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Abstract— In this paper we develop a data-driven approach
for supervisory control of discrete-event systems (DES). We
consider a setup in which models of DES to be controlled are
unknown, but a set of data concerning the behaviors of DES is
available. We propose a new concept of data-informativity, which
captures the notion that the available data set contains sufficient
information such that a valid supervisor may be constructed
for a family of DES models that all can generate the data set.
We then characterize data-informativity with a necessary and
sufficient condition, based on which we design an algorithm for
its verification.

I. Introduction

Supervisory control of discrete-event systems (DES) is
a relatively new area of control science and engineering
[1]. A DES is a dynamical system that is discrete in time
and usually in state space, and its dynamics is driven by
instantaneous occurrences of events. To enforce a desired
specification on a given DES, supervisory control theory
aims to construct a feedback controller called a supervisor,
whose control mechanism is of disabling or enabling occur-
rences of certain (controllable) events. Supervisory control
is a model-based approach: a DES to be controlled is
first modeled as a finite-state automaton, and its behaviors
represented by regular languages; then supervisory control
design is carried out based on these models. Recently, DES
has been combined with continuous dynamical systems in
areas called hybrid or cyber-physical systems [2], [3].

In the past few years, various data-driven techniques
have been successfully utilized to analyze and synthesize
controllers for continuous dynamical systems. Representative
approaches include identification of dynamical models from
data [4], learning control laws directly from observations [5]
or through reinforcement learning [6]. This research thrust
has been driven by the motivation to tackle challenging
control problems involving unknown system dynamics, high
nonlinearity, huge dimensionality, and on the other hand the
increasing availability of large quantity of observation data.

The same thrust has so far been, however, obscure in
supervisory control of DES. Although attempts to apply
data-driven techniques exist [7], [8], [9], such works are
scarce and not yet systematic. On the other hand, DES
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control problems are facing similar challenges like unknown
system dynamics and/or high dimensionality, as well as the
opportunity of exploding amount of observation data thanks
to fast advancing data collection capabilities. Hence in this
paper, we aim to initiate a systematic development of a data-
driven approach for supervisory control of DES.

Specifically, we consider a setup in which automaton
models of DES to be controlled are unknown, but a set of
data concerning the behaviors of DES is available. We ask
the question: Under what conditions of the available data set
can a valid supervisor be designed for the unknown DES to
satisfy a given specification?

Intuitively, the key to answering this question is the ‘qual-
ity’ of the data set for the purpose of supervisory control. For
this, we identify and formalize a novel concept called data-
informativity. Data-informativity characterizes a condition
that the given data set contains sufficient information such
that a valid supervisor may be constructed for a family of
DES models that all can generate the data set. Thus rather
than trying to first identify a model for the unknown DES,
our approach based on data-informativity aims to directly
construct from the data set a supervisor valid for all possible
models undistinguishable from the unknown DES. If such a
supervisor can be constructed, it is also valid for the unknown
DES.

This idea of data-informativity has been introduced for
data-driven control of linear systems [5], and recently at-
tracted much attention e.g., [10], [11]. Although concep-
tually similar, due to the discrete, event-driven dynamics
of DES and distinct supervisory control mechanisms, the
data-informativity based approach we develop uses different
settings, mathematical tools, and synthesis methods from
those for continuous time-driven systems. A particular fea-
ture unique to DES is the phenomenon that it is not always
true that more data is better for supervisory control. In other
words, a large quantity of data without needed quality is
not useful for data-driven supervisory control of DES. This
feature may first seem counter-intuitive, but will become
reasonable as explained in Section III below.

The main content and contributions are summarized below.
• First, we propose a new concept for data-driven super-

visory control: data-informativity. The given data set
about the behaviors of the unknown plant consists of two
types. The first type is observation data 𝐷, which is a
collection of observed behaviors (strings of events) from
the unknown DES. The second type is prior knowledge
data 𝐷− about the impossible behaviors of the DES.
Then we define data-informativity of the pair (𝐷, 𝐷−)
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in terms of (language) controllability essential for the
existence of valid supervisors.

• Second, we characterize the concept of data-
informativity by establishing a necessary and sufficient
condition for it. Based on this condition, we present an
algorithm for the verification of data-informativity. The
novelty of this verification algorithm is the construction
of a special data-driven automaton. If the data set
(𝐷, 𝐷−) is informative (for a given specification), we
construct a valid supervisor for the unknown plant to
satisfy the specification.

The remainder of this paper is organized as follows.
Section II provides preliminaries on model-based supervisory
control of DES. Section III introduces data-informativity,
presenting a necessary and sufficient condition and a ver-
ification algorithm for the property. Section IV states our
concludings.

II. Preliminaries on model-based supervisory control
theory

In supervisory control of DES, the plant to be controlled
is modeled by a finite-state automaton1

𝐺 = (𝑄, Σ, 𝛿, 𝑞0). (1)

Here 𝑄 is the finite state set, Σ the finite event set, 𝛿 :
𝑄 × Σ → 𝑄 the (partial) state transition function, 𝑞0 ∈ 𝑄

the initial state. Write 𝛿(𝑞, 𝜎)! to mean 𝜎 ∈ Σ is defined
at state 𝑞 ∈ 𝑄, and write ¬𝛿(𝑞, 𝜎)! to mean 𝜎 ∈ Σ is not
defined at state 𝑞 ∈ 𝑄. We say that the automaton 𝐺 is
deterministic if

(∀𝑞 ∈ 𝑄,∀𝜎 ∈ Σ) 𝛿(𝑞, 𝜎)! =⇒ |𝛿(𝑞, 𝜎) | = 1.

Namely, the destination state of every state transition is
unique. We shall focus exclusively on deterministic automata
unless otherwise stated. A string on Σ is a sequence of events
from Σ. Write Σ∗ for the set of all finite-length strings on
Σ, including the empty string 𝜖 (containing no event). Then,
the state transition function may be inductively defined, and
we write 𝛿(𝑞, 𝑠)! to mean that string 𝑠 ∈ Σ∗ is defined at
state 𝑞 ∈ 𝑄. Any subset 𝐾 ⊆ Σ∗ is called a language. Write
𝐾 := {𝑠 ∈ Σ∗ | (∃𝑠′ ∈ Σ∗)𝑠𝑠′ ∈ 𝐾} for the set of all prefix
strings of those in 𝐾 . We call 𝐾 the prefix closure of 𝐾 , and
in general 𝐾 ⊆ 𝐾 holds. The closed behavior 𝐿 (𝐺) of 𝐺 is
the language defined as the set of all strings of Σ∗ which 𝐺
can generate starting from the initial state 𝑞0:

𝐿 (𝐺) := {𝑠 ∈ Σ∗ | 𝛿(𝑞0, 𝑠)!}. (2)

By definition, we have 𝐿 (𝐺) = 𝐿 (𝐺).
Generally, not all strings in the closed behavior 𝐿 (𝐺) of

the plant 𝐺 are desired. Thus we represent a desired behavior
to be enforced on 𝐺 as a control specification 𝐾 ⊆ 𝐿 (𝐺).
Note that a more general control specification 𝐸 ⊆ Σ∗ may

1As a first step towards developing data-driven supervisory control in
this paper, we assume for simplicity that every state is marked and thus the
marker state set is omitted.

be considered. In this case, set 𝐾 := 𝐸 ∩ 𝐿 (𝐺) and we again
have a specification 𝐾 ⊆ 𝐿 (𝐺) to be enforced on 𝐺.

For a mechanism to enforce a specification 𝐾 ⊆ 𝐿 (𝐺)
on the plant 𝐺, we assume that a subset of events Σ𝑐 ⊆ Σ,
called the controllable events, are capable of being enabled
or disabled by an external controller. On the contrary, Σ𝑢 :=
Σ \ Σ𝑐 is the set of uncontrollable events, which cannot
be externally disabled and must be considered permanently
enabled.

Under the above mechanism, define a supervisor to be a
function 𝑉 : 𝐿 (𝐺) → 𝑃𝑤𝑟 (Σ𝑐). Here 𝑃𝑤𝑟 (Σ𝑐) denotes the
set of all subsets of controllable events. Thus a supervisor
assigns to each string 𝑠 ∈ 𝐿 (𝐺) generated by the plant 𝐺 a
subset of controllable events 𝑉 (𝑠) ⊆ Σ𝑐 to be disabled. Write
𝑉/𝐺 for the closed-loop system: “𝐺 is under the control of
𝑉”. The language of closed-loop system 𝐿 (𝑉/𝐺) is defined
as follows:

(i) 𝜖 ∈ 𝐿 (𝑉/𝐺);
(ii) if 𝑠 ∈ 𝐿 (𝑉/𝐺) and 𝜎 ∈ Σ \𝑉 (𝑠) and 𝑠𝜎 ∈ 𝐿 (𝐺), then

𝑠𝜎 ∈ 𝐿 (𝑉/𝐺);
(iii) no other strings belong to 𝐿 (𝑉/𝐺).

Thus 𝐿 (𝑉/𝐺) contains those strings in 𝐿 (𝐺) that are not
disabled by the supervisor 𝑉 . By definition 𝐿 (𝑉/𝐺) ⊆ 𝐿 (𝐺)
and 𝐿 (𝑉/𝐺) = 𝐿 (𝑉/𝐺).

Definition 1 (controllability). Given a plant 𝐺, a control
specification 𝐾 ⊆ 𝐿 (𝐺) is said to be controllable with
respect to 𝐺 provided

(∀𝑠 ∈ 𝐾, ∀𝜎 ∈ Σ𝑢) 𝑠𝜎 ∈ 𝐿 (𝐺) =⇒ 𝑠𝜎 ∈ 𝐾. (3)

In words, a specification 𝐾 is controllable wrt. 𝐺 if and
only if any string in the prefix closure 𝐾 cannot exit 𝐾
on a continuation by an uncontrollable event. Namely, the
prefix closure of 𝐾 is invariant under uncontrollable flows.
Equivalently (3) can be written compactly as 𝐾Σ𝑢 ∩ 𝐿 (𝐺) ⊆
𝐾 . It is known that the specification language 𝐾 (≠ ∅) being
controllable is necessary and sufficient for the existence of a
supervisor 𝑉 such that 𝐿 (𝑉/𝐺) = 𝐾 [9].

Suppose that 𝐾 ⊆ 𝐿 (𝐺) is controllable. Then the super-
visor 𝑉 : 𝐿 (𝐺) → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉/𝐺) = 𝐾 is
constructed as follows:

𝑉 (𝑠) =
{
{𝜎 ∈ Σ𝑐 | 𝑠𝜎 ∉ 𝐾} if 𝑠 ∈ 𝐾,
∅ if 𝑠 ∈ 𝐿 (𝐺) \ 𝐾.

Whether or not 𝐾 is controllable, we can write 𝐶 (𝐾) for
the family of all controllable sublanguages of 𝐾:

𝐶 (𝐾) := {𝐾 ′ ⊆ 𝐾 | 𝐾 ′Σ𝑢 ∩ 𝐿 (𝐺) ⊆ 𝐾 ′}. (4)

It is known that the union of two controllable sublanguages
of 𝐾 is still a controllable sublanguage of 𝐾 . This means that
𝐶 (𝐾) is closed under set union, so 𝐶 (𝐾) contains a unique
supremal element

sup𝐶 (𝐾) := ∪{𝐾 ′ | 𝐾 ′ ∈ 𝐶 (𝐾)}. (5)

Since sup𝐶 (𝐾) is controllable, as long as sup𝐶 (𝐾) ≠

∅, there exists a supervisor 𝑉sup such that 𝐿 (𝑉sup/𝐺) =
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Fig. 1 robot navigation: plant 𝐺1

Fig. 2 robot navigation: specification 𝐾1 (⊆ 𝐿 (𝐺1))

sup𝐶 (𝐾). In this sense 𝑉sup is optimal (maximally permis-
sive), allowing the generation by 𝐺 of the largest possible
set of marked strings that satisfies a given specification.

Example 1. For illustration, we provide a running example
of robot navigation. Consider a robot that moves from a
starting point to a finishing point. There exist some paths into
a dangerous zone along the route and the robot must avoid
them while heading for the goal. Also, the robot may move
uncontrollably at some location due to disturbance from the
environment. An automaton modeling this described scenario
is displayed in Fig. 1, and we consider this automaton (say
𝐺1) as the plant to be controlled.

In this plant, each state written in numbers represents a
location of the environment where the robot navigates. Here
state 0 is the starting point and state 6 is the finishing point.
Each event written in alphabet represents the transition of
the robot. We suppose that event 𝑑 (dashed arrow from
state 2 to 3) represents an uncontrollable transition, and
other events are all controllable: i.e. Σ𝑐 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓 }
and Σ𝑢 = {𝑑}. State 5 represents a danger state, and
the control specification is to avoid this danger state. This
(safety) specification may be written as a sublanguage of
𝐿 (𝐺1) as follows:

𝐾1 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 }.

This specification 𝐾1 (indeed its prefix closure 𝐾1) may be
represented by the automaton shown in Fig. 2. Compared
with the plant in Fig. 1, the specification automaton removes
the (controllable) transition from state 4 to the danger state
5.

Since no uncontrollable event can exit 𝐾1, the specification
language 𝐾1 is controllable. Thus we can construct the
following supervisor 𝑉1 : 𝐿 (𝐺1) → 𝑃𝑤𝑟 (Σ𝑐) such that
𝐿 (𝑉1/𝐺1) = 𝐾1:

𝑉1 (𝑠) =
{
{𝑒} if 𝑠 ∈ {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑎𝑏𝑑𝑏},
∅ if 𝑠 ∈ 𝐿 (𝐺1) \ {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑎𝑏𝑑𝑏}.

This supervisor disables 𝑒 at state 4 in Fig. 1.

In the above example, the supervisor 𝑉1 is designed based
on the assumption that the plant model 𝐺1 is known. Now we
pose this question: if 𝐺1 is unknown, under what conditions
can we still design a supervisor? This question motivates us
to study a data-driven approach to supervisory control.

III. Data-Driven Supervisory Control and
Data-Informativity

A. Problem formulation of data-driven supervisory control

Suppose that we have a plant whose automaton model 𝐺
is unknown except for the event set Σ(= Σ𝑐 ∪ Σ𝑢). Even
under this circumstance, there are often situations where
plant output sequences data are available. Also, from prior
knowledge of the event set, it is often the case that there are
certain output sequences that are obviously not generatable
by the plant. For example, suppose we have a set of events:
turn on a machine, press a switch on the machine, and
the machine produces an output. Then, without knowing
internal working mechanism of the machine, it is obvious
that the machine cannot output anything before its power
being turned on. In view of this, we assume that we can
obtain a pair of finite data sets (𝐷, 𝐷−), where 𝐷 ⊆ Σ∗ is
the observed behavior from the plant and 𝐷− ⊆ Σ∗ is prior
knowledge of impossible behavior of the plant. Since each
string in 𝐷 is observed from 𝐺, 𝐷 is a subset of the closed
behavior of 𝐺: i.e. 𝐷 ⊆ 𝐿 (𝐺). On the contrary since each
string in 𝐷− is known to be impossible to be generated by 𝐺,
𝐷− and the closed behavior of 𝐺 do not have any common
elements: i.e. 𝐷− ∩ 𝐿 (𝐺) = ∅. As a result, 𝐷 ∩ 𝐷− = ∅.
Given a control specification 𝐸 ⊆ Σ∗, our goal is to design a
supervisor to enforce 𝐸 for the unknown plant based on the
data pair (𝐷, 𝐷−).

Example 2. Consider again the robot navigation example
in Example 1 and the plant model 𝐺1 in Fig. 1. Now
we suppose that 𝐺1 is unknown except for the event set
Σ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }, and certain observations and prior
knowledge of the plant behavior are available. For example,
we have observed a string 𝑎𝑏𝑑𝑏 𝑓 from the plant, i.e. the
robot moves from the initial state to the goal state following
the path 𝑎𝑏𝑑𝑏 𝑓 . Hence we have 𝐷 = {𝑎𝑏𝑑𝑏 𝑓 }. In addition,
we have prior knowledge that the plant cannot generate
string 𝑐, namely the robot can never start its navigation
from location 1 and makes a first move to location 3. Thus
𝐷− = {𝑐}. For this pair (𝐷, 𝐷−), there may exist infinitely
many automata that can generate 𝐷 and cannot generate 𝐷−.
In other words, our unknown plant 𝐺1 cannot be uniquely
identified based on the pair (𝐷, 𝐷−). For example, 𝐺2 in
Fig. 3 and 𝐺3 in Fig. 4 cannot be distinguished from the
real plant 𝐺1. In order to design a supervisor for the
real plant based only on (𝐷, 𝐷−), we must construct a
supervisor that is valid for all such possible plants. Intuitively,
more observations and prior knowledge can help reduce the
number of plant models that cannot be distinguished from
the real one. Say if we observe an additional string 𝑎𝑐𝑏 𝑓
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Fig. 3 𝐺2 in Example 2

Fig. 4 𝐺3 in Example 2

(so that 𝐷 = {𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 }), then 𝐺2 can be ruled out
from the candidate while 𝐺3 is still possible.

As in the example above, there are generally multiple
possible plants compatible with the given data pair (𝐷, 𝐷−).
This is defined below as a consistency property.

Definition 2 (consistency). Suppose that an event set Σ is
given. Then, for finite sets 𝐷, 𝐷− ⊆ Σ∗ satisfying 𝐷∩𝐷− = ∅,
an automaton 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) is said to be consistent with
(𝐷, 𝐷−) if 𝐷 ⊆ 𝐿 (𝐺) and 𝐷− ∩ 𝐿 (𝐺) = ∅.

In words, an automaton 𝐺 is consistent with a pair (𝐷, 𝐷−)
if and only if all strings in 𝐷 can be generated by 𝐺,
whereas no strings in 𝐷− can be generated by 𝐺. Thus
in Example 2, 𝐺1, 𝐺2 and 𝐺3 are consistent with (𝐷, 𝐷−)
where 𝐷 = {𝑎𝑏𝑑𝑏 𝑓 } and 𝐷− = {𝑐}. If we observe an
additional string 𝑎𝑐𝑏 𝑓 (𝐷 = {𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 }), 𝐺1 and 𝐺3 are
still consistent with (𝐷, 𝐷−), but 𝐺2 becomes not consistent.
It is easy to verify that if we observe some additional strings
or we have more knowledge about the strings that the plant
cannot generate, the number of consistent models decreases.

Remark 1. It is well known [12] that for every regular
language 𝐿 ⊆ Σ∗, there exists an automaton 𝐺 such that
𝐿 (𝐺) = 𝐿. Thus for any finite sets 𝐷, 𝐷− ⊆ Σ∗ satisfying
𝐷 ∩ 𝐷− = ∅, one can always find an automaton 𝐺 such
that 𝐿 (𝐺) = 𝐷, and hence 𝐿 (𝐺) ∩ 𝐷− = ∅ which leads to
that there exists at least one automaton 𝐺 consistent with
(𝐷, 𝐷−).

Before we proceed, we summarize some basic properties
of consistent plants.

Proposition 1. There exists a consistent plant with (𝐷, 𝐷−)
if and only if 𝐷 ∩ 𝐷− = ∅. If 𝐺 is consistent with (𝐷, 𝐷−),
then 𝐺 is also consistent with (𝐷, 𝐷−). Moreover it holds
that ⋂

{𝐿 (𝐺) | 𝐺 is consistent with (𝐷, 𝐷−)} = 𝐷. (6)

The proof of Proposition 1 follows immediately from
Definition 2 and Remark 1.

Now we formulate our data-driven supervisory control
problem. The last claim (6) of Proposition 1 motivates us

to investigate the supervisory control over 𝐷. We denote a
control specification based on 𝐷 by

𝐾𝐷 := 𝐷 ∩ 𝐸, 𝐸 ⊆ Σ∗ (regular language). (7)

Problem 1. Suppose that we are given an event set Σ =

Σ𝑐 ∪ Σ𝑢, a control specification 𝐸 ⊆ Σ∗, and finite data sets
𝐷, 𝐷− ⊆ Σ∗ such that 𝐾𝐷 in (7) is nonempty and 𝐷∩𝐷− = ∅.
Construct (if possible) a supervisor 𝑉𝐷 : 𝐷 → 𝑃𝑤𝑟 (Σ𝑐)
such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷 for every plant 𝐺 consistent with
(𝐷, 𝐷−).

Since the real plant is consistent with (𝐷, 𝐷−), the su-
pervisor satisfying the required condition in Problem 1 is
valid for the real plant. If the real plant 𝐺 was known,
we would construct a supervisor to enforce 𝐾 = 𝐿 (𝐺) ∩ 𝐸
(whenever 𝐾 is controllable). In our data-driven approach, 𝐷
represents the maximally accessible subset of 𝐿 (𝐺) based on
our observation of the plant; hence constructing a supervisor
to enforce 𝐾𝐷 = 𝐷∩𝐸 is the most that can be done based on
the data available. If the behavior represented by 𝐾𝐷 is too
small/restrictive, one can consider enlarging 𝐷 by observing
more behaviors of the plant. The closer 𝐷 approximates
𝐿 (𝐺), the closer the data-driven enforcible behavior 𝐾𝐷

approximates the original model-based behavior 𝐿 (𝐺) ∩ 𝐸 .

B. Data-informativity and its criterion
As we mentioned in Section II, the existence of a supervi-

sor 𝑉𝐷 such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷 for all plants 𝐺 consistent
with (𝐷, 𝐷−) is equivalent to the controllability of speci-
fication language 𝐾𝐷 (≠ ∅). This implies that whether the
available data has sufficient information can be characterized
in terms of controllability.

Definition 3 (informativity). We say that (𝐷, 𝐷−) is infor-
mative for a given control specification 𝐸 if there exists a
supervisor satisfying the required condition in Problem 1, or
equivalently if 𝐾𝐷 in (7) is nonempty and controllable with
respect to all plants 𝐺 consistent with (𝐷, 𝐷−).

Recall that, for a known plant, if an uncontrollable event
𝜎 ∈ Σ𝑢 can happen after 𝑠 ∈ 𝐾𝐷 in the plant, then 𝑠𝜎 needs
to remain in 𝐾𝐷 for the controllability of 𝐾𝐷 with respect
to the plant; see (3). On the contrary, for the data-driven
case (without knowledge of plant), we need to assume any
uncontrollable event 𝜎 ∈ Σ𝑢 can happen after 𝑠 ∈ 𝐾𝐷 unless
𝑠𝜎 ∈ 𝐷−. This observation leads to the following:

Theorem 1 (Criterion for informativity). Suppose that an
event set Σ = Σ𝑐 ∪ Σ𝑢 and a control specification 𝐸 ⊆ Σ∗

are given. (𝐷, 𝐷−) is informative for 𝐸 if and only if(
∀𝑠 ∈ 𝐾𝐷 , ∀𝜎 ∈ Σ𝑢

)
𝑠𝜎 ∈ 𝐾𝐷 ∪ 𝐷− (8)

holds with 𝐾𝐷 in (7).

Proof: (If) Suppose that (8) holds. Then it is easy to
verify that(

∀𝑠 ∈ 𝐾𝐷 ,∀𝜎 ∈ Σ𝑢

)
𝑠𝜎 ∈ 𝐿 (𝐺) =⇒ 𝑠𝜎 ∈ 𝐾𝐷 (9)
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holds for every plant 𝐺 consistent with (𝐷, 𝐷−). Thus
(𝐷, 𝐷−) is informative for 𝐸 .

(Only if) Suppose that (𝐷, 𝐷−) is informative for 𝐸 .
This means by Definition 3 that (9) holds for every plant
𝐺 consistent with (𝐷, 𝐷−). Consider a special such plant
𝐺 ′ such that 𝐿 (𝐺 ′) = Σ∗ \ 𝐷−. This 𝐺 ′ is consistent
with (𝐷, 𝐷−), and any string not in 𝐿 (𝐺 ′) belongs to 𝐷−.
Let 𝑠 ∈ 𝐾𝐷 and 𝜎 ∈ Σ𝑢. Consider two cases. Case 1:
𝑠𝜎 ∈ 𝐿 (𝐺 ′). Since (9) holds for 𝐺 ′, we have 𝑠𝜎 ∈ 𝐾𝐷 .
Case 2: 𝑠𝜎 ∉ 𝐿 (𝐺 ′). In this case, we have 𝑠𝜎 ∈ 𝐷−. Thus
(8) is satisfied. □

Theorem 1 provides a necessary and sufficient condition
for data-informativity. If (𝐷, 𝐷−) is informative for a given
specification 𝐸 , then a supervisor 𝑉𝐷 : 𝐷 → 𝑃𝑤𝑟 (Σ𝑐)
such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷 (i.e. a solution to Problem 1) is
constructed as follows:

𝑉𝐷 (𝑠) =
{
{𝜎 ∈ Σ𝑐 | 𝑠𝜎 ∉ 𝐾𝐷} if 𝑠 ∈ 𝐾𝐷 ,

∅ if 𝑠 ∈ 𝐷 \ 𝐾𝐷 .

Example 3. Let us illustrate the concept of data-
informativity using the robot navigation example. Again we
suppose that the plant 𝐺1 in Fig. 1 is unknown except for
the event set Σ = Σ𝑐 ∪ Σ𝑢, where Σ𝑐 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } and
Σ𝑢 = {𝑑}. Consider two pairs of finite data sets (𝐷1, 𝐷

−
1 )

and (𝐷2, 𝐷
−
2 ), where

𝐷1 = {𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑏𝑐𝑒},
𝐷−

1 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑑𝑑, 𝑎𝑏𝑑𝑏𝑑, 𝑎𝑏𝑑𝑏 𝑓 𝑑};
𝐷2 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏𝑒},
𝐷−

2 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑐𝑑}.

Let 𝐸 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑑𝑓 }. Then the control
specifications in (7) are respectively

𝐾𝐷1 = 𝐷1 ∩ 𝐸 = {𝑎𝑏𝑑𝑏 𝑓 },
𝐾𝐷2 = 𝐷2 ∩ 𝐸 = {𝑎𝑏𝑐 𝑓 }.

First consider (𝐷1, 𝐷
−
1 ). Note that 𝐺1 in Fig. 1

and 𝐺2 in Fig. 3 are consistent with (𝐷1, 𝐷
−
1 ). From

the control specification 𝐾𝐷1 = {𝑎𝑏𝑑𝑏 𝑓 }, we have
𝐾𝐷1 = {𝜖, 𝑎, 𝑎𝑏, 𝑎𝑏𝑑, 𝑎𝑏𝑑𝑏, 𝑎𝑏𝑑𝑏 𝑓 } and 𝐾𝐷1Σ𝑢 =

{𝑑, 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑏𝑑𝑑, 𝑎𝑏𝑑𝑏𝑑, 𝑎𝑏𝑑𝑏 𝑓 𝑑}. Since only 𝑎𝑏𝑑 be-
longs to 𝐾𝐷1 and other strings in 𝐾𝐷1Σ𝑢 belong to 𝐷−

1 ,
the condition (8) holds and (𝐷1, 𝐷

−
1 ) is informative for 𝐸 .

Indeed, we can confirm the controllability of 𝐾𝐷1 with re-
spect to the consistent plants 𝐺1 and 𝐺2. Correspondingly a
supervisor 𝑉𝐷1 : 𝐷1 → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉𝐷1/𝐺) = 𝐾𝐷1

is constructed for every plant 𝐺 consistent with (𝐷1, 𝐷
−
1 ) as

follows:

𝑉𝐷1 (𝑠) =



{𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝜖,
{𝑎, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎,
{𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏,
{𝑎, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏𝑑,
{𝑎, 𝑏, 𝑐, 𝑒} if 𝑠 = 𝑎𝑏𝑑𝑏,
{𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏𝑑𝑏 𝑓 ,
∅ if 𝑠 ∈ 𝐷1 \ 𝐾𝐷1 .

Next, we consider (𝐷2, 𝐷
−
2 ). Note that 𝐺1 in Fig. 1

and 𝐺3 in Fig. 4 are consistent with (𝐷2, 𝐷
−
2 ).

From the control specification 𝐾𝐷2 = {𝑎𝑏𝑐 𝑓 }, we
have 𝐾𝐷2 = {𝜖, 𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐 𝑓 } and 𝐾𝐷2Σ𝑢 =

{𝑑, 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑐 𝑓 𝑑}. Since 𝑎𝑏𝑑, 𝑎𝑏𝑐 𝑓 𝑑 ∉ 𝐾𝐷2 ∪ 𝐷−
2 ,

(𝐷2, 𝐷
−
2 ) is not informative for 𝐸 . The string 𝑎𝑏𝑑 is in

𝐷2 \ 𝐾𝐷2 , so 𝑎𝑏𝑑 is the string which is outside of the
specification and generatable by every consistent plant 𝐺.
On the contrary, we do not have the information of the string
𝑎𝑏𝑐 𝑓 𝑑, so it is generatable by some consistent plant 𝐺 and
not generatable by others. For example, 𝐺1 in Fig. 1 cannot
generate 𝑎𝑏𝑐 𝑓 𝑑 but 𝐺3 in Fig. 4 can generate it.

Based on the condition in Theorem 1, we next present an
algorithm for checking data-informativity. For this purpose,
we first define a data-driven automaton. We denote by 𝑞𝑠
a state reached by a string 𝑠 from the initial state of the
automaton.

Definition 4 (data-driven automaton). Suppose that the event
set Σ and finite data sets 𝐷, 𝐷− ⊆ Σ∗ (satisfying 𝐷 ∩ 𝐷− =

∅) are given. Then a data-driven automaton is defined as
follows:

𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞 𝜖 ), (10)

where 𝑄̂ := {𝑞𝑠 |𝑠 ∈ 𝐷 ∪ 𝐷−} is the state set, 𝛿 :=
{(𝑞𝑠 , 𝜎) → 𝑞𝑠𝜎 |𝑠 ∈ 𝐷 ∪ 𝐷−, 𝜎 ∈ Σ, 𝑠𝜎 ∈ 𝐷 ∪ 𝐷−} is
the (partial) state transition function. In addition, given a
control specification 𝐾𝐷 = 𝐷 ∩ 𝐸 (where 𝐸 ⊆ Σ∗ is a
regular language), we define 𝑄𝐷 := {𝛿(𝑞 𝜖 , 𝑠) | 𝑠 ∈ 𝐾𝐷}
and 𝑄− := {𝛿(𝑞 𝜖 , 𝑠) | 𝑠 ∈ 𝐷−}.

A data-driven automaton 𝐺̂ is a prefix tree automaton for
𝐷 ∪ 𝐷−: i.e. a loop-less automaton whose closed behavior is
𝐿 (𝐺̂) = 𝐷 ∪ 𝐷−. The set 𝑄𝐷 contains those states reached
by strings in 𝐾𝐷 . Note that since 𝐸 may not be a finite
language in general, in order to determine 𝑄𝐷 , we need to
first construct an automaton for 𝐸 (always possible since 𝐸
is regular) and then check if each string in the finite 𝐷 can
occur in the automaton for 𝐸 . On the other hand, the set 𝑄−
contains those states reached by strings in 𝐷−, so a transition
to 𝑄− represents an impossible behavior of the (unknown)
plant. Since 𝐷 ∩ 𝐷− = ∅, we have 𝑄𝐷 ∩ 𝑄− = ∅. It should
be remarked that in general 𝑄𝐷 ∪𝑄− ≠ 𝑄̂. Also note that 𝐺̂
is by no means consistent with (𝐷, 𝐷−), since 𝐺̂ generates
the strings in 𝐷− which is the set of impossible behavior:
i.e. 𝐷− ⊆ 𝐿 (𝐺̂).

Example 4. Here we provide examples of data-driven au-
tomata 𝐺̂1 (in Fig. 5) and 𝐺2 (in Fig. 6) corresponding to
the data sets (𝐷1, 𝐷

−
1 ) and (𝐷2, 𝐷

−
2 ) in Example 3. For

clear display, we have omitted 𝑞𝑠 in the figure and only
the subscript 𝑠 is written inside each state. State sets 𝑄𝐷𝑖

(𝑖 = 1, 2) and 𝑄− are represented in orange and blue in the
figures, respectively.

Now we are ready to present the algorithm for verifying
informativity based on data-driven automaton.
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Fig. 5 Data-driven automaton 𝐺̂1 corresponding to
(𝐷1, 𝐷

−
1 )

Fig. 6 Data-driven automaton 𝐺̂2 corresponding to
(𝐷2, 𝐷

−
2 )

Algorithm 1 checking informativity
Input: event set Σ = Σ𝑐 ∪ Σ𝑢, finite sets 𝐷, 𝐷− (⊆ Σ∗),

control specification 𝐾𝐷 = 𝐷 ∩ 𝐸
Ensure: “informative” or “not informative”

1: construct a data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) =

(𝑄̂, Σ, 𝛿, 𝑞 𝜖 ) and 𝑄𝐷 , 𝑄− (as in Definition 4)
2: for all 𝑞 ∈ 𝑄𝐷 do
3: for all 𝜎 ∈ Σ𝑢 do
4: if 𝛿(𝑞, 𝜎) ∈ 𝑄̂ \ (𝑄𝐷 ∪𝑄−) or ¬𝛿(𝑞, 𝜎)! then
5: return “not informative”
6: break
7: end if
8: end for
9: end for

10: return “informative”

In Algorithm 1, informativity of (𝐷, 𝐷−) for 𝐾𝐷 is de-
termined by examining in the data-driven automaton every
uncontrollable event at each state in 𝑄𝐷 . If an uncontrollable
event 𝜎 can occur at state 𝑞 ∈ 𝑄𝐷 and the corresponding
transition enters 𝑄̂ \ (𝑄𝐷 ∪ 𝑄−), then the transition is
contained in 𝐿 (𝐺) (for all plants 𝐺 consistent with (𝐷, 𝐷−))
but not contained in 𝐾𝐷 , which means that there exists a
string in 𝐾𝐷 that exits 𝐾𝐷 by some uncontrollable event.
Thus 𝐾𝐷 is uncontrollable with respect to every plant 𝐺
consistent with (𝐷, 𝐷−), and consequently (𝐷, 𝐷−) is not
informative. If an uncontrollable event 𝜎 cannot occur at
state 𝑞 ∈ 𝑄𝐷 , this means that we have no data or prior
knowledge about the corresponding transition, and thus we
cannot determine whether the transition is generatable by
the unknown true plant 𝐺. As a result, (𝐷, 𝐷−) is not
informative.

Example 5. Consider the data-driven automaton 𝐺̂1 in
Fig. 5. For state 𝑞𝑎𝑏 ∈ 𝑄𝐷1 (orange) and the (only)
uncontrollable event 𝑑, it is satisfied that 𝛿(𝑞𝑎𝑏, 𝑑) ∈ 𝑄𝐷1

(orange). For every other state 𝑞𝑠 ∈ 𝑄𝐷1 (orange) and

the uncontrollable event 𝑑, it is satisfied that 𝛿(𝑞𝑠 , 𝑑) ∈
𝑄− (blue). Thus Algorithm 1 returns “informative”, which
corresponds to the result in Example 3.

Next consider the data-driven automaton 𝐺̂2 in Fig. 6.
For state 𝑞𝑎𝑏 ∈ 𝑄𝐷2 (orange) and the uncontrollable event
𝑑, we see that 𝛿(𝑞𝑎𝑏, 𝑑)! and 𝛿(𝑞𝑎𝑏, 𝑑) ∉ 𝑄𝐷2 ∪ 𝑄− (since
the transition enters a white state). As a result, Algorithm 1
returns “not informative”, which again corresponds to the re-
sult in Example 3. In fact, the same conclusion can be drawn
based on state 𝑞𝑎𝑏𝑐 𝑓 ∈ 𝑄𝐷2 (orange); here ¬𝛿(𝑞𝑎𝑏𝑐 𝑓 , 𝑑)!,
so Algorithm 1 returns “not informative”.

IV. Conclusions
In this paper we have initiated a study on data-driven

supervisory control of DES. A new concept of data-
informativity has been proposed, and its characterization and
verification algorithm presented.

As a first step in this data-driven direction, this work
has left several interesting issues for future work. One is
to consider the case that the given data set (𝐷, 𝐷−) fails to
be informative for a given specification. Another problem
is to consider marker states and thus to deal with data-
informativity for nonblocking supervisors.
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