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Top-Down Synthesis of Multiagent Formation
Control: An Eigenstructure Assignment

Based Approach
Takatoshi Motoyama and Kai Cai , Senior Member, IEEE

Abstract—We propose a top-down approach for for-
mation control of heterogeneous multiagent systems,
based on the method of eigenstructure assignment. Given
the problem of achieving scalable formations on the
plane, our approach globally computes a state feed-
back control that assigns desired closed-loop eigenval-
ues/eigenvectors. We characterize the relation between the
eigenvalues/eigenvectors and the resulting interagent com-
munication topology, and design special (sparse) topolo-
gies such that the synthesized control may be implemented
locally by the individual agents. Moreover, we present a hi-
erarchical synthesis procedure that significantly improves
computational efficiency. Finally, we extend the proposed
approach to achieve fixed-size formation and circular mo-
tion, and illustrate these results by simulation examples.

Index Terms—Eigenstructure assignment, formation con-
trol, multiagent systems.

I. INTRODUCTION

COOPERATIVE control of multiagent systems has been
an active research area in the systems control community

[1]–[5]. Among many problems, formation control has received
much attention [6], [7] owing to its wide applications, such as
satellite formation flying, search and rescue, terrain exploration,
and foraging. A main problem studied is stabilization to a rigid
formation, where the goal is to steer the agents to achieve a
formation with a specified size and only freedoms of transla-
tion and rotation [6], [8]–[11]. Achieving a scalable formation
with unspecified size (i.e., freedoms of scaling, translation, and
rotation) has also been studied [12], [13]; a scalable formation
may allow the group to adapt to unknown environment with
obstacles. More recently, higher dimensional formations have
been addressed via the affine formation approach [14] and the
bearing-based approach [15]. In addition, methods of control-
ling formations in motion are presented in [16]–[18].
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These different approaches/methods for formation control
have a common feature in design: namely bottom-up. Specifi-
cally, the interagent communication topology (or a certain topo-
logical condition) is given a priori, which defines the neighbors
for each agent. Then, based only on the neighborhood infor-
mation, local control strategies are designed for the individual
agents. The properties of the designed local strategies are finally
analyzed at the systemic (i.e., global) level, and correctness is
proved under certain graphical conditions on the communication
topology. This bottom-up design is indeed the mainstream ap-
proach for cooperative control of multiagent systems that places
emphasis on distributed control.

In this paper, we propose a distinct, top-down approach for
formation control, based on a known method called eigenstruc-
ture assignment [19]–[22]. Different from the bottom-up ap-
proach, there need not be any communication topology im-
posed a priori (in fact the agents are typically assumed in-
dependent, i.e., uncoupled), and no design will be done on
the local level. Indeed, given a multiagent formation con-
trol problem characterized by specific eigenvalues and eigen-
vectors (precisely defined in Section II), our approach con-
structs on the global level a feedback matrix (if it exists) that
renders the closed-loop system to possess those desired
eigenvalues/eigenvectors, thereby achieving desired formations.
Moreover, the synthesized feedback matrix (its off-diagonal en-
tries being zero or nonzero) defines the interagent communica-
tion topology; namely the topology is a result of control synthe-
sis, which is different from the bottom-up approach where the
topology (or a certain topological condition) is given a priori.
Accordingly, the computed feedback control may be imple-
mented by individual agents; thus our approach features “com-
pute globally, implement locally.”

Although our method requires centralized computation of
control gain matrices, we show that a straightforward exten-
sion of the approach to a hierarchical synthesis procedure
significantly reduces computation time. Empirical evidence is
provided to show the efficiency of the proposed hierarchical
synthesis procedure; in particular, computation of a feedback
control for a group of 1000 agents needs merely a fraction of a
second, which is likely to suffice for many practical purposes.

The contributions of this paper are summarized as follows.
1) Our proposed top-down approach is systematic, in the

sense that it treats different cooperative control speci-
fications (characterizable by desired eigenstructure) by
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the same synthesis procedure. We show that consensus,
scalable formation, fixed-size formation, and coopera-
tive circular motion can all be addressed using the same
method. Moreover, several recently developed formation
control methods—the complex matrix based [13], the
bearing-based [15], and the affine formation [14]—can
all be treated uniformly using our top-down approach.

2) We present a characterization of the relation between the
resulting communication topology and the eigenstructure
selected for the control synthesis. Furthermore, we show
that by appropriately choosing eigenvalues and the cor-
responding eigenvectors, special topologies (star, cyclic,
line) can be designed, and the computed feedback control
may be implemented locally over these (sparse) topolo-
gies.

3) Our method is amenable to deal with not only heteroge-
neous agent dynamics, but even the case where some
agents are not self-stabilizable (in the standard sense
that these agents cannot stabilize themselves by using
only their own control inputs; see the precise definition
in Section IV-B).

We note that Wu and Iwasaki [23] also proposed an eigen-
structure assignment method and applied it to the multiagent
consensus problem. Their approach is bottom-up: first eigen-
structure assignment is applied to design a local controller for
each agent, and then these local controllers are connected ac-
cording to an imposed communication topology; the correctness
of this approach is established on the global level. By contrast,
our approach is top-down: at the setup we do not consider an
imposed topology; instead, we characterize the relation between
the chosen eigenstructures and the resulting topologies, and de-
sign special topologies by selecting particular eigenstructures.
In addition, we use eigenstructure assignment involving non-
conjugate complex eigenvalues and eigenvectors (as opposed to
real eigenvalues and eigenvectors studied in [23]), which allows
us to solve scalable/fixed-size formation and circular motion on
the plane.

Finally, this paper differs from its conference precursor [24]
in the following aspects.

1) A precise relation between eigenstructure and topology
is characterized (see Theorem 2 in Section III).

2) More general cases where the initial interagent topology
is arbitrary and/or there exist nonstabilizable agents are
addressed (see Section IV).

3) The problem of achieving cooperative circular motion is
solved (see Section VI-B).

The rest of this paper is organized as follows. In Section II,
we formulate the multiagent formation control problem. In
Section III, we solve the problem by eigenstructure assignment,
and discuss the relations between eigenvalues/eigenvectors and
topologies. In Section IV, we study the more general cases where
the initial interagent topology is arbitrary and/or there exist non-
stabilizable agents. In Section V, we present a hierarchical syn-
thesis procedure to reduce computation time, and Section VI
extends the method to achieve fixed-size formation and circular
motion. Simulation examples are given in Section VII and our
conclusions are stated in Section VIII.

II. PROBLEM FORMULATION

Consider a heterogeneous multiagent system where each
agent is modeled by a first-order ordinary differential equation

ẋi = aixi + biui, i = 1, . . . , n. (1)

Here, xi ∈ C is the state variable, ui ∈ C is the control vari-
able, and ai ∈ R and bi(�= 0) ∈ R are constant parameters.
Thus, each agent is a point mass moving on the complex plane,
with possibly stable (ai < 0), semistable (ai = 0), or unsta-
ble (ai > 0) dynamics. The requirement bi �= 0 is to ensure
stabilizability/controllability of (ai, bi); thus, each agent is sta-
bilizable/controllable. Note that represented by (1), the agents
are independent (i.e., uncoupled) and no interagent topology is
imposed at this stage.

In vector-matrix form, the system of n independent agents is
given by

ẋ = Ax + Bu (2)

where x := [x1 · · ·xn ]� ∈ Cn , u := [u1 · · ·un ]� ∈ Cn , A :=
diag(a1 , . . . , an ), and B := diag(b1 , . . . , bn ); here, diag(·) de-
notes a diagonal matrix with the specified diagonal entries. Con-
sider modifying (2) by a state feedback u = Fx and thus the
closed-loop system is given by

ẋ = (A + BF )x. (3)

In this paper, the entries of F are generally complex, i.e.,
F ∈ Cn×n . Straightforward calculation shows that the diagonal
entries of A + BF are ai + biFii , and the off-diagonal entries
biFij . Since bi �= 0, the off-diagonal entries (A + BF )ij �= 0 if
and only if Fij �= 0 (i �= j).

In view of the structure of A + BF , we can define a corre-
sponding directed graph G = (V, E) as follows: the node set
V := {1, . . . , n} with node i ∈ V standing for agent i (or state
xi) and the edge set E ⊆ V × V with edge (j, i) ∈ V if and
only if F ’s off-diagonal entry Fij �= 0 . Since Fij �= 0 implies
that agent i uses Fijxj (real axis information Re(Fijxj ) and
imaginary axis information Im(Fijxj )) in updating its state xi ,
we say for this case that agent j communicates its state xj to
agent i, or j is a neighbor of i. The graph G is therefore called a
communication network among agents, whose topology is de-
cided by the off-diagonal entries of F . Thus, the communication
topology emerges as the result of applying the state feedback
control u = Fx.

Now, we define the formation control problem of the multia-
gent system (2).

Problem 1: Consider the multiagent system (2) and specify
a vector f ∈ Cn (f �= 0). Design a state feedback control u =
Fx such that for every initial condition x(0), limt→∞ x(t) = cf
for some constant c ∈ C.

In Problem 1, the specified vector f represents a desired
formation configuration in the (complex) plane.1 By forma-
tion configuration, we mean that the geometric information of
the formation remains when scaling and rotational effects are

1We limit our attention to two-dimensional formations in this paper, and will
investigate in future work three and higher dimensional formations as in [14]
and [15].
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discarded. Indeed, by writing the constant c ∈ C in the polar
coordinate form (i.e., c = ρejθ , j =

√−1), the final formation
cf is the configuration f scaled by ρ and rotated by θ. The con-
stant c is unknown a priori and in general depends on the initial
condition x(0).

Notation: Given a matrix M , ImM denotes the image of M
over the complex field, i.e., the complex span of the column
vectors of M . Similarly, KerM denotes the kernal of M over
the complex field.

III. MAIN RESULTS

In this section we solve Problem 1, the formation control
problem, based on the method of eigenstructure assignment
[19]. The following is our main result.

Theorem 1: Consider the multiagent system (2) and let f
be a desired formation configuration. Then, there always exists
a state feedback control u = Fx that solves Problem 1, i.e.,

(∀x(0) ∈ Cn )(∃c ∈ C) lim
t→∞x(t) = cf.

Proof: By standard linear systems theory, the multiagent
system (2) with u = Fx achieves a formation configuration
f ∈ Cn if the closed-loop matrix A + BF has the following
eigenstructure.

1) Its eigenvalues {λ1 , λ2 , . . . , λn} satisfy

0 = λ1 < |λ2 | ≤ · · · ≤ |λn |, and (∀i ∈ [2, n])Re(λi) < 0.

(4)

2) The corresponding eigenvectors

{v1 , v2 , . . . , vn} are linearly independent, and v1 = f.
(5)

So we must verify that the above eigenstructure is assignable
by state feedback u = Fx for the multiagent system (2). Note
that except for (λ1 , v1), which is fixed, we have freedom to
choose (λi , vi), i ∈ [2, n]. Thus, for simplicity, we let λi be all
distinct.

In (2), we have A = diag(a1 , . . . , an ), B = diag(b1 , . . . , bn ),
and bi �= 0 for all i ∈ [1, n]. Thus, it is easily checked that the
pair (A,B) is controllable and KerB = 0. To show that there
exists F such that (A + BF )vi = λivi , for each i ∈ [1, n] (with
λi , vi specified previously), it is necessary and sufficient [19] to
verify the condition vi ∈ ImN1(λi), where N1(λi) satisfies

[
λiI − A B

]
[

N1(λi)
N2(λi)

]
= 0. (6)

First, for λ1 = 0, we find a basis for

Ker[λ1I − A B] = Ker[−A B]

and derive N1(λ1) = B and N2(λ1) = A. So ImN1(λ1) = Cn ,
and hence, v1 = f ∈ ImN1(λ1).

Next, let i ∈ [2, n]; we find a basis for Ker[λiI − A B]
and derive N1(λi) = B and N2(λi) = A − λiI . Thus, again
ImN1(λi) = Cn , and vi ∈ ImN1(λi). Therefore, we conclude
that there always exists a state feedback u = Fx such that
the multiagent system (2) achieves the formation configuration
f . �

In the proof, we showed that the desired eigenstructure (4), (5)
for solving the formation control Problem 1 is assignable to the
closed-loop matrix A + BF , whose null space (the eigenspace
corresponding to the eigenvalue 0) is consequently spanned by
f ∈ Cn (over the complex field). Different null spaces of A +
BF in fact correspond to many cooperative control problems
and several new approaches to formation control, which are as
follows.

1) For the consensus problem, the null space is span{1}
(where 1 := [1 · · · 1]� ∈ Rn ).

2) For flocking of double-integrator agents, it is
span{[1� 0]�}.

3) For the complex matrix based approach to formation con-
trol [13], it is span{1, f}.

4) For the bearing-based approach [15], it is span{1 ⊗
Id , freal} (with d > 1 and freal ∈ Rdn ).

5) For the affine formation [14], it is the space of all the
affine images of freal ∈ Rdn .

As a result, these different cooperative control problems and
approaches may be treated uniformly using our eigenstructure
assignment based method.

Theorem 1 asserts that the formation control Problem 1 al-
ways has a solution u = Fx. Moreover, by [19], the feedback
matrix F may be computed by the following formula:

F = [w1 · · ·wn ][v1 · · · vn ]−1 (7)

where wi = −N2(λi)ki , N1(λi)ki = vi , and N1(λi), N2(λi)
in (6), for all i ∈ [1, n]. This computation of F has complex-
ity O(n3), inasmuch as the calculations involved are solving
systems of linear equations, matrix inverse, and multiplication
(e.g., [25]). Thus, the computational cost becomes expensive as
the number of agents increases. To address this issue, we pro-
vide in Section V below a more efficient hierarchical procedure
for synthesizing F .

The computed feedback matrix F in turn gives rise to the
agents’ communication graph G. The following is an illustrative
example.

Example 1: Consider the multiagent system (2) of four
single integrators (that is, ai = 0 and bi = 1, i = 1, . . . , 4).

i) Square formation with f = [1 j − 1 − j]� (j =
√−1).

Let the desired closed-loop eigenvalues be λ1 = 0, λ2
= −1, λ3 = −2, and λ4 = −3 and the corresponding
eigenvectors be v1 = f , v2 = [1 1 0 0]�, v3 =
[0 1 1 0]�, and v4 = [0 0 1 0]�. By (7), one com-
putes the control gain matrix F1 , which determines the
corresponding communication graph G1 (see Fig. 1).
Observe that F1 contains complex entries, which may be
viewed as control gains for the real and imaginary axes,
respectively, or scaling and rotating gains on the complex
plane. Also note that G1 has a spanning tree with node 4
the root, and the computed feedback control u = Fx can
be implemented by the four agents individually.

ii) Consensus with f = [1 1 1 1]�. Let the desired eigenval-
ues be λ1 = 0, λ2 = −1, λ3 = −3, and λ4 = −4 and the
corresponding eigenvectors be v1 = f , v2 = [1 1 0 1]�,
v3 = [1 0 0 1]�, and v4 = [0 0 1 − 1]�. Again
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Fig. 1. Example: feedback matrices and communication topologies.

by (7), one computes the control gain matrix F2 and the
corresponding graph G2 (see Fig. 1).
Note that in this case, F2 is real and G2 strongly con-
nected. But unlike the usual consensus algorithm (e.g.,
[2]), −F2 is not a graph Laplacian matrix for the entries
(2, 1) and (3, 1) are positive. Thus, our eigenstructure
assignment based approach may generate a larger class
of consensus algorithms with negative weights.

We remark that in our approach, the convergence speed to the
desired formation configuration is assignable. This is because
the convergence speed is dominated by the eigenvalue λ2 , with
the second largest real part, of the closed-loop system ẋ = (A +
BF )x; and in our approach λ2 is freely assignable. The smaller
the Re(λ2) is, the faster the convergence to formation occurs
(at the cost of higher control gain). As an example, for (ii)
in Example 1 assign the second largest eigenvalue λ2 = −2
(originally −1), and change v4 = [0 0 1

2 − 1]. This results in a
new feedback matrix

F ′
2 =

⎡

⎢
⎢
⎢
⎣

−4 1 2 1
−1 −2 2 1
−2 0 0 2
0 1 2 −3

⎤

⎥
⎥
⎥
⎦

which has zero entries at the same locations as F2 . Thus, with
the same topology, F ′

2 achieves faster convergence speed.
As we have seen in Example 1, the feedback matrix F ’s

off-diagonal entries, which determine the topology of G, are
dependent on the choice of eigenvalues as well as eigenvec-
tors. Namely, different sets of eigenvalues and eigenvectors
result in different interagent communication topologies. Our
next result characterizes a precise relation between the eigen-
values/eigenvectors and the topologies.

Theorem 2: Consider the multiagent system (2) and f a
desired formation configuration. Let the eigenstructure λi and
vi (i = 1, . . . , n) be as in (4) and (5), and denote the rows of
[v1 · · · vn ]−1 by v∗

i . Then, the communication graph G = (V, E)
of the (closed-loop) multiagent system is such that

(i1 , j1), . . . , (iK , jK ) /∈ E (K ≥ 1)

if and only if the vector

[λ2 · · · λn ]�

is orthogonal to the subspace spanned by the following K
vectors:
[
v2 i1 v

∗
2 j1

· · · vn i1 v
∗
n j1

]�
, . . . , [v2 iK

v∗
2 jK

· · · vn iK
v∗

n jK
]�.

Proof: For each λi , i ∈ [1, n], we derive from (6) that

(λiI − A)N1(λi) + BN2(λi) = 0.

Choose N1(λi) = B and N2(λi) = −(λiI − A) to satisfy the
above equation. Then, ki = N−1

1 (λi)vi = B−1vi and wi =
−N2(λi)ki = (λiI − A)B−1vi . By (7), we have

F = [w1 · · ·wn ][v1 · · · vn ]−1

= [(λ1I − A)B−1v1 · · · (λnI − A)B−1vn ][v1 · · · vn ]−1

= B−1(−A[v1 · · · vn ] + [λ1v1 · · · λnvn ])[v1 · · · vn ]−1

= −B−1A + B−1 [v1 · · · vn ]diag(λ1 , . . . , λn )[v∗
1 · · · v∗

n ]�.

Thus, the closed-loop matrix is given by

A + BF = [v1 · · · vn ]diag(λ1 , . . . , λn )[v∗
1 · · · v∗

n ]�. (8)

The (i, j)-entry of A + BF is

(A + BF )ij = λ1v1iv
∗
1j + λ2v2iv

∗
2j + · · · + λnvniv

∗
nj

= λ2v2iv
∗
2j + · · · + λnvniv

∗
nj (λ1 = 0)

= [λ2 · · · λn ][v2iv
∗
2j · · · vniv

∗
nj ]

�.

Therefore, (A + BF )i1 j1 = · · · = (A + BF )iK jK
= 0, i.e., in

the communication graph (i1 , j1), . . . , (iK , jK ) /∈ E , if and only
if the vector [λ2 · · · λn ]� is orthogonal to each of the following
K vectors:
[
v2 i1 v

∗
2 j1

· · · vn i1 v
∗
n j1

]�
, . . . , [v2 iK

v∗
2 jK

· · · vn iK
v∗

n jK
]�.

Namely, [λ2 · · · λn ]� is orthogonal to the subspace spanned by
these K vectors. �

Once the desired eigenvalues and eigenvectors are chosen,
Theorem 2 provides a necessary and sufficient condition to
check the interconnection topology among the agents, with-
out actually computing the feedback matrix F . On the other
hand, the problem of choosing an appropriate eigenstructure to
match a given topology is more difficult, inasmuch as there are
many free variables to be determined in the eigenvalues and
eigenvectors. While we shall investigate the general problem
of eigenstructure design for imposing particular topologies in
our future work, in the following section, nevertheless, we show
that choosing certain appropriate eigenstructures results in cer-
tain special (sparse) topologies. With these topologies, the syn-
thesized control u = Fx may be implemented in a distributed
fashion.

A. Special Topologies

We show how to derive three special types of topologies (see
Fig. 2) by choosing appropriate eigenstructures. Due to space
limit the proofs of this section are referred to [26].

1) Star Topology: A directed graph G = (V, E) is a star
topology if there is a single root node, say node 1, and E =
{(1, i)|i ∈ [2, n]}. Thus, all the other nodes receive information
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Fig. 2. Special topologies (five node examples). (a) Star topology.
(b) Cyclic topology. (c) Line topology.

from, and only from, the root node 1. In terms of the total number
of edges, a star topology is one of the sparsest topologies, with
the least number (n − 1) of edges, that contain a spanning tree.
Now, consider the following eigenstructure:

eigenvalues: λ1 = 0, λ2 , . . . , λn distinct

and Re(λ2), . . . , Re(λn ) < 0

eigenvectors: [v1 v2 · · · vn ]
(independent)

=

⎡

⎢
⎢
⎢
⎣

f1 0 · · · 0
f2 1 · · · 0
...

...
. . .

...
fn 0 · · · 1

⎤

⎥
⎥
⎥
⎦

. (9)

Proposition 1: Consider the multiagent system (2). If the
eigenstructure (9) is used in the synthesis of feedback control
u = Fx, then Problem 1 is solved and the resulting graph G is
a star topology.

2) Cyclic Topology: A directed graph G = (V, E) is a
cyclic topology if E = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}.
Consider the following eigenstructure:

eigenvalues: {λ1 , λ2 , . . . , λn} = {0, ω − 1, . . . , ωn−1 − 1}
eigenvectors: [v1 v2 · · · vn ]

(independent)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 f1 · · · f1

f2 f2ω · · · f2ω
n−1

f3 f3ω
2 · · · f3ω

2(n−1)

...
...

...
...

fn fnωn−1 · · · fnω(n−1)(n−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

where ω := e2πj/n (j =
√−1).

Proposition 2: Consider the multiagent system (2). If the
eigenstructure (10) is used in the synthesis of feedback control
u = Fx, then Problem 1 is solved and the resulting G is a cyclic
topology.

3) Line Topology: A directed graph G = (V, E) is a (di-
rected) line topology if there is a single root node, say node 1,
and E = {(1, 2), (2, 3), . . . , (n − 1, n)}. A line topology is also
one of the sparsest topologies containing a spanning tree. Now,

consider the following eigenstructure:

eigenvalues: λ1 = 0, λ2 = · · · = λn = −1

eigenvectors: [v1 v2 · · · vn ]
(independent)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 · · · 0
f2 0 · · · −f2
...

...
...

fn−1 0
. . . −fn−1

fn −fn · · · −fn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(11)

Proposition 3: Consider the multiagent system (2). If the
eigenstructure (11) is used in the synthesis of feedback control
u = Fx, then Problem 1 is solved and the resulting G is a line
topology.

Remark: While the eigenstructures in Propositions 1–3 are
sufficient to ensure the respective graph topologies, they need
not to be necessary in general. For example, let n = 3, a1 =
a2 = a3 = 0, b1 = b2 = b3 = 1, and f = [1 2 3]�. Consider a
state feedback control u = Fx, where

F =

⎡

⎣
0 0 0
2 −1 0
3 0 −1

⎤

⎦

⎛

⎝resp. F =

⎡

⎣
−2 1 0
0 −3 2
3 0 −1

⎤

⎦

or F =

⎡

⎣
0 0 0
2 −1 0
0 3 −2

⎤

⎦

⎞

⎠ .

It is easily verified that Problem 1 is solved by u = Fx and the
closed-loop matrix A + BF corresponds to a star (resp. cyclic
or line) topology. However, the eigenstructure of A + BF is
different from (9) [resp. (10) or (11)] .

IV. GENERAL MULTIAGENT SYSTEMS

So far, we have considered the multiagent system in (2),
where the agents are uncoupled and each is (self) stabilizable
(the matrices A and B are diagonal and B’s diagonal entries
nonzero). For (2), we have shown in Theorem 1 that a state
feedback control, based on eigenstructure assignment, always
exists to drive the agents to a desired formation.

More generally, however, the agents may be initially inter-
connected (owing to physical coupling or existence of commu-
nication channels), and/or some agents might not be capable
of stabilizing themselves (though they can receive information
from others). It is thus of interest to inquire, based on the eigen-
structure assignment approach, what conclusions we can draw
for formation control in these more general cases.

A. Arbitrary Interagent Connections

First, we consider the case where the agents have arbitrary
initial interconnection while keeping the assumption that they
are individually stabilizable. That is, we consider the following
multiagent system:

ẋ = Ax + Bu (12)
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where x ∈ Cn , u ∈ Cn , A ∈ Rn×n , and B = diag(b1 , . . . , bn )
(bi �= 0). The matrix A is now an arbitrary real matrix, modeling
an arbitrary (initial) communication topology among the agents.

It turns out, despite the general A matrix, that the same con-
clusion as Theorem 1 holds.

Theorem 3: Consider the multiagent system (12) and let f
be a desired formation configuration. Then, there always exists a
state feedback control u = Fx that achieves formation control,
i.e.,

(∀x(0) ∈ Cn )(∃c ∈ C) lim
t→∞x(t) = cf.

The proof is similar to that of Theorem 1, with the following
difference. In the proof of Theorem 1, we derived N1(λi) = B
and N2(λi) = A − λiI . Since A was diagonal and diagonal
matrices commute, there held

[
λiI − A B

]
[

B
A − λiI

]
= 0.

For a general A as in Theorem 3, we have found instead
N1(λi) = B and N2(λi) = B−1(A − λiI)B that deal with ar-
bitrary A without depending on the commutativity of matrices.

Theorem 3 asserts that, as long as the agents are individually
stabilizable, formation control is achievable by eigenstructure
assignment regardless of how the agents are initially intercon-
nected. The final topology, on the other hand, is in general
determined by the initial connections “plus” additional ones re-
sulted from the chosen eigenvalues/eigenvectors (as has been
discussed in Section III). It may also be possible, however, that
the initial connections are “decoupled” by the corresponding
entries of the synthesized feedback matrix. This is illustrated by
the following example.

Consider again Example 1(i), but change A from the zero
matrix to the following:

A =

⎡

⎢
⎢
⎣

0 0.5 0 0
0 0 0 0

−0.5 0 0 0
0 0 2 0

⎤

⎥
⎥
⎦

that is, agents 1 and 2, 3 and 1, 4 and 3 are initially intercon-
nected. Assigning the same eigenstructure as in Example 1(i),
we obtain the following feedback matrix:

F =

⎡

⎢
⎢
⎣

−1 −0.5 0 j
1 −2 0 −2 − j

−0.5 1 −3 1 − 2j
0 0 −2 0

⎤

⎥
⎥
⎦.

Then, the closed-loop matrix A + BF (where B is the identity
matrix) is

A + BF =

⎡

⎢
⎢
⎣

−1 0 0 j
1 −2 0 −2 − j
−1 1 −3 1 − 2j
0 0 0 0

⎤

⎥
⎥
⎦

which is the same as the feedback matrix F1 (as well as the
closed-loop matrix) in Example 1(i). Thus, despite the initial
coupling, the final topology turns out to be the same as that of
Example 1(i). In particular, in the final topology agents 1 and

2, 4 and 3 are uncoupled—their initial couplings are “canceled”
by the corresponding entries of the feedback matrix F .

B. Existence of Nonstabilizable Agents

Continuing to consider arbitrary initial topology (i.e., general
A), we further assume that some agents cannot stabilize them-
selves (i.e., the corresponding diagonal entries of B in (12) are
zero). Equivalently, the nonstabilizable agents have no control
inputs. In this case, achieving a desired formation is possible
only if those nonstabilizable agents may take advantage of in-
formation received from others (via connections specified by
A). This is a problem of global formation stabilization with
locally unstabilizable agents, which has rarely been studied in
the literature. We aim to provide an answer using our top-down
eigenstructure assignment based approach.

Without loss of generality, assume that only the first m (< n)
agents are stabilizable. Thus, the multiagent system we consider
in this section is given by

ẋ = Ax + Bu (13)

where x ∈ Cn , u ∈ Cm , A ∈ Rn×n , and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1
. . .

bm

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rn×m (m < n)

bi �= 0, i ∈ [1,m].

Theorem 4: Consider the multiagent system (13) and let f
be a desired formation configuration. Also, let λ1 , . . . , λn and
v1 , . . . , vn be the desired eigenvalues and eigenvectors satisfy-
ing (4) and (5). If the following statements holds:

i) the pair (A,B) is controllable;
ii) ImB ⊆ Im(A − λiI) for all i ∈ [1, n]; and

iii) vi ∈ ImN1(λi) for all i ∈ [1, n], where N1(λi) satisfies
(A − λiI)N1(λi) = B

then there exists a state feedback control u = Fx that achieves
formation control, i.e.,

(∀x(0) ∈ Cn )(∃c ∈ C) lim
t→∞x(t) = cf.

Proof: First observe from (13) that KerB = 0, since B’s
columns are linearly independent. Now, let i ∈ [1, n]. Since
(A,B) is controllable [condition (i)], there exist N1(λi) and
N2(λi) such that (6) holds. Setting N2(λi) = I , we derive from
(6) the following matrix equation:

(A − λiI) N1(λi) = B. (14)

Since ImB ⊆ Im(A − λiI) [condition (ii)], this equation has
a solution N1(λi) (which is determined by A,B, λi). Finally,
since vi ∈ ImN1(λi) [condition (iii)], the condition of eigen-
structure assignment [19] is satisfied. Therefore, the desired
eigenvalues and eigenvectors satisfying (4) and (5) may be
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assigned by a state feedback control u = Fx, i.e., formation
control is achieved. �

Theorem 4 provides sufficient conditions to ensure solvability
of the formation control problem for multiagent systems with
nonstabilizable agents. In the following, we illustrate this re-
sult by working out a concrete example, where A represents a
directed line topology and there is only one agent that is stabi-
lizable (i.e., B is simply a vector).

Example 2: Consider the multiagent system ẋ = Ax + Bu
with

A =

⎡

⎢
⎢
⎢
⎣

a1 0 0
â2 a2

. . .
. . .

0 ân an

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

b1
0
...
0

⎤

⎥
⎥
⎥
⎦

where a1 , . . . , an , â2 , . . . , ân , and b1 are nonzero. Namely, A
represents a directed line topology with agent 1 the root, and B
means that only agent 1 is stabilizable. Thus, this is a single-
input multiagent system—by controlling only the root of a
directed line.

First, it is verified that (A,B) is controllable, i.e., condi-
tion (i) of Theorem 4 is satisfied. To ensure condition (ii),
ImB ⊆ Im(A − λiI), it suffices to choose each desired eigen-
value λi (i ∈ [1, n]) such that λi �= aj for j ∈ [1, n] (i.e., every
eigenvalue is distinct from the nonzero diagonal entries of A).
At the same time, these eigenvalues must satisfy (4).

Having condition (ii) hold, the following equation has a so-
lution N1(λi):

⎡

⎢
⎢
⎢
⎣

a1 − λi 0 0
â2 a2 − λi

. . .
. . .

0 ân an − λi

⎤

⎥
⎥
⎥
⎦

N1(λi) =

⎡

⎢
⎢
⎢
⎣

b1
0
...
0

⎤

⎥
⎥
⎥
⎦

.

Solving this equation, we obtain

N1(λi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1
a1 −λi

− â2 b1
(a1 −λi )(a2 −λi )

...

(−1)n−1 â2 ···ân b1
(a1 −λi )(a2 −λi )···(an −λi )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, to ensure condition (iii) of Theorem 4, we must choose
each desired eigenvector vi (i ∈ [1, n]) such that vi ∈ ImN1(λi)
and (5) is satisfied. In particular, for i = 1, we have λi = 0 and
v1 = f ; thus, v1 ∈ ImN1(λ1) means that the formation vector
f must be such that

f = c

[
b1

a1
− â2b1

a1a2
· · · (−1)n−1 â2 · · · ân b1

a1a2 · · · an

]�
(15)

where c ∈ C (c �= 0). This characterizes the set of all achievable
formation configurations for the single-input multiagent system
under consideration.

We conclude that, by controlling only one agent, indeed the
root agent of a directed line topology, it is not possible to achieve
arbitrary formation configurations but those determined by the
nonzeros entries of the matrices A and B in the specific manner,
as given in (15).

V. HIERARCHICAL EIGENSTRUCTURE ASSIGNMENT

In the previous sections, we have shown that a control gain
matrix F can always be computed (as long as every agent is
stabilizable) such that the multiagent formation Problem 1 is
solved. Computing such F by (7) has complexity O(n3), where
n is the number of agents. Consequently, the computation cost
becomes expensive as the number of agents increases.

To address this issue of centralized computation, we pro-
pose in this section a hierarchical synthesis procedure. We shall
show that the control gain matrix F computed by this hierarchi-
cal procedure again solves Problem 1, which moreover signif-
icantly improves computational efficiency (empirical evidence
provided in Section VII).

For clarity of presentation, let us return to consider the mul-
tiagent system (2), and Problem 1 with the desired formation
configuration f ∈ Cn (f �= 0). Partition the agents into l (≥ 1)
pairwise disjoint groups. Let group k (∈ [1, l]) have nk (≥ 1)
agents; nk may be different and Σl

k=1nk = n.
Now, for the configuration f and x, u,A, and B in (2), write

in accordance with the partition (possibly with reordering)

f =

⎡

⎢
⎣

g1
...
gl

⎤

⎥
⎦, x =

⎡

⎢
⎣

y1
...
yl

⎤

⎥
⎦, u =

⎡

⎢
⎣

w1
...

wl

⎤

⎥
⎦

A =

⎡

⎢
⎣

A1
. . .

Al

⎤

⎥
⎦, B =

⎡

⎢
⎣

B1
. . .

Bl

⎤

⎥
⎦

where gk , yk , wk ∈ Cnk and Ak ,Bk ∈ Cnk ×nk , and k ∈ [1, l].
Thus, for each group k, the dynamics is given by

ẏk = Akyk + Bkwk . (16)

For later use, also write gk1 , yk1 , wk1 (resp. Ak1 , Bk1) for the
first component of gk , yk , wk (resp. (1,1)-entry of Ak ,Bk ), and
g0 := [g11 · · · gl1 ]�, y0 := [y11 · · · yl1 ]�, w0 := [w11 · · ·wl1 ]�,
A0 := diag(A11 , . . . , Al1), and B0 := diag(B11 , . . . , Bl1).

The vector gk (k ∈ [1, l]) is the local formation configuration
for group k, whereas g0 is the formation configuration for the
set of the first component agent from each group. We assume
that these configurations are all nonzero, i.e., gk �= 0 for k ∈
[1, l] and g0 �= 0. Now, we present the hierarchical synthesis
procedure.

i) For each group k ∈ [1, l] and its dynamics (16), compute
Fk by (7) such that Ak + BkFk has a simple eigenvalue 0
with the corresponding eigenvector gk , and other eigen-
values have negative real parts; moreover, the topology
defined by Fk has a unique root node yk1 (e.g., star or
line by the method given in Section III-A).

ii) Treat {yk1 |k ∈ [1, l]} (the group leaders) as a higher
level group, with the following dynamics:

ẏ0 = A0y0 + B0w0 . (17)

Compute F0 ∈ Cl×l by (7) such that A0 + B0F0 has a
simple eigenvalue 0 with the corresponding eigenvector
g0 , and other eigenvalues have negative real parts.
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iii) Set the control gain matrix F := F low + F high, where

F low :=

⎡

⎢
⎣

F1
. . .

Fl

⎤

⎥
⎦

and F high is partitioned according to F low, with each
block (i, j), i, j ∈ [1, l]

(F high)ij = (F0)ij ·

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

(F0)ij 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

.

The computational complexity of Step i) is O(n̂3), where
n̂ := max{n1 , . . . , nl}; and Step ii) is O(l3). Let ñ :=
max{n̂, l}. Then, the complexity of the entire hierarchical syn-
thesis procedure is O(ñ3). With proper group partition, this hi-
erarchical procedure can significantly reduce computation time,
as demonstrated by an empirical study in Section VII.

Note that in Step i) of the previous procedure, requiring the
topology defined by each Fk to have a unique root, i.e., a single
leader, is for simplicity of presentation. It can be extended to
the case of multiple leaders, and then in Step ii) treat all of the
leaders at the higher level. On the other hand, the number of
leaders should be kept small such that the high-level control
synthesis in Step ii) can be done efficiently.

The graph topology resulted from the hierarchical synthesis
procedure may be viewed as a hierarchical one. On the low
level, the topologies of individual groups are defined by Fk

(k ∈ [1, l]); on the high level, the topology of group leaders is
defined by F0 .

The correctness of the hierarchical synthesis procedure is
asserted in the following.

Theorem 5: Consider the multiagent system (2) and let f be
a desired formation configuration. Then, the state feedback con-
trol u = Fx synthesized by the hierarchical synthesis procedure
solves Problem 1, i.e.,

(∀x(0) ∈ Cn )(∃c ∈ C) lim
t→∞x(t) = cf.

Proof: For each k ∈ [1, l], let y′
k := [yk2 · · · yknk

]� and
g′k := [gk2 · · · gknk

]� ∈ Cnk −1 . Thus, y′
k and g′k are yk and gk

with the first element removed. By Step i) of the hierarchical
synthesis procedure, since yk1 is the unique root node, we can
write ẏk = (Ak + BkFk )yk as follows:

⎡

⎢
⎢
⎣

ẏk1

ẏ′
k

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0

Hk Gk

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

yk1

y′
k

⎤

⎥
⎥
⎦ .

Then, by the eigenstructure of Ak + BkFk , all the eigenvalues
of Gk have negative real parts and

[
Hk Gk

]

⎡

⎢
⎢
⎣

gk1

g′k

⎤

⎥
⎥
⎦ = 0. (18)

Reorder x = [y�
1 · · · y�

l ]� to get x̂ := [y�
0 y′

1
� · · · y′

n
�]�. Then,

there is a permutation matrix that similarly transforms the con-
trol gain matrix F in Step iii) to F̂ , and ˙̂x = F̂ x̂ is

⎡

⎢
⎢
⎢
⎣

ẏ0
ẏ′

1
...
ẏ′

l

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

A0 + B0F0 0
H1 G1
. . .

. . .
Hl Gl

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

y0
y′

1
...
y′

l

⎤

⎥
⎥
⎥
⎦

.

It then follows from the eigenstructure of A0 + B0F0 assigned
in Step ii) and (18) that the matrix F̂ has a simple eigenvalue
0 with the corresponding eigenvector f̂ := [g�0 g

′�
1 · · · g

′�
l ]�,

and other eigenvalues have negative real parts. Hence

(∀x̂(0) ∈ Cn )(∃ĉ ∈ C) lim
t→∞ x̂(t) = ĉf̂ .

Since x̂ (resp. f̂ ) is just a reordering of x (resp. f ), the conclusion
follows and the proof is complete. �

VI. FIXED-SIZE FORMATION AND CIRCULAR MOTION

In this section, we show that our method of eigenstructure
assignment may be easily extended to address problems of fixed-
size formation and circular motion.

A. Fixed-Size Formation

First, we extend our method to study the problem of achieving
a formation that has translational and rotational freedom but
fixed size.

Problem 2: Consider the multiagent system (2) and spec-
ify f ∈ Cn (f �= 0) and d > 0. Design a control u such that
limt→∞ x(t) = c1 + dfejθ for some c ∈ C and θ ∈ [0, 2π).

In Problem 2, the goal of the multiagent system (2) is to
achieve a formation df , with translational freedom in c, rota-
tional freedom in θ, and fixed size d. These are three important
parameters for the formation to complete certain tasks and dy-
namically respond to the environment.

We now present the fixed-size formation synthesis procedure.
1) Compute F by (7) such that A + BF has two eigenvalues

0 with the corresponding (nongeneralized) eigenvectors
1 and f , and other eigenvalues have negative real parts;2

moreover, the topology defined by F is 2-rooted3 with
exactly 2 roots (say nodes 1 and 2). This topology may be

2For repeated eigenvalues with nongeneralized eigenvectors, the eigenstruc-
ture assignment result in [19], and the computation of control gain matrix F in
(7) remain the same as for the case of distinct eigenvalues.

3A 2-rooted topology is one where there exist 2 nodes from which every other
node v can be reached by a directed path after removing an arbitrary node other
than v [13].
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achieved by assigning appropriate eigenstructures, e.g.,

eigenvalues: λ1 = λ2 = 0, λ3 , . . . , λn distinct

and Re(λ3), . . . , Re(λn ) < 0

eigenvectors: [v1 v2 v3 · · · vn ]
(independent)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 f1 0 · · · 0
1 f2 0 · · · 0
1 f3 1 · · · 0
...

...
...

. . .
...

1 fn 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(19)

2) Let f1 and f2 be the first two components of f , and set
[

ẋ1
ẋ2

]
=

[
(x2 − x1)(|x2 − x1 |2 − d2 |f2 − f1 |2)
(x1 − x2)(|x1 − x2 |2 − d2 |f1 − f2 |2)

]

=: r(x1 , x2).

3) Set the control

u := Fx + B−1
[

r(x1 , x2)
0

]
. (20)

The idea of the above-mentioned synthesis procedure is to
first use eigenstructure assignment to achieve a desired forma-
tion configuration with two leaders, and then control the size
of the formation by stabilizing the distance between the two
leaders to the prescribed d. The latter is inspired by the work in
[13]. Our result is as follows.

Proposition 4: Consider the multiagent system (2) and let
f ∈ Cn , d > 0. Then, the control u in (20) synthesized by the
fixed-size formation synthesis procedure solves Problem 2 for
all initial conditions x(0) with x1(0) �= x2(0).

Proof: First, by a similar argument to that in the proof
of Theorem 1, we can show that the desired eigenval-
ues/eigenvectors (two eigenvalues at 0 with eigenvectors 1 and
f ; all other eigenvalues with negative real parts) may always be
assigned for the multiagent system (2). As a result

(∀x(0) ∈ Cn )(∃c, c′ ∈ C) lim
t→∞x(t) = c1 + c′f.

Moreover, choosing the eigenstructure in (19) and following
similarly to Proposition 1, we can show that the resulting topol-
ogy defined by F is 2-rooted with nodes 1 and 2 the only two
roots.

With the 2-rooted topology and the design in Step ii), it fol-
lows from [13, Th. 4.4] that for all x(0) with x1(0) �= x2(0),
we have c′ = dfejθ for some θ ∈ [0, 2π). �

An illustrative example of achieving fixed-size formations is
provided in Section VII below.

B. Circular Motion

We apply the eigenstructure assignment approach to solve a
cooperative circular motion problem, in which all the agents
circle around the same center while keeping a desired formation
configuration. This cooperative task may find useful applica-
tions in target tracking and encircling (e.g., [27] and [28]).

Problem 3: Consider the multiagent system (2) and
specify f ∈ Cn (f �= 0) and b ∈ R (b �= 0). Design a state

feedback control u = Fx such that for every initial condi-
tion x(0), limt→∞ x(t) = c1 + c′febjt for some c, c′ ∈ C and
j =

√−1.
In Problem 3, the goal is that all the agents of (2) circle

around the same center c at rate b, while keeping the formation
configuration f scaled by |c′|.

Our result is the following.
Proposition 5: Consider the multiagent system (2) and let

f ∈ Cn , b ∈ R. Then, there always exists a state feedback con-
trol u = Fx that solves Problem 3.

Proof: By a similar argument to that in the proof of
Theorem 1, we can show that for (2) there always exists F
such that (A + BF ) has the following eigenstructure:

eigenvalues: λ1 = 0, λ2 = bj, λ3 , . . . , λn distinct

and Re(λ3), . . . , Re(λn ) < 0

eigenvectors: v1 = 1, v2 = f, {v1 , v2 , . . . , vn} independent.

Hence

(∀x(0) ∈ Cn )(∃c, c′ ∈ C) lim
t→∞x(t) = c1 + c′febjt .

That is, Problem 3 is solved. �
The key point to achieving circular motion is to assign one,

and only one, pure imaginary eigenvalue bj, associated with the
formation vector f . The circular motion is counterclockwise if
b > 0, and clockwise if b < 0. One may easily speed up or slow
down the circular motion by specifying the value |b|.

Also note that, by a similar synthesis procedure to that for
fixed-size formation in the previous section, the multiagent sys-
tem (2) can be made to achieve circular motion while keeping a
fixed-size formation with some specified size d > 0.

VII. SIMULATIONS

We illustrate the eigenstructure assignment based approach
by simulation examples. For all the examples, we consider the
multiagent system (2) with five heterogeneous agents, where

A = diag(1.6, 4.7, 3.0,−0.7,−4.2)

B = diag(0.2, 1.5,−0.5,−3.3,−3.7).

Thus, the first three agents are unstable, whereas the latter two
are stable; all agents are stabilizable.

First, to achieve a scalable (regular) pentagon formation, as-
sign the following eigenstructure:

eigenvalues: {λ1 , . . . , λ5} = {0,−1,−2,−3,−4}

eigenvectors: [v1 · · · v5 ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e
2 π j ×1

5 −1 0 0 0
e

2 π j ×2
5 1 0 0 0

e
2 π j ×3

5 −2 −1 1 0
e

2 π j ×4
5 −2 0 −1 0

e
2 π j ×5

5 −2 0 −2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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Fig. 3. Scalable regular pentagon formation (x: initial positions,
◦: steady-state positions).

By (7), we compute the following control gain matrix:

F =
⎡

⎢
⎢
⎢⎢
⎢
⎣

−10.5 − 1.8164j 2.5 − 1.8164j 0 0 0
0.3333 + 0.2422j −3.4667 + 0.2422j 0 0 0
−0.4721 − 2.3511j −0.4721 − 2.3511j 10 −2 0
−0.0442 − 0.4403j 1.1679 − 0.4403j 0 0.697 0
−0.3979 + 0.4391j 0.1427 + 0.4391j 0 −0.5405 −0.0541

⎤

⎥
⎥
⎥⎥
⎥
⎦
.

Simulating the closed-loop system with initial condition x(0) =
[1 + j 1 − 0.5j 1 j − 1 + j]�, the result is displayed in Fig. 3.
Observe that a regular pentagon is formed, and the topology
determined by F contains a spanning tree.

Next, to achieve a fixed-size pentagon formation, we follow
the method presented in Section VI-A. First, assign the follow-
ing eigenstructure:

eigenvalues: {λ1 , . . . , λ5} = {0, 0,−1,−2,−3}

eigenvectors: [v1 · · · v5 ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 e
2 π j ×1

5 0 0 0
1 e

2 π j ×2
5 0 0 0

1 e
2 π j ×3

5 1 0 0
1 e

2 π j ×4
5 0 1 0

1 e
2 π j ×5

5 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and by (7), compute the control gain matrix, as given by

F =
⎡

⎢
⎢⎢
⎢
⎢
⎣

−8 0 0 0 0
0 −3.1333 0 0 0

0.618 + 1.9021j −2.618 − 1.9021j 8 0 0
−0.303 + 0.9326j −0.303 − 0.9326j 0 0.3939 0
−1.0614 + 0.7711j 0.2506 − 0.7711j 0 0 −0.3243

⎤

⎥
⎥⎥
⎥
⎥
⎦

.

Thus, the topology determined by F is 2-rooted with nodes 1
and 2 the only two roots. Then, for different sizes (d = 5, 10, 15),
we obtain by (20) the control u. Simulating the closed-loop
system with the same initial condition x(0) as previously men-
tioned, the result is displayed in Fig. 4, where pentagons with
specified sizes are formed.
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Fig. 4. Fixed-size regular pentagon formation, with size d = 5, 10, 15
(x: initial positions, ◦: steady-state positions).

TABLE I
COMPARISON OF COMPUTATION TIME (UNIT: SECONDS)

Finally, we present an empirical study on the computation
time of synthesizing feedback matrix F . In particular, we com-
pare the centralized synthesis by (7) and the hierarchical synthe-
sis in Section V; the result is listed in Table I for different num-
bers of agents.4 Here, for the hierarchical synthesis, we partition
the agents in such a way that the number of groups and the num-
ber of agents in each group are “balanced” (to make ñ small):
e.g., 100 agents are partitioned into 10 groups of 10 agents each;
500 agents are partitioned into 16 groups of 23 agents each plus
6 groups of 22 each. Observe that the hierarchical synthesis is
significantly more efficient than the centralized one, and the effi-
ciency increases as the number of agents increases. In particular,
for 1000 agents only 0.525 s needed, the hierarchical approach
might well be sufficient for many practical purposes.

VIII. CONCLUDING REMARKS

We have proposed a top-down, eigenstructure assignment
based approach to synthesize state feedback control for solving
multiagent formation problems. The relation between the eigen-
structures used in control synthesis and the resulting topologies
among agents have been characterized, and special topologies
have been designed by choosing appropriate eigenstructures.
More general cases where the initial interagent coupling is arbi-
trary and/or there exist nonstabilizable agents have been studied,
and a hierarchical synthesis procedure has been presented that
improves computational efficiency. Furthermore, the approach
has been extended to achieve fixed-size formation and circular
motion.

4Computation is done by MATLAB R2014b on a laptop with Intel(R)
Core(TM) i7-4510U CPU@2.00 GHz 2.60 GHz and 8.00 GB memory.
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In our view, the proposed top-down approach to multia-
gent formation control is complimentary to the existing (main-
stream) bottom-up approach (rather than opposed to). Indeed,
the bottom-up approach, if successful, can produce scalable
control strategies effective for possibly time-varying topolo-
gies, nonlinear agent dynamics, and robustness issues such as
communication failures, which are the cases very difficult to
be dealt with by the top-down approach. On the other hand,
bottom-up design is generally challenging, requiring significant
insight into the problem at hand and possibly many trials and
errors in the design process; by contrast, top-down design is
straightforward and can be automated by algorithms. Hence, we
suggest the following. When a control researcher or engineer
faces a distributed control design problem for achieving some
new cooperative tasks, one can start with a linear time-invariant
version of the problem and try the top-down approach to de-
rive a solution. With the ideas and insights gained from such
a solution, one may then try the bottom-up design possibly for
time-varying and nonlinear cases.

In future work, we aim to apply the top-down, eigenstructure
assignment based approach to solve more complex coopera-
tive control problems for higher order multiagent systems. Our
immediate goal is to achieve formations in three dimensions
(by treating the state of each agent as a three-dimensional real
vector), as well as to track moving target formations (by intro-
ducing leaders and velocity feedback). In addition, since our
current solution generally relies on the availability of agents’
position measurement (except for the case of consensus where
f is the vector of all ones), we aim to address the case where
only relative position measurement is available.
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