correspond-

ing to λ3, . . . , λ2n. Also write J0 := diag(λ1, λ2). Choose

Y :=

[
y1 y2

]
=

 0 1

v2 −nv2

 , Z :=

zT1
zT2

 =

1T 1T

vT1 0

 .

Here v1 ∈ Rn is a left eigenvector of I − L with respect to ρ(I − L) such that it

is positive and scaled to satisfy vT1 1 = 1; and v2 ∈ Rn is a right eigenvector of S

corresponding to ρ(S) such that it is positive and scaled to satisfy 1Tv2 = 1. The

fact that positive eigenvectors v1 and v2 exist follows again from the Perron-Frobenius

Theorem (Lemma 2.4). With this choice one may check that ZY = I.

We now proceed to a perturbation analysis. It is well known that the eigenvalues of

a matrix are continuous functions of its entries ([10, Section VI.1], [71, Section IV.1]).

Hence for sufficiently small ϵ > 0, there must exist exactly two eigenvalues λ1(ϵ), λ2(ϵ)

of M corresponding respectively to λ1, λ2 of M0. Write J0(ϵ) := diag(λ1(ϵ), λ2(ϵ)),
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and denote the associated right eigenvectors by Y (ϵ) =

y11(ϵ) y12(ϵ)

y21(ϵ) y22(ϵ)

. It can be

verified that J0(ϵ) → J0 and Y (ϵ) → Y as ϵ → 0 [69, Section 2.8]. Then

MY (ϵ) = Y (ϵ)J0(ϵ)

⇒ M0X(ϵ) + ϵEX(ϵ) = Y (ϵ)J0(ϵ) (by M = M0 + ϵE)

⇒ ZM0Y (ϵ) + ϵZEY (ϵ) = ZY (ϵ)J0(ϵ) (left multiplying Z on both sides)

⇒ ZY (ϵ)J0(ϵ)− J0ZY (ϵ) = ϵZEY (ϵ) (by ZM0 = J0Z)

⇒

(λ1(ϵ)− λ1)1
T (y11(ϵ) + y21(ϵ)) (λ2(ϵ)− λ1)1

T (y12(ϵ) + y22(ϵ))

(λ1(ϵ)− λ2)v
T
1 y11(ϵ) (λ2(ϵ)− λ2)v

T
1 y12(ϵ)


= ϵ

 0 0

vT1 y21(ϵ) vT1 y22(ϵ)

 .

Equating the (2, 2) entries on both sides gives

vT1 y12(ϵ)
λ2(ϵ)− λ2

ϵ
= vT1 y22(ϵ).

Let ϵ → 0 in the above equation. Then the left hand side is vT1 y12(ϵ)(λ2(ϵ)− λ2)/ϵ →

vT1 1λ̇2 = λ̇2, where the derivative λ̇2 is given by λ̇2 := limϵ→0(λ2(ϵ) − λ2)/ϵ; the

existence of this derivative is due to that for the eigenvalue (λ1 = λ2 =)1 of M0,

its algebraic multiplicity equals its geometric multiplicity [69]. On the other hand,

the right hand side is vT1 y22(ϵ) → −nvT1 v2. As v1 and v2 are positive vectors, we

have λ̇2 < 0, which indicates that the eigenvalue λ2(ϵ) moves to the left along the

real axis when ϵ is small. Likewise, equating the (1, 1) entries on both sides yields

λ̇1 := limϵ→0(λ1(ϵ) − λ1)/ϵ = 0, showing that the eigenvalue λ1(ϵ) stays put. One

may also check that the (1, 2) and (2, 1) entries on both sides vanish as ϵ → 0. Hence

by continuity there must exist a positive δ1 such that λ1(δ1) = 1 and λ2(δ1) < 1.

On the other hand, by the eigenvalue continuity there exists a positive δ2 such that

|λi(δ2)| < 1 for all i ∈ [3, 2n]. Thus for any sufficiently small ϵ ∈ (0,min{δ1, δ2}), the

matrix M has a simple eigenvalue 1 and all other eigenvalues have moduli smaller

than one. Therefore, from Proposition 3.1, the conclusion that average consensus is

achieved follows. �
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Remark 3.2. (Convergence Speed) Assuming that the surplus-based algorithm (3.8)

converges to the initial average, the speed of its convergence is governed by the second

largest (in modulus) eigenvalue of the updating matrix M . We denote this particular

eigenvalue by λ∗
2, and refer to it as the convergence factor of the algorithm (3.8). Note

that λ∗
2 < 1 is equivalent to average consensus (by Proposition 3.1); and the value of

λ∗
2 depends not only on the digraph topology G but also on the algorithm parameter

ϵ. We will illustrate this latter point in Section 3.6.

3.4.1 Bound on Parameter ϵ

Having shown that the surplus-based algorithm (3.8) solves average consensus for

sufficiently small parameter ϵ, we now aim to give an upper bound on ϵ. For this, we

borrow a fact from matrix perturbation theory (e.g., [10,71]) which relates the size of

ϵ to the distance between perturbed and unperturbed eigenvalues. Below is the main

result of this investigation.

Proposition 3.2. Suppose that the digraph G is strongly connected. The surplus-

based algorithm (3.8) achieves average consensus if the parameter ϵ satisfies ϵ ∈ (0, ϵ̄),

where

ϵ̄ :=
1

(20 + 8n)n
(1− |λ3|)n, with λ3 as in (3.10). (3.11)

We stress that the above bound ϵ̄ ensures average consensus for arbitrary strongly

connected topologies. Due to the power n, however, the bound is rather conservative.

This power is unavoidable for any perturbation bound result with respect to general

matrices, as is well known in matrix perturbation literature [10,71]. In Section 3.5, we

will exploit structures of some special topologies, which yield less conservative bounds

on ϵ.

Some preliminaries will be presented first, based on which Proposition 3.2 follows

immediately. Henceforth in this subsection, the digraph G is assumed to be strongly

connected. We begin by introducing a metric for the distance between the spectrums

ofM0 andM ; hereM = M0+ϵE, withM0 and E in (3.9). Let σ(M0) := {λ1, . . . , λ2n}
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(where the numbering is the same as that in (3.10)) and σ(M) := {λ1(ϵ), . . . , λ2n(ϵ)}.

The optimal matching distance d (σ(M0), σ(M))) [10,71] is defined by

d (σ(M0), σ(M))) := min
π

max
i∈[1,2n]

|λi − λπ(i)(ϵ)|, (3.12)

where π is taken over all permutations of {1, . . . , 2n}. Thus if we draw 2n identical

circles centered respectively at λ1, . . . , λ2n, then d (σ(M0), σ(M))) is the smallest ra-

dius such that these circles include all λ1(ϵ), . . . , λ2n(ϵ). Here is an upper bound on

the optimal matching distance [10, Theorem VIII.1.5].

Lemma 3.1. d (σ(M0), σ(M))) ≤ 4 (||M0||∞ + ||M ||∞)1−1/n ||ϵE||1/n∞ .

Next, we are concerned with the eigenvalues λ3(ϵ), . . . , λ2n(ϵ) of M .

Lemma 3.2. If the parameter ϵ ∈ (0, ϵ̄) with ϵ̄ in (3.11), then |λ3(ϵ)|, . . . , |λ2n(ϵ)| < 1.

Proof. Since L = D − A and S = (I − D̃) + B, one can compute ||L||∞ =

2maxi∈[1,n] di < 2 and ||S||∞ < n. Then ||M0||∞ ≤ ||L||∞ + ||S||∞ < 2 + n and

||E||∞ ≤ 1. By Lemma 3.1,

d (σ(M0), σ(M)) ≤ 4 (2||M0||∞ + ϵ||E||∞)1−1/n (ϵ||E||∞)1/n

< 4 (4 + 2n+ ϵ)1−1/n ϵ1/n

< 4 (4 + 2n+ ϵ) ϵ1/n < 1− |λ3|.

The last inequality is due to ϵ < ϵ̄ in (3.11). Now recall from the proof of Theorem 3.1

that the unperturbed eigenvalues λ3, . . . , λ2n of M0 lie strictly inside the unit circle;

in particular, (3.10) holds. Therefore, perturbing the eigenvalues λ3, . . . , λ2n by an

amount less than ϵ̄, the resulting eigenvalues λ3(ϵ), . . . , λ2n(ϵ) will remain inside the

unit circle. �

It is left to consider the eigenvalues λ1(ϵ) and λ2(ϵ) of M . Since every column sum

of M equals one for an arbitrary ϵ, we obtain that 1 is always an eigenvalue of M .

Hence λ1(ϵ) must be equal to 1 for any ϵ. On the other hand, for λ2(ϵ) the following

is true.

Lemma 3.3. If the parameter ϵ ∈ (0, ϵ̄) with ϵ̄ in (3.11), then |λ2(ϵ)| < 1.
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Proof. First recall from the proof of Theorem 3.1 that λ2 = 1 and λ̇2 < 0; so for

sufficiently small ϵ > 0, it holds that |λ2(ϵ)| < 1. Now suppose that there exists

δ ∈ (0, ϵ̄) such that |λ2(δ)| ≥ 1. Owing to the continuity of eigenvalues, it suffices to

consider |λ2(δ)| = 1. There are three such possibilities, for each of which we derive a

contradiction.

Case 1: λ2(δ) is a complex number with nonzero imaginary part and |λ2(δ)| = 1.

SinceM is a real matrix, there must exist another eigenvalue λi(δ), for some i ∈ [3, 2n],

such that λi(δ) is a complex conjugate of λ2(δ). Then |λi(δ)| = |λ2(δ)| = 1, which is

in contradiction to that all the eigenvalues λ3(δ), . . . , λ2n(δ) stay inside the unit circle

as δ ∈ (0, ϵ̄) by Lemma 3.2.

Case 2: λ2(δ) = −1. This implies at least d (σ(M0), σ(M)) = 2, which contradicts

d (σ(M0), σ(M)) < 1− |λ3| < 1 when (3.11) holds.

Case 3: λ2(δ) = 1. This case is impossible because the eigenvalue 1 of M is always

simple, as we have justified in the necessity proof of Proposition 3.1. �

Summarizing Lemmas 3.2 and 3.3, we obtain that if the parameter ϵ ∈ (0, ϵ̄)

with ϵ̄ in (3.11), then λ1(ϵ) = 1 and |λ2(ϵ)|, |λ3(ϵ)|, . . ., |λ2n(ϵ)| < 1. Therefore,

by Proposition 3.1 the surplus-based algorithm (3.8) achieves average consensus; this

establishes Proposition 3.2.

3.4.2 Weighted Average Consensus

It may be natural to quest whether the surplus-based algorithm (3.8) can be adapted

to achieve consensus on some specified value other than the initial average. Here we

show that under mild assumptions, the algorithm (3.8) can be readily modified to

compute linear combinations of the initial states.

Consider a vector ṽ ∈ Rn such that ṽi ̸= 0 for all i and 1T ṽ = n. Let the

desired consensus value be x̃a := ṽTx(0)/n; this is a linear combination of the ini-

tial states where every one is (more or less) weighted. We say that a network of

agents achieves weighted average consensus if for every initial condition (x(0), 0),

(x(k), s(k)) → (x̃a1, 0) as k → ∞.



Chapter 3. Averaging on Static Digraphs 32

Now assume that each agent i knows its own weight ṽi, as well as the weights ṽh of

its out-neighbors h ∈ N−
i . Then revise the surplus iteration equation (3.7) as follows:

si(k + 1) =
(
(1− 1

ṽi

∑
h∈N−

i

ṽhbih)si(k) +
∑
j∈N+

i

bjisj(k)
)
−
(
xi(k + 1)− xi(k)

)
; (3.13)

thereby we obtain a modified surplus-based algorithm (cf. (3.8)):x(k + 1)

s(k + 1)

 = M̃

x(k)
s(k)

 , where M̃ :=

I − L ϵI

L S̃ − ϵI

 . (3.14)

Here the matrix S̃ is such that ṽT S̃ = ṽT .

Corollary 3.1. Using the modified surplus-based algorithm (3.14) with the parameter

ϵ > 0 sufficiently small, the agents achieve weighted average consensus if and only if

the digraph G is strongly connected.

Proof. Note that for the updating matrix M̃ , 1 is an eigenvalue with a left eigenvector

[ṽT ṽT ]T . The rest is the same as the proof for Theorem 3.1. �

To achieve consensus on some more general functions of the initial states, for

example the power or geometric mean [6, 60] which are nonlinear functions, it seems

necessary to introduce corresponding more general protocols than just linear ones in

the state and surplus update equations. Such an extension involves exploring new

tools for analysis, as in [24]; and it is an interesting direction we would like to pursue.

3.4.3 Continuous-Time Algorithm

We end this section with a brief account for the continuous-time counterpart of the

algorithm (3.8). Let t ∈ [0,∞) denote the continuous time index. Given a digraph

G = (V , E), for each node i ∈ V , the updating rule is as follows:

ẋi(t) =
∑
j∈N+

i

aij(xj(t)− xi(t)) + ϵsi(t), (3.15)

ṡi(t) =
(
−
∑
h∈N−

i

bihsi(t) +
∑
j∈N+

i

bjisj(t)
)
− ẋi(t). (3.16)
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Here the updating weight aij > 0 if j ∈ N+
i , and aij = 0 otherwise; the sending weight

bij > 0 if j ∈ N−
i , and bij = 0 otherwise. Different from those in the algorithm (3.8),

the weights here are allowed to be any positive numbers. Also the equations (3.15)

and (3.16) may be written in the matrix form asẋ(t)
ṡ(t)

 = Mc

x(t)
s(t)

 , where Mc =

−L ϵI

L (S − I)− ϵI

 ∈ R2n×2n. (3.17)

Note that the matrix Mc has zero column sums.

Corollary 3.2. Using the continuous-time algorithm (3.17) with the parameter ϵ > 0

sufficiently small, the agents achieve average consensus if and only if the digraph G is

strongly connected.

Proof. The necessity proof is the same as Theorem 3.1. Now letMc,0 :=

−L 0

L S − I


and E :=

0 I

0 −I

 as before. Then Mc = Mc,0 + ϵE; and for strongly connected di-

graphs the eigenvalues of Mc,0 satisfy λ1 = λ2 = 0, and λ3, . . . , λ2n with negative

real parts. We then conduct an analogous perturbation argument as in the proof of

Theorem 3.1, which yields that the matrix Mc has a simple eigenvalue 0 and all other

eigenvalues have negative real parts for sufficiently small ϵ. Moreover, corresponding

to the simple eigenvalue 0, a right eigenvector is y1 = [1T 0]T and a left eigenvector

z1 = (1/n)[1T 1T ]T . Thereforex(t)
s(t)

 = etMc

x(0)
s(0)

→ y1z
T
1

x(0)
s(0)

 =

 1
n
11Tx(0)

0

 =

xa1

0

 , as t → ∞.

�

3.5 Special Graph Topologies

We turn now to a special class of topologies – strongly connected and balanced di-

graphs – and investigate the required upper bound on the parameter ϵ. Furthermore,
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when these digraphs are restricted to symmetric or cyclic respectively, we derive less

conservative ϵ bounds for the surplus-based algorithm (3.8).

Given a digraph G = (V , E), its degree d is defined by d := maxi∈V card(N+
i ).

In the surplus-based algorithm (3.8) choose the updating and sending weights to be

respectively aij = 1/(2dn) and bij = 1/(dn), for every (j, i) ∈ E . This choice renders

the two matrices I − 2L and S identical, when the digraph G is balanced. We will see

that the equality I − 2L = S supports a similarity transformation in dealing with the

cyclic case below.

Lemma 3.4. Suppose that the parameter ϵ satisfies ϵ ∈ (0, 2), and the zeros of the

following polynomial for every µ ̸= 0 with |µ− 1/(2n)| ≤ 1/(2n) lie strictly inside the

unit circle:

p(λ) := λ2 + α1λ+ α0, (3.18)

where α0 := 2µ2−3µ−ϵ+1, α1 := 3µ+ϵ−2. Then the surplus-based algorithm (3.8)

achieves average consensus on strongly connected and balanced digraphs.

Proof. We analyze the spectral properties of the matrix M in terms of those of

the Laplacian matrix L. Let µi, i = 1, . . . , n, be the ith eigenvalue of L. Since

G is balanced and all the updating weights are aij = 1/(2dn), it follows from the

Gershgorin Theorem (Lemma 2.2) that |µi − 1/(2n)| ≤ 1/(2n). Further, as G is

strongly connected, by the Perron-Frobenius Theorem (Lemma 2.4) we get that µ1 = 0

is simple. Now substituting the equality S = I − 2L into (3.8) one obtains

M =

I − L ϵI

L I − 2L− ϵI

 .

Consider the characteristic polynomial of M :

det(λI −M) = det


(λ− 1)I + L −ϵI

−L (λ− 1 + ϵ)I + 2L




= det (((λ− 1)I + L)((λ− 1 + ϵ)I + 2L)− ϵL)

= det
(
(λ− 1)(λ− 1 + ϵ)I + 3(λ− 1)L+ 2L2

)
.
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Here the second equality is due to that (λ−1)I+L and −L commute [70]. By spectral

mapping one derives that the 2n eigenvalues of M can be obtained by solving the

following n equations:

(λ− 1)(λ− 1 + ϵ) + 3(λ− 1)µi + 2µ2
i = 0, i = 1, . . . , n. (3.19)

For µ1 = 0 we have from (3.19) that λ1 = 1 and λ2 = 1 − ϵ. Since ϵ ∈ (0, 2),

λ2 ∈ (−1, 1). Now fix i ∈ [2, n] so that µi ̸= 0 and |µi − 1/(2n)| ≤ 1/(2n). Note that

the left hand side of (3.19) can be arranged into the polynomial p(λ) in (3.18), whose

zeros are inside the unit circle. It follows that 1 is a simple eigenvalue of M , and

all other eigenvalues have moduli smaller than one. Therefore, by Proposition 3.1 we

conclude that average consensus is achieved. �

Now we investigate the values of ϵ that ensure the zeros of the polynomial p(λ) in

(3.18) inside the unit circle, which in turn guarantee average consensus on strongly

connected and balanced digraphs by Lemma 3.4. For this, we view the polynomial p(λ)

as interval polynomials [5] by letting µ take any value in the square: 0 ≤ Re(µ) ≤ 1/n,

−1/(2n) ≤ Im(µ) ≤ 1/(2n). Applying the bilinear transformation we obtain a new

family of interval polynomials:

p̃(γ) := (γ − 1)2p

(
γ + 1

γ − 1

)
= (1 + α0 + α1)γ

2 + (2− 2α0)γ + (1 + α0 − α1). (3.20)

Then by Kharitonov’s result for the complex-coefficient case, the stability of p̃(γ)

(its zeros have negative real parts) is equivalent to the stability of eight extreme

polynomials [5, Section 6.9], which in turn suffices to guarantee that the zeros of p(λ)

lie strictly inside the unit circle. Checking the stability of eight extreme polynomials

results in upper bounds on ϵ in terms of n. This is displayed in Fig. 3.4 as the solid

curve. We see that the bounds grow linearly, which is in contrast with the general

bound ϵ̄ in Proposition 3.2 that decays exponentially and is known to be conservative.

This is due to that, from the robust control viewpoint, the uncertainty of µ in the

polynomial coefficients becomes smaller as n increases.

Alternatively, we employ the Jury stability test [44] to derive that the zeros of the
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Figure 3.4: Upper bounds on parameter ϵ such that surplus-based algorithm (3.8)

achieves average consensus on general strongly connected balanced digraphs (solid

and dashed curves) and cyclic digraphs (dotted curve).

polynomial p(λ) are strictly inside the unit circle if and only if

β0 :=

∣∣∣∣∣∣∣
1 α0

ᾱ0 1

∣∣∣∣∣∣∣ > 0, β1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1 α0

ᾱ0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 α1

ᾱ0 ᾱ1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 ᾱ1

α0 α1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 ᾱ0

α0 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (3.21)

Here β0 and β1 turn out to be polynomials in ϵ of second and fourth order, respectively;

the corresponding coefficients are functions of µ and n. Thus selecting µ such that

µ ̸= 0 and |µ− 1/(2n)| ≤ 1/(2n), we can solve the inequalities in (3.21) for ϵ in terms

of n. Thereby we obtain the dashed curve in Fig. 3.4, each plotted point being the

minimum value of ϵ over 1000 random samples such that the inequalities in (3.21)

hold. This simulation confirms that the true bound on ϵ for the zeros of p(λ) to be

inside the unit circle is between the solid and dashed curves. Since the discrepancy of

these two curves is relatively small, it is suggested that our previous analysis based

on Kharitonov’s result is not very conservative.
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Here ends our discussion on ϵ bounds for arbitrary balanced (and strongly con-

nected) digraphs. In the sequel, we will further specialize the balanced digraph G to

be symmetric or cyclic, respectively, and provide analytic ϵ bounds less conservative

than (3.11) for the general case. In particular, the exponent n is not involved.

3.5.1 Connected Undirected Graphs

A digraph G = (V, E) is symmetric if (j, i) ∈ E implies (i, j) ∈ E . That is, G is

undirected.

Proposition 3.3. Consider a general connected undirected graph G. Then the

surplus-based algorithm (3.8) achieves average consensus if the parameter ϵ satisfies

ϵ ∈ (0, (1− (1/n))(2− (1/n)).

Proof. The symmetry of the undirected graph G results in the symmetry of its

Laplacian matrix L. So all the eigenvalues µi of L are real, and satisfy µ1 = 0 and

(∀i ∈ [2, n]) µi ∈ (0, 1/n] (G is connected). For µ1 = 0 we know from (3.19) that

λ1 = 1, and λ2 ∈ (−1, 1) since 0 < ϵ < (1− (1/n))(2− (1/n)) < 2. For µi ∈ (0, 1/n],

i ∈ [2, n], consider again the polynomial p(λ) in (3.18). According to the Jury stability

test for real-coefficient case [43], the zeros of p(λ) are strictly inside the unit circle if

and only if

1 + α0 + α1 > 0, 1 + α0 − α1 > 0, |α0| < 1.

Straightforward calculations show that these conditions hold provided ϵ ∈ (0, (1 −

(1/n))(2− (1/n)). Hence, the matrix M has a simple eigenvalue λ1 = 1 and all others

λ2, . . . , λ2n ∈ (0, 1). Therefore, by Proposition 3.1 the surplus-based algorithm (3.8)

achieves average consensus. �

It is noted that for connected undirected graphs, the upper bound on ϵ ensuring

average consensus grows as n increases. This characteristic is in agreement with that

of the bounds for the more general class of balanced digraphs as we observed in

Fig. 3.4.
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3.5.2 Cyclic Digraphs

A digraph G = (V , E) is cyclic if V = {1, . . . , n} and E = {(1, 2), (2, 3), . . . , (n −

1, n), (n, 1)}. So a cyclic digraph is strongly connected.

Proposition 3.4. Suppose that the digraph G is cyclic. Then the surplus-based

algorithm (3.8) achieves average consensus if the parameter ϵ satisfies

ϵ ∈

(
0,

√
2

3 +
√
5
(1− |λ3|)

)
, with λ3 as in (3.10). (3.22)

Further, in this case λ3 =
√

1− (1/n) + (1/(2n2)) + (1/n)(1− 1/(2n)) cos 2π/n.

Before providing the proof, we state a perturbation result for diagonalizable ma-

trices (e.g., [40, Section 6.3]). Recall that the matrix M in (3.8) can be written as

M = M0 + ϵE, with M0 and E in (3.9). Throughout this subsection, write λi(ϵ) for

the eigenvalues of M , and λi for those of M0.

Lemma 3.5. Suppose that M0 is diagonalizable; i.e., there exist a nonsingular matrix

V ∈ C2n×2n and a diagonal matrix J = diag(λ1, . . . , λ2n) such that M0 = V JV −1. If

λ(ϵ) is an eigenvalue of M , then there is an eigenvalue λi of M0, for some i ∈ [1, 2n],

such that |λ(ϵ)− λi| ≤ ||V ||2 ||V −1||2 ||ϵE||2.

In other words, every eigenvalue of the perturbed matrix M lies in a circle centered

at some eigenvalue of the unperturbed matrixM0 of the radius (||V ||2 ||V −1||2 ||ϵE||2).

We now present the proof of Proposition 3.4.

Proof of Proposition 3.4. Since the digraph G is cyclic, we derive its Laplacian

matrix L = circ(1/(2n), 0, . . . , 0,−1/(2n)) – a circulant matrix [27] with the first row

[1/(2n) 0 · · · 0 − 1/(2n)] ∈ R1×n. Let ω := e2πι/n with ι :=
√
−1. Then the eigen-

values µi of L are µi = (1/(2n))(1− ωi−1), i = 1, . . . , n. Rewrite the equation (3.19)

as (λ(ϵ) − 1)(λ(ϵ) − 1 + ϵ) + 3(λ(ϵ) − 1)µi + 2µ2
i = 0. Then for µ1 = 0, we have

λ1(ϵ) = 1 and λ2(ϵ) = 1 − ϵ, corresponding respectively to the eigenvalues λ1, λ2 of

M0. Evidently the upper bound in (3.22) is strictly smaller than 2; so λ2(ϵ) ∈ (−1, 1).
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We turn next to investigating the rest of the eigenvalues λ3(ϵ), . . . , λ2n(ϵ), for which

we employ Lemma 3.5. Let F denote the n× n Fourier matrix given by

F :=
1√
n



1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


.

Note that F is unitary, i.e., F−1 = F ∗ (the conjugate transpose of F ). It is a fact

that every circulant matrix can be (unitarily) diagonalized by F [27, Theorem 3.2.1].

Now let V :=

F 0

F F

, and consider

V −1M0V =

 F ∗ 0

−F ∗ F ∗


I − L 0

L S


F 0

F F


=

F ∗(I − L)F 0

0 F ∗SF

 .

The last equality is due to S = I − 2L. Hence M0 is diagonalizable via V , and its

spectrum is

σ(M0) = σ(I − L) ∪ σ(S) =

{
1− 1

2n
(1− ωi−1), 1− 1

n
(1− ωi−1) : i = 1, . . . , n

}
.

Also, by a direct calculation we get ||V ||2 = ||V −1||2 =
√
(3 +

√
5)/2 and ||E||2 =

√
2.

It then follows from Lemma 3.5 that for every eigenvalue λl(ϵ) of M there is an

eigenvalue λl′ of M0, l, l
′ ∈ [3, 2n], such that |λl(ϵ) − λl′| ≤ ||V ||2 ||V −1||2 ||ϵE||2 =(

(3 +
√
5)/2

)√
2 ϵ. So the upper bound of ϵ in (3.22) guarantees |λl(ϵ)−λl′ | < 1−|λ3|;

namely, the perturbed eigenvalues still lie within the unit circle. Summarizing the

above we have λ1(ϵ) = 1 and |λ2(ϵ)|, |λ3(ϵ)|, . . . , |λ2n(ϵ)| < 1; therefore, the surplus-

based algorithm (3.8) achieves average consensus by Proposition 3.1. Further, one
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Ga Gb Gc

Figure 3.5: Three examples of strongly connected but unbalanced digraphs.

computes that

|λ3| = max
i∈[2,n]

{∣∣∣1− 1

2n
(1− ωi−1)

∣∣∣, ∣∣∣1− 1

n
(1− ωi−1)

∣∣∣}
=
∣∣∣1− 1

2n
+

1

2n
ω
∣∣∣ =√1− 1

n
+

1

2n2
+

1

n

(
1− 1

2n

)
cos

2π

n
.

�

Finally, in Fig. 3.4 we plot the upper bound on ϵ in (3.22) for the class of cyclic

digraphs. We see that this bound decays as the number n of nodes increases, which

contrasts with the bound characteristic of the more general class of balanced digraphs.

This may indicate the conservativeness of our current approach based on perturba-

tion theory. Nevertheless, since the perturbation result used here is specific only to

diagonalizable matrices, the derived upper bound in (3.22) is less conservative than

the general one in (3.11).

3.6 Numerical Examples

Let us illustrate, by simulation, that the surplus-based algorithm (3.8) indeed con-

verges to the desired average value, as well as the corresponding convergence speed.

Example 3.3. Consider the three digraphs displayed in Fig. 3.5, with 10 nodes and

respectively 17, 29, and 38 edges. Note that all the digraphs are strongly connected,

and in the case of uniform weights they are unbalanced (indeed, no single node is

balanced). We apply the surplus-based algorithm (3.8) by setting uniform weights

a = 1/(2card(E)) and b = 1/card(E).
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Table 3.1: Convergence factor λ∗
2 with respect to different values of parameter ϵ.

ϵ = 0.2 ϵ = 0.7 ϵ = 2.15

Ga 0.9963 0.9993 1.0003

Gb 0.9951 0.9969 0.9985

Gc 0.9883 0.9930 0.9966
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Figure 3.6: Convergence paths of states and surpluses: Obtained by applying surplus-

based algorithm (3.8) with parameter ϵ = 0.7 on digraph Ga.

The convergence factor λ∗
2 (see Remark 3.2) for three different values of the pa-

rameter ϵ are summarized in Table 3.1. We see that small ϵ ensures convergence of the

algorithm (3.8) (λ∗
2 < 1), whereas large ϵ can lead to instability. Moreover, in those

converging cases the factor λ∗
2 decreases as the number of edges increases from Ga to

Gc, which indicates faster convergence when there are more communication channels

available for information exchange. We also see that the algorithm (3.8) is more ro-

bust on digraphs with more edges, in the sense that a larger range of values of ϵ is

allowed.

For a random initial state x(0) with the average xa = 0 and the initial surplus

s(0) = 0, we display in Fig. 3.6 the trajectories of both states and surpluses when
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Figure 3.7: Convergence factor λ∗
2 of surplus-based algorithm (3.8) with respect to

parameter ϵ.

the surplus-based algorithm (3.8) is applied on digraph Ga with parameter ϵ = 0.7.

Observe that asymptotically, state averaging is achieved and surplus vanishes.

Example 3.4. We demonstrate the influence of ϵ on the speed of convergence, specifi-

cally the convergence factor λ∗
2 (Remark 3.2). To reduce the effect of network topology

in this demonstration, we employ a type of random digraphs where an edge between

every pair of nodes can exist with probability 1/2, independent across the network

and invariant over time; we take only those that are strongly connected.

For the surplus-based algorithm (3.8), consider random digraphs of 50 nodes and

uniform weights a = b = 1/50. Fig. 3.7 displays the curve of convergence factor

λ∗
2 with respect to the parameter ϵ, each plotted point being the mean value of λ∗

2

over 100 random digraphs. To account for the trend of this curve, first recall from

the perturbation argument for Theorem 3.1 that the matrix M in (3.8) has two

(maximum) eigenvalues 1 when ϵ = 0, and small ϵ causes that one of them (denote

its modulus by λin) moves into the unit circle. Meanwhile, some other eigenvalues of

M inside the unit circle move outward; denote the maximum modulus among these

by λout. In our simulation it is observed that when ϵ is small, λ∗
2 = λin (> λout)
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and λin moves further inside as perturbation becomes larger; so λ∗
2 decreases (faster

convergence) as ϵ increases in the beginning. Since the eigenvalues move continuously,

there exists some ϵ such that λin = λout, corresponding to the fastest convergence

speed. After that, λ∗
2 = λout (> λin) and λout moves further outside as ϵ increases;

hence λ∗
2 increases and convergence becomes slower, and finally divergence occurs.



Chapter 4

Averaging on Dynamic Digraphs

4.1 Introduction

In the preceding chapter we studied multi-agent average consensus when the inter-

action structure among agents is static. This chapter progresses to explore a more

challenging, and more interesting, scenario where this structure is time-varying. For

this, we employ the dynamic digraph model introduced in Section 2.1. There can be

many practical factors causing an interaction topology time-varying. There are un-

predictable communication issues such as random packet loss, link failure, and node

malfunction. There can also be deterministic, supervisory switchings among different

modes of the network. In the sequel, we shall investigate average consensus under

both randomized and deterministic dynamic topologies.

First, we consider the randomized case. Randomization-based techniques have

been recently studied in the field of systems and control [75]. Here we adopt a simple

but compelling “gossip” algorithm [12], which provides an asynchronous approach

to treat average consensus. This is in contrast with the synchronized model studied

in Chapter 3. The original gossip algorithm [12] assumes that at each time instant,

exactly one agent wakes up, contacts only one of its neighbors selected at random,

and then these two agents average out their states. The graph model that the original

algorithm bases is undirected, and it turns out that average consensus is ensured as

44
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long as the topology is connected [12]. Since then, the gossip approach has been

widely employed [22, 45, 48, 81] in tackling average consensus on undirected graphs,

with additional constraints on quantized information flow; see also [41] for related

distributed computation problems in search engines.

We generalize the original gossip algorithm in [12] from undirected graphs to di-

graphs. Owing to unidirectional information flow, the generalization restricts that

only one agent (rather than one pair) is allowed to update its state at each time.

Consequently, the state sum of agents cannot be kept invariant during iterations. We

propose again augmenting surplus variables, one for each agent, to locally record state

updates, and for the new gossip algorithm, it is found that an arbitrary strongly con-

nected digraph in expectation is necessary and sufficient to achieve average consensus

in mean-square and (thus) almost surely. For the proof technique here, similar to the

previous chapter we will analyze the spectral properties of the corresponding updat-

ing matrix, and establish convergence results again by matrix perturbation theory.

We note that designing a gossip algorithm for digraphs was also reported in [29]; the

algorithm achieves consensus at some value, however, not at the average in general,

and the difference from the average is estimated. By contrast, our algorithm provably

ensures, by design, converging to the average.

The second part of this chapter is devoted to digraphs that vary in some deter-

ministic fashion. It will be seen that the joint connectivity notion (in Section 2.1) is

essential. This setup has been extensively studied in the literature [52, 53, 56, 61, 65];

in particular, Olfati-Saber and Murray [61] justified that for the standard algorith-

m (3.5) to achieve average consensus under a dynamic digraph, a sufficient condition is

that the digraph at every time instant is both strongly connected and balanced. Here

supported by surplus variables, we are able to largely weaken the required graphical

condition, and our result is that average consensus can be achieved if and only if the

dynamic digraph is jointly strongly connected. Thus for one, we drop the “balanced”

requirement completely; for the other, we need “strongly connected” only in a joint

sense. As to the proof, the previous matrix spectrum analysis is no longer applicable
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because the system under current setting is (deterministic) time-varying. Instead,

we resort to the Lyapunov method, as in [53, 56]. This involves deriving an appro-

priate Lyapunov function for state evolution, and proving that the function decays

monotonically.

The rest of this chapter is organized as follows. In Section 4.2 we formulate

the time-varying average consensus problem. In Section 4.3 we present a novel gossip

algorithm, and justify that it guarantees mean-square and almost sure state averaging

when the digraph is general strongly connected in expectation. In Section 4.4 we

present a new dynamic algorithm, and show that it ensures average consensus on

jointly strongly connected digraphs. Moreover, in Section 4.5 we provide numerical

examples for illustration.

4.2 Problem Formulation

Given a network of n (> 1) agents, we model their time-varying interconnection struc-

ture by a dynamic digraph G(k) = (V , E(k)), k ∈ Z+. The time-varying mechanism

can be either random or deterministic. In the random case, we adopt “gossiping” of

the following i.i.d. fashion: At each time k, exactly one edge (j, i) ∈ E(k) is activated

at random, independently from all earlier instants and with a constant, strictly pos-

itive probability pij ∈ (0, 1). Along this activated edge, node j ∈ V sends its state

and surplus to i, while i receives the information and makes a corresponding update.

According to the probability distribution, one may take expectation on G(k), denoted

by G = (V, E) where E contains all edges whose probability to be activated is nonzero.

Also, it is clear that
∑

(j,i)∈E pij = 1.

As before, for each agent i we denote by xi(k), si(k) ∈ R its state and surplus at

time k, respectively. Introduce the aggregate state x(k) = [x1(k) · · · xn(k)]
T ∈ Rn and

the aggregate surplus s(k) = [s1(k) · · · sn(k)]T ∈ Rn. As surplus variables record state

changes, we require 1T(x(k) + s(k)) = 1Tx(0) for all time k.

There are two problems to be solved in order. The first part will address randomly
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varying topologies of the gossip type.

Definition 4.1. A network of agents achieves

(i) mean-square average consensus if for every initial condition (x(0), 0), it holds that

E [||x(k)− xa1||22] → 0 and E [||s(k)||22] → 0 as k → ∞;

(ii) almost sure average consensus if for every initial condition (x(0), 0), it holds that

(x(k), s(k)) → (xa1, 0) as k → ∞ with probability one.

As defined, the mean-square convergence is concerned with the second moments

of the state and surplus evolution processes, whereas the almost sure convergence is

with respect to the corresponding sample paths. It should be noted that in general

there is no implication between these two convergence notions (e.g., [37, Section 7.2]).

Problem 4.1. Design a gossip algorithm such that the agents achieve mean-square

and almost sure average consensus on general digraphs.

For this problem, we will propose in Section 4.3 a surplus-based gossip algorithm,

under which we justify that both mean-square and almost sure average consensus can

be achieved when the expected digraph G is arbitrary strongly connected.

The second part is concerned with digraphs that vary in some deterministic way.

Problem 4.2. Design a dynamic algorithm such that the agents achieve average

consensus (in the sense of Definition 3.1) on general digraphs.

To solve this problem, we will propose in Section 4.4 a surplus-based dynamic

algorithm, under which we prove that average consensus may be achieved on jointly

strongly connected digraphs.

4.3 Convergence Results on Randomized Dynamic

Digraphs

In this section, we first present a surplus-based gossip algorithm, which extends those

in [12, 45, 48] from undirected graphs to digraphs. Then we justify mean-square and

almost sure convergence to average consensus for general topologies.
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4.3.1 Gossip Algorithm

Consider again a network of n agents modeled by a dynamic digraph G(k) = (V , E(k))

which varies in the gossip fashion. Suppose that at time k, exactly one edge (j, i) ∈

E(k) is activated (precisely (j, i) ∈ E and E(k) = {(j, i)}) at random with probability

pij ∈ (0, 1). Along this edge, the state xj(k) and surplus sj(k) are transmitted from

node j to i. The induced update is described as follows:

(1) For node i,

xi(k + 1) = xi(k) + wij(xj(k)− xi(k)) + ϵwijsi(k), (4.1)

si(k + 1) = si(k) + sj(k)− (xi(k + 1)− xi(k)) (4.2)

where the updating weight wij ∈ (0, 1) and the parameter ϵ > 0.

(2) For node j,

xj(k + 1) = xj(k), sj(k + 1) = 0.

(3) For other nodes l ∈ V − {i, j},

xl(k + 1) = xl(k), sl(k + 1) = sl(k).

We emphasize that in the whole network at time k, only node j sends information,

and only node i receives information and performs an update. Also note that the

sender j always sets its surplus variable to be zero, meaning that all of its surpluses

are transmitted to the receiver i.

Let Aji be the adjacency matrix of the digraph Gji = (V , {(j, i)}) given by Aji =

wijfif
T
j , where fi, fj are unit vectors of the standard basis of Rn. Then the Laplacian

matrix Lji is given by Lji := Dji − Aji, where Dji = wijfif
T
i . Thus Lji has zero row

sums, and the matrix I − Lji is row stochastic. Also define Sji := I − (fj − fi)f
T
j ; it

is clear that Sji is column stochastic.

With these matrices defined, the iteration of states and surpluses when edge (j, i)

is activated at time k can be written in the matrix form asx(k + 1)

s(k + 1)

 = M(k)

x(k)
s(k)

 , where M(k) = Mji :=

I − Lji ϵDji

Lji Sji − ϵDji

 . (4.3)
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We have several remarks regarding this algorithm. (i) The matrix M(k) has negative

entries due to the presence of the Laplacian matrix Lji in the (2, 1)-block. (ii) The

column sums of M(k) are equal to one, which implies that the quantity x(k)+ s(k) is

constant for all k. (iii) By the assumption on the probability distribution of activating

edges, the sequence M(k), k = 0, 1, . . ., is independent and identically distributed

(i.i.d.). Henceforth we refer to (4.3) as the gossip algorithm, and establish its mean-

square and almost sure convergence in the sequel.

Example 4.1. Consider again the network of four nodes in Fig. 3.1. We give two

instances of the matrix M(k) when edges (3, 2) and (2, 4) are activated respectively.

For the associated updating weights, let w23 = w42 = 1/2.

M32 =



1 0 0 0 0 0 0 0

0 1/2 1/2 0 0 ϵ/2 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1/2 −1/2 0 0 1− ϵ/2 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1



,

M24 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1/2 0 1/2 0 0 0 ϵ/2

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 −1/2 0 1/2 0 1 0 1− ϵ/2



.

We see that in both cases M(k) has negative entries, and every column sums up to

one.
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4.3.2 Convergence Results

We present the main result of this section.

Theorem 4.1. Using the gossip algorithm (4.3) with the parameter ϵ > 0 sufficiently

small, the agents achieve mean-square average consensus if and only if the expected

digraph G is strongly connected.

This result can be seen as an generalization of the one in [12] from undirected

graphs to digraphs. The problem of achieving average consensus on arbitrary digraphs

is, however, more difficult in that the state sum of agents need not be invariant at each

iteration. The key in our extension is to augment surplus variables which keep track

of individual state updates, thereby ensuring mean-square state averaging for general

strongly connected digraphs (cf. Theorem 3.1). We note again we the algorithm

parameter ϵ which specifies the amount of surpluses used in updating the states.

It turns out that the parameter ϵ again should be small enough in order to ensure

convergence.

Before proving Theorem 4.1, we need to establish two preliminary results. The

first is a necessary and sufficient condition for mean-square average consensus char-

acterized by the spectrum of the matrix E [M(k)⊗M(k)], where ⊗ stands for the

Kronecker product. Since the matrices M(k) are i.i.d., we denote E [M(k)⊗M(k)]

by E [M ⊗M ]. This result corresponds to Proposition 3.1 for the surplus-based al-

gorithm (3.8) in Chapter 3.

Proposition 4.1. The gossip algorithm (4.3) achieves mean-square average consensus

if and only if 1 is a simple eigenvalue of E [M ⊗M ], and all other eigenvalues have

moduli smaller than one.

Proof. (Sufficiency) Define the consensus error e(k), k ≥ 0, as

e(k) :=

x(k)
s(k)

−

xa1

0

 ∈ R2n. (4.4)

We must show that E
[
e(k)T e(k)

]
→ 0 as k → ∞. Since 1T (x(k)+s(k)) = 1Tx(0) for

every k ≥ 0, e(k) is orthogonal to [1T 1T ]T (i.e., [1T 1T ]e(k) = 0). Also it is easy to
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check e(k + 1) = M(k)e(k); thus e(k + 1)e(k + 1)T = M(k)e(k)e(k)TM(k)T . Collect

the entries of e(k)e(k)T , drawn column wise, into a vector ẽ(k) ∈ R4n2
. It then suffices

to show that E [ẽ(k)] → 0 as k → ∞.

Now it follows that ẽ(k+1) = (M(k)⊗M(k)) ẽ(k) (cf. [12]). Hence E [ẽ(k + 1)|ẽ(k)] =

E [M ⊗M ] ẽ(k), and condition repeatedly to obtain E [ẽ(k)] = E [M ⊗M ]k ẽ(0).

Note that every column of E [M ⊗M ] sums up to one, and

E [M ⊗M ]


1
0

⊗

1
0


 =

1
0

⊗

1
0

 ;

so 1 is an eigenvalue of E [M ⊗M ], with [1T 1T ]T ⊗ [1T 1T ]T and [1T 0]T ⊗ [1T 0]T

as associated left and right eigenvectors, respectively. Write E [M ⊗M ] in Jordan

canonical form as

E [M ⊗M ] = V JV −1 =

[
y1 · · · y4n2

]1 0

0 J ′



zT1
...

zT4n2

 ,

where J ′ contains the Jordan block matrices corresponding to those eigenvalues with

moduli smaller than one. For the eigenvalue 1 choose y1 = [1T 0]T ⊗ [1T 0]T and

z1 = 1/n2[1T 1T ]T ⊗ [1T 1T ]T ; thus zT1 y1 = 1. Then the kth power of E [M ⊗M ] is

E [M ⊗M ]k = V JkV −1 = V

1 0

0 (J ′)k

V −1 → y1z
T
1 , as k → ∞.

Therefore we obtain

E [ẽ(k)] → y1z
T
1 ẽ(0) = y1

2n∑
i=1

(
ei(0)

2n∑
j=1

ej(0)

)
= y1

2n∑
i=1

ei(0) · 0 = 0,

where the second equality is due to e(k) ⊥ [1T 1T ]T .

(Necessity) Suppose E
[
e(k)T e(k)

]
→ 0 as k → ∞. Then E [ei(k)

2] → 0 for all i.

It thus follows from the Cauchy-Schwartz inequality (e.g., [37]) that E [|ei(k)ej(k)|]2 ≤

E [ei(k)
2]E [ej(k)

2] → 0, for every i, j ∈ [1, 2n]. This implies E [ẽ(k)] → 0; so

limk→∞ E [M ⊗M ]k ẽ(0) = 0. Also, it is known [79] that limk→∞ E [M ⊗M ]k ex-
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ists if and only if there is a nonsingular V such that

E [M ⊗M ] = V JV −1 =

[
y1 · · · y4n2

]Iκ 0

0 J ′



zT1
...

zT4n2

 ,

where κ ∈ [1, 2n] and ρ(J ′) < 1. Hence limk→∞ E [M ⊗M ]k ẽ(0) =
(∑κ

i=1 yiz
T
i

)
ẽ(0) =

0. Now suppose κ > 1. Choose as before z1 = 1/n2[1T 1T ]T ⊗ [1T 1T ]T , and recall

zT1 e(0) = 0. We know from the structure of J that for every j ∈ [2, κ], zj is linearly

independent of z1, which indicates zTj e(0) ̸= 0 and consequently
(∑κ

i=1 yiz
T
i

)
ẽ(0) ̸= 0.

Therefore κ = 1, i.e., the eigenvalue 1 of E [M ⊗M ] is simple and all others have

moduli smaller than one. �

The second preliminary is on the spectral properties of the following four matrices

E [(I − L)⊗ (I − L)], E [(I − L)⊗ S], E [S ⊗ (I − L)], and E [S ⊗ S].

Lemma 4.1. Suppose that the expected digraph G = (V , E) is strongly connected.

Then each of the four matrices E [(I − L)⊗ (I − L)], E [(I − L)⊗ S], E [S ⊗ (I − L)],

and E [S ⊗ S] has a simple eigenvalue 1 and all other eigenvalues with moduli smaller

than one.

Proof. First observe that all the four matrices are nonnegative, for I − Lji and Sji

are for every (j, i) ∈ E . Then since (I−Lji)1 = 1 and 1TSji = 1T for every (j, i) ∈ E ,

a short calculation yields the following:

E [(I − L)⊗ (I − L)] (1⊗ 1) = (1⊗ 1);

E [(I − L)⊗ S] (1⊗ v2) = (1⊗ v2);

(1T ⊗ vT1 )E [S ⊗ (I − L)] = (1T ⊗ vT1 );

(1T ⊗ 1T )E [S ⊗ S] = (1T ⊗ 1T ).

Here v1 is positive such that vT1 E [I − L] = vT1 and vT1 1 = 1, and v2 is positive

such that E [S] v2 = v2 and 1Tv2 = 1. Thus each matrix has an eigenvalue 1, and

the corresponding right or left eigenvector is positive. In what follows, it will be

shown that all the four matrices are irreducible. Then the conclusion will follow from

Lemmas 2.4 and 2.5.
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We first prove that E [(I − L)⊗ (I − L)] is irreducible, which is equivalent to that

the digraph Ĝ = (V̂ , Ê) corresponding to this matrix is strongly connected, where

V̂ := V × V = {(i, i′) : i, i′ ∈ V}. Arrange the nodes in V̂ so that V̂ = V1 ∪ · · · ∪ Vn,

where Vp = {(p, 1), . . . , (p, n)} for every p ∈ [1, n]. Now since E [(I − L)⊗ (I − L)] =∑
(j,i)∈E pij(I−Lji)⊗(I−Lji), the digraph Ĝ is the union of the digraphs corresponding

to pij(I−Lji)⊗(I−Lji). Note that each pij(I−Lji)⊗(I−Lji) gives rise to (i) an edge

from (p, j) to (p, i) in Vp for every p ∈ [1, n], and (ii) edges from some nodes in Vj to

some nodes in Vi. Owing to that G is strongly connected, the union of the above edges

yields, for every i, j ∈ [1, n], (i) a directed path from (p, i) to (p, j) in Vp for every

p ∈ [1, n], and (ii) directed paths from some nodes in Vi to some nodes in Vj. This

implies that there is a directed path from (p, i) to (q, j) for every p, q, i, j ∈ [1, n], i.e.,

Ĝ is strongly connected, and hence E [(I − L)⊗ (I − L)] is irreducible by Lemma 2.3.

By a similar argument, we derive that the digraphs corresponding toE [(I − L)⊗ S],

E [S ⊗ (I − L)], and E [S ⊗ S] are all strongly connected. Therefore they are also ir-

reducible. �

We are now ready to provide the proof of Theorem 4.1. The necessity argument

is the same as Theorem 3.1. Below is the sufficiency part.

Sufficiency proof of Theorem 4.1. By Proposition 4.1 it suffices to show that the

matrix E [M ⊗M ] has a simple eigenvalue 1, and all other eigenvalues with moduli

smaller than one. Let M0(k) :=

I − L(k) 0

L(k) S(k)

 and F (k) :=

0 D(k)

0 −D(k)

; from
(4.3) we have M(k) = M0(k) + ϵF (k). Then write

E [M ⊗M ] = E [(M0 + ϵF )⊗ (M0 + ϵF )]

= E [M0 ⊗M0] + ϵE [M0 ⊗ F + F ⊗M0 + F ⊗ ϵF ]

= E

{I − L 0

L S

⊗

I − L 0

L S

}+ ϵE

{I − L 0

L S

⊗

0 D

0 −D

+

0 D

0 −D

⊗

I − L 0

L S

+

0 D

0 −D

⊗ ϵ

0 D

0 −D

}.
Let p ∈ [1, 4n], and pn := {(p− 1)n+1, . . . , pn}. Consider the following permutation
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of the columns of E [M ⊗M ]:

{n, 3n, . . . , (2n− 1)n; 2n, 4n, . . . , 2nn;

(2n+ 1)n, (2n+ 3)n, . . . , (4n− 1)n; (2n+ 2)n, (2n+ 4)n, . . . , 4nn}.

Denoting by P the corresponding permutation matrix (which is orthogonal), one

derives that

P TE [M ⊗M ]P = P TE [M0 ⊗M0]P + ϵP TE [M0 ⊗ F + F ⊗M0 + F ⊗ ϵF ]P

=: M̂0 + ϵF̂ ,

where

M̂0 := E



(I − L)⊗ (I − L) 0 0 0

(I − L)⊗ L (I − L)⊗ S 0 0

L⊗ (I − L) 0 S ⊗ (I − L) 0

L⊗ L L⊗ S S ⊗ L S ⊗ S


,

F̂ := E



0 (I − L)⊗D D ⊗ (I − L) D ⊗ ϵD

0 −(I − L)⊗D D ⊗ L D ⊗ (S − ϵD)

0 L⊗D −D ⊗ (I − L) (S − ϵD)⊗D

0 −L⊗D −D ⊗ L D ⊗ (ϵD − S)− S ⊗D


.

Based on the above similarity transformation, we henceforth analyze the spectral

properties of the matrix M̂0+ϵF̂ . For this, we resort again to a perturbation argument,

which proceeds similarly to the one for Theorem 3.1. First, it follows from Lemma 4.1

that the eigenvalues of the matrix M̂0 satisfy

1 = λ̂1 = λ̂2 = λ̂3 = λ̂4 > |λ̂5| ≥ · · · ≥ |λ̂4n2 |.

For the eigenvalue 1, the geometric multiplicity equals four; this can be shown by

verifying rank(M̂0−I) = 4n2−4. Thus the matrix M̂0 can be written in the following
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Jordan canonical form:

M̂0 = V JV −1 =

[
y1 y2 y3 y4 · · · y4n2

]



λ̂1 0 0 0

0 λ̂2 0 0

0 0 λ̂3 0

0 0 0 λ̂4

0

0 J ′





zT1

zT2

zT3

zT4
...

zT4n2


,

where yi, zi ∈ C4n2
, i ∈ [1, 4n2], are respectively the (generalized) right and left

eigenvectors of M̂0; and J ′ contains the Jordan block matrices corresponding to

λ̂5, . . . , λ̂4n2 . Also write J0 := diag(λ̂1, λ̂2, λ̂3, λ̂4). Now let v1 be a positive vector such

that vT1 E [I − L] = vT1 and vT1 1 = 1, and v2 a positive vector such that E [S] v2 = v2

and 1Tv2 = 1. Then choose

Y :=

[
y1 y2 y3 y4

]
=



0 0 0 1⊗ 1

0 0 1⊗ nv2 −1⊗ nv2

0 nv2 ⊗ 1 0 −nv2 ⊗ 1

nv2 ⊗ nv2 −nv2 ⊗ nv2 −nv2 ⊗ nv2 nv2 ⊗ nv2


,

Z :=



zT1

zT2

zT3

zT4


=



1
n
1T ⊗ 1

n
1T 1

n
1T ⊗ 1

n
1T 1

n
1T ⊗ 1

n
1T 1

n
1T ⊗ 1

n
1T

1
n
1T ⊗ vT1 0 1

n
1T ⊗ vT1 0

vT1 ⊗ 1
n
1T vT1 ⊗ 1

n
1T 0 0

vT1 ⊗ vT1 0 0 0


.

With this choice, it is readily checked that ZY = I.

Next, we qualify the changes of the four eigenvalues λ̂1 = λ̂2 = λ̂3 = λ̂4 = 1 of M̂0,

under a small perturbation ϵF̂ . Since eigenvalues are continuous functions of matrix

entries, for sufficiently small ϵ > 0 there must exist exactly four eigenvalues λ̂1(ϵ),

λ̂2(ϵ), λ̂3(ϵ), and λ̂4(ϵ) of M̂0 + ϵF̂ corresponding respectively to λ̂1, λ̂2, λ̂3, and λ̂4

of M̂0. Write J0(ϵ) := diag(λ̂1(ϵ), λ̂2(ϵ), λ̂3(ϵ), λ̂4(ϵ)), and denote the associated right
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eigenvectors by

Y (ϵ) =



y11(ϵ) y12(ϵ) y13(ϵ) y14(ϵ)

y21(ϵ) y22(ϵ) y23(ϵ) y24(ϵ)

y31(ϵ) y32(ϵ) y33(ϵ) y34(ϵ)

y41(ϵ) y42(ϵ) y43(ϵ) y44(ϵ)


.

It can be verified that J0(ϵ) → J0 and Y (ϵ) → Y as ϵ → 0 [69, Section 2.10]. Then

(M̂0 + ϵF̂ )Y (ϵ) = Y (ϵ)J0(ϵ)

⇒ M̂0Y (ϵ) + ϵF̂Y (ϵ) = Y (ϵ)J0(ϵ)

⇒ ZM̂0Y (ϵ) + ϵZF̂Y (ϵ) = ZY (ϵ)J0(ϵ) (left multiplying Z on both sides)

⇒ ZY (ϵ)J0(ϵ)− J0ZY (ϵ) = ϵZF̂Y (ϵ). (by ZM̂0 = J0Z)

Equating the four diagonal entries on both sides of the last equation above, one derives

that

(
1

n
1T ⊗ 1

n
1T
)
(y11(ϵ) + y21(ϵ) + y31(ϵ) + y41(ϵ))

λ̂1(ϵ)− λ̂1

ϵ
= 0,(

vT1 ⊗ 1

n
1T
)
(y12(ϵ) + y32(ϵ))

λ̂2(ϵ)− λ̂2

ϵ
=

(
1

n
1T ⊗ vT1 E [D]

)
(y22(ϵ) + y42(ϵ)),(

1

n
1T ⊗ vT1

)
(y13(ϵ) + y23(ϵ))

λ̂3(ϵ)− λ̂3

ϵ
=

(
vT1 E [D]⊗ 1

n
1T
)
(y33(ϵ) + y43(ϵ)),

(
vT1 ⊗ vT1

)
y14(ϵ)

λ̂4(ϵ)− λ̂4

ϵ
=
(
vT1 ⊗ vT1

) (
E [(I − L)⊗D] y24(ϵ)

+ E [D ⊗ (I − L)] y34(ϵ) + E [D ⊗ ϵD] y44(ϵ)
)
.

Let ϵ → 0. Then the left hand sides are

(
1

n
1T ⊗ 1

n
1T
)
(y11(ϵ) + y21(ϵ) + y31(ϵ) + y41(ϵ))

λ̂1(ϵ)− λ̂1

ϵ

→
(
1

n
1T ⊗ 1

n
1T
)
(nv2 ⊗ nv2)

˙̂
λ1(0) =

˙̂
λ1(0),(

vT1 ⊗ 1

n
1T
)
(y12(ϵ) + y32(ϵ))

λ̂2(ϵ)− λ̂2

ϵ
→
(
vT1 ⊗ 1

n
1T
)
(nv2 ⊗ 1)

˙̂
λ2(0) =

˙̂
λ2(0),(

1

n
1T ⊗ vT1

)
(y13(ϵ) + y23(ϵ))

λ̂3(ϵ)− λ̂3

ϵ
→
(
1

n
1T ⊗ vT1

)
(1⊗ nv2)

˙̂
λ3(0) =

˙̂
λ3(0),

(
vT1 ⊗ vT1

)
y14(ϵ)

λ̂4(ϵ)− λ̂4

ϵ
→
(
vT1 ⊗ vT1

)
(1⊗ 1)

˙̂
λ4(0) =

˙̂
λ4(0),



Chapter 4. Averaging on Dynamic Digraphs 57

where
˙̂
λi(0) := limϵ→0(λ̂i(ϵ)− λ̂i)/ϵ, i = 1, 2, 3, 4; and the right hand sides are

0,(
1

n
1T ⊗ vT1 E [D]

)
(y22(ϵ) + y42(ϵ)) →

(
1

n
1T ⊗ vT1 E [D]

)
(−nv2 ⊗ nv2) = −nvT1 E [D] v2 < 0,(

vT1 E [D]⊗ 1

n
1T
)
(y33(ϵ) + y43(ϵ)) →

(
vT1 E [D]⊗ 1

n
1T
)
(−nv2 ⊗ nv2) = −nvT1 E [D] v2 < 0,

(
vT1 ⊗ vT1

)
(E [(I − L)⊗D] y24(ϵ) + E [D ⊗ (I − L)] y34(ϵ) + E [D ⊗ ϵD] y44(ϵ))

→
(
vT1 ⊗ vT1

)
(E [(I − L)⊗D] (−1⊗ nv2) + E [D ⊗ (I − L)] (−nv2 ⊗ 1))

=
(
vT1 ⊗ vT1

)
(−1⊗ E [D]nv2 − E [D]nv2 ⊗ 1) = −2nvT1 E [D] v2 < 0.

So one obtains that
˙̂
λ1(0) = 0 and

˙̂
λ2(0),

˙̂
λ3(0),

˙̂
λ4(0) < 0. This implies that when

ϵ is small, λ̂1(ϵ) stays put, and λ̂2(ϵ), λ̂3(ϵ), λ̂4(ϵ) move to the left along the real

axis. Hence by continuity, there exists a positive δ1 such that λ1(δ1) = 1 and λ2(δ1),

λ3(δ1), λ4(δ1) < 1. On the other hand, by the eigenvalue continuity there exists a

positive δ2 such that |λi(δ2)| < 1 for all i ∈ [5, 4n2]. Therefore for any sufficiently

small ϵ ∈ (0,min{δ1, δ2}), the matrix M̂0+ ϵF̂ has a simple eigenvalue 1 and all other

eigenvalues with moduli smaller than one. �

Remark 4.1. (Convergence Speed) Assuming that the gossip algorithm (4.3) con-

verges to the initial average in mean square, the speed of its convergence is determined

by the second largest (in modulus) eigenvalue of the matrix E [M ⊗M ]. We denote

this particular eigenvalue by λ
(g)
2 , and refer to it as the convergence factor of algo-

rithm (4.3). Note that λ
(g)
2 < 1 is equivalent to mean-square average consensus (by

Proposition 4.1), and λ
(g)
2 depends not only on the graph topology G but also on the

algorithm parameter ϵ.

Finally, we treat almost sure average consensus. Note that the gossip algorith-

m (4.3) can be viewed as a jump linear system, with i.i.d. system matrices M(k), k ∈

Z+. For such systems, it is known (e.g., [26, Corollary 3.46]) that almost sure con-

vergence can be implied from mean-square convergence. Therefore the convergence

result on almost sure state averaging is an immediate consequence of Theorem 4.1.
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Corollary 4.1. Using the gossip algorithm (4.3) with the parameter ϵ > 0 sufficiently

small, the agents achieve almost sure average consensus if and only if the expected

digraph G is strongly connected.

4.4 Convergence Results on Deterministic Dynam-

ic Digraphs

We turn now to dynamic digraphs G(k) = (V , E(k)) that vary in some deterministic

way. First, we present a surplus-based dynamic algorithm, which is an extension of

(3.8). Then we prove that it achieves average consensus when G(k) is jointly strongly

connected, thereby generalizing the result of [61].

4.4.1 Dynamic Algorithm

In the algorithm, there are three operations that every node i performs at time k ∈ Z+.

First (sending stage), node i sends its state information xi(k) and weighted surplus

bih(k)si(k) to each out-neighbor h ∈ N−
i (k). Second (receiving stage), node i receives

state information xj(k) and weighted surplus bji(k)sj(k) from each in-neighbor j ∈

N+
i (k). Third (updating stage), node i updates its own state xi(k) and surplus si(k)

as follows:

xi(k + 1) = xi(k) + ci(k)
∑

j∈N+
i (k)

aij(k)(xj(k)− xi(k)) + ϵi(k)si(k), (4.5)

si(k + 1) =
(
(1−

∑
h∈N−

i (k)

bih(k))si(k) +
∑

j∈N+
i (k)

bji(k)sj(k)
)
−
(
xi(k + 1)− xi(k)

)
.

(4.6)

The parameters used in Eqs. (4.5) and (4.6) are required to satisfy the following items,

for every i, j, h ∈ V and every k ∈ Z+:

(P1) amount of surplus ϵi(k) ∈ (0, 1) used for state update.

(P2) updating weights aij(k) ∈ (0, 1) if j ∈ N+
i (k), aij(k) = 0 otherwise, and∑

j∈N+
i (k) aij(k) < 1.
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(P3) sending weights bih(k) ∈ (0, 1) if h ∈ N−
i (k), bih(k) = 0 otherwise, and∑

h∈N−
i (k) bih(k) < 1−ϵi(k). The last inequality says that the amount of surplus

sent to out-neighbors should be strictly less than the total minus that used for

state update.

(P4) switching parameters ci(k) = 1 if
∑

j∈N+
i (k) aij(k)(xj(k) − xi(k)) ≤ 0, and

ci(k) = 0 otherwise. The switching rule means that whenever a node determines

to make a positive state update based on the information from in-neighbors, it

may use only its surplus for that update.

(P1)-(P4) will enable desired properties of the proposed algorithm. In particular,

(P3) and (P4) will be used to establish that all the surpluses are nonnegative; see

Lemma 4.2 below. Also, one verifies that 1T (x(k) + s(k)) = 1Tx(0) for every k ∈ Z+.

Define the adjacency matrix A(k) of the digraph G(k) by A(k) := [ci(k)aij(k)].

Then the Laplacian matrix L(k) is defined as L(k) := D(k) − A(k), where D(k) =

diag(d1(k), . . . , dn(k)) with di(k) =
∑n

j=1 ci(k)aij(k). It is easy to see that L(k)

has nonnegative diagonal entries, nonpositive off-diagonal entries, and zero row sums.

Consequently the matrix I−L(k) is nonnegative (by
∑

j∈N+
i (k) aij(k) < 1 in (P2)), and

every row sums up to one; namely I−L(k) is row stochastic. Also, let B(k) := [bih(k)]
T

(note that the transpose in the notation is needed because h ∈ N−
i (k) for bih(k)).

Define the matrix S(k) := (I − D̃(k)) + B(k), where D̃(k) = diag(d̃1(k), . . . , d̃n(k))

with d̃i(k) =
∑n

h=1 bih(k). Then S(k) is nonnegative (by
∑

h∈N−
i (k) bih < 1 − ϵi(k) in

(P3) and ϵi(k) ∈ (0, 1) in (P1)), and every column sums up to one; that is, S(k) is

column stochastic. As can be observed from Eq. (4.6), S(k) captures the part of update

induced by sending and receiving surplus. Finally, let E(k) := diag(ϵ1(k), . . . , ϵn(k)).

With the above matrices defined, the iteration of states Eq. (4.5) and surpluses

Eq. (4.6) can be written in a matrix form asx(k + 1)

s(k + 1)

 = M(k)

x(k)
s(k)

 , where M(k) :=

I − L(k) E(k)

L(k) S(k)− E(k)

 ∈ R2n×2n.

(4.7)
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Notice that the column sums of M(k) are equal to one (here S(k) being column s-

tochastic is crucial), which implies that the quantity x(k) + s(k) is a constant for

every k ∈ Z+. Henceforth we refer to (4.7) as the dynamic algorithm, and show its

convergence in the sequel. Some other useful implications derived from this algorith-

m (4.7) are collected in the following lemma. Define the minimum and maximum

states, m(x) and m(x), by

m(x) := min
i∈V

xi, m(x) := max
i∈V

xi. (4.8)

Lemma 4.2. In the dynamic algorithm (4.7), the following properties hold:

(i) Surplus si(k) ≥ 0, for every i ∈ V and every k ∈ Z+.

(ii) Minimum state m(x) is non-decreasing, i.e., m(x(k1)) ≤ m(x(k2)) if k1 ≤ k2.

(iii) Minimum state m(x(k)) ≤ xa for every k ∈ Z+; and m(x(k)) = xa implies

(∀i ∈ V) xi(k) = xa and si(k) = 0, i.e., average consensus.

Proof. (i) We show this property by induction on the time index k. For the base

case k = 0, we have si(0) = 0 for all i. Now suppose that si(k) ≥ 0, k > 0, for all i.

According to Eqs. (4.5) and (4.6) we derive

si(k + 1) =
(
(1−

∑
h∈N−

i (k)

bih(k))si(k) +
∑

j∈N+
i (k)

bji(k)sj(k)
)

−
( ∑

j∈N+
i (k)

ci(k)aij(k)(xj(k)− xi(k)) + ϵi(k)si(k)
)

=
(
1−

∑
h∈N−

i (k)

bih(k)− ϵi(k)
)
si(k) +

∑
j∈N+

i (k)

bji(k)sj(k)

−
∑

j∈N+
i (k)

ci(k)aij(k)(xj(k)− xi(k)).

It then follows from (P3), (P4), and the induction hypothesis that si(k + 1) ≥ 0 for

all i. This completes the induction.

(ii) Let k ∈ Z+ be arbitrary, and i ∈ V be such that xi(k) = m(x(k)). Then it

must hold that
∑

j∈N+
i (k) aij(k)(xj(k)−xi(k)) ≥ 0. Thus ci(k) = 0 by (P4). Therefore
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xi(k + 1) = xi(k) + ϵi(k)si(k) ≥ xi(k). This proves that the minimum state cannot

decrease.

(iii) Suppose on the contrary that m(x(k)) > xa for some k. This implies that

1Tx(k) + 1T s(k) > nxa + 1T s(k). But since 1Tx(k) + 1T s(k) = 1Tx(0) = nxa, one

obtains 1T s(k) < 0, a contradiction to the property (i). Hence we conclude that

m(x(k)) ≤ xa for all k. And when m(x(k)) = xa, we must also have m(x(k)) = xa

owing again to (i). Therefore xi(k) = xa and si(k) = 0 for all i. �

4.4.2 Convergence Results

Recall from Chapter 2 that G(k) is jointly strongly connected if there exists a finite

K ∈ Z+ such that for every k0 ∈ Z+, the union digraph G([k0, k0 + K]) is strongly

connected. Our main result of this section is this:

Theorem 4.2. Using the dynamic algorithm (4.7), a network of agents achieves av-

erage consensus if and only if the dynamic digraph G(k) is jointly strongly connected.

Comparing our derived graphical condition with the one in [61], we drop the

balanced requirement at every moment on one hand, and need strongly connected

property only in a joint sense on the other. We also point out that the time-varying

parameter ϵ is not required to be sufficiently small, as contrasted with Theorems 3.1

and 4.1.

We proceed to the proof of Theorem 4.2, for which we rely on the following Lya-

punov result (cf. [56, Theorem 4 and Remark 5]). For any given xa, let

X (xa) := {(x, s) : 1T (x+ s)/n = xa, s ≥ 0}. (4.9)

Lemma 4.3. Consider the dynamic algorithm (4.7). Suppose that continuous func-

tions V : X (xa) → R+ and δ : X (xa) → R+ satisfy the following conditions:

(i) V is bounded on bounded subsets of X (xa), and positive definite with respect to

the average consensus point (xa1, 0) (i.e., V (xa1, 0) = 0 and V (x, s) > 0 if (x, s) ̸=

(xa1, 0));
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(ii) δ is also positive definite with respect to the average consensus point (xa1, 0) (i.e.,

δ(xa1, 0) = 0 and δ(x, s) > 0 if (x, s) ̸= (xa1, 0));

(iii) there exists a finite κ ∈ Z+ such that for every (x(k), s(k)) ∈ X (xa),

V (x(k + κ), s(k + κ))− V (x(k), s(k)) ≤ −δ(x(k), s(k)), k ∈ Z+.

Then for every initial condition (x(0), 0) ∈ X (xa), it holds that (x(k), s(k)) → (xa1, 0)

as k → ∞.

For the proof of Lemma 4.3, refer to [56]. In the sequel, we will construct two

functions that satisfy the conditions in Lemma 4.3. First consider the function V (x, s),

(x, s) ∈ X (xa) in (4.9), defined by

V (x, s) :=
1T (x+ s)

n
−m(x). (4.10)

Clearly V depends continuously on (x, s). Since 1T (x(k) + s(k))/n = 1Tx(0)/n = xa

for all k, we obtain by (ii), (iii) of Lemma 4.2 that V (x, s) is non-increasing (i.e.,

V (x(k1), s(k1)) ≥ V (x(k2), s(k2)) if k1 ≤ k2) thus bounded, and positive definite with

respect to the average consensus point (xa1, 0) (i.e., V (xa1, 0) = 0 and V (x, s) > 0 if

(x, s) ̸= (xa1, 0).

Second, for a given κ ∈ Z+ define the function δκ(x, s), (x, s) ∈ X (xa) in (4.9), by

δκ(x(k), s(k)) := inf
(x(k),s(k)),...,(x(k+κ),s(k+κ))

V (x(k), s(k))− V (x(k + κ), s(k + κ)),

(4.11)

where the infimum is taken over all sequences of the solutions of (4.7) over the time

interval [k, k + κ].

Lemma 4.4. The function δκ(x, s) defined in (4.11) is continuous.

Proof. For given k, κ ∈ Z+, consider an arbitrary sequence (x(k), s(k)), (x(k +

1), s(k + 1)), . . . , (x(k + κ), s(k + κ)) satisfyingx(k + 1)

s(k + 1)

 = M(k)

x(k)
s(k)

 , . . . ,

x(k + κ)

s(k + κ)

 = M(k + κ− 1)

x(k + κ− 1)

s(k + κ− 1)

 .
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First, we show thatM(l), l = k, . . . , k+κ, is a continuous function of (x, s). According

to Eqs. (4.5) and (4.6), it suffices to show that every function xi : R2n → R, i ∈ V ,

is continuous at an arbitrary point (x∗, s∗) satisfying
∑

j∈N+
i
aij(x

∗
j − x∗

i ) = 0 (the

boundary of switching). Let (x, s) be any point sufficiently close to (x∗, s∗) and

satisfy
∑

j∈N+
i
aij(xj − xi) > 0 (i.e., ci = 0). Then

lim
(x,s)→(x∗,s∗)

xi(x, s) = lim
(x,s)→(x∗,s∗)

xi + ϵisi = x∗
i + ϵis

∗
i .

On the other hand, let (x, s) be any point again sufficiently close to (x∗, s∗) but satisfy∑
j∈N+

i
aij(xj − xi) < 0 (i.e., ci = 1). Then

lim
(x,s)→(x∗,s∗)

xi(x, s) = lim
(x,s)→(x∗,s∗)

xi +
∑
j∈N+

i

aij(xj − xi) + ϵisi

= x∗
i +

∑
j∈N+

i

aij(x
∗
j − x∗

i ) + ϵis
∗
i = x∗

i + ϵis
∗
i .

The above derivations prove that lim(x,s)→(x∗,s∗) xi(x, s) exists, and is equal to xi(x
∗, s∗).

Hence the function xi(·, ·) is continuous.

Second, the sequence (x(k), s(k)), (x(k + 1), s(k + 1)), . . . , (x(k + κ), s(k + κ))

depends continuously on (x(k), s(k)). This is because the functionM(l), l = k, . . . , k+

κ, is continuous, and there is only a finite number of possible switching sequences of

κ−1 digraphs. Thus, it follows from (4.10) that the expression V (x(k), s(k))−V (x(k+

κ), s(k+κ)) depends continuously on (x(k), s(k)). Finally, by the definition of (4.11),

we conclude that the function δκ(x, s) is continuous. �

Now from (4.11), one may easily see that the function δκ(x, s) = 0 if V (x, s) = 0;

so δκ(xa1, 0) = 0. The following result will be vital, which asserts that there always

exists a finite κ ∈ Z+ such that the function δκ(x, s) is positive definite with respect

to the average consensus point (xa1, 0), provided that the network topology is jointly

strongly connected.

Lemma 4.5. Suppose that the dynamic digraph G(k) is jointly strongly connected.

There exists a finite κ ∈ Z+ such that if V (x, s) is strictly positive, then δκ(x, s) is

also strictly positive.



Chapter 4. Averaging on Dynamic Digraphs 64

Lemma 4.5 indicates that the function δκ(x, s) > 0 for (x, s) ̸= (xa1, 0). We

postpone the proof of Lemma 4.5, and provide now the proof of Theorem 4.2.

Proof of Theorem 4.2. (Sufficiency) Suppose that G(k) is jointly strongly connect-

ed. Then it follows from Lemmas 4.4 and 4.5 that the function δκ defined in (4.11)

and the function V defined in (4.10) satisfy the conditions in Lemma 4.3. Therefore

average consensus is achieved.

(Necessity) Suppose that G(k) is not jointly strongly connected. Namely for every

K there exists k0 such that the union digraph G([k0, k0+K]) is not strongly connected.

Thus during this interval [k0, k0 + K], there are some nodes not globally reachable;

denote the number by r ∈ [1, n]. First, if r = n, then G([k0, k0 + K]) has at least

two distinct closed strong components, say V1 and V2 (by Lemma 2.1). Consider a

state-surplus pair (x(k0), 0) such that the nodes in V1 have states a, those in V2 have

states b, and a ̸= b. Then no update will occur, and therefore average consensus

cannot be achieved. Second, when r < n, we denote by Vg the set of all globally

reachable nodes. Then Vg is the unique closed strong component in G([k0, k0 + K])

(again by Lemma 2.1). Consider a state-surplus pair (x(k0), 0) such that the nodes

in Vg have states a, those in V − Vg have states b, and a ̸= b. Then no update will

occur for the states in Vg, and therefore average consensus cannot be achieved. �

Finally we prove Lemma 4.5.

Proof of Lemma 4.5. Fix an arbitrary time k0 ∈ Z+, and denote by µ := m(x(k0))

the minimum state at this time. Assume µ < xa (i.e., average consensus is not yet

reached); thus V (x(k0)) is strictly positive. It must be shown that δκ(x(k0)) is also

strictly positive, for some finite κ ∈ Z+. Define a set a(k), k ≥ k0, by

a(k) := {i ∈ V : xi(k) = µ}. (4.12)

Then a(k) is the set of nodes whose states are equal to µ at time k ≥ k0. First,

owing to the state update Eq. (4.5), together with (P2) and (P4), any xj(k) > µ

cannot decrease to µ in finite time. This implies a(k + 1) ⊆ a(k), k ≥ k0. Next, we

will establish that when the topology G(k) is jointly strongly connected of period K,

there exists κ̃(K) ∈ Z+ such that a(k + κ̃(K)) is strictly contained in a(k), k ≥ k0
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(that is, a(k + κ̃(K)) has strictly less nodes than a(k)). For this, the following claim

is crucial, which asserts that positive surpluses can diffuse across the network under

jointly strongly connected topology.

Claim. Suppose that at time k ≥ k0 there are r ∈ [1, n−1] surpluses strictly positive,

say s1(k), . . . , sr(k) > 0, and sr+1(k) = · · · = sn(k) = 0. Then si(k + (n − r)K) > 0,

for every i ∈ V .

To prove the claim, we introduce another set b(k), k ≥ k0, given by

b(k) := {i ∈ V : si(k) > 0}. (4.13)

By the assumption, b(k) is a proper subset of V (namely, b(k) ̸= ∅,V). First, owing to

the surplus update Eq. (4.6), together with (P1) and (P3), any strictly positive surplus

cannot decay to zero in finite time. This indicates b(k) ⊆ b(k+1), k ≥ k0. Next, since

G(k) is jointly strongly connected, there is an instant k̄ in the interval [k, k+K] such

that a directed edge (h, j) exists, for some h ∈ b(k) and some j ∈ V−b(k). Then node

j receives surplus of the amount bij(k̄)si(k̄) > 0, and hence b(k) is strictly contained in

b(k+K). Repeating this argument leads us to the conclusion that b(k+(n−r)K) = V,

which shows the claim.

Now for k ≥ k0 we distinguish three cases. (1) b(k) = V . Under jointly strongly

connected topology, there is a directed edge (h, j), h ∈ V − a(k) and j ∈ a(k),

for some time k̄ ∈ [k, k + K]. Then by Eq. (4.5) and (P4) we have xj(k̄ + 1) =

xj(k̄)+ ϵj(k̄)sj(k̄) > xj(k̄) ≥ xj(k). So a(k+K) is strictly contained in a(k). (2) b(k)

is a proper subset of V . It follows from the above claim that b(k + (n − r)K) = V.

Then by the same argument as in case (1) we obtain that a(k + (n − r + 1)K) is

strictly contained in a(k). (3) b(k) = ∅. Owing again to jointly strongly connected

topology, there is a directed edge (h, j), with xh(k̄) < m(k) and xj(k̄) = m(k), for

some time k̄ ∈ [k, k + K]. Then by Eqs. (4.5), (4.6), and (P4) we have sj(k̄ + 1) =

−(xj(k̄ + 1) − xj(k̄)) = −ajh(k̄)(xh(k̄) − xj(k̄)) > 0, and thereby b(k + K) = {j}.

Now applying the derivation in case (2) leads us to that a(k + (n + 1)K) is strictly

contained in a(k). Summarizing the above three cases, and letting κ̃ = (n+ 1)K, we

obtain that a(k + κ̃) is strictly contained in a(k).
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Table 4.1: Convergence factor λ
(g)
2 with respect to different values of parameter ϵ.

ϵ = 0.2 ϵ = 0.7 ϵ = 2.15

Ga 0.9963 1.0003 1.0020

Gb 0.9951 0.9969 1.0000

Gc 0.9883 0.9930 0.9993
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Figure 4.1: Convergence factor λ
(g)
2 of gossip algorithm (4.3) versus parameter ϵ.

Finally, since there are at most n − 1 nodes in a(k0), for κ := (n − 1)κ̃ we have

a(k0 + κ) = ∅. This implies µ < m(x(k0 + κ)), and thus V (x(k0)) > V (x(k0 + κ)) by

the definition of V (·) in (4.10). Therefore by (4.11), δκ(x(k0)) is strictly positive with

κ = (n− 1)(n+ 1)K. �

4.5 Numerical Examples

We provide simulations to illustrate the convergence results of both gossip and dy-

namic algorithms.

Example 4.2. Consider again the three unbalanced digraphs in Fig. 3.5 We apply the

gossip algorithm (4.3), with uniform weight w = 1/2 and probability p = 1/card(E).

The convergence factor λ
(g)
2 (see Remark 4.1) for three different values of the parameter
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Figure 4.2: Sample paths of states: Obtained by applying gossip algorithm (4.3) with

parameter ϵ = 0.7 on digraphs Ga, Gb, and Gc.
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Figure 4.3: Periodically time-varying topology: a b c d a b c d · · · .

ϵ are summarized in Table 4.1. We see again that small ϵ ensures convergence of the

gossip algorithm (4.3) (λ
(g)
2 < 1), whereas large ϵ can lead to instability. Also as in

Example 3.4, we plot the trend of λ
(g)
2 as ϵ value increases in Fig. 4.1, which reflects

the influence of ϵ on convergence speed. Observe that the trend is very similar to the

one in Fig. 3.7 for the surplus-based algorithm (3.8).

For a random initial state x(0) with the average xa = 0 and the initial surplus

s(0) = 0, we display in Fig. 4.2 the state trajectories when the gossip algorithm (4.3)

is applied on digraph Ga, Gb, and Gc with parameter ϵ = 0.7. While convergence fails

on Ga (λ
(g)
2 = 1.0003), asymptotic state averaging is achieved on Gb and Gc.

Example 4.3. We turn now to illustrating the convergence of the dynamic algorith-

m (4.7). Consider the periodically time-varying digraph G(k) = (V , E(k)) displayed in

Fig. 4.3. No single digraph is strongly connected or balanced, but one quickly verifies
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Figure 4.4: Periodically time-varying topology: Convergence trajectories of states and

surpluses.

that G(k) is jointly strongly connected. We apply the algorithm (4.7) by choosing

ϵ = aij = bij = 1/4 for all edges (j, i). This choice satisfies the requirements (P1)-

(P3). For the initial state x(0) = [−10 5 5 10]T , the state and surplus trajectories

are displayed in Fig. 4.4. Observe that every state converges to the desired average

0, and every surplus is always nonnegative and vanishes eventually.



Chapter 5

Quantized Consensus and

Averaging on Random Digraphs

5.1 Introduction

In this and next chapters, we embark on a new, and more realistic, setup (in con-

trast, in particular, with the basic one investigated in Chapter 3) to study multi-agent

consensus and averaging problems. In this setup, agents’ individual actions are asyn-

chronous : there does not exist a global clock to which all agents may refer when

executing their local commands; and their states are quantized : this is necessary es-

pecially when communication channels between agents are digital and of limited date

rate, e.g., wireless networks. The setup change, as we will see, makes many previously

employed tools not applicable, including nonnegative matrix theory and matrix spec-

trum analysis. Thus new methods must be sought, and we find finite Markov chain

theory is instrumental for analysis in the current setting.

To describe asynchronous behavior of a network of agents, as in Chapter 4 we

employ again the gossip randomization model [12,22,29,45,48]. This model specifies

that, in the case of digraphs, at each time exactly one agent updates its state based

on the information transmitted from only one of its neighbors. On the other hand,

to model quantization effect, following [45] we assume at the outset that the states

69
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are integer-valued, an abstraction that subsumes a class of quantization effect (e.g.,

uniform quantization). We note that most work dealing with quantization has con-

centrated on the scenario where agents have real-valued states but can transmit only

quantized values through limited rate channels (see, e.g., [22, 23, 48]). By contrast,

our assumption is suited to the case where the states are stored in physical memories

that are also of finite capacity, as in [45,57].

The central investigation in this chapter is to derive connectivity conditions on

digraphs that ensure both general consensus (where the final consensus value is not

specified a priori) and average consensus. First, for general consensus we present a

class of algorithms, by which we derive a necessary and sufficient condition on digraph

connectivity that guarantees convergence to some common state. This result extends

those in [11, 51, 74] from real-valued to quantized states. Second, for averaging we

propose a novel class of algorithms based again on surplus, and derive that an arbitrary

strongly connected digraph (as in the preceding chapters) is necessary and sufficient

to ensure convergence to the quantized average value. This result extends the one

in [45] from undirected graphs to digraphs; the extension is challenging because with

digraphs of gossip type, the state sum, and hence the average, need not be invariant at

each iteration. Also, the graphical condition we find is weaker than those in [23, 74],

since we do not require maintaining symmetric or balanced topologies in random

time-varying networks. As a tradeoff, however, the convergence rate of the proposed

algorithm may not be fast, for which we shall discuss in detail in Chapter 6. Lastly, our

result is scalable compared to [22,33,57] in the sense that the true (quantized) average

is always achieved regardless of the number of agents. These points of improvement

come with a cost in communication, which can be, nevertheless, relaxed to two bits

in addition to the integer state in the transmission at each time.

The rest of this chapter is organized as follows. First, we formulate both general

and average consensus problems in Section 5.2, and then present their solutions in

Sections 5.3 and 5.4, respectively. Further expositions of our solution to average con-

sensus are given in Section 5.5, where we discuss two featured elements; and a modified
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averaging algorithm is proposed in Section 5.6 with the purpose of reducing compu-

tation burden. Finally, illustrative numerical examples are provided in Section 5.7.

The material in this chapter has appeared in [17,18].

5.2 Problem Formulation

Consider a network of n (> 1) agents modeled by a digraph G = (V , E). Owing

to quantization in information flow, we assume that at time k ∈ Z+, each agent

has an integer-valued state xi(k) ∈ Z, i ∈ V ; the aggregate state is denoted by

x(k) = [x1(k) · · · xn(k)]
T ∈ Zn. We will design algorithms with which every agent

updates its state such that all xi(k) eventually converge to a common value.

An important feature of distributed networks is that agents acting locally need not

be precisely synchronized by a common, global clock. To address this asynchronism

we model the communication graph in such a way that the agents “gossip” with one

another at random. Specifically, at each time instant k exactly one edge, say (j, i),

is activated independently from all earlier instants and with a time-invariant, strictly

positive probability pji ∈ (0, 1) such that
∑

(j,i)∈E pji = 1. Along this activated edge,

node j sends information to i, while i receives the information and makes an update

accordingly.

In the first part of this chapter, we consider the general consensus problem as

described below. Let the subset C of Zn be the set of consensus states:

C := {x : x1 = · · · = xn}. (5.1)

Definition 5.1. The network of agents achieves quantized consensus almost surely if

for every initial condition x(0), there exist K and x∗ ∈ C such that x(k) = x∗ for all

k ≥ K with probability one.

Problem 5.1. Design a distributed algorithm and find suitable connectivity such

that agents achieve quantized consensus almost surely.

For this problem, in Section 5.3 we will propose a class of algorithms, under which
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we derive a necessary and sufficient graphical condition that guarantees almost sure

quantized consensus.

In the second part, we extend the above problem to average consensus by further

requiring that the consensus value be the average of the initial state sum. Formally,

let S := x(0)T1. Hence the average of the initial states is S/n, a number that need

not be an integer in general. We can, however, always write S = nL + R, where L

and R are both integers with 0 ≤ R < n. Thus, either L or L+1 (the latter if R > 0)

may be viewed as an integer approximation of the average S/n. Henceforth we refer

to xave := L1 or (L+ 1)1 as the true (quantized) average.

To ensure convergence to the average, the algorithms reported in the literature

(e.g., [45, 61]) rely on a key property that the state sum xT1 remains invariant at

each iteration. Unfortunately, this property in general fails in our gossip digraph

setup where only one agent is allowed to update its state at each time. To overcome

this difficulty, we again propose associating to each agent a surplus variable to record

the changes in individual states; then the agents communicate these records to their

neighbors such that this important information can be utilized for state updates.

The rules of how to use these surpluses mark the distinctive feature of the averaging

algorithm for integer-valued states; the concrete description is deferred to Section 5.4.

Formally, let the surplus of agent i ∈ V at time k be si(k) ∈ Z; thus the aggregate

surplus is s(k) = [s1(k) · · · sn(k)]T ∈ Zn, the initial value of which is set to be s(0) =

[0 · · · 0]T . As described, the surplus is introduced to make the quantity (x + s)T1

invariant during iterations, i.e., for each k ≥ 0,

(x(k) + s(k))T1 = (x(0) + s(0))T1 = nL+R. (5.2)

Consequently, sT1 = R (≥ 0) if x = L1, and R−n (< 0) if x = (L+1)1. Now define

the set A of the average consensus states, which is a subset of Zn × Zn, by

A :=

 AL, if R = 0;

AL ∪ AL+1, if 0 < R < n,
(5.3)
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where

AL := {(x, s) : xi = L & si ≥ 0, i = 1, ..., n},

AL+1 := {(x, s) : xi = L+ 1 & si ≤ 0, i = 1, ..., n}.

Definition 5.2. The network of agents is said to achieve quantized averaging almost

surely if for every initial condition (x(0), 0), there exist K and (x∗, s∗) ∈ A such that

(x(k), s(k)) = (x∗, s∗) for all k ≥ K with probability one.

It is worth noting that our definition of average consensus differs from that in [45]:

We require that all agents’ states converge to an identical integer (either L or L+1),

a property that cannot be achieved in general with the proposed algorithm in [45] due

to the “swap” operation.

Problem 5.2. Design a distributed algorithm and find graphical connectivity such

that the agents achieve quantized averaging almost surely.

To solve this problem, in Section 5.4 we will propose a novel class of algorithms,

under which we derive a necessary and sufficient graphical condition that guarantees

almost sure quantized average.

5.3 Quantized Consensus by Gossip Algorithm

In this section we first solve Problem 5.1, the almost sure quantized consensus. We

start by presenting a class of algorithms, which we call quantized consensus (QC) al-

gorithm. Then we prove convergence to quantized consensus under a certain graphical

condition.

5.3.1 QC Algorithm

Here we present QC algorithm. Suppose that every edge of the digraph G has a

time-invariant, strictly positive probability of being activated. Say edge (j, i) ∈ E is

activated at time k. Along the edge node j sends to i its state information, xj(k),
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but does not perform any update, i.e., xj(k + 1) = xj(k). On the other hand, node i

receives j’s state xj(k) and updates its own as follows:

(R1) If xi(k) = xj(k), then xi(k + 1) = xi(k);

(R2) if xi(k) < xj(k), then xi(k + 1) ∈ (xi(k), xj(k)];

(R3) if xi(k) > xj(k), then xi(k + 1) ∈ [xj(k), xi(k)).

In words, node i stays put if its own state is the same as the received one; otherwise,

it updates the state in the direction of diminishing the difference.

5.3.2 Convergence Result

It is convenient to define the minimum and maximum states of x(k), k ≥ 0, for the

set V by

m(k) := min
i∈V

xi(k), M(k) := max
i∈V

xi(k). (5.4)

Let Vg ⊆ V denote the subset of all globally reachable nodes, and similarly to (5.4),

define mg(k), Mg(k) for Vg.

We present the main result of this section.

Theorem 5.1. Using QC algorithm, a network of agents achieves quantized consen-

sus almost surely if and only if the digraph G has a globally reachable node. Moreover,

the consensus value lies between mg(k) and Mg(k), for every k ≥ 0.

It has been known (e.g., [51, 56, 65, 74]) that the existence of a globally reachable

node is a necessary and sufficient graphical condition which ensures consensus in the

case of real-valued states. In this respect, Theorem 5.1 extends the result to the

setting where both stored and communicated states are quantized. For the consensus

value, however, the left-eigenvector characterization for real states (e.g., [65, 74]) is

no longer valid in the quantized state case. Instead, it turns out that the consensus

value lies in the smallest interval containing all the states of globally reachable nodes.
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Our analysis technique, provided below, is a blend of graph-theoretic and prob-

abilistic arguments. Specifically, for the probabilistic portion we borrow the proof

structure from [45], and extend the argument from undirected to directed graphs.

We will see that this extension requires some insight into digraph structure. For

the graph-theoretic part, we utilize a fact that relates digraph connectivity to its

structure. This approach differs from the typical one (e.g., [42, 61]) that exploits the

spectral properties of the Laplacian matrix associated to the graph structure. In-

deed, owning to our integer state setup, the overall system does not enjoy a linear

representation, and consequently the matrix approach cannot be applied.

Lastly, notice that the rules (R2) and (R3) of QC algorithm can be chosen so that

the algorithm is similar to those for the real-valued case. Hence, we conjecture that the

convergence rate of QC algorithm may be close to that of real-valued algorithms [29].

This conjecture is supported by the numerical example studied in Section 5.7.

Before providing the proof of Theorem 5.1, we introduce some preliminary results.

Lemma 5.1. The agents achieve quantized consensus almost surely if the following

conditions hold:

(C1) The evolution of x(k), k ≥ 0, is a Markov chain with a finite state space;

(C2) if x(k) = x∗ ∈ C in (5.1), then x(k′) = x∗ for all k′ > k;

(C3) for every k ≥ 0 there is a finite time Kqc ≥ k such that Pr
[
x(Kqc) ∈ C | x(k)

]
>

0.

See [45] for the proof. Similar results may also be found in Markov chain theory

(e.g., [58]).

The next result ensures that in the special case where the communication digraph

is strongly connected, the condition (C3) in Lemma 5.1 holds. Further, the consensus

value lies between m(k) and M(k).

Lemma 5.2. Consider QC algorithm. If the digraph G is strongly connected, then

for each k ≥ 0 and j ∈ V there is a finite time Kqc ≥ k such that Pr
[
x(Kqc) =

xj(k)1 | x(k)
]
> 0.
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Proof. Fix j ∈ V ; then xj(k) ∈ [m(k),M(k)]. We consider the following three cases.

Case 1: xj(k) = M(k). Define Im(k) := {i : xi(k) = m(k)}, and its cardinality

nm(k) := |Im(k)|; also let Ic
m(k) := {i : xi(k) ≥ m(k) + 1}. Since G is strongly

connected, there is an edge from Ic
m(k) to Im(k). Activate this edge with a positive

probability; then (R2) of QC algorithm applies, causing nm(k) to decrease by 1.

Repeatedly, nm(k) can decrease to zero with a positive probability, which implies

that there is k1 > k such that Pr
[
m(k1) > m(k) | x(k)

]
> 0. We repeat the above

argument to derive that there is Kqc > k such that Pr
[
m(Kqc) = M(Kqc) | x(k)

]
> 0.

Case 2: xj(k) = m(k). The argument is symmetric to that of Case 1. We point

out that, in the present case, (R3) of QC algorithm is repeatedly applied (as (R2)

in the previous case).

Case 3: xj(k) ∈ (m(k),M(k)). The conclusion follows by suitably combing the

two cases above. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. (Necessity) Suppose that G does not have a globally reach-

able node. By Lemma 2.1, G has at least two distinct closed strong components, say

V1 and V2. Consider some initial condition x(0) such that all nodes in V1 have the

same state a ∈ Z and all nodes in V2 have b ∈ Z, but a ̸= b. Then the quantized

consensus is achieved almost never (with probability 0), for both V1 and V2 are closed.

(Sufficiency) In light of Lemma 5.1, it suffices to establish the three conditions

(C1)–(C3). For (C1) and (C2), one may readily verify that they hold under QC

algorithm without any connectivity assumption. Thus, it remains to show that (C3)

holds when G has a globally reachable node.

If Vg = V , then G is strongly connected, and hence (C3) holds by Lemma 5.2.

Otherwise, let Gg be the induced subdigraph by Vg. It then follows from Lemma 2.1

that Gg is the unique closed strong component of G. We apply Lemma 5.2 for Gg

and derive that there exist a positive probability and a finite time k0 ≥ k such that

xvg(k0) = xqc for all nodes vg ∈ Vg; evidently the integer xqc is in [mg(k),Mg(k)].

Now define I(k0) := {v ∈ V − Vg : xv(k0) ̸= xqc}, and its cardinality n(k0) :=
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Figure 5.1: Without randomization the agents may fail to achieve quantized consen-

sus.

|I(k0)|; also let V̄g(k0) := V − I(k0). Since the nodes in Vg are globally reachable,

there is an edge from V̄g(k0) to I(k0), say (q, p) with q ∈ V̄g(k0) and p ∈ I(k0).

Activate this edge with a positive probability, and (R2) of QC algorithm applies

if xp(k0) < xq(k0), or otherwise (i.e., xp(k0) > xq(k0)) (R3) applies; either update

causes p’s state to approach xqc. Repeatedly, there is k1 > k0 such that xp(k1) = xqc;

so Pr
[
n(k1) = n(k0) − 1 | x(k)

]
> 0. We repeat the above argument to derive that

there is Kqc > k such that Pr
[
n(Kqc) = 0 | x(k)

]
> 0, which implies Pr

[
x(Kqc) =

xqc1 ∈ C | x(k)
]
> 0. Therefore (C3) follows, and the consensus value is xqc. �

5.3.3 Role of Randomization

We provide an example which shows that the gossip randomization, in addition to

modeling asynchronous behavior, can be crucial to ensure quantized consensus under

QC algorithm. A similar example, but for the case of undirected graphs, was reported

in [45].

Example 5.1. Consider three agents in cyclic pursuit (see Fig. 5.1(a)), with the

initial condition x(0) = [1, 2, 3]T . Suppose that QC algorithm is used, but that the

network is non-randomized and the edges are activated periodically as follows:

The corresponding state evolution is displayed in Fig. 5.1(b). We see that the
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time k 0 1 2 3 4 5 · · ·

edge e1 e2 e3 e1 e2 e3 · · ·

evolution is, deterministically, trapped in a loop containing no consensus state. By

contrast, randomizing edge selection ensures that the evolution can break the loop

with a positive probability, thereby leading to almost sure consensus.

This example thus marks a fundamental distinction between the integer- and the

real-state settings. With real-valued states, it is well known [50,56,65] that consensus

is guaranteed if G(k) has a globally reachable node uniformly : That is, there exists

an integer T > 0 such that for every k0 the union
∪k0+T

k0
G(k) has a globally reach-

able node. This condition clearly holds in this example for every T ≥ 2; quantized

consensus, however, fails.

5.4 Quantized Averaging by Gossip Algorithm

We move on to solve Problem 5.2, the quantized averaging, by appropriately extending

QC algorithm studied in the previous section. A direct application of QC algorithm

in general fails to ensure convergence to the quantized average, because the state

sum need not be invariant at each iteration, hence causing the shift of the average.

To handle this average shift, we again propose associating to each agent a surplus

variable. These surpluses are used to keep track of the state changes of individual

agents, so that the information of the amount of average shift is not lost but kept

locally in these variables. Then agents communicate the surpluses to their neighbors

for state updates in such a way that the average of the initial states may be recovered.

Further, to assist the use of surpluses, two more auxiliaries are needed, which we call

threshold and local extrema. We use these three augmented elements to make the

extension of QC algorithm.

In the sequel, we first present the extended algorithm, which we call quantized

averaging (QA) algorithm. Then we prove convergence to quantized average under

general strongly connected digraphs.
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5.4.1 QA Algorithm

First, we introduce the three augmented elements.

1. Surplus. Every agent is associated with a surplus variable to record its state

changes. Recall from Section 5.2 that the surplus of agent i ∈ V is denoted by

si. Thus the aggregate surplus is s = [s1 · · · sn]T , whose initial value is set to be

s(0) = [0 · · · 0]T . The rules of specifying how these surpluses are updated locally and

communicated over the network form the core of QA algorithm.

2. Threshold. All agents have a common threshold, denoted by δ ∈ Z+. This

(constant) number is involved in deciding whether or not to update a state using

available surpluses. A proper value for the threshold will be found crucial to ensure

that the set A defined in (5.3) is the unique invariant set where all trajectories

converge. We shall determine the range of such threshold values in Section 5.5. To

keep the presentation clear, in this section we fix δ = n, the total number of agents

in the network. Thus, every agent is required to know this information.

3. Local extrema. Each agent i is further assigned two variables, mi and Mi ∈ Z,

to record respectively the minimal and maximal states among itself and its neighbors.

These local extrema will be used to prevent a state, when updated by available sur-

pluses, from exceeding the interval of all initial states (i.e., [m(0),M(0)]). For the

initial values of local extrema we set mi(0) = Mi(0) = xi(0), for every i ∈ V . We will

design updating rules for mi and Mi as part of QA algorithm. The necessity of using

local extrema in the algorithm will be exhibited in Section 5.5.

Thus, we have augmented the state of each agent i from a single xi to a tuple of

four elements (xi, si,mi,Mi). In addition, a common threshold δ needs to be stored.

Also note that only xi and si will be involved in communication.

We are now ready to present QA algorithm. Suppose that every edge of the

communication digraph G has a (time-invariant) strictly positive probability of being

activated. Say edge (j, i) ∈ E is activated at time k. Along the edge, node j sends to i

its state information, xj(k), as well as its surplus, sj(k). While it does not perform any

update on its state (nor on its local minimum and maximum), node j does always set
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its surplus to be 0 after transmission, meaning that the surpluses, if any, are entirely

passed to its neighbor i; that is,

mj(k + 1) = mj(k), Mj(k + 1) = Mj(k),

xj(k + 1) = xj(k), sj(k + 1) = 0.

On the other hand, node i receives the information sent from j, namely xj(k) and

sj(k), and performs the following updates.

1. For local minimum and maximum,

mi(k + 1) = min{mi(k), xj(k)},

Mi(k + 1) = max{Mi(k), xj(k)}.

2. State and surplus are updated as follows:

(R1) If xi(k) = xj(k), then there are three cases:

(i) If si(k) + sj(k) ≥ δ and xi(k) ̸= Mi(k + 1), then

xi(k + 1) = xi(k) + 1, si(k + 1) = si(k) + sj(k)− 1.

(ii) If si(k) + sj(k) ≤ −δ and xi(k) ̸= mi(k + 1), then

xi(k + 1) = xi(k)− 1, si(k + 1) = si(k) + sj(k) + 1.

(iii) Otherwise (i.e., |si(k) + sj(k)| < δ or si(k) + sj(k) ≥ δ & xi(k) = Mi(k)

or si(k) + sj(k) ≤ −δ & xi(k) = mi(k)),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k).

(R2) If xi(k) < xj(k), then

xi(k + 1) ∈ (xi(k), xj(k)], si(k + 1) = si(k) + sj(k)−
(
xi(k + 1)− xi(k)

)
.

(R3) If xi(k) > xj(k), then

xi(k + 1) ∈ [xj(k), xi(k)), si(k + 1) = si(k) + sj(k)−
(
xi(k + 1)− xi(k)

)
.
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Figure 5.2: Illustration of features of QA algorithm

In the algorithm, first observe that the surplus is updated such that for every

k ≥ 0, (x(k + 1) + s(k + 1))T1 = (x(k) + s(k))T1 = x(0)T1. That is, the quantity

(x + s)T1 stays invariant at each iteration, and thus equals the initial state sum.

Also, notice that the updates of state xi in (R2) and (R3) are exactly the same as

those in QC algorithm. The difference, however, lies in (R1): Even when the state

xi coincides with xj, it is still updated if the sum of surpluses, si + sj, exceeds the

interval (−δ, δ); here this interval is (−n, n). This is because, when the surpluses are

more than n (resp., less than −n), the true average must be at least xi + 1 (resp.,

xi−1). Indeed, these surpluses should be distributed over the network such that every

agent’s state increases by at least 1 (resp., decreases by 1). An exception, however, is

when xi equals its local maximum (resp., local minimum), since in that case, xi could

undesirably exceed [m(0),M(0)]. We illustrate these features of QA algorithm in the

following example.

Example 5.2. Consider three agents with communication network displayed in Fig. 5.2.

Let the initial condition be as follows:

agent i xi(0) si(0) mi(0) Mi(0)

1 0 0 0 0

2 3 0 3 3

3 3 0 3 3

Hence the true average is xave = 21. Suppose that at k = 0, edge e1 is activated with

a positive probability; then (R2) of QA algorithm applies since x1(0) < x2(0). For

the possible update values (x1(0), x2(0)] we let x1(1) = x2(0); the corresponding state
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change, x1(1)− x1(0), is recorded in the surplus s1(1). Thus we obtain that

agent i xi(1) si(1) mi(1) Mi(1)

1 3 −3 0 3

2 3 0 3 3

3 3 0 3 3

Now the agents reach consensus at value 3. If QC algorithm is used, then no fur-

ther update will take place, and consequently the true average cannot be achieved.

However, that agent 1 has surplus −3 (= −n) indicates that this amount should be

distributed among the three agents, thereby each decreasing its state by 1. One way

to distribute the surplus is to select the edges e4, e2, and e3 sequentially; the proba-

bility of this selection is positive. It can then be readily verified that (R1)(ii), (R3),

and again (R3) of QA algorithm will sequentially apply, and that at k = 4 we have

agent i xi(4) si(4) mi(4) Mi(4)

1 2 0 0 3

2 2 0 2 3

3 2 0 2 3

Therefore, the true average xave is achieved, and there is no further update because

only (R1)(iii) will apply.

5.4.2 Convergence Result

We present the main result of this section.

Theorem 5.2. Using QA algorithm, a network of agents achieves quantized averag-

ing almost surely if and only if the digraph G is strongly connected.

The necessity and sufficiency proofs of Theorem 5.2 will be provided in the next

subsection. Presently we draw some remarks on this result, in comparison with those

related in the literature. First, Theorem 5.2 can be seen as an extension of the main
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result in [45] from undirected to directed graphs. The problem of achieving quantized

average with directed graphs is, however, more difficult in that the state sum need not

be invariant at each iteration. Our proposed QA algorithm handles this difficulty,

by an essential augment of surplus variables. In addition, we note that in some

quantized consensus algorithms (e.g., [22,33,57]), the agents converge to the average

with an error which could undesirably get large as the number of agents increases. To

address this unscalable situation, several approaches are proposed using special graph

topologies [33], finer quantizers [57], and probabilistic quantizers [22]. In contrast, our

result ensures, for a general (strongly connected) graph and a fixed (deterministic)

quantizer, that the quantized average is always achieved regardless of the number of

agents.

The foregoing merits, however, come with some costs which are twofold: For one,

the convergence rate of QA algorithm is in general slower than that of QC algorith-

m due to averaging (see a demonstration in Section 5.7). This requires additional

processing based on surpluses even after the agents achieve consensus (not at the

average). For the other, as to local memories each agent needs to update, in addition

to its state, three more variables — surplus, local minimum, and local maximum —

and needs to store a constant threshold. The corresponding updating computations

are, however, purely local and fairly simple. Moreover, each agent has to transmit

surpluses, along with its state, through communication channels.

5.4.3 Proof of Theorem 5.2

The necessity argument is the same as Theorem 3.1. Before proceeding to the suffi-

ciency part, we need to establish two key lemmas. For their proofs, see Section 5.8.

Henceforth in this subsection, we assume that QA algorithm is used and the digraph

G is strongly connected.

For an arbitrary pair of state and surplus (x(k), s(k)) ∈ Zn × Zn, k ≥ 0, define

m(k),M(k) as in (5.4). In the case where all nodes have the same state (i.e., m(k) =

M(k)), our first result asserts that there is a positive probability such that, in finite
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time, all surpluses in the system can pile up at a single node.

Lemma 5.3. Suppose that at time k ≥ 0, the pair (x(k), s(k)) is such that m(k) =

M(k). Fix an arbitrary node i ∈ V . Then there exists a finite time Ks > k such that

Pr
[
x(Ks) = x(k), si(Ks) = s1(k) + · · ·+ sn(k),

(∀j ̸= i) sj(Ks) = 0 | (x(k), s(k))
]
> 0.

Next, recall from (5.2) that (x(0) + s(0))T1 = nL + R, where R ∈ [0, n − 1]. As

the quantity (x+ s)T1 is invariant, if all states are identical to L−α for some α ≥ 1,

then the total surplus in the system is sT1 = R + αn. Now suppose that one node

i increases its state to L − α + 1 and has all the surpluses R + αn − 1. In order to

approach the set A defined in (5.3), it is desired that other nodes follow i to the state

L − α + 1, thereby decreasing the total surplus to R + (α − 1)n. Our second result

asserts that this can be done in finite time with a positive probability.

Lemma 5.4. Suppose that at time k ≥ 0, the pair (x(k), s(k)) is such that for one

node i

xi(k) = L− α + 1, si(k) = R + αn− 1,

and for other nodes j ̸= i

xj(k) = L− α, sj(k) = 0.

Then there exists a finite time Ku > k such that

Pr
[
m(Ku) = M(Ku) = L− α + 1, si(Ku) = R + (α− 1)n,

(∀j ̸= i) sj(Ku) = 0 | (x(k), s(k))
]
> 0.

Proof of sufficiency. Similar to Lemma 5.1, it suffices to establish the following

three conditions:

(C1) The evolution of (x(k), s(k)), k ≥ 0, is a Markov chain with a finite state space;

(C2) if (x(k), s(k)) ∈ AL (resp., AL+1) in (5.3), then (x(k′), s(k′)) ∈ AL (resp.,

AL+1) for all k
′ > k;
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(C3) for every k ≥ 0 there is a finite time Kqa ≥ k such that Pr
[
(x(Kqa), s(Kqa)) ∈

A | (x(k), s(k))
]
> 0.

For (C1): Letting k ≥ 0, we must show that

Pr
[
(x(k + 1), s(k + 1)) | (x(k), s(k)), ..., (x(0), s(0))

]
=Pr

[
(x(k + 1), s(k + 1)) | (x(k), s(k))

]
.

This follows directly from the gossip setup where at time k one edge is activated at

random and independently from all earlier instants. Next, for finiteness we will show

first for the state x(k), and then for the surplus s(k).

1) For x(k) it will be shown, by induction, that for all k ≥ 0 it holds (∀i ∈

V) xi(k),mi(k),Mi(k) ∈
[
m(0),M(0)

]
. This is clearly true for k = 0. Suppose that

(∀i ∈ V) xi(k − 1),mi(k − 1),Mi(k − 1) ∈
[
m(0),M(0)

]
. It then follows from the

updating rules of local extrema in QA algorithm that (∀i ∈ V) mi(k),Mi(k) ∈[
m(0),M(0)

]
. Now for state, assume on the contrary that there exists some node

i such that xi(k) /∈
[
m(0),M(0)

]
. Consider the case xi(k) > M(0); this can occur

only when (R1)(i) of QA algorithm applies to the following situation: At time k−1,

for some node j the edge (j, i) is activated, and the following conditions are met:

xi(k − 1) = xj(k − 1) = M(0),

si(k − 1) + sj(k − 1) ≥ δ,

xi(k − 1) ̸= Mi(k − 1).

But the first and third conditions together imply that Mi(k − 1) > M(0), which

contradicts the hypothesis. The argument for the other case xi(k) < m(0) is just

symmetric; a contradiction arises between the conditions that satisfy (R1)(ii) of QA

algorithm and the hypothesis. Therefore (∀i ∈ V) xi(k) ∈
[
m(0),M(0)

]
, and hence a

trivial upper bound for the set of states x(k) is (M(0)−m(0) + 1)n.

2) For s(k), it follows from (∀i ∈ V) xi(k) ∈
[
m(0),M(0)

]
that the minimal and

maximal values that the surpluses can take are respectively m(0)−M(0) and M(0)−

m(0); namely, (∀i ∈ V) si(k) ∈
[
m(0)−M(0),M(0)−m(0)

]
. Hence the set of surpluses

s(k) is finite, a trivial upper bound on its cardinality being
(
2(M(0)−m(0)) + 1

)n
.
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For (C2): First consider the case (x(k), s(k)) ∈ AL, i.e.,

(∀i ∈ V) xi(k) = L,

si(k) ≥ 0,
n∑

i=1

si(k) = R.

Then for an arbitrary edge (h, j) ∈ E activated,

xh(k) = xj(k),

sh(k) + sj(k) ≤
n∑

i=1

si(k) = R < n.

Recall that the threshold is δ = n. Thus (R1)(iii) of QA algorithm applies, and

the subsequent states and surpluses satisfy (x(k′), s(k′)) ∈ AL for all k′ > k. Next,

consider the other case (x(k), s(k)) ∈ AL+1 (when R > 0), i.e.,

(∀i ∈ V) xi(k) = L+ 1,

si(k) ≤ 0,
n∑

i=1

si(k) = R− n.

Similarly, for an arbitrary edge (h, j) ∈ E activated,

xh(k) = xj(k),

sh(k) + sj(k) ≥
n∑

i=1

si(k) = R− n > −n.

Again (R1)(iii) of QA algorithm applies, and hence (x(k′), s(k′)) ∈ AL+1 for all

k′ > k.

For (C3): Let (x(k), s(k)), k ≥ 0, be arbitrary. If (x(k), s(k)) ∈ A , then it

is obtained by letting Kqa = k that Pr
[
(x(Kqa), s(Kqa)) ∈ A | (x(k), s(k))

]
= 1.

Otherwise (i.e., (x(k), s(k)) /∈ A ), we consider respectively the two cases m(k) =

M(k) and m(k) ̸= M(k) as follows.

1) m(k) = M(k). We have shown that (∀i ∈ V) xi(k) ∈
[
m(0),M(0)

]
; so m(k) =

M(k) ∈
[
m(0),M(0)

]
. First consider the case m(k) = M(k) ∈

[
m(0), L

]
. Choose a

node i such that xi(0) = M(0); namely, node i has the maximal initial state. Then,

by Lemma 5.3 we derive that there exists a finite time K0 > k such that

Pr
[
x(K0) = x(k), si(K0) = s1(k) + · · ·+ sn(k),

(∀j ̸= i) sj(K0) = 0 | (x(k), s(k))
]
> 0.
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If m(k) = M(k) = L, then m(K0) = M(K0) = L and thus s(K0)
T1 = R. But

(∀j ̸= i) sj(K0) = 0; hence si(K0) = R, and consequently (x(K0), s(K0)) ∈ A .

Letting Kqa = K0 we obtain the conclusion. Otherwise (m(k) = M(k) = L − α for

some α ∈ [1, L−m(0)]), we have m(K0) = M(K0) = L−α and si(K0) = R+αn. As

G is strongly connected, there must exist another node j ̸= i with an edge (j, i) ∈ E .

Along this edge the following conditions hold:

xi(K0) = xj(K0) = L− α,

xi(K0) = L− α < M(0) = xi(0) = Mi(0) = Mi(K0),

si(K0) + sj(K0) = R + αn ≥ n(= δ).

When this edge is activated, (R1)(i) of QA algorithm applies:

xi(K0 + 1) = xi(K0) + 1 = L− α + 1,

si(K0 + 1) = si(K0) + sj(K0)− 1 = R + αn− 1.

Now the conditions of Lemma 5.4 are met; we hence obtain that there exists a finite

time K1 > K0 + 1 such that

Pr
[
m(K1) = M(K1) = L− α + 1, si(K1) = R + (α− 1)n,

(∀j ̸= i) sj(K1) = 0 | (x(k), s(k))
]
> 0.

Repeating the above process, we derive a sequence of times K1 < K2 < · · · < Kα,

and at the last time Kα,

Pr
[
m(Kα) = M(Kα) = L, si(Kα) = R,

(∀j ̸= i) sj(K1) = 0 | (x(k), s(k))
]
> 0.

Set Kqa = Kα and (C3) holds. In the other case m(k) = M(k) ∈
[
L + 1,M(0)

]
,

(C3) similarly holds by a symmetric argument.

2) m(k) ̸= M(k). Write x(k) = [x1(k) · · · xn(k)]
T and fix a node j ∈ V . Recall

from Lemma 5.2 that under QC algorithm for general consensus, if the digraph G

is strongly connected, then there exists a finite time k̄ > k such that Pr
[
x(k̄) =
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xj(k)1 | x(k)
]
> 0. It is important to note that only (R2) and (R3) of QC algorithm

are used in proving Lemma 5.2. But these two rules for the state updates are exactly

the same in QA algorithm. Thus under QA algorithm, we derive that

Pr
[
(x(k̄), s(k̄) = (xj(k)1, s(k̄)) | (x(k), s(k))

]
> 0.

Hence, m(k̄) = M(k̄) = xj(k) ∈
[
m(0),M(0)

]
and the situation is that in 1), for

which (C3) is established. �

The key idea of the foregoing proof is to collect all the surpluses in the system at

some agent. Then this agent can determine whether or not the overall surplus exceeds

the threshold; if it does, indicating that the true average is not yet reached, this agent

should proceed to update its state so that the extra surpluses may be distributed

over the network. This process is repeated until the overall surplus falls below the

threshold. This is, indeed, the primary reason which slows down the convergence rate

of QA algorithm.

It is also worth pointing out that both the necessity and sufficiency proofs hold even

if the surpluses, if any, are transmitted one unit at a time; namely, the transmitted

surpluses may take values only from the set {−1, 0, 1}. In that case, when there is

more than one-unit surplus to be passed from node j to i, we may consecutively select

edge (j, i) for communication until all surpluses are transmitted. Such a selection, by

our gossip setup, is with a positive probability. As a result, the transmission of

surpluses requires merely two bits increase in communication.

Lastly, notice that the conditions (C1) and (C2) are established without any

connectivity property of the digraph. Also, it follows from (C2) and (C3) that A

is, indeed, the unique invariant set to which all trajectories converge.

5.5 Threshold and Local Extrema

In the present section we provide further analyses on the threshold and local extrema

in QA algorithm. First, we find the range of threshold values which permits the

agents to converge to the invariant set A . Second, we demonstrate that for QA
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algorithm the local extrema are necessary in order to keep the state set bounded.

5.5.1 Threshold Range

As we have seen in Section 5.4, the threshold value in QA algorithm serves as a bound

such that whenever the surpluses exceed this bound, they should be distributed over

the network. So far, we have assumed the threshold δ to be the total number n of

agents in the network, and proved that all pairs of states and surpluses converge to the

invariant set A . Now we proceed to investigate the systemic behavior when δ ̸= n.

In particular, we aim at finding the range of threshold values necessary and sufficient

to ensure that A is the unique invariant set to which all trajectories converge. This

investigation is important because if the threshold δ has to be exactly n in order to

guarantee average consensus, then QA algorithm may not be robust in applications

where some agents could fail and/or new agents could join.

We present the main result of this subsection: The range of suitable threshold

values turns out to be
[
⌊n/2⌋+ 1, n

]
, which may be fairly large in practice.

Theorem 5.3. Suppose that the communication digraph G is strongly connected and

QA algorithm is used. Then A is the unique invariant set to which all trajectories

converge if and only if the threshold satisfies δ ∈
[
⌊n/2⌋+ 1, n

]
.

To prove Theorem 5.3 we need the following lemma. For a fixed R ∈ [0, n − 1],

define XR := {x(0) : (∃L) x(0)T1 = nL + R}; thus XR is the family of initial states

whose sums, when divided by n, have remainder R for some quotient L. Clearly

X0, . . . ,Xn−1 form a partition of the set of all initial states.

Lemma 5.5. Under QA algorithm, fix R ∈ [0, n− 1].

(i) If the threshold satisfies δ ≥ R + 1, then AL is an invariant set for every pair

(x(k), s(k)) starting from (XR, 0);

(ii) if δ ≥ n−R+1, then AL+1 is an invariant set for every pair (x(k), s(k)) starting

from (XR, 0).
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Figure 5.3: The relationship between threshold values and the invariant set (β̄ > ᾱ).

The proof is similar to that for (C2) in Theorem 5.2.

More generally, let ᾱ := L −m(0) and β̄ := M(0) − L, where m(0),M(0) are as

in (5.4). For α ∈ [1, ᾱ], β ∈ [2, β̄], define the following subsets of Zn × Zn:

AL−α := {(x, s) : xi = L− α & si ≥ 0, i = 1, ..., n},

AL+β := {(x, s) : xi = L+ β & si ≤ 0, i = 1, ..., n}.

Similar to Lemma 5.5, we obtain for a fixed R ∈ [0, n − 1] that (i) if the threshold

δ ≥ αn+R+1, then AL−α is an invariant set for every pair (x(k), s(k)) starting from

(XR, 0); (ii) if δ ≥ βn−R+1, then AL+β is an invariant set for every pair (x(k), s(k))

starting from (XR, 0).

Remark 5.1. It is straightforward from the above derivation that the following hold:

(i) If the threshold δ ≥ αn + 1, then AL−α is an invariant set for some pairs

(x(k), s(k));

(ii) if δ ≥ (β − 1)n+ 2, then AL+β is an invariant set for some pairs (x(k), s(k)).

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. (Necessity) Assume the threshold δ /∈
[
⌊n/2⌋+1, n

]
. First

consider the case δ ≤ ⌊n/2⌋. By Lemma 5.5, neither AL nor AL+1 is an invariant set

at least for those pairs (x(k), s(k)) starting from (XR, 0) with R = ⌊n/2⌋. Namely, A

is not an invariant set for all pairs (x(k), s(k)). For the other case δ ≥ n+1, it follows
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Figure 5.4: Without local extrema the states can grow arbitrarily large.

from Remark 5.1 (i) that at least AL−1 is an invariant set for some pairs (x(k), s(k)).

Hence, A is not the unique one for all pairs (x(k), s(k)).

(Sufficiency) Let the threshold δ ∈
[
⌊n/2⌋ + 1, n

]
. Then, we derive by Lem-

ma 5.5 that (i) AL is an invariant set at least for those pairs (x(k), s(k)) starting

from (XR, 0), R = 0, 1, ..., ⌊n/2⌋; (ii) AL+1 is an invariant set at least for those pairs

(x(k), s(k)) starting from (XR, 0), R = n − 1, ..., n − ⌊n/2⌋. But ⌊n/2⌋ = n − ⌊n/2⌋

if n is even, or otherwise ⌊n/2⌋+ 1 = n− ⌊n/2⌋. Consequently, A is an invariant set

for all pairs (x(k), s(k)). In addition, similar to (C3) in the proof of Theorem 5.2 we

can show that with a positive probability, every pair (x(k), s(k)) /∈ A will enter A in

finite time. Hence, there is no other invariant set, and A is the unique one to which

all trajectories converge. �

Summarizing the results in Theorem 5.3 and Remark 5.1, we conclude that for all

pairs (x(k), s(k)), (i) when the threshold satisfies δ ∈
[
0, ⌊n/2⌋

]
, there is no invariant

set; (ii) when δ ∈
[
⌊n/2⌋ + 1, n

]
, A is the unique invariant set; (iii) when δ ∈[

n + 1,∞
)
, the invariant set expands as δ increases, but lower bounded by L− ᾱ

and upper bounded by L+ β̄. This relationship between threshold values and the

invariant set is displayed in Fig. 5.3.

5.5.2 Role of Local Extrema

In QA algorithm, the local extrema mi, Mi (i ∈ V) are used to ensure that all the

states xi(k), k ≥ 0, remain within the interval of the initial states (i.e., [m(0),M(0)]).

In this subsection, we provide an example which exhibits that without local extrema

the states can grow arbitrarily large, thereby showing the necessity of using these

variables in the algorithm.
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Example 5.3. Consider six agents with the communication network in Fig. 5.4. Let

the initial condition be as follows:

agent i 1 2 3 4 5 6

xi(0) 10 10 10 0 0 0

si(0) 0 0 0 0 0 0

Suppose that QA algorithm is used, but without the conditions involving local ex-

trema in (R1). Also specify that xi(k+1) = ⌈(xi(k) + xj(k)) /2⌉ in (R2), xi(k+1) =

⌊(xi(k) + xj(k)) /2⌋ in (R3), and the threshold δ = 6. Now consider the string of

edges, e45 e3 e1 (e2 e1)
8, being activated sequentially, and denote by T1 (= 22) the time

after these activations. Then one may verify that

xi(T1) 13 13 0 0 0 0

si(T1) 4 0 0 0 0 0

Thus the upper bound of the initial states, M(0) = 10, is exceeded by 3. Next,

consider the string, e44 e46 e8 e10 (e9 e10)
17, and denote by T2 (= 66) the time after

sequentially activating these edges. We then derive that

xi(T2) 13 13 13 13 −11 −11

si(T2) 4 0 0 0 0 −4

Thus the initial lower upper bound, m(0) = 0, is exceeded by 11. As such, one may

go on constructing similar strings of edges, and the states will grow arbitrarily large

with a positive probability.

We have thus seen that in general the local extrema are necessary in order to keep

the state set bounded. Only in a special case where the threshold δ equals exactly

n, however, we find it is possible to avoid using local extrema by suitably modifying

QA algorithm. We discuss this modification in the next section.
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5.6 Modified Averaging Algorithm for Reduced

Computation

We present themodified quantized averaging (MQA) algorithm, discuss its properties,

and show that it works without local extrema but only when the threshold δ equals

n. In particular, we shall emphasize that MQA algorithm features in reducing both

computation and communication burden of individual agents.

Now suppose that an edge (j, i) is randomly activated at time k. For the sender

j, the updating rules are as before: xj(k+1) = xj(k), sj(k+1) = 0. For the receiver

i, on the other hand, the rules are modified as follows:

(R1) If xi(k) = xj(k), then there are two cases:

(i) If si(k) + sj(k) ≥ δ, then

xi(k + 1) = xi(k) + 1, si(k + 1) = si(k) + sj(k)− 1.

(ii) Otherwise (i.e., si(k) + sj(k) < δ),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k).

(R2) If xi(k) < xj(k), there are also two cases:

(i) If si(k) + sj(k) > 0, then

xi(k + 1) = xi(k) + ∆(k), where ∆(k) ∈ [1,min{si(k) + sj(k), xj(k)}],

si(k + 1) = si(k) + sj(k)−∆(k).

(ii) Otherwise (i.e., si(k) + sj(k) = 0),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k).

(R3) If xi(k) > xj(k), then

xi(k + 1) ∈ [xj(k), xi(k)), si(k + 1) = si(k) + sj(k)−
(
xi(k + 1)− xi(k)

)
.

First, some immediate observations are in sequel. (i) Surplus variables are updated

such that the quantity (x+ s)T1 stays invariant at each iteration, as in QA. (ii) Sur-

pluses are decreased in (R1) and (R2), and increased in (R3); it is thus easy to
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see that all surplus variables are nonnegative. By contrast, in QA, surplus variables

can be either positive or negative. As a result, (R1) here has only two cases dealing

with nonnegative surpluses. (iii) Updated by MQA the states indeed cannot reach

consensus at value L+1; since otherwise x = (L+1)1, there holds sT1 = R− n < 0,

which contradicts that all surpluses are nonnegative. So the set of average consensus

states in this case is only AL.

Second, we emphasize the distinctions between MQA and QA, which may imply

tradeoffs when employing one or the other in practice. (i) InQA each node is assigned

two local extrema variables, which prevent the states from exceeding the interval of all

initial states, thereby ensuring finite state set. By contrast, it will be shown for MQA

that the state set is guaranteed to be finite without the local extrema; consequently,

computation effort for a total of 2n variables is saved. (ii) For QA we discussed that

converging to the average is not affected even if the surpluses are transmitted one

unit at a time, thereby requiring two bits for each transmission. The same is true for

MQA; however, since there is no negative surplus, each transmission reduces to one

bit for only {0, 1}. (iii) A drawback of MQA lies in that the threshold value δ has to

be exactly n in order to guarantee that AL is the unique equilibria set for all initial

conditions (cf. Lemma 5.5 (i))). For QA, on the other hand, the threshold can take

values in a fairly large range.

The following is the convergence result of MQA algorithm.

Theorem 5.4. Under MQA algorithm, a network of agents achieves quantized av-

eraging at AL almost surely if and only if the digraph G is strongly connected.

Proof. The proof is analogous to that of Theorem 5.2, except the justification for

the finite state set with no local extrema involved. To this end, for an arbitrary state

x(k) define m(k),M(k) as in (5.4), and let S = x(0)T1. Since no negative surplus

can be generated in MQA algorithm, the minimum m(k) is non-decreasing. Hence,

an upper bound for M(k) is S − (n − 1)m(0), when there is one agent having this

value, all other n− 1 agents having m(0), and all surpluses are 0. It then follows that

a trivial upper bound for the state set is (S − nm(0) + 1)n. In addition, for surpluses
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Figure 5.5: Decay of consensus error in QC and real-valued consensus algorithms

we derive that for every i ∈ [1, n] and k ≥ 0, si(k) ∈
[
0, S − nm(0)

]
. Thus, a trivial

upper bound for the surplus set is also (S − nm(0) + 1)n. �

5.7 Numerical Examples

In this section we provide a set of numerical examples to illustrate our theoretic

developments, with special emphasis on algorithm convergence time.

5.7.1 QC and Real-Valued Consensus Algorithms

We compare the convergence rate of QC algorithm with that of real-valued consen-

sus algorithms [29]. For this we consider a cyclic digraph of 20 agents (cf. Fig. 5.1(a)),

whose initial (integer) states are chosen uniformly at random from the interval [−10, 10].

For QC algorithm we specify that xi(k + 1) = ⌈(xi(k) + xj(k)) /2⌉ in (R2) and

xi(k+1) = ⌊(xi(k) + xj(k)) /2⌋ in (R3); for the real-valued algorithm let xi(k+1) =

(xi(k) + xj(k)) /2 in all cases. Now define the consensus error e :=
∑

i,j∈V,i<j(xi−xj)
2;

we compare the decay rates of this error in both algorithms. Two curves showing the

decay trajectories are displayed in Fig. 5.5, which are the average of 100 runs of the

respective algorithms. Observe that while real-valued algorithm converges asymptot-

ically, QC algorithm converges in finite time. Prior to the finite convergence, the two

error decay rates are indeed analogous; this observation supports our conjecture on
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Figure 5.6: Convergence time versus number of agents

the convergence time of QC algorithm in Section 5.3.

5.7.2 Convergence Time versus Number of Agents

We turn next to the study of convergence time with respect to the number of agents

in the network. The states of the agents are randomly initialized from a uniform

distribution on the interval [−5, 5].

First, we deal with the increasing rates of convergence time as the number of agents

increases for both QC and QA algorithms on complete digraphs (i.e., every agent is

reachable from every other agent via a directed edge). The results are respectively the

dash-dot and solid curves in Fig. 5.6, each plotted value being the average convergence

time of 100 runs of the corresponding algorithms. It is seen that the convergence time

of QA algorithm is longer than that of QC algorithm, which supports our assertion

in Section 5.4 that the additional averaging process required in QA algorithm slows

down its convergence.

Second, we do an analogous investigation for QA algorithm on two types of ran-

dom digraphs. One type, referred to as random edge digraphs, is defined as follows

(e.g., [39]): The existence of a directed edge between every pair of agents is deter-

mined randomly, independent of other edges, with a (possibly non-uniform) positive



Chapter 5. Quantized Consensus and Averaging on Random Digraphs 97

0 0.5 1 1.5 2

x 10
4

−5

0

5

Time
S

ta
te

0 0.5 1 1.5 2

x 10
4

−50
−25

0
25
50
75

100

Time

S
ur

pl
us

Figure 5.7: Convergence sample path of 50 agents on random edge digraphs

probability. Hence in expectation, we obtain complete digraphs. Here for simplicity,

we assume that every edge exists with the same probability p. The other type is the

random geometric digraphs (e.g., [38]), which have been widely used for modeling ad

hoc wireless sensor networks. In two dimensions, a random geometric digraph G(n, r)

denotes a network of n agents whose transmission radius is within r. It is obtained

by placing n agents uniformly at random in a unit square, and connecting every pair

of agents to each other that are within distance r.

In Fig. 5.6, the dashed and dotted curves show the average convergence time

of 100 runs of QA algorithm on random edge digraphs with p = 0.6 and random

geometric digraphs with r = 0.5, respectively. We see that as the network expands,

the increasing rates of convergence time in these two cases are roughly of the same

polynomial order; this indicates that the graph connectivity resulted from the chosen

parameters might be similar.

In addition, the convergence time of QA algorithm is longer on random digraphs

than on complete digraphs. This is due evidently to the parameter choices, for com-

plete digraphs can be viewed as special random digraphs by setting p = 1 or r =
√
2.

To further illustrate this point, we display the convergence sample paths of random

edge and complete digraphs for 50 agents, corresponding to the first plotted value in
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Figure 5.8: Convergence sample path of 50 agents on complete digraphs

Fig. 5.6. For random edge digraphs, we exhibit in Fig. 5.7 the case where the initial

state sum is
∑50

i=1 xi(0) = −8, hence the true average being either −1 or 0. The

trajectories show that the states converge to −1, and the corresponding total surplus

settles at 42. Note that the convergence time of this sample path is 1.1× 104; for 100

runs of QA algorithm we obtain the average convergence time 9.0× 103.

For complete digraphs, Fig. 5.8 displays the example where the initial state sum is∑50
i=1 xi(0) = 37; the true average is thus either 0 or 1. We see that all states converge

to 1, with the steady state surplus being −13. This convergence takes only 2.6× 103

time steps; also the average of 100 runs of QA algorithm is merely 4.2 × 103. Thus

larger value of the parameter p gives rise to higher graph connectivity, and therefore

accelerates the convergence speed.

5.7.3 Convergence Time versus Threshold Value

In Section 5.5, we have justified that the threshold in QA algorithm can take values

in the range
[
⌊n/2⌋ + 1, n

]
so as to guarantee convergence to the average consensus

set A . Here we provide an example to show the impact of different threshold values

(in the valid range) on the convergence time of QA algorithm. Consider a complete

digraph of 50 agents, with random initial states in [−5, 5]. In Fig. 5.9 we plot the
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Figure 5.10: Convergence time comparison between QA and MQA algorithms on

complete digraphs.

average convergence time over 100 runs of QA algorithm, for each valid threshold

value ranging from 26 to 50. We can observe an increasing trend of convergence time

as the threshold value increases. This is mainly because with a smaller threshold, the

decision on distributing surpluses over the network can be made potentially faster,

hence accelerating the averaging process.

5.7.4 QA versus MQA

Finally, we compare the increasing rates of convergence time as the number of nodes

increases between QA and MQA on complete digraphs. Initial states are drawn from
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the interval [−5, 5] uniformly at random. The results are respectively the solid and

dashed curves in Fig. 5.10, each plotted value being the average convergence time of

100 runs of the corresponding algorithms. Observe that MQA converges more slowly

than MQA; this indicates the following tradeoff: The benefit of MQA in reducing

computation and communication effort is at the cost of increasing convergence time.

5.8 Proofs

Proof of Lemma 5.3. Fix a node in V and denote it by i0. As G is strongly

connected, for each i ̸= i0 there is a directed path from i to i0. The length of a path

is defined to be the number of its edges. Now let li,i0 be the minimal length of all

the paths from i to i0. Partition the set V of nodes into {V0,V1, ...,Vr}, for some

r ∈ [1, n− 1], with

V0 = {i0}, Vh = {i ∈ V : li,i0 = h}, h = 1, ..., r.

It is evident that there always exists r such that V0, ...,Vr are nonempty, disjoint,

and V0 ∪ · · · ∪ Vr = V. In the following we describe the sequence of activating edges

which causes all surpluses in the system to pile up at i0 in finite time, the idea being

visualized in Fig. 5.11. Owing to that each edge in E has a positive probability to

be activated, this sequence of activation also enjoys a positive probability. We now

proceed by induction.

First, take an arbitrary node i1 ∈ V1 and activate edge (i1, i0). By assumption

xi0(k) = xi1(k); thus only (R1) of QA algorithm applies. If it is the case (R1)(iii),

then

x(k + 1) = x(k), si1(k + 1) = 0, si0(k + 1) = si0(k) + si1(k). (5.5)

Otherwise (i.e., the case (R1)(i)/(ii)),

xi0(k + 1) = xi0(k)± 1, si0(k + 1) = si0(k) + si1(k)∓ 1,

xi1(k + 1) = xi1(k), si1(k + 1) = 0;
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i0
i1 i2 ir

V0 V1 V2 Vr

Figure 5.11: The idea of the proof for Lemma 5.3

in either case, activate edge (i1, i0) again. This time (R3)/(R2) of QA algorithm

applies, yielding

xi0(k + 2) = xi0(k + 1)∓ 1, si0(k + 2) = si0(k + 1) + si1(k + 1)± 1,

xi1(k + 2) = xi1(k + 1), si1(k + 2) = 0.

Hence

x(k + 2) = x(k), si1(k + 2) = 0, si0(k + 2) = si0(k) + si1(k). (5.6)

We see in (5.5) and (5.6) that the state is the same and the surplus of i1 comes to

i0. Repeating the foregoing process for every other node in V1, we derive that there

must exist a finite time k1 > k such that

x(k1) = x(k), (∀i1 ∈ V1) si1(k1) = 0, si0(k1) = si0(k) +
∑
i1∈V1

si1(k).

Now suppose that there is a finite time kj−1 > · · · > k1 (for some j ∈ [2, r]) such

that x(kj−1) = x(k),

(∀h ∈ [1, j − 1])(∀ih ∈ Vh) sih(kj−1) = 0, si0(kj−1) = si0(k) +

j−1∑
h=1

∑
ih∈Vh

sih(k).

Let ij ∈ Vj. Then there must exist a directed path from ij to i0: (ij, ij−1) · · · (i2, i1)(i1, i0)

for some ih ∈ Vh (h = 1, ..., j − 1). First activate edge (ij, ij−1). By hypothesis

xij−1
(kj−1) = xij(kj−1); thus only (R1) of QA algorithm applies. The present situ-

ation is the same as that in the base case – if it is (R1)(iii), no further activation

takes place; otherwise, activate edge (ij, ij−1) once more. As in (5.5) and (5.6) we

obtain that there is τ1 > kj−1 such that

x(τ1) = x(kj−1), sij(τ1) = 0, sij−1
(τ1) = sij−1

(kj−1) + sij(kj−1).
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Now sequentially for the edges (ij−1, ij−2) · · · (i1, i0), there is a sequence of times τ1 <

τ2 < · · · < τj such that

x(τ2) = x(τ1), sij−1
(τ2) = 0, sij−2

(τ2) = sij−2
(τ1) + sij−1

(τ1);

...

x(τj) = x(τj−1), si1(τj) = 0, si0(τj) = si0(τj−1) + si1(τj−1).

From these derivations and the hypothesis, it follows that

x(τj) = x(k), sij(τj) = 0, (∀h ∈ [1, j − 1])(∀ih ∈ Vh) sih(τj) = 0,

si0(τj) = si0(k) +

j−1∑
h=1

∑
ih∈Vh

sih(k) + sij(k).

Hence, at time τj, the state is the same and the surplus of ij comes to i0. Repeating

the same process for every other node in Vj, we derive that there must exist a finite

time kj > kj−1 such that x(kj) = x(k),

(∀h ∈ [1, j])(∀ih ∈ Vh) sih(kj) = 0, si0(kj) = si0(k) +

j∑
h=1

∑
ih∈Vh

sih(k).

This completes the induction step. The conclusion follows by letting j = r. �

Proof of Lemma 5.4. First, for k̃ ≥ k define two subsets of nodes with states

L − α and L − α + 1, respectively, by V1(k̃) := {i ∈ V : xi(k̃) = L − α} and

V2(k̃) := {i ∈ V : xi(k̃) = L − α + 1}. Let their cardinalities be n1(k̃) := |V1(k̃)|

and n2(k̃) := |V2(k̃)|. Denote by i0 the node that has state L − α + 1 and surplus

R + αn− 1 at time k. By assumption,

V2(k) = {i0}, V1(k) = V − V2(k); n2(k) = 1, n1(k) = n− 1;

si0(k) = R + αn− 1, (∀i ̸= i0) si(k) = 0.

(5.7)

In the following we show that there is a positive probability such that all nodes in V1

will enter V2 one by one in finite time; we proceed by induction.

Consider the base case in (5.7). Since G is strongly connected, there must exist

a directed edge (i0, i1) for some i1 ∈ V1(k). If this edge is activated, (R2) of QA
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Figure 5.12: The idea of the proof for Lemma 5.4

algorithm will apply because xi1(k) < xi0(k). In that case,

xi1(k + 1) = L− α + 1, si1(k + 1) = si0(k) + si1(k)− 1 = R + αn− 2,

xi0(k + 1) = xi0(k), si0(k + 1) = 0.

Hence, the following hold at time k1 := k + 1 with a positive probability:

n1(k1) = n− 2, n2(k1) = 2, si1(k1) = R + αn− 2, (∀i ̸= i1) si(k1) = 0,

where i1 ∈ V2(k1) ∩ V1(k). That is, node i1 enters V2, and holds all the surpluses.

Now suppose that there is a positive probability such that, at time kr−1 > · · · > k1

(for some r ∈ [2, n]),

n1(kr−1) = n− r, n2(kr−1) = r, sir−1(kr−1) = R + αn− r, (∀i ̸= ir−1) si(kr−1) = 0,

where ir−1 ∈ V2(kr−1) ∩ V1(kr−2). For ir−1 choose a node ir ∈ V1(kr−1) such that

the directed path from ir−1 to ir is one of the shortest from the node ir−1 to the

set V1(kr−1) (see Fig. 5.12). Let l be the corresponding length, and denote this

path by (ir−1, ipl−1
) · · · (ip2 , ip1)(ip1 , ir). Notice that the nodes ip1 , ip2 , ..., ipl−1

are all in

V2(kr−1), because otherwise this path is not one of the shortest from ir−1 to V1(kr−1).

Hence, for the path (ir−1, ipl−1
) · · · (ip2 , ip1) Lemma 5.3 applies, by which all the states

of these nodes remain the same and all the surpluses (currently held by ir−1) may pile

up at any chosen node. Here we choose this node to be ip1 , and obtain that there is

a positive probability such that at time k′
r−1 > kr−1,

xip1
(k′

r−1) = · · · = xir−1(k
′
r−1) = L− α + 1, sip2 (k

′
r−1) = · · · = sir−1(k

′
r−1) = 0,

sip1 (k
′
r−1) = sip1 (kr−1) + · · ·+ sir−1(kr−1) = R + αn− r.
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Subsequently we activate edge (ip1 , ir); since xir(k
′
r−1) < xip1

(k′
r−1), (R2) of QA

algorithm applies:

xir(k
′
r−1 + 1) = L− α + 1,

sir(k
′
r−1 + 1) = sip1 (k

′
r−1) + sir(k

′
r−1)− 1 = R + αn− r − 1,

xip1
(k′

r−1 + 1) = xip1
(k′

r−1), sip1 (k
′
r−1 + 1) = 0.

Hence, the following hold at time kr := k′
r−1 + 1 with a positive probability:

n1(kr) = n− r − 1, n2(kr) = r + 1; sir(kr) = R + αn− r − 1, (∀i ̸= ir) si(kr) = 0,

where ir ∈ V2(kr)∩V1(kr−1). This establishes the induction. Letting r = n we derive

that at time kn−1 and with a positive probability, all nodes have state L−α+1, i.e.,

m(kn−1) = M(kn−1) = L− α+ 1;

the node in−1, which enters V2 lastly, holds all the surpluses, i.e.,

sin−1(kn−1) = R + (α− 1)n, (∀i ̸= in−1) si(kn−1) = 0.

Finally, we invoke again Lemma 5.3 to collect all the surpluses in the system (currently

held by in−1) at node i0, and the conclusion ensues. �



Chapter 6

Convergence Time of Quantized

Gossip Algorithms

6.1 Introduction

We have designed gossip-type algorithms which solve quantized consensus and aver-

aging problems on digraphs with the least restrictive connectivity requirements. In

the present chapter, we investigate the performance of these algorithms by providing

upper bounds on their mean convergence time. The state transition structures result-

ing from these algorithms turn out to be rather complicated. Hence in our analysis

on convergence time, we focus on the special case of complete graphs. The analysis is

still challenging, but we will also discuss that the general approach can be useful for

other graph topologies. First, for QC algorithm, we find that the mean convergence

time is O(n2). To derive this bound, we view reaching consensus as the smallest in-

terval containing all states shrinking its length to zero. This perspective leads us to

characterizing convergence time by the hitting time in a certain Markov chain, which

yields the polynomial bound. Second, we obtain that the mean convergence time of

QA algorithm is O(n3). As the original algorithm in Chapter 5 is found to induce

complex state transition structures, we have suitably revised it to manage the com-

plexity. For the modified algorithm, a Lyapunov function is proposed which measures

105
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the distance from the average value. We then bound convergence time by way of

bounding the number of iterations required to decrease the Lyapunov function; the

latter is again characterized by the hitting time in a special Markov chain.

Our work is related to [32,45,48,81], which deal also with the convergence time of

gossip averaging algorithms with quantized states. In [45], a Lyapunov approach is

adopted and polynomial bounds on convergence time are obtained for fully connected

and linear networks. The work [81] generalizes these bounds to arbitrarily connected

networks (fixed or switching), utilizing the results on the meeting time of two random

walks on graphs. Also, bounds for arbitrarily connected networks are provided in

[32,48]; these bounds are, however, in terms of graph topology rather than the number

of nodes. In these cited references, a common feature is that the graphs are undirected.

By contrast, our averaging algorithm is designed for arbitrary strongly connected

digraphs, and we are interested in studying the corresponding convergence time.

To bound the convergence time, a frequently employed approach is to bound the

decay time of some suitable Lyapunov functions [45, 57]. In particular, [57] derives

tight polynomial bounds on the convergence time of synchronized averaging algorithm-

s, with either real or quantized states. In addition, [12,79] investigate the fastest aver-

aging algorithms by optimizing the updating weights. This optimization is shown to

be a semidefinite program in case of symmetric weights. In addition, [22] investigates

a variety of quantization effects on averaging algorithms, and demonstrate favorable

convergence properties by simulations. Our work adopts the Lyapunov method, as

in [45, 57]; the common function used in these papers turns out, however, not to be

a valid Lyapunov function for our averaging algorithm. This is due again to that

the state sum does not remain invariant, and the augmented surplus evolution must

also be taken into account. According to these features, we establish an appropriate

Lyapunov function, and prove that bounding its decay time can be reduced to finding

the hitting time in a certain Markov chain.

For the convergence time analysis below, we will impose the following two assump-

tions on the graph topology and the probability distribution of activating edges.



Chapter 6. Convergence Time of Quantized Gossip Algorithms 107

Assumption 6.1. The digraph G is complete (i.e., every node is connected to every

other node by a directed edge). It follows that there are card(E) = n(n− 1) edges.

Assumption 6.2. The probability distribution on edge activation is uniform; namely,

each edge can be activated with the same probability p := 1/card(E).

Also, it is convenient to specify a finite interval as follows:

X := {x : m ≤ xi ≤ M, i ∈ V}, (6.1)

where m,M ∈ Z are some finite constants. Suppose throughout this chapter that the

initial state vector x(0) satisfies x(0) ∈ X .

The rest of this chapter is organized as follows. First in Section 6.2, we formu-

late and solve the problem of convergence time analysis for QC algorithm. Then in

Sections 6.3 and 6.4, we derive an upper bound for the convergence time of QA algo-

rithm. Further, we demonstrate the derived time bounds by simulation in Section 6.5.

The material in this chapter has appeared in [14].

6.2 Convergence Time Analysis of Quantized

Consensus Algorithm

6.2.1 Problem Formulation and Result Statement

Recall from Section 5.3 the QC algorithm, and from (5.1) that C is the set of general

consensus states. The convergence time of QC algorithm is the random variable Tqc

defined by Tqc := inf{k ≥ 0 : x(k) ∈ C }. The mean convergence time (with respect

to the probability distribution on edge activation), starting from a state x0 ∈ X in

(6.1), is then given by

Eqc(x0) := E [Tqc|x(0) = x0] . (6.2)

Problem 6.1. Let Assumptions 1-2 hold. Find an upper bound of the mean conver-

gence time Eqc(x0) of QC algorithm with respect to all possible initial states x0 ∈ X .
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We now present the main result of this section: an upper bound of the mean

convergence time Eqc(x0) for all possible initial states x0 ∈ X .

Theorem 6.1. Let Assumptions 1 and 2 hold. Then

max
x0∈X

Eqc(x0) < n(n− 1)(M −m) = O(n2).

To derive this bound, we first provide preliminaries on the hitting time in finite

Markov chains.

6.2.2 Preliminaries on Hitting Time

Let {Xk}k≥0 be a Markov chain with a finite state space S and a transition probability

matrix P = (Pij) (e.g., [58]). The entry Pij denotes the one-step transition probability

from state i to state j. In particular, the diagonal entry Pii denotes the selfloop

transition probability. A state i ∈ S is said to be absorbing if Pii = 1. For a given

{Xk}k≥0, the hitting time of a subset T of S is the random variable HT ({Xk}k≥0)

defined by

HT ({Xk}k≥0) := inf{l ≥ 0 : Xl ∈ T }.

The mean time (with respect to the probability distribution specified by P ) taken for

the chain, starting from a state i ∈ S, to hit T is given by

Ei := E [HT ({Xk}k≥0) |X0 = i] =
∞∑
l=0

l · Pr [HT ({Xk}k≥0) = l|X0 = i] , (6.3)

where E[·|·] and Pr[·|·] denote the conditional expectation and conditional probability

operators, respectively. Here is an important fact on mean hitting times [58, Theo-

rem 1.3.5].

Lemma 6.1. The vector of mean hitting times (Ei)i∈S of a subset T satisfies the

system of linear equations Ei = 0 for i ∈ T ,

Ei =
∑

j /∈T PijEj + 1 for i /∈ T .
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Figure 6.1: Markov chain I: states 0 and n are absorbing. Here r0, . . . , rn are selfloop

transition probabilities.

Using Lemma 6.1, we derive a closed-form expression of the mean hitting time for

a specific Markov chain; this chain will be shown to characterize the state transition

structure under QC algorithm. For the proof of this result, see Section 6.6.

Lemma 6.2. Consider the Markov chain in Fig. 6.1 with transition probabilities

pz + rz + qz = 1, pz = qz (z = 1, ..., n− 1), r0 = 1, rn = 1.

Then the mean hitting time of the state 0 or n starting from state z is

Ez = (1− z

n
)
z−1∑
i=1

i

pi
+

z

n

n−1∑
j=z

n− j

pj
(z = 1, ..., n− 1).

6.2.3 Analysis of Convergence Time

We now proceed as follows. Recall from (5.4) the minimum state m(k) and the maxi-

mum stateM(k). We view the state x(k) converging to C as the interval [m(k),M(k)]

shrinking to length 0. Let the random variable T 1
qc be the time when one inter-

val shrinkage occurs; then the corresponding mean time, starting from a state x, is

E1
qc(x) := E

[
T 1
qc|x ∈ X

]
. Since one shrinkage decreases the interval length by at least

1, there can be at most M −m shrinkages for x0 ∈ X . It then follows that

max
x0∈X

Eqc(x0) ≤ max
x∈X

E1
qc(x) · (M −m). (6.4)

Consider a subset X1 of X defined by

X1 := {x : x1 = · · · = xz = 1 & xz+1 = · · · = xn = 0, z ∈ [1, n− 1]}. (6.5)

Thus the interval has length 1 for all x ∈ X1. It is easy to see that maxx0∈X1 Eqc(x0) =

maxx∈X E1
qc(x). The following lemma states an upper bound of Eqc(x0) for x0 ∈ X1.
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Lemma 6.3. Let Assumptions 1 and 2 hold. Then

max
x0∈X1

Eqc(x0) < n(n− 1) = O(n2).

Proof. By Assumptions 1 and 2, every directed edge in G can be activated with the

uniform probability p = 1/(n(n − 1)). Starting from an arbitrary state in the set

X1, the transition structure under QC algorithm is the Markov chain displayed in

Fig. 6.1; in the diagram,
state 0 : the vector 0 = [0 · · · 0]T of all zeros,

state n : the vector 1 = [1 · · · 1]T of all ones,

state z : the vector [

z︷ ︸︸ ︷
1 · · · 1 0 · · · 0]T in X1,

(6.6)

and the transition probabilities are pz = qz = z(n − z)p, z ∈ [1, n − 1]. To see this,

consider the transition from state z to state z + 1; this occurs when an edge (j, i) is

activated, with xj = 1 and xi = 0, so that (R2) of QC algorithm applies. Since there

are z(n− z) such edges, the transition probability pz = z(n− z)p. Likewise, one may

derive that the transition from state z to state z−1 is with probability qz = z(n−z)p,

which occurs when (R3) of QC algorithm applies. Now observe in Fig. 6.1 that the

states 0, n ∈ C and 1, ..., n−1 ∈ X1; hence maxz∈[1,n−1] Ez = maxx0∈X1 Eqc(x0), where

Ez is from (6.3).

It is left to invoke the formula of Ez in Lemma 6.2 for the obtained transition

probabilities, which yields

Ez = (1− z

n
)
z−1∑
i=1

1

(n− i)p
+

z

n

n−1∑
j=z

1

jp

≤ (1− z

n
)

z − 1

(n− z + 1)p
+

z

n

n− z

zp

=
n− z

n− z + 1
· 1
p
<

1

p
= n(n− 1).

Thus Ez < n(n − 1) for all z ∈ [1, n − 1]. Therefore maxx0∈X1 Eqc(x0) < n(n − 1) =

O(n2). �

Finally, our main result (Theorem 6.1) on upper bounding Eqc(x0) for x0 ∈ X

follows immediately from Lemma 6.3 and (6.4).



Chapter 6. Convergence Time of Quantized Gossip Algorithms 111

Remark 6.1. We discuss the idea of how this result for complete graphs might be

extended to handle more general topologies. We still view reaching consensus as

the interval [m(k),M(k)] shrinking to length 0; thereby the inequality (6.4) holds.

We then again consider the subset X1 given in (6.5), and as long as the digraph is

strongly connected (i.e., every node is connected to every other node) one can verify

that the state transition structure under QC algorithm is still the one in Fig. 6.1. The

associated transition probabilities, however, depend crucially on topologies. In order

to apply again Lemma 6.2 to derive bounds, it would be important to establish the

relation between transition probabilities and graph topologies; this will be targeted

in our future work.

6.3 Quantized Averaging Algorithm and Its

Lyapunov Function

In this and next sections, we address the convergence time analysis for QA algorithm,

which is a modification of the one in the preceding chapter. We start by presenting

the modified algorithm, and formulate the corresponding time analysis problem. We

then propose a Lyapunov function, which turns out to be a suitable measure for the

average consensus error. In Section 6.4, we will derive an upper bound on the mean

convergence time by means of bounding the decay time of the proposed Lyapunov

function.

6.3.1 Problem Formulation and Result Statement

Suppose that an edge (j, i) is randomly activated at time k. There are two stages:

(I) Along the edge, node j sends to i its state xj(k) and surplus sj(k). Node j does

not update its state, but sets its surplus to be 0 after transmission (see Fig. 6.2). (II)

Based on the information received, node i determines either to update its state and

surplus, or to send back to j the surplus sj(k) by activating the opposite edge (i, j) (see

Fig. 6.3). Notice that the latter operation in (II) requires bidirectional communication
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node i node j(xi(k), si(k)) (xj(k), 0)
xj(k)

sj(k)

Figure 6.2: Stage (I): Node j sends to i its state and surplus through the edge (j, i).

node i node j
sj(k)

node i node j

(ii) (xi(k), si(k)) (xj(k), sj(k))

(xj(k), 0)(x′

i(k), s′i(k))(i)

Figure 6.3: Stage (II): Either (i) node i updates its state and surplus, or (ii) it sends

sj(k) back to node j through edge (i, j).

between two nodes at a single time instant; this is possible in complete digraphs (our

assumption), but not in general strongly connected digraphs. Formally, QA algorithm

is described as follows.

(R1) If xi(k) = xj(k), then there are two cases:

(i) If si(k) > 0 & sj(k) > 0, then

xi(k + 1) = xi(k), si(k + 1) = si(k);

xj(k + 1) = xj(k), sj(k + 1) = sj(k).

(ii) Otherwise (i.e., either surplus equals zero),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k) ∈ {0, 1};

xj(k + 1) = xj(k), sj(k + 1) = 0.

(R2) If xi(k) < xj(k), then there are two cases:

(i) If si(k) + sj(k) > 0, then

xi(k + 1) = xi(k) + 1, si(k + 1) = si(k) + sj(k)− 1 ∈ {0, 1};

xj(k + 1) = xj(k), sj(k + 1) = 0.

(ii) Otherwise (i.e., si(k) + sj(k) = 0),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k) = 0;

xj(k + 1) = xj(k), sj(k + 1) = 0.
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(R3) If xi(k) > xj(k), then there are two cases:

(i) If si(k) + sj(k) = 0, then

xi(k + 1) = xi(k)− 1, si(k + 1) = si(k) + sj(k) + 1 = 1;

xj(k + 1) = xj(k), sj(k + 1) = 0.

(ii) Otherwise (i.e., si(k) + sj(k) > 0),

xi(k + 1) = xi(k), si(k + 1) = si(k);

xj(k + 1) = xj(k), sj(k + 1) = sj(k).

In the algorithm, observe that (1) (R1)(i) and (R3)(ii) are where node i sends

sj(k) back to node j in stage (II), which requires bidirectional communication; (2)

only (R3)(i) generates one surplus, and only (R2)(i) consumes one surplus; (3) the

quantity (x+ s)T1 stays invariant, i.e., for every k ≥ 0,

(x(k + 1) + s(k + 1))T1 = (x(k) + s(k))T1 = x(0)T1. (6.7)

Distinct from the algorithm in Chapter 5, this QA algorithm does not involve the

threshold constant and the local extrema variables, thus reducing individual computa-

tion effort. Also each surplus variable is indeed binary-valued, and therefore requires

merely one bit for both storage and transmission. A further difference between the

two algorithms lies in the use of surplus variables: The algorithm in Chapter 5 al-

lows surpluses to pile up, which is indeed required to achieve average consensus for

arbitrary strongly connected digraphs. By contrast, our QA algorithm here prevents

surpluses from piling up, and meanwhile simplifies the transition structure.

Now recall from (5.3) that A is the set of average consensus states. Here is the

convergence result of QA algorithm for complete digraphs.

Proposition 6.1. Let Assumption 1 hold. Then, under QA algorithm, a network of

agents achieves quantized averaging almost surely.

This convergence result may be justified by a similar argument as given in proof

of Theorem 5.2; some care, however, has to be taken for the operations on surplus
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variables, as pointed out above. For completeness, the proof is provided in Section 6.6.

In addition, we note that the convergence can also be implied by the time analysis

using Lyapunov approach in Section 6.4 below.

The convergence time of QA algorithm is the random variable Tqa defined by

Tqa := inf{k ≥ 0 : (x(k), s(k)) ∈ A }. The mean time taken for this convergence

(according again to the probability distribution on edge activation), starting from

(x0, 0) with x0 ∈ X , is then given by

Eqa(x0) := E [Tqa|(x(0), 0) = (x0, 0)] . (6.8)

Problem 6.2. Let Assumptions 1 and 2 hold. Find an upper bound of the mean

convergence time Eqa(x0) of QA algorithm with respect to all possible initial states

x0 ∈ X .

Our main result is the following upper bound of Eqa(x0) with respect to all possible

initial states x0 ∈ X .

Theorem 6.2. Let Assumptions 1 and 2 hold. Then

max
x0∈X

Eqa(x0) < n2(n− 1)
3(M −m)

2
+ n(n− 1)

R(R− 1)

n− (R/2)
= O(n3),

where R ∈ [0, n− 1] is an integer.

We note that the order of this polynomial bound is the same as that in [45] for

undirected, complete graphs. To derive this bound, we will first propose a valid Lya-

punov function for QA algorithm. Then we will upper bound the mean convergence

time by way of upper bounding the mean decay time of the Lyapunov function.

6.3.2 Lyapunov Function

We start by introducing two variables, called positive surplus S+ and negative surplus

S−; they are global variables, but are needed only for the convergence time analysis.

Write the initial state sum x(0)T1 = nL + R, where L := ⌊x(0)T1/n⌋ is one of the

possible values for average consensus, and 0 ≤ R < n. Observe that when a surplus



Chapter 6. Convergence Time of Quantized Gossip Algorithms 115

is generated/consumed, the corresponding state moves one-step either closer to or

farther from the value L. Positive and negative surplus variables are used to identify

these two directions. Concretely, when a surplus is generated, we increase S+ (resp.

S−) if the corresponding state moves towards (resp. away from) L. On the other hand,

when a surplus is consumed, we distinguish the following two situations: In one case

where the state moves closer to L, we decrease S− if it is nonzero, and S+ otherwise;

in the other case where the state moves away from L, we decrease only S+.

We now formalize the updating rules of S+ and S−. Let D(k) :=
∑n

i=1 |xi(k)−L|

be the sum of average consensus errors, and suppose that the edge (j, i) ∈ E is

activated at time k.

(S1) If (R3)(i) generates one surplus, then there are two cases:

(i) If D(k + 1) = D(k)− 1 (i.e., xi(k) > L), then

S+(k + 1) = S+(k) + 1.

(ii) If D(k + 1) = D(k) + 1 (i.e., xi(k) ≤ L), then

S−(k + 1) = S−(k) + 1.

(S2) If (R2)(i) consumes one surplus, then there are also two cases:

(i) If D(k + 1) = D(k) + 1 (i.e., xi(k) ≥ L), then

S+(k + 1) = S+(k)− 1.

(ii) If D(k + 1) = D(k)− 1 (i.e., xi(k) < L), then

S−(k) = 0 ⇒ S+(k + 1) = S+(k)− 1;

S−(k) > 0 ⇒ S−(k + 1) = S−(k)− 1.

(S3) Otherwise

S+(k + 1) = S+(k);

S−(k + 1) = S−(k).
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The case (S3) above includes (R1), (R2)(ii), and (R3)(ii) of QA algorithm;

note that, in these cases, there is no state update. Since initially there is no surplus

in the system (i.e., s(0) = 0), we set S+(0) = S−(0) = 0. Also, one may readily see

that S+(k) + S−(k) = s(k)T1, which relates the global surpluses to the local ones.

We are ready to define the Lyapunov function V (k), k ≥ 0, which is given by

V (k) := D(k) + S+(k)− S−(k). (6.9)

It is not difficult to see from (S1)-(S3) that V (k) is non-increasing. Indeed, V (k)

stays put except for only one case – (S2)(ii) and negative surplus S−(k) = 0 –

where it decreases by 2, i.e., V (k + 1) = V (k)− 2. Notice that after this decrement,

S+(k + 1) ≥ 0 and S−(k + 1) = 0.

Remark 6.2. We compare the Lyapunov function (6.9) with the one given in (4.10)

for the dynamic algorithm (4.7) in Chapter 4 where the states are real valued. The

Lyapunov function (4.10) was found valid to establish the convergence of the dynamic

algorithm (4.7), based on the crucial property that the surpluses are nonnegative.

Since QA algorithm also has this property, we expect that the function (4.10) may as

well be valid for proving the corresponding convergence. On the other hand, for the

convergence time analysis (as we will see), by considering decreasing the value of the

function (6.9) we can characterize the state transition structure into a special Markov

chain. Thereby we can derive the convergence time by computing the corresponding

hitting time. Whereas with the function (4.10), it seems difficult to carry out the

same approach.

Remark 6.3. We emphasize that the validity of V (k) as a Lyapunov function is

not restricted only to undirected graphs, since the updating rules (S2) and (S3)

do not involve (R1)(i) and (R3)(ii) where bidirectional communication is required.

Indeed, V (k) is a suitable Lyapunov function for the originalQA algorithm in [15–18],

which can achieve average consensus on arbitrary strongly connected digraphs. This

is one contribution of our work, which might also provide a preliminary to attack

convergence time on more general topologies.
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In the following lemma, we collect several useful implications from the definition

of function V (k).

Lemma 6.4.

(1) A lower bound of V (k) is R, i.e., V (k) ≥ R for all k.

(2) If V (k) = R, then S−(k) = 0, S+(k) ≥ 0, and (∀i ∈ [1, n]) xi(k) ≥ L.

(3) If D(k) = 0, then S−(k) = 0 and V (k) = S+(k) = R.

(4) Suppose R = 0. Then D(k) = 0 if and only if V (k) = 0, and in both cases

S−(k) = S+(k) = 0.

Proof. We prove these statements in this order: (2), (1), (3), and (4).

(2) Let V (k) = R. Then there must exist k0 ≤ k such that V (k0 − 1) = R + 2

and V (k0) = R. Also we have S+(k0) ≥ 0 and S−(k0) = 0. Now assume x1(k0) < L.

It follows from (6.7) that x1(k0) +
∑n

i=2 xi(k0) + s(k0)
T1 = nL + R. Rearranging

the terms and by s(k0)
T1 = S+(k0) + S−(k0), we obtain

∑n
i=2 xi(k0) − (n − 1)L =

(L− x1(k0)) +R− S+(k0). Thus

V (k0) = (L− x1(k0)) +
n∑

i=2

xi(k0) + S+(k0)− S−(k0)

= 2(L− x1(k0)) +R > R.

This contradicts V (k0) = R, and hence xi(k0) ≥ L for all i. The latter holds also for

time k because the minimum states are non-decreasing by QA algorithm. Finally,

according to the updating rules of S+ and S−, one may easily see that S−(k) = 0 and

S+(k) ≥ 0.

(1) When V (k) = R, every state xi(k) ≥ L and consequently (S3)(ii) cannot

occur. As V (k) is non-increasing, it is lower bounded by R.

(3) Let D(k) = 0. Then x(k)T1 = nL, and thus S+(k) + S−(k) = s(k)T1 = R.

It follows that V (k) = S+(k) − S−(k) ≤ R. But V (k) ≥ R, so that necessarily

V (k) = S+(k)− S−(k) = R, which also implies that S−(k) = 0 and S+(k) = R.

(4) Assume R = 0. (Only if) The conclusion follows immediately from (3). (If)

Let V (k) = 0. Then there must exist k0 ≤ k such that V (k0 − 1) = 2 and V (k0) = 0.
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Also we have S+(k0) ≥ 0 and S−(k0) = 0. Hence D(k0) + S+(k0) = 0, which results

in D(k0) = S+(k0) = 0. As average consensus is achieved at k0, no further state or

surplus update occurs. So the conclusion for time k follows. �

Next, we find an upper bound for the function V (k).

Proposition 6.2. Let x(0) ∈ X in (6.1). Then for every k ≥ 0,

V (k) ≤ (M −m)n

2
+R.

Proof. Since the function V (k) is non-increasing, it suffices to find an upper bound

for V (0) =
∑n

i=1 |xi(0) − L|. Consider the function V (0) − R; it is convex in x(0),

and X is a convex set. Hence, one of the extreme points of X is a maximizer. Fix

r ∈ [1, n], and let x(0) ∈ X be such that x1(0) = · · · = xr(0) = m and xr+1(0) =

· · · = xn(0) = M . Then V (0) − R = r(L −m) + (n − r)(M − L) − R. Also we have

L = (1Tx(0) − R)/n = (rm + (n − r)M − R)/n. Substituting this into the above

equation and rearranging the terms, we derive

V (0)−R = −2(M −m)

n
r2 +

(
2(M −m)− 2

R

n

)
r

=
2(M −m)

n

[
−
(
r − 1

2
(n− R

M −m
)

)2

+
1

4
(n− R

M −m
)2

]

≤ 2(M −m)

n
· 1
4
(n− R

M −m
)2 ( equality holds iff r = 1

2
(n− R

M−m
) )

=
1

2

(n(M −m)−R)2

n(M −m)

≤ 1

2

(n(M −m))2

n(M −m)
=

(M −m)n

2
( equality holds iff R = 0 ).

Thus V (k)− R is upper bounded by (M −m)n/2, which is achievable if and only if

R = 0 and r = n/2. �

6.4 Convergence Time Analysis of Quantized

Averaging Algorithm

We turn now to analyzing the mean convergence time of QA algorithm, by way

of upper bounding the mean decay time of the Lyapunov function V (·) in (6.9).
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1 2 3

p1 p2 p3

q2 q3 q4

r1 r2 r3

n − 2 n − 1 n

pn−2
pn−1
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rn−2 rn−1

pn−3

qn−2

rn

Figure 6.4: Markov chain II: state n is absorbing.
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qn−1

pn−3

qn−2

d1 d2 d3 dn−2 dn−1

r1 r2 r3 rn−2 rn−1

rn

Figure 6.5: Markov chain III: state n is absorbing.

This Lyapunov approach is also adopted in [45, 57]; the common function used is

V ′(k) =
∑n

i=1(xi(k) − x(0)T1/n)2. It can be verified that V ′(k) is, however, not a

valid Lyapunov function with respect to our QA algorithm. This is due to that the

state sum is not preserved in each iteration and the surplus evolution must also be

taken into account, as in our function V (k).

6.4.1 Preliminaries on Hitting Time

As in Subsection 6.2.2, we provide preliminaries on the hitting time in finite Markov

chains, specific to the analysis of QA algorithm. For the proofs see Section 6.6.

Lemma 6.5. Consider the Markov chain in Fig. 6.4 with transition probabilities

p1 + r1 = 1, pz + rz + qz = 1 (z = 2, ..., n− 1), rn = 1.

Then the mean hitting times of the state n starting from state 1 and z are respectively

E1 =
n−1∑
l=2

[(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

]
+

1

p1
,

Ez =
n−1∑
l=z

[(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

]
(z = 2, ..., n− 1).
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Lemma 6.6. Consider the Markov chain in Fig. 6.5 with transition probabilities

p1 + r1 + d1 = 1, pz + rz + qz + dz = 1 (z = 2, ..., n− 2),

rn−1 + qn−1 + dn−1 = 1, pn−1 + rn−1 + qn−1 + dn−1 = 1, rn = 1.

Here · and · denote the states of the lower and upper rows, respectively. Then for

states n− 1 and n− 1, their mean hitting times of the absorbing state n are

En−1 =

(
n−1∏
i=2

qi
pi

)
· 2

p1
+

n−1∑
j=2

(
n−1∏

i=j+1

qi
pi

)
· 2

pj
,

En−1 <

(
1 +

pn−1

dn−1

)
En−1.

In the rest of this section, the proof of Theorem 6.2 is given. We will need the

following notation. Define the random variable TV := inf{k ≥ 0 : V (k) = R}; thus

TV is the time when V (·) decreases to R. The mean decay time, starting from (x0, 0),

is then given by

EV (x0) := E [TV |(x(0), 0) = (x0, 0)] . (6.10)

According to the value of R ∈ [0, n− 1], we will proceed with two cases in this order:

R = 0 and R > 0. When R = 0 the mean convergence time Eqa(x0) is found to satisfy

Eqa(x0) = EV (x0), whereas when R > 0 we have Eqa(x0) ≥ EV (x0) in general and

the corresponding analysis turns out to be based on the former case.

6.4.2 Proof for the case R = 0

In this case, the mean convergence time Eqa(x0) is characterized by the mean time

that the function V (k) decays to 0; that is, Eqa(x0) = EV (x0) in (6.10). This is

because by Lemma 6.4 (4), V (k) = 0 if and only if D(k) = 0, and the latter implies

(x(k), s(k)) ∈ A . As each decrement reduces V (k) by 2, the initial value V (0) is

necessarily even, and there need in total V (0)/2 decrements (see Fig. 6.6).

To upper bound EV (x0), we view the decay of V (k) as the descent of level sets

in the (n+ 2)-dimensional space of the triples u := (x, S+, S−) (see Fig. 6.7). In this
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V (k)

k

V (0) − 2

V (0) − 4

V (0)

0

2

Figure 6.6: Decay of function V (k) in case R = 0

space, the average consensus state is simply the point (L1, 0, 0). Define the level sets

Ul := {u : V =
n∑

i=1

|xi − L|+ S+ − S− = 2 · l}, l = 1, ..., V (0)/2.

Thus when u(k) ∈ Ul, we interpret that (x(k), s(k)) is l-step away from A (i.e., V (k)

requires l decrements to reach 0). Also, it is important to note that on every level

set Ul, the triple evolution may start, and may descend to the next level, only from a

strict subset U0
l defined by

U0
l := {u ∈ Ul : S− = 0 & S+ ≥ 0}.

To see this, first recall that the decrement of V (·) (i.e., level set descent) requires

S− = 0 and S+ > 0. Moreover, for the outmost level UV (0)/2, the initial triple is of

the form (x0, 0, 0); and for each subsequent level, the triple evolution starts right after

descending from the preceding level, where we have S− = 0 and S+ ≥ 0.

Now let the random variable T1 be the time of one decrement of V (·). The cor-

responding mean time, starting from a triple u ∈ U0
l , is then given by El

1(u) :=

E [T1|u ∈ U0
l ] , l ∈ [1, V (0)/2]. Since the initial value V (0) is upper bounded by

(M −m)n/2 (Proposition 6.2), the function V (·) requires at most (M −m)n/4 decre-

ments to reach 0. Hence, an upper bound of its mean decay time is the following:

max
x0∈X

EV (x0) ≤ max
l∈[1,V (0)/2],u∈U0

l

El
1(u) ·

(M −m)n

4
. (6.11)

Here is a key result.
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(n + 2)-dimension (x, S+, S−)

(L1,0,0)

UV (0)/2
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0
V (0)/2

Figure 6.7: Decay of V (k) viewed as level set descent in the (n + 2) dimensions of

(x, S+, S−). Descending is possible only from the shaded area and through the dotted

curves.
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Figure 6.8: One step away: from U1 to (1, 0, 0).

Proposition 6.3. Let Assumptions 1 and 2 hold. Then

max
l∈[1,V (0)/2],u∈U0

l

El
1(u) < 6n(n− 1) = O(n2).

To prove Proposition 6.3, it suffices to establish

max
u∈U0

l

El
1(u) < 6n(n− 1) = O(n2), (6.12)

for every l ∈ [1, V (0)/2]. In the sequel we will provide the proof for the case l = 1

(i.e., one step away from average consensus), which contains the essential idea of

our argument. Specifically, we first exhaust the possible triple evolution under QA

algorithm, second derive the evolution structure and transition probabilities, and third
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calculate the corresponding mean hitting time. The analysis of the case l ≥ 2 follows

in a similar fashion but is more involved; we refer to Appendix for the proof.

Proof for the case l = 1: Without loss of generality let L = 1. We investigate the

triple evolution from the level set U1, starting in U0
1 , to the average consensus state

(1, 0, 0). By Assumptions 1 and 2, every directed edge in G can be activated with the

uniform probability p = 1/(n(n− 1)). Consider the triple ([2

n−2︷ ︸︸ ︷
1 · · · 1 0]T , 0, 0) ∈ U0

1 ;

we show that either S− or S+ can be generated. Case 1: an edge (j, i) is activated,

with xj = 0 and xi = 1. In this case, (R3)(i) of QA algorithm applies, and the

resulting triple is ([2

n−3︷ ︸︸ ︷
1 · · · 1 0 0]T , 0, 1) ∈ U1−U0

1 . There are n−2 such edges; so the

probability of this transition is (n − 2)p. In fact, such transitions can continue until

all the ones become zeros, generating in total S− = n − 2. Case 2: an edge (j, i) is

activated, with xj = 0 or 1 and xi = 2. Again (R3)(i) of QA algorithm applies, the

resulting triple being ([

n−1︷ ︸︸ ︷
1 1 · · · 1 0]T , 1, 0) ∈ U0

1 . This transition is with probability

(n− 1)p, since there are n− 1 such edges.

Now starting from the triple ([

n−1︷ ︸︸ ︷
1 1 · · · 1 0]T , 1, 0), on one hand, we can have a

similar process, as from ([2

n−2︷ ︸︸ ︷
1 · · · 1 0]T , 0, 0) described above, generating in total

S− = n − 2. On the other hand, observe that there is only one edge (j, i) such that

xj = 1, sj = 1, and xi = 0, si = 0. If this edge is activated (with probability p), then

(R2)(i) of QA algorithm applies, and the resulting triple is the average consensus

state (1, 0, 0).

Based on the above descriptions, we derive that the transition structure from U1

to (1, 0, 0) under QA algorithm is the one displayed in Fig. 6.8.1 In this diagram,

the state n is the average consensus state (1, 0, 0), and the other states belong to U1,

listed below:

1The transition structure in Fig. 6.8 is obtained with a minor modification from the original. For
those triples in U1 − U0

1 , we treat the following transitions from left to right as selfloops: For some
node i such that xi = 0 and si = 0, its state xi increases by consuming one negative surplus (under
R2(i) of QA algorithm). By treating such transitions as selfloops, only the probability of moving
towards the average consensus state is reduced; so it can be verified that the mean hitting time
derived from this structure is an upper bound of that from the original. We make such modifications
in our analysis henceforth.
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n− 1 : ([2 1 1 · · · 1 1 0]T , 0, 0) n− 1 : ([1 1 1 · · · 1 1 0]T , 1, 0)

n− 2 : ([2 1 1 · · · 1 0 0]T , 0, 1) n− 2 : ([1 1 1 · · · 1 0 0]T , 1, 1)

...
...

2 : ([2 1 0 · · · 0 0 0]T , 0, n− 3) 2 : ([1 1 0 · · · 0 0 0]T , 1, n− 3)

1 : ([2 0 0 · · · 0 0 0]T , 0, n− 2) 1 : ([1 0 0 · · · 0 0 0]T , 1, n− 2)

Note that negative surplus is zero (S− = 0) only in the states n− 1 and n− 1; hence

these two triples are in U0
1 . Also, one may verify that the transition probabilities are

as follows:

p1 = (n− 2)p, d1 = p; pn−1 = p, qn−1 = (n− 2)p, dn−1 = (n− 1)p;

pz = (n− 1− z)zp, qz = (z − 1)p, dz = zp (z = 2, ..., n− 2).

To upper bound E1
1(u) for u ∈ U0

1 , in Fig. 6.8 we add transitions from the state z to z

with the probability dz, z ∈ [1, n− 1], thereby increasing the probabilities of moving

away from the average consensus state n. This modification leads us to the same

structure displayed in Fig. 6.5; thus, we have maxu∈U0
1
E1

1(u) ≤ En−1, where En−1 is

given in (6.3).

It is left to calculate En−1 with respect to the obtained transition probabilities.

For this we invoke the formulas in Lemma 6.6. First,

n−1∏
i=2

qi
pi

=
n− 2

1
· n− 3

n− 2
· n− 4

2(n− 3)
· · · 2

(n− 4)3
· 1

(n− 3)2
=

1

(n− 3)!
.

Similarly,

n−1∏
i=3

qi
pi

=
2

(n− 4)!
,

n−1∏
i=4

qi
pi

=
3

(n− 5)!
, · · · , qn−2qn−1

pn−2pn−1

= n− 3,
qn−1

pn−1

= n− 2.

We then have

En−1 =

(
n−1∏
i=2

qi
pi

)
· 2

p1
+

n−1∑
j=2

(
n−1∏

i=j+1

qi
pi

)
· 2

pj

=
1

(n− 3)!
· 2

(n− 2)p
+

2

(n− 4)!
· 2

(n− 3)2p
+ · · ·+ (n− 2) · 2

(n− 2)p
+

2

p

=
2

p
·
[

1

(n− 2)!
+

1

(n− 3)!
+ · · ·+ 1 + 1

]
<

2

p
· 3 = 6n(n− 1) = O(n2).
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Finally, En−1 < (1 + (pn−1/dn−1))En−1 = (1 + (p/((n− 1)p))) · 6n(n − 1) < 6n(n −

1) = O(n2). �

Therefore, it follows from Proposition 6.3 and equation (6.11) that the upper

bound of Eqa(x0) in Theorem 6.2 holds for the case R = 0.

6.4.3 Proof for the case R ∈ [1, n− 1]

When R ̸= 0, we have Eqa(x0) ≥ EV (x0) in general. This is because V (k) = R does

not generally imply (x(k), s(k)) ∈ A , and even after V (k) reaches its lower bound R

(Lemma 6.4 (1) and (2)), the pair (x(k), s(k)) may require extra time to reach A .

Define the level set UR := {u : V =
∑n

i=1 |xi − L| + S+ − S− = R}; then the mean

convergence time starting from a triple u ∈ UR is given by Eqa(u) := E [Tqa|u ∈ UR].

Also recall from (6.10) that EV (x0), with x0 ∈ X in (6.1), denotes the mean decay

time of V (k) to the lower bound R. From these we obtain the mean convergence time

of QA algorithm

max
x0∈X

Eqa(x0) ≤ max
x0∈X

EV (x0) + max
u∈UR

Eqa(u). (6.13)

In the sequel, we find upper bounds for EV (x0) and Eqa(uR), respectively. First,

as in the case R = 0, we have

max
x0∈X

EV (x0) < n2(n− 1)
3(M −m)

2
= O(n3). (6.14)

This is due to the following reason. The function V (k) decays from its initial value

V (0) to R, and each decrement reduces V (k) by 2. It follows that V (0) − R is

necessarily even and there need in total (V (0)−R)/2 decrements. For l ∈ [1, (V (0)−

R)/2] recall that El
1(u) denotes the mean time spent for one decrement of V (k),

starting from a triple u ∈ U0
l . Following Proposition 6.3, one may similarly derive

that maxl∈[1,(V (0)−R)/2],u∈U0
l
El

1(u) < 6n(n − 1). Moreover, V (0) − R ≤ (M − m)n/2

by Proposition 6.2; thus V (k) requires at most (M −m)n/4 decrements to reach R.

Therefore, maxx0∈X EV (x0) ≤ maxl∈[1,(V (0)−R)/2],u∈U0
l
El

1(u) · (M − m)n/4 < n2(n −

1)3(M −m)/2 = O(n3).
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Figure 6.9: Decrement of maximum state when u ∈ UR

Next, we find an upper bound for maxu∈UR
Eqa(u). By Lemma 6.4 (2) we have

(∀i ∈ V) xi ≥ L; so the maximum state M(k) in (5.4) satisfies M(k) ∈ [L,L+ R]. If

R = 1, then in fact (x(k), s(k)) ∈ A ; thus in this case Eqa(uR) = 0, and we have from

(6.13) and (6.14) that maxx0∈X Eqa(x0) = O(n3). It is left to consider R ∈ [2, n− 1].

Since M(k) = L or L+1 implies (x(k), s(k)) ∈ A , the mean convergence time Eqa(u)

can be characterized by the mean time that M(k) decays to L + 1. The decay of

M(k) is displayed in Fig. 6.9; observe that M(k) requires at most R − 1 decrements

to reach L + 1. Let EM(u) denote the mean time taken for one decrement of M(k),

starting from a triple u ∈ UR. Then an upper bound for Eqa(u) is as follows:

max
u∈UR

Eqa(u) ≤ max
u∈UR

EM(u) · (R− 1). (6.15)

Proposition 6.4. Let Assumptions 1 and 2 hold. Then

max
u∈UR

EM(u) < n(n− 1)
R

n− (R/2)
= O(n2).

To prove Proposition 6.4, we first find the subset in which one decay of M(k) takes

the longest time, second derive the transition structure and probabilities under QA

algorithm, and third compute the mean hitting time.

Proof of Proposition 6.4. We consider the following two cases when R is even and

odd, respectively.

1) R is even. Let Ue be a subset of UR given by Ue := {u = (x, S+, S−) : x ∈

Xe, S+ = S− = 0}, where

Xe := {x : x1 = · · · = xR
2
= L+ 2, xR

2
+1 = · · · = xn = L}.
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For a state in Xe, one decrement of its maximum value L + 2 occurs only when

all the R/2 state components having that value decrease; thus it is not hard to see

maxu∈UR
EM(u) = maxu∈Ue EM(u).

Now pick an arbitrary triple u in Ue; we investigate its evolution under QA algo-

rithm. If an edge (j, i) is activated, with xj = L and xi = L+2, then (R3)(i) of QA

algorithm applies, and the resulting triple is ([

(R/2)−1︷ ︸︸ ︷
L+ 2 · · ·L+ 2 L+1 L · · ·L]T , 1, 0).

Namely, one maximum state decreases. Also observe that there are (R/2) (n− (R/2))

such edges; so the probability of this transition is (R/2) (n− (R/2)) p, where p =

1/(n(n− 1)) by Assumptions 1 and 2. Indeed, this process can continue until all the

R/2 maximum states decrease to the value L+1, and we derive that the correspond-

ing transition structure under QA algorithm is the one displayed in Fig. 6.4 with the

length n = (R/2) + 1. In the diagram,



state 1 : ([

R/2︷ ︸︸ ︷
L+ 2 L+ 2 · · · L+ 2 L+ 2 L · · · L]T , 0, 0)

state 2 : ([L+ 2 L+ 2 · · · L+ 2 L+ 1 L · · · L]T , 1, 0)

...

state R/2 : ([L+ 2 L+ 1 L+ 1 · · · L+ 1 L · · · L]T , (R/2)− 1, 0)

state (R/2) + 1 : ([L+ 1 L+ 1 L+ 1 · · · L+ 1 L · · · L]T , R/2, 0)

and the transition probabilities are p1 = (R/2) (n− (R/2)) p, pz = ((R/2)−z+1)(n−

(R/2))p, qz = (z − 1)((R/2) − z + 1)p, z ∈ [2, R/2]. Observe that the state 1 ∈ ŨR

and the state (R/2) + 1 ∈ A; so maxu∈Ue EM(u) = E1, where E1 is from (6.3).

It remains to invoke the formulas in Lemma 6.5 to calculate E1. First,

R/2∏
i=2

qi
pi

=
(R/2)− 1

n− (R/2)
· ((R/2)− 2)2

2(n− (R/2))
· · · 2((R/2)− 2)

((R/2)− 2)(n− (R/2))
· (R/2)− 1

((R/2)− 1)(n− (R/2))

=
((R/2)− 1)!

(n− (R/2))(R/2)−1
≤
(
(R/2)− 1

n− (R/2)

)(R/2)−1

< 1;

the last inequality is due to R < n. Similarly
∏R/2

i qi/pi < 1 for i = 3, ..., R/2. Then
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we obtain(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

<
1

(n− (R/2))p

(
1

(R/2)
+

1

(R/2)− 1
+ · · ·+ 1

(R/2)− l + 1

)
.

Hence,

E1 =

R/2∑
l=2

[(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

]
+

1

p1

<
1

(n− (R/2))p

(
1

R/2
+

1

(R/2)− 1
+ · · ·+ 1

2
+ 1

)
+

1

(n− (R/2))p

(
1

R/2
+

1

(R/2)− 1
+ · · ·+ 1

2

)
+ · · ·+ 1

(n− (R/2))p

(
1

R/2
+

1

(R/2)− 1

)
+

1

(n− (R/2))p
· 1

R/2

=
R

(n− (R/2))p
=

R

(n− (R/2))
· n(n− 1).

Therefore, maxu∈UR
EM(u) = E1 < n(n− 1)R/(n− (R/2)) = O(n2).

2) R is odd. Let Uo be a subset of UR given by Uo := {u = (x, S+, S−) : x ∈

Xo, S+ = S− = 0}, where

Xo := {x : x1 = · · · = xR−1
2

= L+ 2, xR+1
2

= L+ 1, xR+1
2

+1 = · · · = xn = L}.

For the same reason in the preceding case, one can verify that maxu∈UR
EM(u) =

maxu∈Uo EM(u). Also it turns out that the transition structure, together with the

associated transition probabilities, starting from Uo is analogous to that starting

from Ue. Thus by a similar derivation given above, we can conclude again that

maxu∈UR
EM(u) < n(n− 1)R/(n− (R/2)) = O(n2). �

Finally, it follows from equations (6.13)-(6.15) and Proposition 6.4 that an upper

bound of the mean convergence time Eqa(x0) of QA algorithm is Eqa(x0) < n2(n −

1)3(M − m)/2 + n(n − 1)R(R − 1)/(n − (R/2)) = O(n3) for the case R > 0. This

completes the proof of Theorem 6.2.

Remark 6.4. We have derived an upper bound for the convergence time of QA

algorithm on complete graphs, by proposing a suitable Lyapunov function for the
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Figure 6.10: Convergence time of QC and QA

algorithm and characterizing a Markov chain for the state-surplus transition structure.

To extend this result to more general topologies, the Lyapunov function is still valid

(see Remark 6.3) which in turn validates inequalities (6.11) and (6.13). Thus it is

crucial to establish the relation between graph topologies and the transition structure

with associated probabilities, as done in the proofs of Propositions 6.3 and 6.4 for

complete graphs. Establishing such a relation for general topologies currently appears

to be difficult, but will be explored in our future work.

6.5 Numerical Example

We have proved polynomial upper bounds on the convergence time of QC and QA

algorithms for complete digraphs. Now we compare these theoretic bounds with

numerical simulations, so as to illustrate the tightness of our derived results. For this

purpose, we consider the following initial states x(0) which correspond to the worst

case convergence time: For QC algorithm, we choose x(0) = [

⌊n/2⌋︷ ︸︸ ︷
1 · · · 1 0 · · · 0]T (cf.

proof of Lemma 6.3); for QA algorithm, we choose x(0) = [2

n−2︷ ︸︸ ︷
1 · · · 1 0]T (cf. proof of

Proposition 6.3). The simulation results are displayed in Fig. 6.10, each plotted value

being the mean convergence time of 100 runs of the corresponding algorithms.

It is observed that the convergence rate of QC algorithm is approximately quadrat-
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ic, which demonstrates that the derived theoretic bound is relatively tight. On the

other hand, the convergence rate of QA algorithm appears to be at most quadratic,

if not linear. This indicates that the cubic theoretic bound may not be tight, though

it is in the same order as the one in [45] also for complete graphs. Thus, deriving

tighter bounds for the convergence time of QA algorithm awaits future effort.

6.6 Proofs

Proof of Lemma 6.2. The proof is a direct calculation. By Lemma 6.1 the mean

hitting times of state 0 or n satisfy the following linear equations

E0 = 0, (6.16)

Ez = pzEz+1 + rzEz + qzEz−1 + 1, z = 1, ..., n− 1, (6.17)

En = 0. (6.18)

Since pz = qz, it follows from (6.17) that pz(Ez+1 −Ez)− pz(Ez −Ez−1) + 1 = 0. Let

Fz+1 := Ez+1 − Ez. Then

Fz+1 = Fz −
1

pz
.

This is a non-homogeneous first-order linear difference equation, whose solution is of

the general form

Fz+1 = F1 −
z∑

i=1

1

pi
.

To obtain the initial condition F1, consider

Fn + Fn−1 + · · ·+ F1 = (En − En−1) + (En−1 − En−2) + · · ·+ (E1 − E0) = 0,

Fn + Fn−1 + · · ·+ F1 = nF1 −
n−1∑
j=1

j∑
i=1

1

pi
.
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From the above we have F1 = (1/n)
∑n−1

j=1

∑j
i=1 1/pi. Finally,

Ez = Ez − E0 = Fz + Fz−1 + · · ·+ F2 + F1

= zF1 −
z−1∑
j=1

j∑
i=1

1

pi

=
z

n

n−1∑
j=1

j∑
i=1

1

pi
−

z−1∑
j=1

j∑
i=1

1

pi

= (1− z

n
)
z−1∑
i=1

i

pi
+

z

n

n−1∑
j=z

n− j

pj
.

�

Proof of Lemma 6.5. By Lemma 6.1 the mean hitting times of state n satisfy the

following linear equations

En = 0, (6.19)

E1 = p1E2 + r1E1 + 1, (6.20)

Ez = pzEz+1 + rzEz + qzEz−1 + 1, z = 2, ..., n− 1. (6.21)

Rearrange the terms in (6.21) to obtain pz(Ez+1 − Ez)− qz(Ez − Ez−1) + 1 = 0. Let

Fz+1 := Ez+1 − Ez. Then

Fz+1 =
qz
pz
Fz −

1

pz
,

whose initial condition is F2 = E2−E1 = −1/p1 by (6.20). This is a non-homogeneous

first-order linear difference equation with variable coefficients, whose solution is of the

general form

Fz+1 =

(
z∏

i=2

qi
pi

)
· (− 1

p1
) +

z∑
j=2

(
z∏

i=j+1

qi
pi

)
·
(
− 1

pj

)
.

Since

Fn + Fn−1 + · · ·+ Fz+1 = (En − En−1) + (En−1 − En−2) + · · ·+ (Ez+1 − Ez)

= En − Ez = −Ez,

we derive

Ez = −(Fn + Fn−1 + · · ·+ Fz+1) =
n−1∑
l=z

[(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

]
.
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Finally,

E1 = E2 +
1

p1
=

n−1∑
l=2

[(
l∏

i=2

qi
pi

)
· 1

p1
+

l∑
j=2

(
l∏

i=j+1

qi
pi

)
· 1

pj

]
+

1

p1
.

�

Proof of Lemma 6.6. It follows from Lemma 6.1 that the mean hitting times of

state n satisfy the following linear equations E1 = p1E2 + r1E1 + d1E1 + 1,

E1 = p1E2 + r1E1 + d1E1 + 1;
(6.22)

 Ez = pzEz+1 + r1Ez + qzEz−1 + dzEz + 1,

Ez = pzEz+1 + r1Ez + qzEz−1 + dzEz + 1;
(z = 2, ..., n− 2) (6.23)

 En−1 = pn−1En + rn−1En−1 + qn−1En−2 + dn−1En−1 + 1,

En−1 = rn−1En−1 + qn−1En−2 + dn−1En−1 + 1;
(6.24)

En = 0. (6.25)

Rearrange the terms in (6.23) as pz(Ez+1 − Ez)− qz(Ez − Ez−1)− dz((Ez − Ez)) + 1 = 0,

pz(Ez+1 − Ez)− qz(Ez − Ez−1) + dz((Ez − Ez)) + 1 = 0.

Let Fz+1 := Ez+1 − Ez, Fz+1 := Ez+1 − Ez, and add these two equations; we obtain

Fz+1 + Fz+1 =
qz
pz

(Fz + Fz)−
2

pz
,

whose initial condition is F2+F2 = −2/p1 by (6.22). This is again a non-homogeneous

first-order linear difference equation with variable coefficients, whose solution is

Fz+1 + Fz+1 =

(
z∏

i=2

qi
pi

)
· (− 2

p1
) +

z∑
j=2

(
z∏

i=j+1

qi
pi

)
·
(
− 2

pj

)
.

Now rearrange the terms in (6.24) pn−1(En − En−1)− qn−1(En−1 − En−2)− dn−1((En−1 − En−1)) + 1 = 0,

−qn−1(En−1 − En−2) + dn−1((En−1 − En−1)) + 1 = 0.
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Adding these two equations and applying (6.25), we derive

En−1 = −qn−1

pn−1

(
Fn−1 + Fn−1

)
+

2

pn−1

=

(
n−1∏
i=2

qi
pi

)
· 2

p1
+

n−1∑
j=2

(
n−1∏

i=j+1

qi
pi

)
· 2

pj
.

It is left to obtain the upper bound for En−1. For this we start by rearranging the

terms in (6.22) as follows: (p1 + d1)E1 − d1E1 = p1E2 + 1,

(p1 + d1)E1 − d1E1 = p1E2 + 1.

Subtracting the first equation from the second, we have (p1+2d1)(E1−E1) = p1(E2−

E2). Hence

E1 − E1 =
p1

p1 + 2d1
(E2 − E2) < E2 − E2.

Similarly, from (6.23) we obtain a chain of inequalities

E2 − E2 < E3 − E3 < · · · < En−2 − En−2 < En−1 − En−1.

Finally, rearrange the terms in (6.24) as (pn−1 + qn−1 + dn−1)En−1 − dn−1En−1 = pn−1En + qn−1En−2 + 1,

(qn−1 + dn−1)En−1 − dn−1En−1 = qn−1En−2 + 1.

Subtracting the first equation from the second and applying (6.25), we deduce

(qn−1 + 2dn−1)(En−1 − En−1)− pn−1En−1 = qn−1(En−2 − En−2) < qn−1(En−1 − En−1).

Rearranging these terms we have En−1 < (1 + (pn−1/dn−1))En−1. �

Proof of Proposition 6.1. Like the proof for Theorem 5.2, it suffices to establish

the following three conditions:

(C1) The evolution of (x(k), s(k)), k ≥ 0, is a Markov chain with a finite state space;

(C2) the set A defined in (5.3) is an invariant set under QA algorithm;

(C3) for every (x(0), 0) /∈ A there is a finite time Ka such that Pr
[
(x(Ka), s(Ka)) ∈

A | (x(0), 0)
]
> 0.

For an arbitrary state x(k), observe in QA algorithm that the minimum m(k)

is non-decreasing and the maximum M(k) non-increasing, where m(k), M(k) are
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Figure 6.11: Idea of induction step

defined in (5.4). Thus the conditions (C1) and (C2) easily follow. It remains to

establish (C3) when the digraph G is complete (Assumption 1), for which we proceed

by induction on the number n (> 1) of nodes. Let F (k) := M(k) − m(k). Assume

(x(0), 0) /∈ A ; then F (0) ≥ 2.

(i) Base case: n = 2. Label the two nodes such that x1(0) = m(0) and x2(0) =

M(0). As G is complete, there are two edges, (1, 2) and (2, 1), each of which has a

positive probability to be activated. Consider the sequence of alternate activation:

(1, 2), (2, 1), (1, 2), (2, 1) · · · . Then in QA algorithm, (R3)(i) and (R2)(i) will al-

ternately apply, thereby shrinking the interval [m(k),M(k)]. It is easy to see that

there exist a finite time Ka and a positive probability such that x1(Ka) = x2(Ka) =

⌊(x1(0)+x2(0))/2⌋ (thus (x(Ka), s(Ka)) ∈ A ), and at most one node holds a surplus.

Also in this process, M(k) decreases by at least 1 and m(k) increases by at least 1.

(ii) Induction step: let r ∈ [2, n− 1]. Suppose that for a network of r nodes, there

exist a finite time Ka and a positive probability such that x1(Ka) = · · · = xr(Ka) =

⌊(1/r)
∑r

i=1 xi(0)⌋, and at most r−1 nodes each holds one surplus. Also suppose that

in this process, M(k) decreases by at least one and m(k) increases by at least one.

Now consider the case with r + 1 nodes. Label them such that m(0) = x1(0) ≤

· · · ≤ xr+1(0) = M(0). In the sequel, we describe a sequence of activating edges, which

causes the interval [m(k),M(k)] to shrink, the process being displayed in Fig. 6.11.
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The existence of the selected edges follows from that G is complete; and since each

edge has a positive probability to be activated, the sequence of activation also has a

positive probability.

First, consider the nodes 2, . . . , r + 1. We distinguish three cases as follows.

Case 1: xr+1(0)−x2(0) ≥ 2. Then applying the hypothesis, we obtain that in a finite

timeK1 and with a positive probability, x2(K1) = · · · = xr+1(K1) = ⌊(1/r)
∑r+1

i=2 xi(0)⌋.

Case 2: xr+1(0) − x2(0) = 1. For each node i (> 2) such that xi(0) − x2(0) = 1,

activate the edge (2, i); then (R3)(i) of QA algorithm applies, thereby resulting

again in x2(K1) = · · · = xr+1(K1) = ⌊(1/r)
∑r+1

i=2 xi(0)⌋.

In both cases above, the maximum state decreases as M(K1) < M(0); hence

F (K1) < F (0). In addition, there are at most r − 1 nodes each having one surplus.

Activate (one at a time, in an arbitrary order) the edges connecting those nodes

with a surplus to the node 1. Thus (R2)(i) applies, and the surpluses are consumed

to increase x1(k), which in turn causes F (k) to decrease. At time at most K ′
1 :=

K1 + r − 1, all the surpluses in the system can be consumed.

Case 3: xr+1(0)− x2(0) = 0. For this special case, we go directly to the next step.

Second, consider the nodes 1, . . . , r. When F (K ′
1) ≥ 2 (or Case 3 above), applying

the hypothesis we derive that in a finite time K2 and with a positive probability,

x1(K2) = · · · = xr(K2) = ⌊(1/r)
∑r

i=1 xi(K
′
1)⌋. Since the minimum state m(k) in-

creases by at least one, we have F (K2) < F (K ′
1). Also, at most r− 1 nodes each has

one surplus. Select (one at a time, in an arbitrary order) the edges connecting the

node r + 1 to those with a surplus; then (R2)(i) applies, and the surpluses are con-

sumed. Note that, however, here F (k) stays put. At time at most K ′
2 := K2+r−1, all

the surpluses in the system can be consumed. If F (K ′
2) ≥ 2, we apply the hypothesis

again for the nodes 2, ..., r + 1, as is done in the first step above.

Thus we can repeat these two steps, in an alternate fashion, so that F (k) decreases

until F (K ′
a) = 1, for some finite time K ′

a. There are two possibilities: (1) x1(K
′
a) =

m(K ′
a), others m(K ′

a) + 1, and at most r − 1 nodes each has one surplus; and (2)

xr+1(K
′
a) = M(K ′

a), others M(K ′
a)−1, and at most r−1 nodes each has one surplus.
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Analogous to the edge activation done above, one can show in both scenarios that

there exist a finite time Ka > K ′
a and a positive probability such that F (Ka) = 0,

and at most r nodes each has one surplus. Therefore necessarily, x1(Ka) = · · · =

xr+1(Ka) = ⌊(1/(r + 1))
∑r+1

i=1 xi(0)⌋. Finally, it is evident that in this averaging

process, M(k) decreases by at least one and m(k) increases by at least one. This

finishes the induction step. �

Proof of Proposition 6.3. We have given in Section 6.4.2 the proof for the case

l = 1, one step away from average consensus. It remains to establish (6.12) for

every l ∈ [2, V (0)/2]. Before proceeding, we introduce the following notation for an

economical representation of the transition structure in Fig. 6.8:

([1 1 1 · · · 1 1 0]T , 1, 0)

([2 1 1 · · · 1 1 0]T , 0, 0)

Here ([1 1 1 · · · 1 1 0]T , 1, 0) represents the upper row of states 1, . . . , n− 1, and

([2 1 1 · · · 1 1 0]T , 0, 0) represents the lower row of states 1, . . . , n− 1. It is well

to note that the state n (i.e., the average consensus state (1, 0, 0)) is not involved.

Observe that only the triples in U0
1 are used, and only the triple with positive surplus

S+ > 0 has a transition probability to the average consensus state. We will use this

notation to display the transition structures in the subsequent analysis.

(i) Two steps away: from U2 to U1. The corresponding transition structure is

displayed in Fig. 6.12; there are four triples, representing four rows similar to the

above. These rows can be arranged into three blocks B1, B2, and B3 as shown. Notice

that the displayed triples are all in U0
2 , and only those triples with positive surplus

S+ > 0 have a transition probability to U1. One can readily see that starting from

the triple ([3 1 1 · · · 1 1 − 1]T , 0, 0), the mean hitting time of U1 is the longest; thus

we need to analyze the whole structure.

In the sequel, the structure will be simplified in two steps. First, treat the transi-

tion to B3 as a selfloop at the triple ([2 1 1 · · · 1 1 −1]T , 1, 0) in B2. This modification

increases the mean hitting time starting from B1. To see this, note that the triple in B3
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([2 1 1 · · · 1 1 − 1]T , 1, 0)

([3 1 1 · · · 1 1 − 1]T , 0, 0) ([2 2 1 · · · 1 1 − 1]T , 0, 0)

([1 1 1 · · · 1 1 − 1]T , 2, 0)

B1 B2 B3

Figure 6.12: Two steps away: from U2 to U1.

([3 1 1 · · · 1 1 − 2]T , 1, 0)

([4 1 1 · · · 1 1 − 2]T , 0, 0) ([3 2 1 · · · 1 1 − 2]T , 0, 0)

([2 1 1 · · · 1 1 − 2]T , 2, 0)

([2 2 1 · · · 1 1 − 2]T , 1, 0)

([2 2 2 · · · 1 1 − 2]T , 0, 0)

([1 1 1 · · · 1 1 − 2]T , 3, 0)

B2 B3B1 B4

Figure 6.13: Three steps away: from U3 to U2.

has more positive surplus S+, which results in higher probabilities of moving towards

U1. It then follows that selflooping in B2 takes longer time to hit U1 than transiting

to B3. Second, combine ([3 1 1 · · · 1 1 − 1]T , 0, 0) in B1 and ([2 2 1 · · · 1 1 − 1]T , 0, 0)

in B2. This amounts to combining the corresponding two rows of triples. It can be

verified that the associated transition probabilities in these two rows are the same,

except for those moving to ([2 1 1 · · · 1 1 − 1]T , 1, 0). Since the latter means moving

towards U1, taking the smaller transition probabilities from the two rows will increases

the mean hitting time.

After the above modifications, the transition structure is simplified to the one

displayed in Fig. 6.5, with the following transition probabilities:

p1 = (n− 2)p, d1 = p; pn−1 = p, qn−1 = (n− 2)p, dn−1 = (n− 2)p;

pz = (n− 1− z)zp, qz = (z − 1)p, dz = (z − 1)p (z = 2, ..., n− 2).

Hence, we have maxu∈U0
2
E1

2(u) ≤ En−1, where En−1 is given in (6.3). Invoke the

formulas in Lemma 6.6, and perform an analogous calculation as before; we then

obtain that maxu∈U0
2
E2

1(u) = O(n2).

(ii) Three steps away: from U3 to U2. The corresponding transition structure
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is displayed in Fig. 6.13; we now have four blocks. Since starting from the triple

([4 1 1 · · · 1 1 − 2]T , 0, 0) the mean hitting time of U2 is the longest, we need to

analyze again the whole structure.

We take three steps to simplify the structure. First, treat the transition to B4 as a

selfloop at the triple ([2 1 1 · · · 1 1 −2]T , 2, 0) in B3. This is the same as that in (ii), and

hence increases the mean hitting time starting from B1. Second, treat the transitions

to block B3 as selfloops at the corresponding triples in B2. This modification also

increases the mean hitting time. To see this, compare the structure of B2 and its

counterpart in B3 (i.e., the lower two triples alone). One may verify that the former

has longer rows of triples and higher probabilities of moving away from U2. Hence, the

mean time taken to hit U2 in the structure of B2 is longer than that in its counterpart

in B3. Further, the top triple ([2 1 1 · · · 1 1 − 2]T , 2, 0) in B3, with more positive

surplus S+, makes the mean hitting time even shorter. Therefore, selflooping in B2

increases the mean time to hit U2 compared to transiting to B3. Lastly, combine

([4 1 1 · · · 1 1 − 2]T , 0, 0) in B1 and ([3 2 1 · · · 1 1 − 2]T , 0, 0) in B2, as is done in (ii).

The above simplifications lead us again to the structure displayed in Fig. 6.5, with

exactly the same transition probabilities as (ii). We thus obtain maxu∈U0
3
E1

3(u) ≤

En−1 = O(n2).

(iii) General l (> 3) steps away: from Ul to Ul−1. The corresponding transition

structure consists of l + 1 blocks. Apply an analogous procedure to simplify this

structure; it can be found by a similar argument that transiting to further blocks

will accelerate hitting Ul−1. Consequently, the structure with l+1 blocks can also be

reduced to the one in Fig. 6.5, the probabilities of which are those in (ii). Therefore,

maxu∈U0
l
E1

l (u) ≤ En−1 = O(n2). �



Chapter 7

Conclusions

7.1 Thesis Summary

Motivated by many natural phenomena (e.g., bird flocking and oscillator synchroniza-

tion) and potential engineering applications (e.g., load balancing and sensor informa-

tion fusion), we have studied two fundamental problems, consensus and averaging, in

multi-agent systems. Component agents are interconnected through a network, and

iteratively update their states according to a prescribed algorithm supported by the

information received from neighboring peers. Our focus has been on the design of dis-

tributed algorithms. Central to solving the consensus and averaging problems is the

topology of the interconnection network among agents, which determines for individ-

ual agents who their neighbors are. We have schematically represented the network

topology by digraphs. Our chief goal has been to derive the most general conditions

on digraphs that permit the existence of distributed algorithms solving both problems;

and under those general conditions, construct provably correct solution algorithms.

First, we have dealt with the averaging problem in the basic setting where agents’

states are real-valued, and networks static. We have proposed a novel distributed

algorithm, whose essence is to keep local records of individual state updates, thereby

ensuring consensus on the average despite that the state sum of agents is not preserved.

This is achieved by augmenting an additional surplus variable for each agent. Under
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this algorithm, we have derived that an arbitrary strongly connected digraph is a

necessary and sufficient condition to guarantee state averaging (Theorem 3.1). This

graphical condition is more general than those previously reported in the literature,

in the sense that it does not require symmetric or balanced topological structures.

For analysis, we have introduced certain useful tools from matrix perturbation theory

to establish our results.

Second, we have tackled the averaging problem in the dynamic network model,

where the interconnection topology among agents is time-varying. The time-varying

mechanism can be either deterministic or random. In the random case, we have

adopted that agents asynchronously gossip with one another in the sense that only a

single interaction randomly occurs at a time. We have proposed distributed algorithms

in both deterministic and random scenarios; these algorithms are based again on using

surplus variables, and have been justified to ensure state averaging on general topology

(Theorems 4.1 and 4.2). In particular, the necessary and sufficient condition, a jointly

strongly connected digraph, derived for the deterministic case is worth commenting:

While it is known from the literature that digraphs have to be symmetric or balanced

at every moment, this condition does not require so at any moment. To derive this

result, we have relied on Lyapunov-type arguments.

Third, we have studied both consensus and averaging problems in the setup where

agents’ states are quantized, and networks randomized in the gossip sense. To model

quantization effect, we have abstracted each agent’s state to be an integer. For the

consensus problem, we have proposed a class of algorithms, under which it is derived

that the existence of a globally reachable node in digraphs is a necessary and sufficient

condition that guarantees convergence to some common value (Theorem 5.1). For the

averaging problem, we have developed a counterpart quantized surplus-based algo-

rithm; under this algorithm, we have proved again that a general strongly connected

digraph is necessary and sufficient to guarantee state averaging (Theorem 5.2). For

analysis, our tools have been from finite Markov chain theory. Furthermore, we have

addressed the convergence time issue. Specifically, we have investigated the shrinking
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Table 7.1: Summary and contrast of setups, methods, and results.

real-valued states quantized states

objective
xi(k) → 1

n

∑
i xi(0), xi(K) =

⌊
1
n

∑
i xi(0)

⌋
or
⌈
1
n

∑
i xi(0)

⌉
,

si(k) → 0, as k → ∞ si(K) need not be zero, for finite K

algorithm linear, with parameter ϵ nonlinear, with parameter threshold

analysis matrix eigenvalues finite Markov chains

result average consensus ⇐⇒ general strongly connected topology

time of the smallest interval that contains all states for the consensus algorithm, and

the decay time of a suitable Lyapunov function for the averaging algorithm. The

investigation has led us to characterizing the convergence time by the hitting time in

certain special Markov chains. We have simplified the structures of state transition

by considering the special case of complete networks, and derived polynomial upper

bounds on convergence time (Theorems 6.1 and 6.2).

In conclusion, the thesis has mainly explored, from several different setups, a new

approach to the design of distributed algorithms for achieving multi-agent average

consensus: Add extra variables to keep track of state changes. The setups, methods,

and results are summarized and contrasted in Table 7.1. The underlying message of

the thesis is that this new approach has successfully enabled multi-agent systems to

achieve average consensus on general network topology, even in the case where the

state sum of agents need not stay put. This result has advanced the knowledge in the

literature. Also, we are led to observe the following intuitive tradeoff. On one hand,

employing extra variables one for each agent doubles the dimension of state space,

thereby causing increased burden on local storage, computation, and communication

of individual agents. On the other hand, employing extra variables effectively weak-

ens the global connectivity requirement on network topology of the whole system.

Therefore local burden trades off against global connectivity. In practice, it would be
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up to the system designer to choose one over the other according to specific tasks at

hand.

7.2 Future Research

We suggest a few topics for future research arising from this thesis.

In Chapters 3 and 4, we have designed a surplus-based algorithm for static di-

graphs, and a gossip algorithm for randomly time-varying digraphs. Both algorithms

have been shown to ensure state averaging on general strongly connected digraphs,

assuming that the parameter ϵ is sufficiently small. A general upper bound on ϵ has

been provided, which is, however, conservative. Thus it is important, and of theoretic

interest, to relax this assumption by deriving tight(er) bounds for the parameter. Al-

so, in Figs. 3.7 and 4.1 we have observed similar trends of the convergence factors of

both algorithms with respect to the parameter ϵ. It would be interesting to find the

optimal value of ϵ which renders the speed fastest. In addition, the agent model we

have adopted in these two chapters is the (discrete-time) single integrator. An exten-

sion could be to consider higher-order linear time-invariant models (e.g., higher-order

integrators), or even nonlinear models (e.g., unicycles).

In Chapter 6 we have analyzed the convergence time of the quantized consensus

and averaging algorithms designed in Chapter 5, and obtained polynomial upper

bounds for complete graphs. One direction of future work is to extend the results to

more general topologies, which would be to study potentially greater complexity of the

state and surplus transition structure owing to topological constraints. An alternative

approach might be to explore the relation between the convergence time bounds and

the spectral properties of the Laplacian matrix associated to a given topology. More

broadly speaking, seeking fast quantized consensus and averaging algorithms deserves

further effort.

Finally, viewing the thesis as a whole, there are several topics potential for our

future research. The first topic is time delay, which is inherent in communication



Chapter 7. Conclusions 143

among agents. We would like to explicitly consider time delay in our model, and study

its effect on convergence as well as performance. The second issue is to compute more

general functions of the initial states, other than the average or linear combinations.

This is motivated by that certain nonlinear functions, e.g., power mean and geometric

mean, are found useful for information fusion in sensor networks. We attempt to

suitably modify our algorithms to achieve that functionality. Lastly, our successful

use of surplus suggests that providing augmented variables for individual agents could

potentially enable the whole network to accomplish some more demanding tasks, and

is therefore worth being applied to addressing other distributed control problems in

multi-agent systems, such as formation and routing.
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