
1

Data-Informativity for Data-Driven Supervisory

Control of Discrete-Event Systems

Tomofumi Ohtsuka1, Kai Cai2, Senior Member, IEEE and Kenji Kashima1,

Senior Member, IEEE

Abstract

In this paper we develop a data-driven approach for supervisory control of discrete-event systems

(DES). We consider a setup in which models of DES to be controlled are unknown, but a set of data

concerning the behaviors of DES is available. We propose a new concept of data-informativity, which

captures the notion that the available data set contains sufficient information such that a valid supervisor

may be constructed for a family of DES models that all can generate the data set. We then characterize

data-informativity with a necessary and sufficient condition, based on which we design an algorithm for

its verification. Moreover, if the data set fails to be informative, we propose two related new concepts

of restricted data-informativity and informatizability. Their characterization conditions and verification

algorithms are also presented. Finally if the data set is informatizable, we develop an algorithm to

compute the largest subset of control specification for which the data set is least restricted informative.

I. Introduction

Supervisory control of discrete-event systems (DES) is a relatively new area of control science

and engineering [1], [2], [3], [4], [5]. A DES is a dynamical system that is discrete in time and

usually in state space, and its dynamics is driven by instantaneous occurrences of events. To

enforce a desired specification on a given DES, supervisory control theory aims to construct a

feedback controller called a supervisor, whose control mechanism is of disabling or enabling

occurrences of certain (controllable) events. Supervisory control is a model-based approach: a

DES to be controlled is first modeled as a finite-state automaton, and its behaviors represented

1T. Ohtsuka and K. Kashima are with the Graduate School of Informatics,

Kyoto University, Kyoto, Japan

otsuka.tomofumi.78z@st.kyoto-u.ac.jp; kk@i.kyoto-u.ac.jp
2K. Cai is with the Department of Core Informatics, Osaka Metropolitan University, Osaka, Japan cai@omu.ac.jp

2

by regular languages; then supervisory control design is carried out based on these models.

Recently, DES has been combined with continuous dynamical systems in areas called hybrid or

cyber-physical systems [6], [7].

In the past few years, various data-driven techniques have been successfully utilized to analyze

and synthesize controllers for continuous dynamical systems. Representative approaches include

identification of dynamical models from data [8], learning control laws directly from observations

[9] or through reinforcement learning [10]. This research thrust has been driven by the motivation

to tackle challenging control problems involving unknown system dynamics, high nonlinearity,

huge dimensionality, and on the other hand the increasing availability of large quantity of

observation data.

The same thrust has so far been, however, obscure in supervisory control of DES. Although

attempts to apply data-driven techniques exist [11], [12], [13], such works are scarce and not yet

systematic. On the other hand, DES control problems are facing similar challenges like unknown

system dynamics and/or high dimensionality, as well as the opportunity of exploding amount of

observation data thanks to fast advancing data collection capabilities. Hence in this paper, we

aim to initiate a systematic development of a data-driven approach for supervisory control of

DES.

Specifically, we consider a setup in which automaton models of DES to be controlled are

unknown, but a set of data concerning the behaviors of DES is available. We ask the question:

Under what conditions of the available data set can a valid supervisor be designed for the

unknown DES to satisfy a given specification?

Intuitively, the key to answering this question is the ‘quality’ of the data set for the purpose of

supervisory control. For this, we identify and formalize a novel concept called data-informativity.

Data-informativity characterizes a condition that the given data set contains sufficient information

such that a valid supervisor may be constructed for a family of DES models that all can generate

the data set. Thus rather than trying to first identify a model for the unknown DES, our approach

based on data-informativity aims to directly construct from the data set a supervisor valid for

all possible models undistinguishable from the unknown DES. If such a supervisor can be

constructed, it is also valid for the unknown DES.

This idea of data-informativity has been introduced for data-driven control of linear systems

[9], and recently attracted much attention e.g., [14], [15], [16]. Although conceptually similar,

due to the discrete, event-driven dynamics of DES and distinct supervisory control mechanisms,

3

the data-informativity based approach we develop uses different settings, mathematical tools, and

synthesis methods from those for continuous time-driven systems. A particular feature unique

to DES is the phenomenon that it is not always true that more data is better for supervisory

control. In other words, a large quantity of data without needed quality is not useful for data-

driven supervisory control of DES. This feature may first seem counter-intuitive, but will become

reasonable as explained in Sections III, IV, and V below.

The main content and contributions are summarized below.

• First, we propose a new concept for data-driven supervisory control: data-informativity. The

given data set about the behaviors of the unknown plant consists of two types. The first

type is observation data 𝐷, which is a collection of observed behaviors (strings of events)

from the unknown DES. The second type is prior knowledge data 𝐷− about the impossible

behaviors of the DES. Then we define data-informativity of the pair (𝐷, 𝐷−) in terms of

(language) controllability essential for the existence of valid supervisors.

• Second, we characterize the concept of data-informativity by establishing a necessary and

sufficient condition for it (Theorem 1). Based on this condition, we present an algorithm

for the verification of data-informativity. The novelty of this verification algorithm is the

construction of a special data-driven automaton. If the data set (𝐷, 𝐷−) is informative (for

a given specification), we construct a valid supervisor for the unknown plant to satisfy the

specification.

• Third, in the case that the given data set (𝐷, 𝐷−) fails to be informative for a given

specification, we propose another new concept called restricted data-informativity. restricted

data-informativity means that for a given smaller subset of the specification, (𝐷, 𝐷−) is

informative for the subset. Thus when restricted data-informativity holds, a valid supervisor

can again be constructed for the unknown plant to satisfy the smaller specification. We

characterize the existence of a nonempty subset of the specification for which (𝐷, 𝐷−) is

informative as informatizability, and develop an algorithm to effectively verify this property.

• Finally, whenever (𝐷, 𝐷−) is verified to be informatizable, we show that there exists the

largest (nonempty) subset of the specification for which (𝐷, 𝐷−) is informative. With respect

to this largest subset, (𝐷, 𝐷−) is the least restricted informative. An algorithm is developed

to find this largest subset of specification, and the corresponding supervisor that enforces

this largest subset for the unknown plant is optimal in the sense of permitting maximal

behaviors based on the data set (𝐷, 𝐷−).

4

Overall, this work initiates and establishes the first systematic framework in the field of DES on

data-driven supervisory control, which elucidates an intriguing interplay between data quality

and control performance. Although in this first framework our focus is placed on the fundamental

concept of controllability, this framework is naturally generalizable for many other DES concepts

in the new data-driven setting.

This paper differs from its conference precursor [17] by developing concepts and algorithms

for informatizability and least restricted informativity (i.e. Sections IV and V are new).

The remainder of this paper is organized as follows. Section II provides preliminaries on

model-based supervisory control of DES. Section III introduces data-informativity and Section IV

introduces restricted data-informativity. Both sections present a necessary and sufficient condition

and a verification algorithm for the respective property. Section V presents least restricted

informativity and the corresponding synthesis algorithm. Section VI states our conclusions.

II. Preliminaries on model-based supervisory control theory

In supervisory control of DES, the plant to be controlled is modeled by a finite-state automa-

ton1

𝐺 = (𝑄, Σ, 𝛿, 𝑞0). (1)

Here 𝑄 is the finite state set, Σ the finite event set, 𝛿 : 𝑄 × Σ → 𝑄 the (partial) state transition

function,2 𝑞0 ∈ 𝑄 the initial state. Write 𝛿(𝑞, 𝜎)! to mean 𝜎 ∈ Σ is defined at state 𝑞 ∈ 𝑄, and

write ¬𝛿(𝑞, 𝜎)! to mean 𝜎 ∈ Σ is not defined at state 𝑞 ∈ 𝑄. We say that the automaton 𝐺 is

deterministic if

(∀𝑞 ∈ 𝑄,∀𝜎 ∈ Σ) 𝛿(𝑞, 𝜎)! =⇒ |𝛿(𝑞, 𝜎) | = 1.

Namely, the destination state of every state transition is unique. We shall focus exclusively on

deterministic automata unless otherwise stated. A string on Σ is a sequence of events from Σ.

Write Σ∗ for the set of all finite-length strings on Σ, including the empty string 𝜖 (containing

no event). Then, the state transition function may be inductively defined, and we write 𝛿(𝑞, 𝑠)!
to mean that string 𝑠 ∈ Σ∗ is defined at state 𝑞 ∈ 𝑄. Any subset 𝐾 ⊆ Σ∗ is called a language.

1As a first step towards developing data-driven supervisory control in this paper, we assume for simplicity that every state is

marked and thus the marker state set is omitted.

2It is sometimes convenient to treat 𝛿 as a set 𝛿 = {(𝑞, 𝜎) → 𝑞′ | 𝑞, 𝑞′ ∈ 𝑄, 𝜎 ∈ Σ}. We shall use 𝛿 either as a function or

as a set as long as no confusion arises.

5

Write 𝐾 := {𝑠 ∈ Σ∗ | (∃𝑠′ ∈ Σ∗)𝑠𝑠′ ∈ 𝐾} for the set of all prefix strings of those in 𝐾 . We call

𝐾 the prefix closure of 𝐾 , and in general 𝐾 ⊆ 𝐾 holds. The closed behavior 𝐿 (𝐺) of 𝐺 is the

language defined as the set of all strings of Σ∗ which 𝐺 can generate starting from the initial

state 𝑞0:

𝐿 (𝐺) := {𝑠 ∈ Σ∗ | 𝛿(𝑞0, 𝑠)!}. (2)

By definition, we have 𝐿 (𝐺) = 𝐿 (𝐺).
Generally, not all strings in the closed behavior 𝐿 (𝐺) of the plant 𝐺 are desired. Thus we

represent a desired behavior to be enforced on 𝐺 as a control specification 𝐾 ⊆ 𝐿 (𝐺). Note that

a more general control specification 𝐸 ⊆ Σ∗ may be considered. In this case, set 𝐾 := 𝐸 ∩ 𝐿 (𝐺)
and we again have a specification 𝐾 ⊆ 𝐿 (𝐺) to be enforced on 𝐺.

For a mechanism to enforce a specification 𝐾 ⊆ 𝐿 (𝐺) on the plant 𝐺, we assume that a subset

of events Σ𝑐 ⊆ Σ, called the controllable events, are capable of being enabled or disabled by

an external controller. On the contrary, Σ𝑢 := Σ \ Σ𝑐 is the set of uncontrollable events, which

cannot be externally disabled and must be considered permanently enabled.

Under the above mechanism, define a supervisor to be a function 𝑉 : 𝐿 (𝐺) → 𝑃𝑤𝑟 (Σ𝑐).
Here 𝑃𝑤𝑟 (Σ𝑐) denotes the set of all subsets of controllable events. Thus a supervisor assigns to

each string 𝑠 ∈ 𝐿 (𝐺) generated by the plant 𝐺 a subset of controllable events 𝑉 (𝑠) ⊆ Σ𝑐 to be

disabled. Write 𝑉/𝐺 for the closed-loop system: “𝐺 is under the control of 𝑉”. The language

of closed-loop system 𝐿 (𝑉/𝐺) is defined as follows:

(i) 𝜖 ∈ 𝐿 (𝑉/𝐺);
(ii) if 𝑠 ∈ 𝐿 (𝑉/𝐺) and 𝜎 ∈ Σ \𝑉 (𝑠) and 𝑠𝜎 ∈ 𝐿 (𝐺), then 𝑠𝜎 ∈ 𝐿 (𝑉/𝐺);
(iii) no other strings belong to 𝐿 (𝑉/𝐺).

Thus 𝐿 (𝑉/𝐺) contains those strings in 𝐿 (𝐺) that are not disabled by the supervisor 𝑉 . By

definition 𝐿 (𝑉/𝐺) ⊆ 𝐿 (𝐺) and 𝐿 (𝑉/𝐺) = 𝐿 (𝑉/𝐺).

Definition 1 (controllability). Given a plant 𝐺, a control specification 𝐾 ⊆ 𝐿 (𝐺) is said to be

controllable with respect to 𝐺 provided

(∀𝑠 ∈ 𝐾, ∀𝜎 ∈ Σ𝑢) 𝑠𝜎 ∈ 𝐿 (𝐺) =⇒ 𝑠𝜎 ∈ 𝐾. (3)

In words, a specification 𝐾 is controllable wrt. 𝐺 if and only if any string in the prefix closure

𝐾 cannot exit 𝐾 on a continuation by an uncontrollable event. Namely, the prefix closure of 𝐾 is

invariant under uncontrollable flows. Equivalently (3) can be written compactly as 𝐾Σ𝑢∩𝐿 (𝐺) ⊆

6

𝐾 . It is known that the specification language 𝐾 (≠ ∅) being controllable is necessary and

sufficient for the existence of a supervisor 𝑉 such that 𝐿 (𝑉/𝐺) = 𝐾 [13].

Suppose that 𝐾 ⊆ 𝐿 (𝐺) is controllable. Then the supervisor 𝑉 : 𝐿 (𝐺) → 𝑃𝑤𝑟 (Σ𝑐) such that

𝐿 (𝑉/𝐺) = 𝐾 is constructed as follows:

𝑉 (𝑠) =


{𝜎 ∈ Σ𝑐 | 𝑠𝜎 ∉ 𝐾} if 𝑠 ∈ 𝐾,

∅ if 𝑠 ∈ 𝐿 (𝐺) \ 𝐾.
(4)

Whether or not 𝐾 is controllable, we can write 𝐶 (𝐾) for the family of all controllable

sublanguages of 𝐾:

𝐶 (𝐾) := {𝐾′ ⊆ 𝐾 | 𝐾′Σ𝑢 ∩ 𝐿 (𝐺) ⊆ 𝐾′}. (5)

It is known that the union of controllable sublanguages of 𝐾 is still a controllable sublanguage

of 𝐾 . This means that 𝐶 (𝐾) is closed under set union, so 𝐶 (𝐾) contains a unique supremal

element

sup𝐶 (𝐾) :=
⋃

{𝐾′ | 𝐾′ ∈ 𝐶 (𝐾)}. (6)

Since sup𝐶 (𝐾) is controllable, as long as sup𝐶 (𝐾) ≠ ∅, there exists a supervisor 𝑉sup such

that 𝐿 (𝑉sup/𝐺) = sup𝐶 (𝐾). In this sense 𝑉sup is optimal (maximally permissive), allowing the

generation by 𝐺 of the largest possible set of strings that satisfies a given specification.

Example 1. For illustration, we provide a running example of robot navigation. Consider a robot

that moves from a starting point to a finishing point. There exist some paths into a dangerous

zone along the route and the robot must avoid them while heading for the goal. Also, the robot

may move uncontrollably at some location due to possible disturbance from the environment.

An automaton modeling this described scenario is displayed in Fig. 1, and we consider this

automaton (say 𝐺1) as the plant to be controlled.

In this plant, each state written in numbers represents a location of the environment where the

robot navigates. Here state 0 is the starting point and state 6 is the finishing point. Each event

written in alphabet represents the transition of the robot. We suppose that event 𝑑 (dashed

arrow from state 2 to 3) represents an uncontrollable transition, and other events are all

controllable: i.e. Σ𝑐 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } and Σ𝑢 = {𝑑}. State 5 represents a danger state, and

7

Figure 1 robot navigation: plant 𝐺1

Figure 2 robot navigation: specification 𝐾1(⊆ 𝐿 (𝐺1))

the control specification is to avoid this danger state. This (safety) specification may be written

as a sublanguage of 𝐿 (𝐺1) as follows:

𝐾1 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 }.

This specification 𝐾1 (indeed its prefix closure 𝐾1) may be represented by the automaton shown in

Fig. 2. Compared with the plant in Fig. 1, the specification automaton removes the (controllable)

transition from state 4 to the danger state 5.

Since no uncontrollable event can exit 𝐾1, the specification language 𝐾1 is controllable. Thus

we can construct the following supervisor 𝑉1 : 𝐿 (𝐺1) → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉1/𝐺1) = 𝐾1:

𝑉1(𝑠) =


{𝑒} if 𝑠 ∈ {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑎𝑏𝑑𝑏},

∅ if 𝑠 ∈ 𝐿 (𝐺1) \ {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑎𝑏𝑑𝑏}.

This supervisor disables 𝑒 at state 4 in Fig. 1.

In the above example, the supervisor 𝑉1 is designed based on the assumption that the plant

model 𝐺1 is known. Now we pose this question: if 𝐺1 is unknown (e.g. the robot navigates in an

unknown environment), under what conditions can we still design a supervisor? This question

motivates us to study a data-driven approach to supervisory control.

8

III. Data-Driven Supervisory Control and Data-Informativity

A. Problem formulation of data-driven supervisory control

Suppose that we have a plant whose automaton model 𝐺 is unknown except for the event set

Σ(= Σ𝑐∪Σ𝑢). Even under this circumstance, there are often situations where strings generated by

the plant may be observed, and thus certain amount of such output sequences data are available.

Also, from prior knowledge of the event set Σ, it is often the case that there are certain output

sequences that are obviously not generatable by the plant. For example, suppose we have a set

of events: turn on a machine, press a switch on the machine, and the machine produces an

output. Then, without knowing internal working mechanism of the machine, it is obvious that

the machine cannot output anything before its power is turned on. In view of this, we assume

that we can obtain a pair of finite data sets (𝐷, 𝐷−), where 𝐷 ⊆ Σ∗ is the observed behavior

from the plant and 𝐷− ⊆ Σ∗ is prior knowledge of impossible behavior of the plant. Since each

string in 𝐷 is observed from 𝐺, 𝐷 is a subset of the closed behavior of 𝐺: i.e. 𝐷 ⊆ 𝐿 (𝐺). On

the contrary since each string in 𝐷− is known to be impossible to be generated by 𝐺, 𝐷− and

the closed behavior of 𝐺 do not have any common elements: i.e. 𝐷− ∩ 𝐿 (𝐺) = ∅. As a result,

𝐷 ∩𝐷− = ∅. Given a control specification 𝐸 ⊆ Σ∗, our goal is to design a supervisor (whenever

it exists) to enforce 𝐸 for the unknown plant based on the data pair (𝐷, 𝐷−).

Example 2. Consider again the robot navigation example in Example 1 and the plant model

𝐺1 in Fig. 1. Now we suppose that 𝐺1 is unknown except for the event set Σ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 },
and certain observations and prior knowledge of the plant behavior are available. For example,

we have observed a string 𝑎𝑏𝑑𝑏 𝑓 from the plant, i.e. the robot moves from the initial state to

the goal state following the path 𝑎𝑏𝑑𝑏 𝑓 . Hence we have 𝐷 = {𝑎𝑏𝑑𝑏 𝑓 }. In addition, we have

prior knowledge that the plant cannot generate string 𝑐, namely the robot can never start its

navigation from location 1 and makes a first move to location 3. Thus 𝐷− = {𝑐}. For this pair

(𝐷, 𝐷−), there may exist infinitely many automata that can generate 𝐷 and cannot generate 𝐷−.

In other words, our unknown plant 𝐺1 cannot be uniquely identified based on the pair (𝐷, 𝐷−).
For example, 𝐺2 in Fig. 3 and 𝐺3 in Fig. 4 cannot be distinguished from the real plant 𝐺1.

In order to design a supervisor for the real plant based only on (𝐷, 𝐷−), we must construct

a supervisor that is valid for all such possible plants. Intuitively, more observations and prior

knowledge can help reduce the number of plant models that cannot be distinguished from the

9

Figure 3 𝐺2 in Example 2

Figure 4 𝐺3 in Example 2

real one. Say if we observe an additional string 𝑎𝑐𝑏 𝑓 (so that 𝐷 = {𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 }), then 𝐺2

can be ruled out from the candidate while 𝐺3 is still possible.

As in the example above, there are generally multiple possible plants compatible with the

given data pair (𝐷, 𝐷−). This is defined below as a consistency property.

Definition 2 (consistency). Suppose that an event set Σ is given. Then, for finite sets 𝐷, 𝐷− ⊆ Σ∗

satisfying 𝐷 ∩ 𝐷− = ∅, an automaton 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) is said to be consistent with (𝐷, 𝐷−) if

𝐷 ⊆ 𝐿 (𝐺) and 𝐷− ∩ 𝐿 (𝐺) = ∅.

In words, an automaton 𝐺 is consistent with a pair (𝐷, 𝐷−) if and only if all strings in 𝐷

can be generated by 𝐺, whereas no strings in 𝐷− can be generated by 𝐺. Thus in Example 2,

𝐺1, 𝐺2 and 𝐺3 are consistent with (𝐷, 𝐷−) where 𝐷 = {𝑎𝑏𝑑𝑏 𝑓 } and 𝐷− = {𝑐}. If we observe an

additional string 𝑎𝑐𝑏 𝑓 (𝐷 = {𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 }), 𝐺1 and 𝐺3 are still consistent with (𝐷, 𝐷−), but

𝐺2 becomes not consistent. It is easy to verify that if we observe some additional strings or we

have more knowledge about the strings that the plant cannot generate, the number of consistent

models decreases.

Remark 1. It is well known [18] that for every regular language 𝐿 ⊆ Σ∗, there exists an

automaton 𝐺 such that 𝐿 (𝐺) = 𝐿. Thus for any finite sets 𝐷, 𝐷− ⊆ Σ∗ (which are regular)

satisfying 𝐷 ∩ 𝐷− = ∅, one can always find an automaton 𝐺 such that 𝐿 (𝐺) = 𝐷, and hence

𝐿 (𝐺) ∩𝐷− = ∅. This means that there exists at least one automaton 𝐺 consistent with (𝐷, 𝐷−).

10

Before we proceed, we summarize some basic properties of consistent plants.

Proposition 1. There exists a consistent plant with (𝐷, 𝐷−) if and only if 𝐷 ∩ 𝐷− = ∅. If 𝐺 is

consistent with (𝐷, 𝐷−), then 𝐺 is also consistent with (𝐷, 𝐷−). Moreover it holds that⋂
{𝐿 (𝐺) | 𝐺 is consistent with (𝐷, 𝐷−)} = 𝐷. (7)

The proof of Proposition 1 follows immediately from Definition 2 and Remark 1.

Now we formulate our data-driven supervisory control problem. The last assertion (7) of

Proposition 1 motivates us to investigate the supervisory control over 𝐷. We denote a control

specification based on 𝐷 by

𝐾𝐷 := 𝐷 ∩ 𝐸, 𝐸 ⊆ Σ∗ (regular language). (8)

Problem 1. Suppose that we are given an event set Σ = Σ𝑐 ∪Σ𝑢, a control specification 𝐸 ⊆ Σ∗,

and finite data sets 𝐷, 𝐷− ⊆ Σ∗ such that 𝐾𝐷 in (8) is nonempty and 𝐷 ∩ 𝐷− = ∅. Construct

(if possible) a supervisor 𝑉𝐷 : 𝐷 → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷 for every plant 𝐺

consistent with (𝐷, 𝐷−).

Since the real plant is consistent with (𝐷, 𝐷−), the supervisor satisfying the required condition

in Problem 1 is valid for the real plant. If the real plant 𝐺 was known, we would construct a

supervisor to enforce 𝐾 = 𝐿 (𝐺) ∩ 𝐸 (whenever 𝐾 is controllable). In our data-driven setup, 𝐷

represents the maximally accessible subset of 𝐿 (𝐺) based on our observation of the plant; hence

constructing a supervisor to enforce 𝐾𝐷 = 𝐷 ∩ 𝐸 is the most that can be done based on the data

available. If the behavior represented by 𝐾𝐷 is too small/restrictive, one can consider enlarging

𝐷 by observing more behaviors of the plant. The closer 𝐷 approximates 𝐿 (𝐺), the closer the

data-driven enforcible behavior 𝐾𝐷 approximates the original model-based behavior 𝐿 (𝐺) ∩ 𝐸 .

B. Data-informativity and its criterion

As we mentioned in Section II, the existence of a supervisor 𝑉𝐷 such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷

for all plants 𝐺 consistent with (𝐷, 𝐷−) is equivalent to the controllability of specification

language 𝐾𝐷 (≠ ∅). This implies that whether the available data has sufficient information can

be characterized in terms of controllability.

11

Definition 3 (informativity). We say that (𝐷, 𝐷−) is informative for a given control specification

𝐸 if there exists a supervisor satisfying the required condition in Problem 1, or equivalently if

𝐾𝐷 in (8) is nonempty and controllable with respect to all plants 𝐺 consistent with (𝐷, 𝐷−).

Recall that, for a known plant, if an uncontrollable event 𝜎 ∈ Σ𝑢 can happen after 𝑠 ∈ 𝐾𝐷
in the plant, then 𝑠𝜎 needs to remain in 𝐾𝐷 for the controllability of 𝐾𝐷 with respect to the

plant; see (3). On the contrary, for the data-driven case (without knowledge of plant), we need

to assume any uncontrollable event 𝜎 ∈ Σ𝑢 can happen after 𝑠 ∈ 𝐾𝐷 unless 𝑠𝜎 ∈ 𝐷− (known

to be impossible). This observation leads to the following:

Theorem 1 (Criterion for informativity). Suppose that an event set Σ = Σ𝑐 ∪ Σ𝑢 and a control

specification 𝐸 ⊆ Σ∗ are given. (𝐷, 𝐷−) is informative for 𝐸 if and only if(
∀𝑠 ∈ 𝐾𝐷 , ∀𝜎 ∈ Σ𝑢

)
𝑠𝜎 ∈ 𝐾𝐷 ∪ 𝐷− (9)

holds with 𝐾𝐷 in (8).

Proof. (If) Suppose that (9) holds. Then it is easy to verify that(
∀𝑠 ∈ 𝐾𝐷 ,∀𝜎 ∈ Σ𝑢

)
𝑠𝜎 ∈ 𝐿 (𝐺) =⇒ 𝑠𝜎 ∈ 𝐾𝐷 (10)

holds for every plant 𝐺 consistent with (𝐷, 𝐷−). Thus (𝐷, 𝐷−) is informative for 𝐸 .

(Only if) Suppose that (𝐷, 𝐷−) is informative for 𝐸 . This means by Definition 3 that (10)

holds for every plant 𝐺 consistent with (𝐷, 𝐷−). Consider a special such plant 𝐺′ such that

𝐿 (𝐺′) = Σ∗ \ 𝐷−. This 𝐺′ is consistent with (𝐷, 𝐷−), and any string not in 𝐿 (𝐺′) belongs to

𝐷−. Let 𝑠 ∈ 𝐾𝐷 and 𝜎 ∈ Σ𝑢. Consider two cases. Case 1: 𝑠𝜎 ∈ 𝐿 (𝐺′). Since (10) holds for 𝐺′,

we have 𝑠𝜎 ∈ 𝐾𝐷 . Case 2: 𝑠𝜎 ∉ 𝐿 (𝐺′). In this case, we have 𝑠𝜎 ∈ 𝐷−. Thus (9) is satisfied.

□ □

Theorem 1 provides a necessary and sufficient condition for data-informativity. Compared (9)

with the standard controllability condition of 𝐾𝐷 , absence of “𝐿 (𝐺)” and the part of 𝐷− mark

the distinctions in the data-driven framework. Below we remark on the key role played by 𝐷−

in affecting the quality of data set.

Remark 2. The set 𝐷− contains strings that cannot be generated the unknown plant (i.e. prior

knowledge of impossible behavior of the plant). If we have little such prior knowledge (|𝐷− | →
0), in order for (9) to be satisfied, “𝐾𝐷” has to include (almost) all one-step uncontrollable

12

continuations of strings belonginig to itself. This in turn requires the observation data set 𝐷

to be rather exhaustive with respect to the occurrence of uncontrollable events, which may be

challenging to obtain in practice (therefore (9) is difficult to be satisfied). Hence in general, a

larger prior knowledge 𝐷− effectively helps relieve the requirement on obtaining observation

data 𝐷. Note, however, that not all strings in 𝐷− are equally useful; according to (9), the useful

strings in 𝐷− are precisely those of one-step uncontrollable continuation of strings in “𝐾𝐷”.

In view of the above, it is not the sheer quantity of 𝐷 or 𝐷−, but the quality in terms of the

‘matchness’ between 𝐷 and 𝐷− specified by (9) that matters for informativity.

Whenever (𝐷, 𝐷−) is informative for 𝐸 , the following proposition provides the way to construct

a supervisor to realize control specification 𝐾𝐷 (i.e. a solution to Problem 1).

Proposition 2. Suppose that we are given a finite set of strings (𝐷, 𝐷−) which is informative

for a given specification 𝐸 . Then a supervisor 𝑉𝐷 : 𝐷 → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉𝐷/𝐺) = 𝐾𝐷 is

constructed as follows:

𝑉𝐷 (𝑠) =


{𝜎 ∈ Σ𝑐 | 𝑠𝜎 ∉ 𝐾𝐷} if 𝑠 ∈ 𝐾𝐷 ,

∅ if 𝑠 ∈ 𝐷 \ 𝐾𝐷 .
(11)

The above proposition can be readily derived by employing the supervisor construction method

used in the model-known case (as in (4)).

Example 3. Let us illustrate the concept of data-informativity using the robot navigation example.

Again we suppose that the plant 𝐺1 in Fig. 1 is unknown except for the event set Σ = Σ𝑐 ∪ Σ𝑢,

where Σ𝑐 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } and Σ𝑢 = {𝑑}. Consider two pairs of finite data sets (𝐷1, 𝐷
−
1) and

(𝐷2, 𝐷
−
2), where

𝐷1 = {𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑏𝑐𝑒},

𝐷−
1 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑑𝑑, 𝑎𝑏𝑑𝑏𝑑, 𝑎𝑏𝑑𝑏 𝑓 𝑑};

𝐷2 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏𝑒},

𝐷−
2 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑐𝑑}.

Let 𝐸 = {𝑎𝑏𝑐 𝑓 , 𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑑𝑓 }. Then the control specifications in (8) are respectively

𝐾𝐷1 = 𝐷1 ∩ 𝐸 = {𝑎𝑏𝑑𝑏 𝑓 },

𝐾𝐷2 = 𝐷2 ∩ 𝐸 = {𝑎𝑏𝑐 𝑓 }.

13

First consider (𝐷1, 𝐷
−
1). Note that 𝐺1 in Fig. 1 and 𝐺2 in Fig. 3 are consistent with (𝐷1, 𝐷

−
1).

From the control specification 𝐾𝐷1 = {𝑎𝑏𝑑𝑏 𝑓 }, we have 𝐾𝐷1 = {𝜖, 𝑎, 𝑎𝑏, 𝑎𝑏𝑑, 𝑎𝑏𝑑𝑏, 𝑎𝑏𝑑𝑏 𝑓 }
and 𝐾𝐷1Σ𝑢 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑏𝑑𝑑, 𝑎𝑏𝑑𝑏𝑑, 𝑎𝑏𝑑𝑏 𝑓 𝑑}. Since only 𝑎𝑏𝑑 belongs to 𝐾𝐷1 and other

strings in 𝐾𝐷1Σ𝑢 belong to 𝐷−
1 , the condition (9) holds and (𝐷1, 𝐷

−
1) is informative for 𝐸 .

Indeed, we can confirm the controllability of 𝐾𝐷1 with respect to the consistent plants 𝐺1 and

𝐺2 (if they were available). Correspondingly a supervisor 𝑉𝐷1 : 𝐷1 → 𝑃𝑤𝑟 (Σ𝑐) such that

𝐿 (𝑉𝐷1/𝐺) = 𝐾𝐷1 is constructed for every plant 𝐺 consistent with (𝐷1, 𝐷
−
1) as follows:

𝑉𝐷1 (𝑠) =



{𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝜖,

{𝑎, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎,

{𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏,

{𝑎, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏𝑑,

{𝑎, 𝑏, 𝑐, 𝑒} if 𝑠 = 𝑎𝑏𝑑𝑏,

{𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑏𝑑𝑏 𝑓 ,

∅ if 𝑠 ∈ 𝐷1 \ 𝐾𝐷1 .

Next, we consider (𝐷2, 𝐷
−
2). Note that 𝐺1 in Fig. 1 and 𝐺3 in Fig. 4 are consistent with

(𝐷2, 𝐷
−
2). From the control specification 𝐾𝐷2 = {𝑎𝑏𝑐 𝑓 }, we have 𝐾𝐷2 = {𝜖, 𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐 𝑓 }

and 𝐾𝐷2Σ𝑢 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑐 𝑓 𝑑}. Since 𝑎𝑏𝑑, 𝑎𝑏𝑐 𝑓 𝑑 ∉ 𝐾𝐷2 ∪ 𝐷−
2 , (𝐷2, 𝐷

−
2) is not

informative for 𝐸 . The string 𝑎𝑏𝑑 is in 𝐷2 \ 𝐾𝐷2 , so 𝑎𝑏𝑑 is the string which is outside of the

specification and generatable by every consistent plant 𝐺. On the contrary, we do not have

the information of the string 𝑎𝑏𝑐 𝑓 𝑑, so it is generatable by some consistent plant 𝐺 and not

generatable by others. For example, 𝐺1 in Fig. 1 cannot generate 𝑎𝑏𝑐 𝑓 𝑑 but 𝐺3 in Fig. 4 can

generate it.

C. Verification of data-informativity

Based on the condition (9) in Theorem 1, we next present an algorithm for checking data-

informativity. For this purpose, we first define a data-driven automaton. We denote by 𝑞𝑠 a state

reached by a string 𝑠 from the initial state of the automaton (as will be clear from the definition

below, in the data-driven automaton a state and a string are uniquely corresponded).

14

Figure 5 Data-driven automaton 𝐺̂1 corresponding to (𝐷1, 𝐷
−
1)

Definition 4 (data-driven automaton). Suppose that the event set Σ and finite data sets 𝐷, 𝐷− ⊆
Σ∗ (satisfying 𝐷 ∩ 𝐷− = ∅) are given. Then a data-driven automaton is defined as follows:

𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖), (12)

where 𝑄̂ := {𝑞𝑠 |𝑠 ∈ 𝐷 ∪ 𝐷−} is the state set, 𝛿 := {(𝑞𝑠, 𝜎) → 𝑞𝑠𝜎 |𝑠 ∈ 𝐷 ∪ 𝐷−, 𝜎 ∈ Σ, 𝑠𝜎 ∈
𝐷 ∪ 𝐷−} is the (partial) state transition function, and 𝑞𝜖 is the initial state. In addition, given

a control specification 𝐾𝐷 = 𝐷 ∩ 𝐸 (where 𝐸 ⊆ Σ∗ is a regular language), we define 𝑄𝐾 :=

{𝛿(𝑞𝜖 , 𝑠) | 𝑠 ∈ 𝐾𝐷} ⊆ 𝑄̂ and 𝑄− := {𝛿(𝑞𝜖 , 𝑠) | 𝑠 ∈ 𝐷−} ⊆ 𝑄̂.

A data-driven automaton 𝐺̂ is a prefix tree automaton for 𝐷 ∪ 𝐷−: i.e. a loop-less automaton

whose closed behavior is 𝐿 (𝐺̂) = 𝐷 ∪ 𝐷−. According to the state transition function 𝛿, for each

string 𝑠 ∈ 𝐷 ∪ 𝐷−, the reached state 𝑞𝑠 is unique. The state subset 𝑄𝐾 contains those states

reached by strings in 𝐾𝐷 . Note that since 𝐸 may not be a finite language in general, in order

to determine 𝑄𝐾 , we need to first construct a (finite-state) automaton for 𝐸 (always possible

since 𝐸 is regular) and then check if each string in the finite 𝐷 can occur in the automaton for

𝐸 . On the other hand, the state subset 𝑄− contains those states reached by strings in 𝐷−, so a

transition to 𝑄− represents an impossible behavior of the (unknown) plant. Since 𝐷 ∩ 𝐷− = ∅,

we have 𝑄𝐾 ∩𝑄− = ∅. It should be remarked that in general 𝑄𝐾 ∪𝑄− ≠ 𝑄̂. Also note that 𝐺̂ is

by no means consistent with (𝐷, 𝐷−), since 𝐺̂ generates the strings in 𝐷− which is the set of

impossible behavior: i.e. 𝐷− ⊆ 𝐿 (𝐺̂).

Example 4. Here we provide examples of data-driven automata 𝐺̂1 (in Fig. 5) and 𝐺̂2 (in Fig. 6)

corresponding to the data sets (𝐷1, 𝐷
−
1) and (𝐷2, 𝐷

−
2) in Example 3. For clear display, we

have omitted 𝑞𝑠 in the figure and only the subscript 𝑠 is written inside each state. State subsets

𝑄𝐾 and 𝑄− are represented in orange and blue in the figures, respectively. The states without

15

Figure 6 Data-driven automaton 𝐺̂2 corresponding to (𝐷2, 𝐷
−
2)

colors correspond to strings in the observation data set 𝐷, but not in the specification 𝐸 (thus

not in 𝐾𝐷).

Now we are ready to present an algorithm for verifying informativity based on data-driven

automaton.

Algorithm 1 checking informativity

Input: event set Σ = Σ𝑐 ∪ Σ𝑢, finite sets 𝐷, 𝐷−(⊆ Σ∗), control specification 𝐾𝐷 = 𝐷 ∩ 𝐸
Ensure: “informative” or “not informative”

1: construct a data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖) and 𝑄𝐾 , 𝑄− (as in Defini-

tion 4)

2: for all 𝑞 ∈ 𝑄𝐾 do

3: for all 𝜎 ∈ Σ𝑢 do

4: if 𝛿(𝑞, 𝜎) ∈ 𝑄̂ \ (𝑄𝐾 ∪𝑄−) or ¬𝛿(𝑞, 𝜎)! then

5: return “not informative”

6: break

7: end if

8: end for

9: end for

10: return “informative”

In Algorithm 1, informativity of (𝐷, 𝐷−) for 𝐾𝐷 is determined by examining in the data-driven

automaton every uncontrollable event at each state in 𝑄𝐾 . If an uncontrollable event 𝜎 can occur

at state 𝑞 ∈ 𝑄𝐾 and the corresponding transition enters 𝑄̂ \ (𝑄𝐾 ∪ 𝑄−), then the transition is

contained in 𝐿 (𝐺) (for all plants 𝐺 consistent with (𝐷, 𝐷−)) but not contained in 𝐾𝐷 , which

means that there exists a string in 𝐾𝐷 that exits 𝐾𝐷 by some uncontrollable event. Thus 𝐾𝐷 is

16

uncontrollable with respect to every plant 𝐺 consistent with (𝐷, 𝐷−), and consequently (𝐷, 𝐷−)
is not informative. If an uncontrollable event 𝜎 cannot occur at state 𝑞 ∈ 𝑄𝐾 , this means that we

have no data or prior knowledge about the corresponding transition, and thus we cannot determine

whether the transition is generatable by the unknown true plant 𝐺. As a result, (𝐷, 𝐷−) is not

informative. The correctness of Algorithm 1 is asserted by the following proposition.

Proposition 3. Algorithm 1 returns “informative” if and only if (𝐷, 𝐷−) is informative for 𝐸 .

Proof. (If) Suppose that (𝐷, 𝐷−) is informative for 𝐸 . Then from Theorem 1, every string 𝑠 ∈ 𝐾𝐷
and every uncontrollable event 𝜎 ∈ Σ𝑢 satisfy (9). From the definition of 𝑄𝐾 and 𝑄−, 𝜎 ∈ Σ𝑢

is defined at all 𝑞𝑠 ∈ 𝑄𝐾 and 𝑞𝑠𝜎 = 𝛿(𝑞𝑠, 𝜎) ∈ 𝑄𝐾 ∪ 𝑄− holds. This means that Algorithm 1

returns “informative”.

(Only if) Suppose that Algorithm 1 returns “informative”. Then 𝑞𝑠𝜎 = 𝛿(𝑞𝑠, 𝜎) ∈ 𝑄𝐾 ∪ 𝑄−

holds for all 𝑞𝑠 ∈ 𝑄𝐾 and for all 𝜎 ∈ Σ𝑢. If 𝑞𝑠𝜎 ∈ 𝑄𝐾 then 𝑠𝜎 ∈ 𝐾𝐷 holds, and if 𝑞𝑠𝜎 ∈ 𝑄−

then 𝑠𝜎 ∈ 𝐷− holds. Therefore, (9) holds and (𝐷, 𝐷−) is informative for 𝐸 . □ □

Remark 3. We analyze the complexity of Algorithm 1. Let 𝑁 = |𝐷 ∪𝐷− | be the total number of

strings in 𝐷 ∪𝐷−, and 𝑀 be the length of the longest string in 𝐷 ∪𝐷−. Then the complexity of

line 1 is 𝑂 (𝑁 𝑀 (𝑀−1)
2 + 1) = 𝑂 (𝑁𝑀2) (a string of length 𝑀 can generate at most (𝑀 (𝑀−1)

2 + 1)

states in the data-driven automaton, and all strings share at least the initial state 𝑞𝜖 which needs

to be counted only once). Note that although the determination of 𝑄𝐾 (also in line 1) requires

the automaton representing the specification 𝐸 , the complexity does not depend on the state size

of that automaton but only on the lengths of strings in 𝐷. Lines 2–9 consist of two for-loops,

whose complexity is 𝑂 (|𝑄𝐾 | |Σ𝑢 |) (the complexity of line 4 can be made constant by augmenting

each state 𝑞 ∈ 𝑄̂ with a binary-valued attribute: (say) 0 for 𝑞 ∈ 𝑄̂ \ (𝑄𝐾 ∪ 𝑄−), and 1 for

𝑞 ∈ 𝑄𝐾 ∪ 𝑄−; this state attribute can be determined during the construction of 𝐺̂ in line 1).

Since |𝑄𝐾 | ≤ |𝑄̂ | and 𝑂 (|𝑄̂ |) = 𝑂 (𝑁𝑀2), the total complexity of Algorithm 1 is 𝑂 (𝑁𝑀2 |Σ𝑢 |).
If we treat |Σ𝑢 | as a constant, Algorithm 1’s complexity is related to the amount and length of

the data sets 𝐷, 𝐷− in terms of 𝑂 (𝑁𝑀2).

Example 5. Consider the data-driven automaton 𝐺̂1 in Fig. 5. For state 𝑞𝑎𝑏 ∈ 𝑄𝐾 (orange) and

the (only) uncontrollable event 𝑑, it is satisfied that 𝛿(𝑞𝑎𝑏, 𝑑) ∈ 𝑄𝐾 (orange). For every other

state 𝑞𝑠 ∈ 𝑄𝐾 (orange) and the uncontrollable event 𝑑, it is satisfied that 𝛿(𝑞𝑠, 𝑑) ∈ 𝑄− (blue).

Thus Algorithm 1 returns “informative”, which corresponds to the result in Example 3.

17

Next consider the data-driven automaton 𝐺̂2 in Fig. 6. For state 𝑞𝑎𝑏 ∈ 𝑄𝐾 (orange) and the

uncontrollable event 𝑑, we see that 𝛿(𝑞𝑎𝑏, 𝑑)! and 𝛿(𝑞𝑎𝑏, 𝑑) ∉ 𝑄𝐾 ∪ 𝑄− (since the transition

enters a white state). As a result, Algorithm 1 returns “not informative”, which again corresponds

to the result in Example 3. In fact, the same conclusion can be drawn based on state 𝑞𝑎𝑏𝑐 𝑓 ∈ 𝑄𝐾

(orange); here ¬𝛿(𝑞𝑎𝑏𝑐 𝑓 , 𝑑)!, so Algorithm 1 returns “not informative”.

We end this section with a note on the quantity versus the quality of the data set pair (𝐷, 𝐷−).
On one hand, enlarging the set 𝐷 (by making more observations) can reduce the number of

models that are indistinguishable from the real plant, as well as allow more behaviors to be

enforced. On the other hand, by Theorem 1 (and also Algorithm 1), a larger 𝐷 means that more

strings need to be checked against the condition (9), and thus data-informativity is more difficult

to hold (unless the prior knowledge data 𝐷− can also be enlarged accordingly). Hence data-

informativity is concerned not just with the sheer quantity of the data, but with the matching

quality between the observation 𝐷 and the prior knowledge 𝐷− (in the sense of satisfying (9)

as we pointed out in Remark 2). In case that (𝐷, 𝐷−) fails to be informative for a specification

𝐸 and the prior knowledge 𝐷− cannot be enlarged, then rather than considering making more

observations for 𝐷, one should look for a smaller subset 𝐾 ⊆ 𝐾𝐷 such that (𝐷, 𝐷−) may be

informative. This problem is studied in the next section.

IV. restricted Data-informativity

A. 𝐾-informativity

Given an event set Σ(= Σ𝑐 ∪ Σ𝑢), finite data sets 𝐷, 𝐷− ⊆ Σ∗, and a control specification 𝐾𝐷
in (8), if (𝐷, 𝐷−) is verified to be not informative for 𝐸 , then there exists no supervisor to solve

Problem 1. However, it is still possible that (𝐷, 𝐷−) is informative for a smaller subset 𝐾 ⊆ 𝐾𝐷 .

If this is the case, a valid supervisor may be constructed to enforce the smaller specification 𝐾

for all the plants consistent with (𝐷, 𝐷−) (including the real plant). In this section we formulate

the notion of restricted data-informativity, which aims to establish informativity by constraining

the specification to a smaller subset. Whether or not this restricted informativity holds hinges

on the particular subset 𝐾 in question, so we simply term it 𝐾-informativity and define it as

follows.

Definition 5 (𝐾-informativity). Consider a specification 𝐾𝐷 in (8) and let 𝐾 ⊆ 𝐾𝐷 . We say

(𝐷, 𝐷−) is 𝐾-informative if there exists a supervisor 𝑉𝐾 : 𝐷 → 𝑃𝑤𝑟 (Σ𝑐) such that 𝐿 (𝑉𝐾/𝐺) = 𝐾

18

for every plant 𝐺 consistent with (𝐷, 𝐷−), or equivalently if 𝐾 is controllable with respect to

every plant 𝐺 consistent with (𝐷, 𝐷−).

By this definition, if (𝐷, 𝐷−) is already informative for the specification 𝐸 ⊆ Σ∗, then (𝐷, 𝐷−)
is 𝐾𝐷-informative (𝐾𝐷 = 𝐷 ∩ 𝐸). On the other hand, if 𝐾 = ∅, since ∅ is trivially controllable,

(𝐷, 𝐷−) is always ∅-informative. However, enforcing ∅ (i.e. empty behavior) is of little practical

use, so we will henceforth only consider nonempty 𝐾 .

If (𝐷, 𝐷−) is 𝐾-informative for a given 𝐾 , then the supervisor to realize 𝐾 can be constructed

for every plant consistent with (𝐷, 𝐷−) in the same way as Proposition 2.

For the verification of 𝐾-informativity, a straightforward modification of Algorithm 1 suffices.

This is asserted below, as a corollary of Proposition 3.

Corollary 1. Suppose that we are given an event set Σ = Σ𝑐 ∪ Σ𝑢, finite data sets 𝐷, 𝐷− ⊆ Σ∗,

a control specification 𝐸 ⊆ Σ∗ and a subset 𝐾 ⊆ 𝐾𝐷 with 𝐾𝐷 in (8). Then Algorithm 1 with

𝑄𝐾 redefined as 𝑄𝐾 := {𝛿(𝑞𝜖 , 𝑠) | 𝑠 ∈ 𝐾} returns “informative” if and only if (𝐷, 𝐷−) is

𝐾-informative.

We note that in general 𝐾-informativity of (𝐷, 𝐷−) does not imply 𝐾′-informativity for 𝐾′ ⊆ 𝐾
(similar to the fact that a sublanguage of a controllable language need not be controllable). This

is illustrated by an example.

Example 6. Consider again the data pair (𝐷1, 𝐷
−
1) in Example 3. Since (𝐷1, 𝐷

−
1) is informative

for 𝐸 , (𝐷1, 𝐷
−
1) is 𝐾𝐷1-informative. However, let 𝐾′

𝐷1
:= {𝑎𝑏} (so 𝐾′

𝐷1
⊊ 𝐾𝐷1). Applying the

modified Algorithm 1 as in Corollary 1 returns “not informative”. This is because 𝑞𝑎𝑏 ∈ 𝑄𝐾

but 𝛿(𝑞𝑎𝑏, 𝑑) = 𝑞𝑎𝑏𝑑 ∉ 𝑄𝐾 ∪𝑄−. Consequently, (𝐷1, 𝐷
−
1) is not 𝐾′

𝐷1
-informative.

B. Informatizability and its criterion

While in the preceding subsection 𝐾-informativity is defined and checked for a given subset

𝐾 ⊆ 𝐾𝐷 , we investigate in this section whether or not such a nonempty subset 𝐾 exists. This

problem is formulated below.

Problem 2. Suppose that we are given an event set Σ = Σ𝑐 ∪ Σ𝑢, a control specification 𝐸 , and

finite data sets 𝐷, 𝐷− ⊆ Σ∗ such that 𝐾𝐷 ≠ ∅ and 𝐷 ∩ 𝐷− = ∅. Determine whether or not there

exists a nonempty sublanguage 𝐾 ⊆ 𝐾𝐷 such that (𝐷, 𝐷−) is 𝐾-informative.

19

We term the solvability of Problem 2 as a property of the data pair (𝐷, 𝐷−).

Definition 6 (informatizability). We say that (𝐷, 𝐷−) is informatizable for a given control

specification 𝐸 if there exists a nonempty sublanguage 𝐾 ⊆ 𝐾𝐷 such that (𝐷, 𝐷−) is 𝐾-

informative.

Now we characterize this property of informatizability. Consider that (𝐷, 𝐷−) is not infor-

mative for a given specification 𝐸 . Then by Theorem 1, there exists some string in 𝐾𝐷 that

can uncontrollably exit 𝐾𝐷 ∪ 𝐷−. If for every such ‘bad’ string, a controllable event exists in

its prefixes, then this controllable event may be disabled to prevent the bad string from exiting

𝐾𝐷∪𝐷− uncontrollably. Putting it in another way, as long as we can make sure that all the purely

uncontrollable strings (i.e. containing only uncontrollable events) in 𝐾𝐷 will not uncontrollably

exit 𝐾𝐷 ∪ 𝐷−, then a nonempty sublanguage of 𝐾𝐷 can be found by blocking all bad strings

through properly disabling controllable events. This reasoning leads to the following theorem.

Theorem 2 (Criterion for informatizability). Suppose that an event set Σ = Σ𝑐∪Σ𝑢 and a control

specification 𝐸 are given. (𝐷, 𝐷−) is informatizable for 𝐸 if and only if(
∀𝑠 ∈ 𝐾𝐷 ∩ Σ∗

𝑢, ∀𝜎 ∈ Σ𝑢

)
𝑠𝜎 ∈ 𝐾𝐷 ∪ 𝐷−. (13)

Proof. (If) Suppose that (13) holds. Consider a sublanguage 𝐾 ⊆ 𝐾𝐷 such that

𝐾 =

{
𝑠 ∈ 𝐾𝐷 ∩ Σ∗

𝑢 | (∀𝜎 ∈ Σ𝑢) 𝑠𝜎 ∈ 𝐾𝐷 ∪ 𝐷−
} (

⊆ 𝐾𝐷
)
.

Note that 𝐾 is nonempty since 𝐾 ≠ ∅. The latter is because under (13) we have 𝜖 ∈ 𝐾 . Moreover,

since every string in 𝐾 remains in 𝐾 following an uncontrollable event, the sublanguage 𝐾 is

controllable for all plants consistent with (𝐷, 𝐷−). This by Definition 5 means that (𝐷, 𝐷−) is

𝐾-informative. Therefore (𝐷, 𝐷−) is informatizable for 𝐸 .

(Only if) Suppose that (13) does not hold. Then we have

(∃𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢, ∃𝜎 ∈ Σ𝑢) 𝑠𝜎 ∉ 𝐾𝐷 ∪ 𝐷−. (14)

This means that even for the empty string 𝜖 will exit 𝐾𝐷 ∪ 𝐷− following the string 𝑠𝜎 in (14).

Thus there does not exist any nonempty sublanguage of 𝐾𝐷 which is controllable. As a result,

(𝐷, 𝐷−) is not informatizable for 𝐸 . □ □

Example 7. Consider again the data pair (𝐷2, 𝐷
−
2) in Example 3, which is not informative for

the specification 𝐸 . We check if (𝐷2, 𝐷
−
2) is informatizable for 𝐸 by checking the condition (13)

20

in Theorem 2. Since 𝐾𝐷2 ∩Σ∗
𝑢 = {𝜖} and 𝑑 ∈ 𝐷−

2 , (13) holds and (𝐷2, 𝐷
−
2) is informatizable for

𝐸 .

Based on the condition (13) in Theorem 2, we next present an algorithm for the verification

of informatizability. This algorithm is again based on data-driven automaton 𝐺̂ (as in Definition

4).

Algorithm 2 checking informatizability

Input: event set Σ = Σ𝑐 ∪ Σ𝑢, finite sets 𝐷, 𝐷−(⊆ Σ∗), control specification 𝐾𝐷 = 𝐷 ∩ 𝐸
Ensure: “informatizable” or “not informatizable”

1: construct a data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖) and 𝑄𝐾 , 𝑄− (as in Defini-

tion 4)

2: initiate 𝑄𝑢 := {𝑞𝜖 }, 𝑄tmp := ∅
3: while 𝑄𝑢 ≠ ∅ do

4: for all 𝑞 ∈ 𝑄𝑢 do

5: for all 𝜎 ∈ Σ𝑢 do

6: if 𝛿(𝑞, 𝜎) ∈ 𝑄𝐾 then

7: 𝑄tmp = 𝑄tmp ∪ {𝛿(𝑞, 𝜎)}
8: else if 𝛿(𝑞, 𝜎) ∈ 𝑄̂ \𝑄− or ¬𝛿(𝑞, 𝜎)! then

9: return “not informatizable”

10: break

11: end if

12: end for

13: end for

14: update 𝑄𝑢 = 𝑄tmp, and reset 𝑄tmp = ∅
15: end while

16: return “informatizable”

In Algorithm 2, informatizability of (𝐷, 𝐷−) for 𝐸 is checked by examining in the data-

driven automaton every uncontrollable event at every state in 𝑄𝐾 that is reached by a sequence of

uncontrollable events. If an uncontrollable event 𝜎 can occur at such an uncontrollably reachable

state 𝑞 ∈ 𝑄𝐾 and the corresponding transition enters 𝑄𝐾 (line 6), then the new state is also

uncontrollably reachable which needs to be further examined by storing it in 𝑄tmp (line 7). On

21

the other hand, if an uncontrollable event 𝜎 can occur at an uncontrollably reachable state 𝑞 ∈ 𝑄𝐾

and the corresponding transition exits 𝑄𝐾 ∪ 𝑄− (line 8), then informatizability cannot hold by

Theorem 2. Another case where informatizability cannot hold is when an uncontrollable event

is not defined at an uncontrollable reachable state (line 8); this means that the available data

do not contain enough information to determine 𝐾-informativity for any nonempty sublanguage

𝐾 ⊆ 𝐾𝐷 . The correctness of Algorithm 2 is asserted below.

Proposition 4. Algorithm 2 returns “informatizable” if and only if (𝐷, 𝐷−) is informatizable

for 𝐸 .

Proof. (If) Suppose that Algorithm 2 returns “informatizable”. Then every string 𝑠 ∈ Σ∗
𝑢 and

every uncontrollable event 𝜎 ∈ Σ𝑢 satisfy 𝑞𝑠 ∈ 𝑄𝐾 and 𝛿(𝑞𝑠, 𝜎) ∈ 𝑄𝐾 ∪𝑄−. From the definition

of 𝑄𝐾 and 𝑄−, (13) holds and (𝐷, 𝐷−) is informatizable for 𝐸 .

(Only if) Suppose that Algorithm 2 returns “not informatizable”. Then there exists a state

𝑞𝑠 ∈ 𝑄𝐾 with 𝑠 ∈ Σ∗
𝑢 and an uncontrollable event 𝜎 ∈ Σ𝑢 such that either of the following two

conditions holds: (i) 𝛿(𝑞𝑠, 𝜎)! and 𝛿(𝑞𝑠, 𝜎) ∉ 𝑄−, or (ii) ¬𝛿(𝑞𝑠, 𝜎)!. Thus from the definition

of 𝑄𝐾 and 𝑄−, we have

(∃𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢, ∃𝜎 ∈ Σ𝑢) 𝑠𝜎 ∉ 𝐾𝐷 ∪ 𝐷−.

This is exactly (14), and by the same proof for Theorem 2 we conclude that (𝐷, 𝐷−) is not

informatizable for 𝐸 . □ □

Remark 4. We analyze the complexity of Algorithm 2. As in Remark 3, let 𝑁 = |𝐷 ∪𝐷− | be the

total number of strings in 𝐷 ∪ 𝐷−, and 𝑀 be the length of the longest string in 𝐷 ∪ 𝐷−. Then

the complexity of line 1 of constructing the data-driven automaton 𝐺̂ together with 𝑄𝐾 and 𝑄−

is 𝑂 (𝑁𝑀2) (as analyzed in Remark 3). Since 𝐺̂ has a tree structure (loopless) and the way

𝑄𝑡𝑚𝑝, 𝑄𝑢 are updated respectively in lines 7 and 14, the while-loop (from line 3) and the first

for-loop (from line 4) together can be executed no more than |𝑄̂ | times (in other words, no state in

𝑄̂ is checked more than once). Hence the complexity of lines 3–15 is 𝑂 (|𝑄̂ | |Σ𝑢 |) (the complexity

of line 6/8 can be made constant as noted above in Remark 3). Since 𝑂 (|𝑄̂ |) = 𝑂 (𝑁𝑀2), the

total complexity of Algorithm 2 is 𝑂 (𝑁𝑀2 |Σ𝑢 |) (the same as that of Algorithm 1). If we treat

|Σ𝑢 | as a constant, Algorithm 2’s complexity is related again to the amount and length of the

data sets 𝐷, 𝐷− in terms of 𝑂 (𝑁𝑀2).

22

Example 8. Consider the data-driven automaton 𝐺̂2 in Fig. 6. For the initial state 𝑞𝜖 (orange)

and the (only) uncontrollable event 𝑑, it is satisfied that 𝛿(𝑞𝜖 , 𝑑) ∈ 𝑄− (blue). Thus Algorithm 2

terminates and returns “informatizable”, which corresponds to the result in Example 7.

We remark that if a data pair (𝐷, 𝐷−) is verified to be informatizable for a given specification

𝐸 , then a valid supervisor can be designed to enforce a nonempty sublanguage of 𝐾𝐷 for all

plants consistent with (𝐷, 𝐷−). On the other hand, if (𝐷, 𝐷−) fails to be informatizable, then no

nonempty supervisor can exist. The latter case indicates that the quality of the currently available

(𝐷, 𝐷−) must be improved, by possibly making more observations to enlarge 𝐷 and matching

it up with more prior knowledge in 𝐷−.

V. Least Restricted Informativity

In Section IV, if informatizability of the data pair (𝐷, 𝐷−) is verified to hold, then the existence

of a nonempty subset 𝐾 ⊆ 𝐾𝐷 is assured such that (𝐷, 𝐷−) is 𝐾-informative. Namely (𝐷, 𝐷−)
satisfies limited informativity wrt. 𝐾 . In this section, we further investigate how to systematically

find such a nonempty 𝐾 . Of particular interest is to find (if possible) the largest 𝐾sup ⊆ 𝐾𝐷 ,

so that (𝐷, 𝐷−) is least restricted informative wrt. 𝐾sup. Then the corresponding supervisor that

enforces 𝐾sup is the maximally permissive one in the sense of allowing the largest set of behaviors

as possible.

We start by defining the following family of subsets of 𝐾𝐷 with respect to which the data pair

(𝐷, 𝐷−) is restricted informative:

I(𝐾𝐷) := {𝐾 ⊆ 𝐾𝐷 | (𝐷, 𝐷−) is 𝐾-informative}. (15)

Thus if (𝐷, 𝐷−) is informatizable, the family I(𝐾𝐷) contains a nonempty member. Note also

that since 𝐾𝐷 (= 𝐷 ∩ 𝐸) is finite, the number of members in I(𝐾𝐷) is finite.

The next result is key, which asserts that the family I(𝐾𝐷) is closed under set unions.

Proposition 5. Consider the family I(𝐾𝐷) in (15). If 𝐾1, 𝐾2 ∈ I(𝐾𝐷), then 𝐾1 ∪ 𝐾2 ∈ I(𝐾𝐷).

Proof. According to the definition of limited informativity, letting 𝑠 ∈ 𝐾1 ∪ 𝐾2 and 𝜎 ∈ Σ𝑢, we

will show that 𝑠𝜎 ∈ 𝐾1 ∪ 𝐾2∪𝐷−. Since 𝑠 ∈ 𝐾1 ∪ 𝐾2 = 𝐾1∪𝐾2, either 𝑠 ∈ 𝐾1 or 𝑠 ∈ 𝐾2. Consider

the former case 𝑠 ∈ 𝐾1 (the latter case 𝑠 ∈ 𝐾2 is symmetric). Since (𝐷, 𝐷−) is 𝐾1-informative,

we have

𝑠𝜎 ∈ 𝐾1 ∪ 𝐷− ⊆ (𝐾1 ∪ 𝐾2) ∪ 𝐷− = 𝐾1 ∪ 𝐾2 ∪ 𝐷−.

23

This completes the proof. □ □

In view of Proposition 5, the family I(𝐾𝐷) contains a unique largest member 𝐾sup, which is

the union of all the members in the family:

𝐾sup :=
⋃

{𝐾 | 𝐾 ∈ I(𝐾𝐷)}. (16)

With respect to this 𝐾sup ⊆ 𝐾𝐷 , the data pair (𝐷, 𝐷−) is least restricted informative.

The supervisor that enforces 𝐾sup can be constructed for every plant consistent with (𝐷, 𝐷−)
in the same way as Proposition 2; due to the largestness of 𝐾sup, this supervisor is maximally

permissive.

Now that we have shown the existence and uniqueness of the largest subset 𝐾sup, we proceed

to develop an algorithm to compute 𝐾sup.

A. Non-informative state

For computing 𝐾sup, we first introduce a useful concept of non-informative state.

Given an event set Σ, a control specification 𝐸 , and finite data sets 𝐷, 𝐷− ⊆ Σ∗ (satisfying

𝐷 ∩ 𝐷− = ∅), construct the corresponding data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖)
with state subsets 𝑄𝐾 (corresponding to 𝐾𝐷 = 𝐷 ∩ 𝐸) and 𝑄− (corresponding to 𝐷−) as in

Definition 4. We identify those states in 𝑄𝐾 that violate the condition (9) of informativity. These

are exactly the states for which the condition in line 4 of Algorithm 1 holds. According to the

condition, we state the following definition.

Definition 7 (non-informative state). Consider the data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖)
with state subsets 𝑄𝐾 , 𝑄− (as in Definition 4). We say that 𝑞 ∈ 𝑄𝐾 is a non-informative state if

(∃𝜎 ∈ Σ𝑢) 𝛿(𝑞, 𝜎) ∈ 𝑄̂ \ (𝑄𝐾 ∪𝑄−) or ¬𝛿(𝑞, 𝜎)! (17)

In addition, define the set of non-informative states as follows:

𝑁 (𝑄𝐾) := { 𝑞 ∈ 𝑄𝐾 | 𝑞 is a non-informative state }. (18)

The set 𝑁 (𝑄𝐾) in (18) provides alternative characterizations (to Propositions 3 and 4) for

informativity and informatizability, as asserted below.

Proposition 6. Consider an event set Σ = Σ𝑐 ∪ Σ𝑢, finite data sets 𝐷, 𝐷− ⊆ Σ∗ (satisfying

𝐷 ∩𝐷− = ∅), a control specification 𝐸 ⊆ Σ∗, a subset 𝐾 ⊆ 𝐾𝐷 with 𝐾𝐷 in (8), a corresponding

24

data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖), and the non-informative state set 𝑁 (𝑄𝐾) in

(18). Then the following hold:

1) 𝑁 (𝑄𝐾) = ∅ if and only if (𝐷, 𝐷−) is informative for 𝐸 .

2) {𝛿(𝑞𝜖 , 𝑠) | 𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢} ∩ 𝑁 (𝑄𝐾) = ∅ if and only if (𝐷, 𝐷−) is informatizable for 𝐸 .

Proof. 1) According to Algorithm 1, 𝑁 (𝑄𝐾) = ∅ if and only if the condition in line 4 is

never satisfied, which in turn means that Algorithm 1 turns “informative”. It then follows from

Proposition 3 that Algorithm 1 turns “informative” if and only if (𝐷, 𝐷−) is informative for 𝐸 ;

hence the conclusion holds.

2) (If) According to Algorithm 2, {𝛿(𝑞𝜖 , 𝑠) |𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢} ∩ 𝑁 (𝑄𝐾) ≠ ∅ if and only if the

condition in line 8 is satisfied at least once. To see this, {𝛿(𝑞𝜖 , 𝑠) |𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢} ∩ 𝑁 (𝑄𝐾) ≠ ∅

means that there exists a state 𝑞𝑠 ∈ 𝑁 (𝑄𝐾) such that 𝑠 ∈ Σ∗
𝑢. On one hand, it follows from

𝑠 ∈ Σ∗
𝑢 that state 𝑞𝑠 is included in 𝑄𝑢 according to Algorithm 2 On the other hand, according

to Definition 7, 𝑞𝑠 ∈ 𝑁 (𝑄𝐾) means that

(∃𝜎 ∈ Σ𝑢) 𝛿(𝑞𝑠, 𝜎) ∈ 𝑄̂ \ (𝑄𝐾 ∪𝑄−) or ¬𝛿(𝑞𝑠, 𝜎)!

This above implies that the condition in line 8 is satisfied for the state 𝑞𝑠 and the uncontrollable

event 𝜎. Hence, {𝛿(𝑞𝜖 , 𝑠) |𝑠 ∈ 𝐾𝐷 ∩ Σ∗
𝑢} ∩ 𝑁 (𝑄𝐾) ≠ ∅ if and only if Algorithm 2 returns “not

informatizable”. It then follows from Proposition 4 that Algorithm 2 turns “not informatizable”

if and only if (𝐷, 𝐷−) is not informatizable for 𝐸 ; hence the conclusion holds. □ □

The computation of the non-informative state set can be adapted from Algorithm 1: instead of

returning “not informative” immediately after identifying the first non-informative state, the new

algorithm checks all states in 𝑄𝐾 against all uncontrollable events in Σ𝑢, and stores all identified

non-informative states. This new algorithm of computing 𝑁 (𝑄𝐾) is presented in Algorithm 3

below.

25

Algorithm 3 non-informative state set

Input: event set Σ = Σ𝑐 ∪ Σ𝑢, finite sets 𝐷, 𝐷−(⊆ Σ∗), control specification 𝐾𝐷 = 𝐷 ∩ 𝐸
Ensure: non-informative state set 𝑁 (𝑄𝐾)

1: construct a data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖) and 𝑄𝐾 , 𝑄− (as in Defini-

tion 4)

2: 𝑁 (𝑄𝐾) = ∅
3: for all 𝑞 ∈ 𝑄𝐾 do

4: for all 𝜎 ∈ Σ𝑢 do

5: if 𝛿(𝑞, 𝜎) ∈ 𝑄̂ \ (𝑄𝐾 ∪𝑄−) or ¬𝛿(𝑞, 𝜎)! then

6: 𝑁 (𝑄𝐾) = 𝑁 (𝑄𝐾) ∪ {𝑞}
7: end if

8: end for

9: end for

10: return 𝑁 (𝑄𝐾)

The correctness of Algorithm 3 is immediate from Definition 7, and its complexity is the

same as that of Algorithm 1.

B. Algorithm for computing 𝐾sup

Having introduced and identified the set 𝑁 (𝑄𝐾) of non-informative states in the data-driven

automaton 𝐺̂, it follows from its definition (Definition 7) that any string in 𝐾𝐷 that reaches a

non-informative state in 𝑁 (𝑄𝐾) must be excluded in order to achieve restricted imformativity.

For achieving least restricted informativity, namely computing 𝐾sup ⊆ 𝐾𝐷 (as in (16)), such

exclusion (of strings entering 𝑁 (𝑄𝐾)) must be done in a minimally intrusive manner.

We propose to compute 𝐾sup in (16) based on the structure of the data-driven automaton 𝐺̂.

Thus intuitively, the abovementioned string exclusion amounts to ‘avoiding’ the subset 𝑁 (𝑄𝐾) of

states in the data-driven automaton 𝐺̂. In order to obtain the largest 𝐾sup ⊆ 𝐾𝐷 , the ‘avoidance’

of 𝑁 (𝑄𝐾) should be performed as ‘close’ as possible to 𝑁 (𝑄𝐾) and by means of removing

a controllable event. This strategy is similar to that of computing the supremal controllable

sublanguage in the standard model-based supervisory control theory. In view of this, we craft a

supervisory control problem based on a modified structure of the data-driven automaton with the

26

specification of avoiding 𝑁 (𝑄𝐾), and solve this problem by the standard supervisory synthesis

algorithm in order to obtain 𝐾sup in (16).

Specifically, we define the following relevant automata. Given an event set Σ, a control spec-

ification 𝐸 , and finite data sets 𝐷, 𝐷− ⊆ Σ∗, construct the corresponding data-driven automaton

𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖) with state subsets 𝑄𝐾 (corresponding to 𝐾𝐷 = 𝐷 ∩ 𝐸) and 𝑄−

(corresponding to 𝐷−) as in Definition 4. First, construct a subautomaton 𝐺𝐷 of the data-driven

automaton 𝐺̂ by removing 𝑄− and the corresponding transitions:

𝐺𝐷 := (𝑄𝐷 , Σ, 𝛿𝐷 , 𝑞𝜖) (19)

where 𝑄𝐷 := 𝑄̂ \ 𝑄−, and 𝛿𝐷 := 𝛿 \ {(𝑞, 𝜎) → 𝑞′ | 𝑞 ∈ 𝑄− or 𝑞′ ∈ 𝑄−}. This automaton

𝐺𝐷 will serve as the plant in our supervisory control problem. Note that 𝐿 (𝐺𝐷) = 𝐷. Next,

let 𝑄̃ := 𝑄𝐷 \ 𝑄𝐾 and construct a subautomaton 𝑆𝐷 of 𝐺𝐷 by removing 𝑁 (𝑄𝐾) ∪ 𝑄̃ and the

corresponding transitions:

𝑆𝐷 = (𝑄𝑆, Σ, 𝛿𝑆, 𝑞𝜖) (20)

where 𝑄𝑆 = 𝑄𝐷 \ (𝑁 (𝑄𝐾) ∪ 𝑄̃) = 𝑄𝐾 \ 𝑁 (𝑄𝐾) and 𝛿𝑆 := 𝛿𝐷 \ {(𝑞, 𝜎) → 𝑞′ | 𝑞 ∈ 𝑁 (𝑄𝐾) ∪
𝑄̃ or 𝑞′ ∈ 𝑁 (𝑄𝐾) ∪ 𝑄̃}. This automaton 𝑆𝐷 will serve as the specification in our supervisory

control problem. Note that since 𝑄𝑆 = 𝑄𝐾 \ 𝑁 (𝑄𝐾), every state in 𝑞 ∈ 𝑄𝑆 satisfies the negation

of (17):

(∀𝜎 ∈ Σ𝑢) 𝛿(𝑞, 𝜎)! and 𝛿(𝑞, 𝜎) ∈ 𝑄𝐾 ∪𝑄−. (21)

The plant 𝐺𝐷 in (19) and the specification 𝑆𝐷 in (20) constitute our defined supervisory

control problem. We apply the standard supervisory control synthesis algorithm to compute the

maximally permissive supervisor, which is also an automaton (indeed in this case a subautomaton

of 𝑆𝐷)

𝑃𝐷 = (𝑄𝑃, Σ, 𝛿𝑃, 𝑞𝜖) (22)

where 𝑄𝑃 ⊆ 𝑄𝑆 and 𝛿𝑃 ⊆ 𝛿𝑆 such that

𝐿 (𝑃𝐷) = sup𝐶 (𝐿 (𝑆𝐷))

where

𝐶 (𝐿 (𝑆𝐷)) = {𝐾 ⊆ 𝐿 (𝑆𝐷) | 𝐾Σ𝑢 ∩ 𝐿 (𝐺𝐷) ⊆ 𝐾}. (23)

27

We summarize the above procedure in the form of an algorithm below. Our main result

(Theorem 3 below) is that the resulting 𝐿 (𝑃𝐷) is exactly the largest 𝐾sup in (16) we are after.

Algorithm 4 𝐾sup for least restricted informativity

Input: event set Σ = Σ𝑐 ∪ Σ𝑢, finite sets 𝐷, 𝐷−(⊆ Σ∗), control specification 𝐾𝐷 = 𝐷 ∩ 𝐸
Ensure: 𝐿 (𝑃𝐷)

1: construct a data-driven automaton 𝐺̂ (Σ, 𝐷, 𝐷−) = (𝑄̂, Σ, 𝛿, 𝑞𝜖) and 𝑄𝐾 , 𝑄− (as in Defini-

tion 4)

2: construct a subautomaton 𝐺𝐷 of 𝐺̂ as in (19)

3: compute non-informative state set 𝑁 (𝑄𝐾) by Algorithm 3

4: construct a subautomaton 𝑆𝐷 of 𝐺𝐷 as in (20)

5: compute the supervisor 𝑃𝐷 by standard supervisory synthesis algorithm as in (22)

6: return 𝐿 (𝑃𝐷)

Theorem 3. The language 𝐿 (𝑃𝐷) returned by Algorithm 4 satisfies 𝐿 (𝑃𝐷) = 𝐾sup in (16).

Proof. We make the following key claim:

𝐶 (𝐿 (𝑆𝐷)) = I(𝐾𝐷).

Namely the family 𝐶 (𝐿 (𝑆𝐷)) in (23) of all controllable sublanguages of 𝐿 (𝑆𝐷) is exactly the

same as the family I(𝐾𝐷) in (15) of all subsets of 𝐾𝐷 for which (𝐷, 𝐷−) is restricted informative.

Under this claim, we derive

𝐿 (𝑃𝐷) = sup𝐶 (𝐿 (𝑆𝐷)) =
⋃

{𝐾 | 𝐾 ∈ 𝐶 (𝐿 (𝑆𝐷))}

=
⋃

{𝐾 | 𝐾 ∈ I(𝐾𝐷)} = 𝐾sup.

The last equality is from (16), and our conclusion is established.

Now we prove the claim. First let 𝐾 ∈ 𝐶 (𝐿 (𝑆𝐷)), which means that 𝐾𝐷 ⊆ 𝐿 (𝑆𝐷) and

𝐾Σ𝑢 ∩ 𝐿 (𝐺𝐷) ⊆ 𝐾 . By the definition of 𝑆𝐷 in (20), 𝑄𝑆 ⊆ 𝑄𝐾 and thus 𝐿 (𝑆𝐷) ⊆ 𝐾𝐷 , which in

turn implies that 𝐾 ⊆ 𝐾𝐷 . In order to show that 𝐾 ∈ I(𝐾𝐷), we must prove that (𝐷, 𝐷−) is 𝐾-

informative. For this, let 𝑠 ∈ 𝐾 and 𝜎 ∈ Σ𝑢. If 𝑠𝜎 ∈ 𝐿 (𝐺𝐷), then it follows from 𝐾Σ𝑢∩𝐿 (𝐺𝐷) ⊆
𝐾 that 𝑠𝜎 ∈ 𝐾 . On the other hand if 𝑠𝜎 ∉ 𝐿 (𝐺𝐷), we derive 𝑠𝜎 ∈ 𝐷−. To see this, consider

the state 𝑞𝑠 which is in 𝑄𝑆 = 𝑄𝐾 \ 𝑁 (𝑄𝐾). This means that (21) holds for 𝑞𝑠. But 𝛿(𝑞𝑠, 𝜎)
cannot be in 𝑄𝐾 since 𝑠 ∉ 𝐿 (𝐺𝐷) = 𝐷 ⊇ 𝐾𝐷 . Thus it is only possible that 𝛿(𝑞𝑠, 𝜎) ∈ 𝑄−,

28

which implies that 𝑠𝜎 ∈ 𝐷−. To summarize, for an arbitrary 𝑠 ∈ 𝐾 and an arbitrary 𝜎 ∈ Σ𝑢,

we have 𝑠𝜎 ∈ 𝐾 ∪ 𝐷−, which means that (𝐷, 𝐷−) is 𝐾-informative. Therefore 𝐾 ∈ I(𝐾𝐷), and

𝐶 (𝐿 (𝑆𝐷)) ⊆ I(𝐾𝐷).
It remains to prove that I(𝐾𝐷) ⊆ 𝐶 (𝐿 (𝑆𝐷)). Let 𝐾 ∈ I(𝐾𝐷), which means that 𝐾 ⊆ 𝐾𝐷

and (𝐷, 𝐷−) is 𝐾-informative. Consider an arbitrary string 𝑠 ∈ 𝐾 ⊆ 𝐾𝐷 . Since (𝐷, 𝐷−) is 𝐾-

informative, the state 𝑞𝑠 ∈ 𝑄𝐾 \𝑁 (𝑄𝐾) = 𝑄𝑆. Hence 𝑠 ∈ 𝐿 (𝑆𝐷), and in turn we have 𝐾 ⊆ 𝐿 (𝑆𝐷).
To show that 𝐾 ∈ 𝐶 (𝐿 (𝑆𝐷)), we need to establish that 𝐾 is controllable wrt. 𝐺𝐷 . To this end,

let 𝑠 ∈ 𝐾 , 𝜎 ∈ Σ𝑢, and assume that 𝑠𝜎 ∈ 𝐿 (𝐺𝐷) = 𝐷. It follows again from 𝐾-informativity of

(𝐷, 𝐷−) that 𝑠𝜎 ∈ 𝐾 ∪𝐷−. But we have assumed that 𝑠𝜎 ∈ 𝐷, so it is impossible that 𝑠𝜎 ∈ 𝐷−

(by 𝐷 ∩ 𝐷− = ∅). Hence 𝑠𝜎 ∈ 𝐾 , which means that 𝐾 is controllable wrt. 𝐺𝐷 . Therefore

𝐾 ∈ 𝐶 (𝐿 (𝑆𝐷)), and I(𝐾𝐷) ⊆ 𝐶 (𝐿 (𝑆𝐷)).
In view of the above, we have established our claim that I(𝐾𝐷) = 𝐶 (𝐿 (𝑆𝐷)), and the proof

is now completed. □ □

By Theorem 3, Algorithm 4 correctly computes the largest subset of 𝐾𝐷 for which the data

pair (𝐷, 𝐷−) is least restricted informative. If the output 𝐿 (𝑃𝐷) = 𝐾sup ≠ ∅, then (𝐷, 𝐷−) is

𝐾sup-informative, so (𝐷, 𝐷−) is informatizable. On the other hand, if 𝐿 (𝑃𝐷) = 𝐾sup = ∅, then no

nonempty subset exists for which (𝐷, 𝐷−) is restricted informative, which means that (𝐷, 𝐷−)
is not informatizable. Hence, the nonemptiness of Algorithm 4’s output 𝐿 (𝑃𝐷) is equivalent

to informatizability of (𝐷, 𝐷−). In this sense, Algorithm 4 additionally serves as an alternative

test for informatizability to Algorithm 2. Nevertheless, since Algorithm 4 has higher complexity

(which is provided in Remark 5 below) than Algorithm 2, if the purpose is solely to check

informatizability, Algorithm 2 is more efficient and thus advantageous.

Remark 5. We analyze the complexity of Algorithm 4. As in Remark 3, let 𝑁 = |𝐷 ∪ 𝐷− | be

the total number of strings in 𝐷 ∪ 𝐷−, and 𝑀 be the length of the longest string in 𝐷 ∪ 𝐷−.

Then the complexity of line 1 of constructing the data-driven automaton 𝐺̂ together with 𝑄𝐾

and 𝑄− is 𝑂 (𝑁𝑀2) (as analyzed in Remark 3). Lines 2 and 4 are creating subautomata of 𝐺̂

by removing certain states and transitions, so their repsective complexities are no more than

𝑂 (𝑁𝑀2). Line 3 is the execution of Algorithm 3, whose complexity is the same as Algorithm 1,

namely 𝑂 (𝑁𝑀2). Finally, line 5 applies the standard supervisor synthesis algorithm [2], [5],

whose complexity in this case where the specificaiton 𝑆𝐷 is a subautomaton of the plant 𝐺𝐷

is 𝑂 (|𝑄𝑆 |2 |Σ |). Since |𝑄𝑆 | ≤ |𝑄̂ |, the complexity of line 5 is 𝑂 (|𝑄̂ |2 |Σ |) = 𝑂 (𝑁2𝑀4 |Σ |). This

29

Figure 7 Data-driven automaton 𝐺̂3 corresponding to (𝐷3, 𝐷
−
3)

complexity is also the complexity of Algorithm 4.

Finally we provide an illustrative example for Algorithm 4.

Example 9. Suppose that the event set Σ and the specification 𝐸 is as same as Example 3.

Consider a pair of finite data sets (𝐷3, 𝐷
−
3), where

𝐷3 = {𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 , 𝑎𝑏𝑐𝑒}

𝐷−
3 = {𝑑, 𝑎𝑑, 𝑎𝑏𝑑𝑏𝑑, 𝑎𝑐𝑑, 𝑎𝑐𝑏𝑑}

Then the control specification in (8) is

𝐾𝐷3 = 𝐷3 ∩ 𝐸 = {𝑎𝑏𝑑𝑏 𝑓 , 𝑎𝑐𝑏 𝑓 }.

The data-driven automaton 𝐺̂3 corresponding to the data set (𝐷3, 𝐷
−
3) is shown in Fig. 7. By

applying Algorithm 1 and Algorithm 2 to 𝐺̂3, it is determined that (𝐷3, 𝐷
−
3) is not informative

but is informatizable for 𝐸 . This implies that there exists a nonempty sublanguage of 𝐾𝐷3 for

which (𝐷3, 𝐷
−
3) is limited informative. Next we apply Algorithm 4 to compute the largest such

sublanguage.

Line 1 in Algorithm 4 of constructing the data-driven automaton 𝐺̂3 has been done, as

displayed in Fig. 7. Line 2 computes the subautomaton 𝐺𝐷3 by removing the states in 𝑄− from

𝐺̂3 and the relevant transitions; the result is displayed in Fig. 8. Line 3 applies Algorithm 3 to

derive the set of non-informative states: 𝑁 (𝑄𝐾) = {𝑞𝑎𝑏𝑑 , 𝑞𝑎𝑏𝑑𝑏 𝑓 , 𝑞𝑎𝑐𝑏 𝑓 }. The reason why these

three states are non-informative is because the uncontrollable event 𝑑 is not defined at any of

these states. Line 4 constructs the subautomaton 𝑆𝐷3 by removing the three states in 𝑁 (𝑄𝐾) and

the two states in 𝑄𝐷 \𝑄𝐾 (white color coded) from 𝐺𝐷3 including the relevant transitions; the

30

Figure 8 Subautomaton 𝐺𝐷3 by line 2 of Algorithm 4

Figure 9 Subautomaton 𝑆𝐷3 by line 4 of Algorithm 4

result is displayed in Fig. 9. Finally line 5 compute the maximally permissive supervisor 𝑃𝐷3 by

treating 𝐺𝐷3 as the plant and 𝑆𝐷3 as the specificaiton; the result is in Fig. 10. Comparing to 𝑆𝐷3 ,

not only the nonreachable state 𝑞𝑎𝑏𝑑𝑏 but also the reachable state 𝑞𝑎𝑏 are removed. The removal

of 𝑞𝑎𝑏 is because the string 𝑎𝑏 violates the controllability condition (as 𝑎𝑏𝑑 ∈ 𝐿 (𝐺𝐷3) \ 𝐿 (𝑆𝐷3)
and 𝑑 is uncontrollable). Hence the final result is

𝐿 (𝑃𝐷3) = {𝜖, 𝑎, 𝑎𝑐, 𝑎𝑐𝑏}

which is the largest subset of 𝐾𝐷3 for which the data pair (𝐷3, 𝐷
−
3) is least restricted informative.

Based on 𝐾sup = 𝐿 (𝑃𝐷3 , we can construct the corresponding supervisor 𝑉sup : 𝐷3 → 𝑃𝑤𝑟 (Σ𝑐)
such that 𝐿 (𝑉sup/𝐺) = 𝐾sup for every plant 𝐺 consistent with (𝐷3, 𝐷

−
3) as follows:

𝑉sup(𝑠) =



{𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝜖,

{𝑎, 𝑏, 𝑒, 𝑓 } if 𝑠 = 𝑎,

{𝑎, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑐,

{𝑎, 𝑏, 𝑐, 𝑒, 𝑓 } if 𝑠 = 𝑎𝑐𝑏,

∅ if 𝑠 ∈ 𝐷3 \ 𝐾sup.

31

Figure 10 Supervisor 𝑃𝐷3 by line 5 of Algorithm 4

VI. Concluding Remarks

In this paper we have initiated the first systematic study on data-driven supervisory control of

DES. We have proposed new concepts of data-informativity, informatizability, and least restricted

informativity, as well as developed the corresponding verification and synthesis algorithms based

on a novel structure of data-driven automaton. The recipe of using these concepts/algorithms is

summarized below: For a given data pair (𝐷, 𝐷−) and a specification 𝐸 , first apply Algorithm 1 to

verify if (𝐷, 𝐷−) is informative for 𝐸 . If yes, we can build a supervisor to enforce 𝐾𝐷 = 𝐷∩𝐸 . If

no, we apply Algorithm 2 to verify if (𝐷, 𝐷−) is informatizable for 𝐸 . If yes, we further apply

Algorithm 4 (in which Algorithm 3 is used) to compute the largest subset of 𝐾𝐷 for which

(𝐷, 𝐷−) is least restricted informative. If Algorithm 2 returns no, then there is no supervisor

that can be built to enforce any subset of 𝐾𝐷 . In this case, one may consider to obtain more

data 𝐷 and 𝐷−.

As a first step into a data-driven approach for supervisory control, many interesting questions

are left unanswered and await for future research. For example, if data on marking behavior of

the unknown plant are available, can we strengthen the current theory by always guranteeing

nonblocking supervisory control? If the means of control is not only disabling controllable events,

but also preempting uncontrollable events by forcing, can we relax the current requirement on

having to assume that all uncontrollable events can occur unless the occurrences lead to 𝐷− (this

second question is recently investigated in [19]). More broadly, can we extend informativity from

the basic controllability to other important properties such as observability, diaganosability, and

opacity [20]. Finally, we aim to apply the developed data-driven approach to real applications

with large data sets, including benchmark scenarios of autonomous driving in uncertain urban

environment, robotic exploration of unknown terrains, and human-machine interactions.

32

References

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,” SIAM J. Control and

Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[2] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sublanguage of a given language,” SIAM Journal on

Control and Optimization, vol. 25, no. 3, pp. 637–659, 1987.

[3] W. M. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-event systems: A brief history,” Annual Reviews

in Control, vol. 45, pp. 250–256, 2018.

[4] K. Cai and W. M. Wonham, “Supervisory control of discrete-event systems,” Encyclopedia of Systems and Control, pp. 1–9,

2019.

[5] W. M. Wonham and K. Cai, Supervisor Control of Discrete-Event Systems. Communications and Control Engineering,

Springer, 2019.

[6] J. Cury, B. Krogh, and T. Niinomi, “Synthesis of supervisory controllers for hybrid systems based on approximating

automata,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 564–568, 1998.

[7] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-time linear systems,” IEEE Transactions on Automatic

Control, vol. 51, no. 12, pp. 1862–1877, 2006.

[8] M. Gevers, A. S. Bazanella, X. Bombois, and L. Miskovic, “Identification and the information matrix: How to get just

sufficiently rich?,” IEEE Transactions on Automatic Control, vol. 54, no. 12, pp. 2828–2840, 2009.

[9] H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel, “Data informativity: A new perspective on data-driven

analysis and control,” IEEE Transactions on Automatic Control, vol. 65, no. 11, pp. 4753–4768, 2020.

[10] S. Mukherjee, H. Bai, and A. Chakrabortty, “On model-free reinforcement learning of reduced-order optimal control for

singularly perturbed systems,” in Proc. IEEE CDC, pp. 5288–5293, 2018.

[11] A. Farooqui, F. Hagebring, and M. Fabian, “MIDES: A tool for supervisor synthesis via active learning,” in Proc. IEEE

CASE, pp. 792–797, 2021.

[12] M. Konishi, T. Sasaki, and K. Cai, “Efficient safe control via deep reinforcement learning and supervisory control – case

study on multi-robot warehouse automation,” in Proc. IFAC WODES, 2022.

[13] K. Cai, “Data-driven supervisory control of discrete-event systems,” Transactions of the Institute of Systems, Control and

Information Engineers, vol. 66, no. 9, pp. 359–364, 2022.

[14] P. M. Van den Hof and K. R. Ramaswamy, “Path-based data-informativity conditions for single module identification in

dynamic networks,” in Proc. IEEE CDC, pp. 4354–4359, 2020.

[15] T. R. V. Steentjes, M. Lazar, and P. M. J. Van den Hof, “On data-driven control: Informativity of noisy input-output data

with cross-covariance bounds,” IEEE Control Systems Letters, vol. 6, pp. 2192–2197, 2022.

[16] H. J. Van Waarde, J. Eising, M. K. Camlibel, and H. L. Trentelman, “The informativity approach: To data-driven analysis

and control,” IEEE Control Systems Magazine, vol. 43, no. 6, pp. 32–66, 2023.

[17] T. Ohtsuka, K. Cai, and K. Kashima, “Data-informativity for data-driven supervisory control of discrete-event systems,”

in 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 6923–6928, 2023.

[18] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Introduction to

Automata Theory, Languages, and Computation, Pearson/Addison Wesley, 2007.

[19] C. Gu, C. Gao, and K. Cai, “Data-driven supervisory control of discrete-event systems with forcible events,” in Proc. IFAC

WODES, 2024.

[20] C. Hadjicostis, Estimation and Inference in Discrete-Event Systems. Communications and Control Engineering, Springer,

2020.

33

Tomofumi Ohtsuka received the B.S. and M.S. degrees in Informatics from Kyoto University in 2022

and 2024, respectively. He was a student member of the Institute of Systems Control and Information

Engineers. His research interests are in data-driven control of discrete event systems.

Kai Cai (S’08-M’12-SM’17) received the B.Eng. degree in Electrical Engineering from Zhejiang Uni-

versity, Hangzhou, China, in 2006; the M.A.Sc. degree in Electrical and Computer Engineering from the

University of Toronto, Toronto, ON, Canada, in 2008; and the Ph.D. degree in Systems Science from

the Tokyo Institute of Technology, Tokyo, Japan, in 2011. He is currently a Full Professor at Osaka

Metropolitan University. Previously, he was an Associate Professor at Osaka City University (2014–2020),

an Assistant Professor at the University of Tokyo (2013–2014), and a Postdoctoral Fellow at the University

of Toronto (2011–2013).

Dr. Cai’s research interests include cooperative control of multi-agent systems, discrete-event systems, and cyber-physical

systems. He is the co-author (with W.M. Wonham) of Supervisory Control of Discrete-Event Systems (Springer 2019) and

Supervisor Localization (Springer 2016). He is serving as an Associate Editor for IEEE Transactions on Automatic Control and

a Senior Editor for Nonlinear Analysis: Hybrid Systems. He was the Chair for IEEE CSS Technical Committee on Discrete

Event Systems (2019–2022), and a member of IEEE CSS Conference Editorial Board (2017–2022). He received the Pioneer

Award of SICE in 2021, the Best Paper Award of SICE in 2013, the Best Student Paper Award of IEEE Multi-Conference on

Systems & Control in 2010, and the Young Author’s Award of SICE in 2010.

Kenji Kashima received his Doctoral degree in Informatics from Kyoto University in 2005. He was with

Tokyo Institute of Technology, Osaka University, before he joined Kyoto University in 2013, where he

is currently an Associate Professor. He was an Alexander von Humboldt Research Fellow at Universität

Stuttgart, Germany. His research interests include control and learning theory for complex dynamical

systems, and their applications. He received IEEE Control Systems Society (CSS) Roberto Tempo Best

CDC Paper Award, Pioneer Award of SICE Control Division, and so on. He has served as an Associate

Editor of IEEE Transactions on Automatic Control and IEEE CSS Conference Editorial Board.

	Introduction
	Preliminaries on model-based supervisory control theory
	Data-Driven Supervisory Control and Data-Informativity
	Problem formulation of data-driven supervisory control
	Data-informativity and its criterion
	Verification of data-informativity

	restricted Data-informativity
	K-informativity
	Informatizability and its criterion

	Least Restricted Informativity
	Non-informative state
	Algorithm for computing Ksup

	Concluding Remarks
	References
	Biographies
	Tomofumi Ohtsuka
	Kai Cai
	Kenji Kashima

