
解説

Application of Supervisory Control to

Secret Protection in Discrete-Event Systems

Shoma Matsui＊・Kai Cai＊＊
＊ ミシガン大学 電気計算機工学科
＊＊ 大阪市立大学 電気情報工学科
＊Department of Electrical and Computer Engineering, University of Michi-

gan, Ann Arbor, USA
＊＊Department of Electrical and Information Engineering, Osaka City Univer-

sity, Japan
＊E-mail: smatsui@umich.edu
＊＊E-mail: kai.cai@eng.osaka-cu.ac.jp

キーワード：離散事象システム (Discrete-Event Systems)，スーパーバイ
ザ制御 (Supervisory Control)，セキュリティ(Security)

1. Introduction

Protecting systems and information from adversar-

ial accesses has increasingly become an indispensable

issue of modern system design. For example, [1] dis-

cusses several attack scenarios with a typical archi-

tecture of control systems. System administrators

have to effectively utilize protection techniques to

mitigate risks of system’s abnormal behavior and/or

information breach. Typically, the objective of at-

tackers is to mislead the system to an abnormal state

or to steal sensitive information. In this paper, we

consider systems containing special components or

realms to which attackers want to gain access, and

system administrators are responsible to protect such

components/realms with proper security levels. At

the same time, administrators have to take into ac-

count the protection costs, because the capacity of

systems may be limited and spending infinite bud-

gets for protections is practically infeasible.

To make our methodology applicable to a wide

range of systems, we abstract a dynamic system,

called the plant in this work, into a discrete-

event system (DES). In the DES framework, plants

are modeled by finite-state automata where states

change to other states discretely and the transitions

are event-driven. In particular, DES are suitable for-

mal models for the dynamics and architectures of

computer and network systems [2]. Moreover, we

employ the supervisory control theory (SCT) of DES

which was proposed by Ramadge and Wonham in

1987 [3], to compute solutions of secret protection

problems we introduce. The readers are referred

to [4] for a comprehensive treatment of the SCT.

In terms of anonymity and secrecy, opacity is a

well-studied concept of securing secrets using the

DES framework. There are several variations of

opacity, which differ specifically in what entity in

the plant to be taken as a secret [5, 6, 7, 8, 9]. A

common assumption among opacity notions is that

the attacker has full knowledge of the structure of

the plant, but partial observability, meaning that the

attacker cannot observe specific events occurring in

the plant. Language-based opacity (LBO) [6] is one

of the opacity variations, which holds if specific se-

cret languages generated by the plant cannot be dis-

tinguished from nominal languages. As other varia-

tions, state-based opacity properties are investigated

by Saboori and Hadjicostis [7, 8]. In [7], a notion

of current-state opacity (CSO) is defined, which re-

quires that the attacker cannot determine whether or

not the plant is currently in the secret state. Initial-

state opacity (ISO) introduced in [8] is another defini-

tion of state-based opacity properties. If the attacker

cannot surely determine whether the initial state of

the plant is a secret state due to seemingly the same

strings of events from the secret initial state, the ISO

of the plant holds. [9] proposes a notion of initial-and-

final-state opacity (IFO) extended from CSO and

ISO. For IFO, secret states are both the initial state

and the final state of the system. For overview of

opacity, see [5].

In contrast to opacity, we do not place any as-

sumption on the attacker’s knowledge of the plant

structure, and the attacker may have full observabil-

ity of the plant. For protecting secrets, we consider

a system equipped with several events which can be

protected by administrators. In this paper, we repre-

sent events which administrators can protect as pro-

tectable events, and other events are called unpro-

tectable events. There are various implementations of

such events in real systems, for example, the access

計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号 1



restriction using password authentication. Moreover,

we represent secrets as specific states in the plant,

called secret states. Such states indicate the plant’s

components storing a particular piece of information

which should be available only for permitted users,

e.g. credential information or credit card numbers

of users. To prevent such secret states from being

reached and thereby sensitive information discovered

by the attacker, system administrators must protect

appropriate protectable events in the plant. In this

paper, we formulate a problem of finding a protection

policy (if it exists) which specifies certain protectable

events in the plant such that (i) the attacker always

has to penetrate a certain number of protected events

to reach the secret states; (ii) the highest cost level to

protect specified events is minimum. Moreover, we

propose algorithms based on the SCT which provide

a solution to this problem. The formulation of the

problem and computation of a solution are explained

based on our previous technical results in [10,11].

The remaining of this paper is organized as follows.

Section 2 formulates the problem of secret protec-

tion with multiple protections and minimum costs.

In Section 3, we present the methodology to com-

pute a solution of the formulated problem. Section 4

explains our methodology using an illustrating exam-

ple. Finally, we conclude this paper in Section 5.

2. Problem Formulation

In this section, we first formulate Secret Securing

with Multiple Protections and Minimum Cost Prob-

lem, then provide a necessary and sufficient condition

under which there exists a solution of the problem.

We consider abstracting a dynamic system into

a DES, which is modeled as a finite-state automa-

ton (FSA). In the FSA model, the states are par-

titioned into two groups, nominal states and se-

cret states. Each secret state represents “accessing

a realm/component containing secret information”.

Thus the intruder’s objective is to reach one of the

secret states in the plant. We denote the set of states

in the plant by Q, and the set of secret states by Qs.

Note that Qs is a subset of Q, i.e. Qs ⊆ Q. A state

transition in the FSA is represented by a directed

edge between two states. Each transition between

two states is called an event. For example, we ex-

press a transition from state qi to state qj labeled by

e as “an event e happened at state qi and then the

plant moved to state qj”.

q0

q1 q2

q3 q4

q7

q6

q5 q8

σ0

σ3

σ1

σ2
σ4

σ5

σ6

σ7

σ8

σ7

σ8

σ9

σ10

σ10

σ10

σ10

σ10

Fig. 1: Example plant; shaded states q6, q7, and q8 contain

secret information. The initial state q0 indicates that a user

is yet to log into the system. Events σ0 and σ1 represent log-

ging into the system as a standard user (User) and as a system

administrator (Admin), respectively. σ2 indicates switching

permission from Admin to User. The application is launched

by σ3 as User and by σ5 as Admin. σ4 means User launches

the application as Admin, e.g. sudo in Unix-like operating

systems. σ6, σ7, and σ9 indicate the authentication points

to obtain access to q6, q7, and q8 respectively. σ8 is an op-

tional authentication point at which administrators can apply

a weaker protection than σ9. σ10 is an event indicating a “log-

off” function, which leads User and Admin to the initial state

q0.

Let us explain the plant modeled as DES with an

illustrating example shown in Fig. 1. Each state

has a unique label and is drawn as a circle. Shaded

states q6, q7, and q8 indicate secret states, and other

states are nominal. Thus Q = {qi | i ∈ [0, 8]} and

Qs = {q6, q7, q8}. q0 is the initial state of this plant,

meaning that the plant dynamics starts from state

q0 and no events have happened yet. The states are

interconnected with events, which are state transi-

tions. Note that some transitions at different states

have the same labels, e.g. σ7, σ8, and σ10. We de-

note the set of all events by Σ. Thus in the plant of

Fig. 1, Σ = {σi | i ∈ [0, 10]}.
The plant in Fig. 1 models a simplified system

of a software application which has three restricted

realms. Consider that this application works accord-

ing to the user’s permission levels. The users have to

pass several authentication points to obtain the per-

mission to reach the restricted realms. Secret states

2 計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号



q6, q7, and q8 are the restricted realms which require

the same level of permission, meaning that all three

secret states have the same level of importance.

Next, consider that we are responsible to mitigate

the risk that intruders reach secret states in the plant,

and for this task, we need to install protections at

appropriate points on paths to secrets. We express

installing protections at certain points as protecting

events at certain states. Meanwhile, the costs to pro-

tect secrets must be minimum. Secret states in the

plant are said to be protected with m protections if

there exist at least m protected events in every path

reaching secrets from the plant’s initial state q0.

In addition to the partition of secret states and

nominal states, we consider two classes of events

in the plant: protectable events and unprotectable

events. This classification reflects that system ad-

ministrators are not necessarily able to install pro-

tections everywhere in the plant. The subsets of pro-

tectable events and unprotectable events are denoted

by Σp and Σup respectively. Note that every event be-

longs to either Σp or Σup, namely Σ = Σp ∪̇Σup. For

the plant in Fig. 1, Σp = {σ0, σ1, σ4, σ6, σ7, σ8, σ9}
and Σup = {σ2, σ3, σ5, σ10}. In general, Admin does

not need to pass authentication to become a standard

user because of its higher permission than User, thus

σ2 is unprotectable. Moreover, σ3 and σ5 are unpro-

tectable because the application of our example plant

does not have an authentication function. The log-off

function can generally be invoked by the system users

without any permissions, and can also represent “dis-

connect” or “terminate”, thus σ10 is unprotectable.

In order for administrators to effectively protect se-

cret states in the plant, it must be determined where

to set up protections. In other words, we need to

determine which events should be protected. We call

“which events to be protected at which states” a pro-

tection policy. That is, a protection policy specifies

which event(s) to be protected each state in the plant.

For example in Fig. 1, a protection policy may specify

protecting event σ0 at state q0. If we are able to ob-

tain a policy that effectively protects all secret states

of the plant and the administrators follow it, then

secret information can be protected. At least admin-

istrators can impose that intruders must always go

through and unlock a predetermined number of pro-

tections in order to reach any secret states from the

initial state. Whether or not this is hard for intrud-

ers depends on their capabilities, which we make no

assumptions, nor do we have control over.

In real systems, however, administrators must also

take into account the costs of protections, because

there generally are no infinite budgets for protecting

secrets, as well as because the plant typically have a

limited capacity for security equipments. For exam-

ple, purchasing biometrics devices to lock a door is

often more costly than using a padlock, even though

biometrics is a more secure way of locking than a

padlock. As another example, complicated security

applications which consume a large amount of mem-

ory cannot be installed in small embedded comput-

ers, in comparison with personal computers for gen-

eral purposes. To represent that different protec-

tions have different costs, we partition the set of pro-

tectable events Σp according to the cost levels. For

example, protectable events in Fig. 1 are divided into

three subsets: Σ0 = {σ0, σ1, σ4}, Σ1 = {σ6, σ7, σ8},
Σ2 = {σ9}. Events in Σ0 represent logging-in func-

tions; thus these can be protected by passwords of

users. Meanwhile, specific security configurations of

the system or application are necessary to protect

events in Σ1; thus protecting events in Σ1 is more

costly than setting up passwords as in Σ0. Also

consider that σ9 represents an internal access to the

secret state q8; thus it is necessary to implement a

highly secured authentication technique in the appli-

cation so as to protect σ9, which consequently is the

most costly. As the subscript, or index, of the subsets

increases, the cost level becomes higher. For simplic-

ity, we consider that the cost level of each subset of

protectable events is not comparable, e.g. the cost to

protect only σ7 in Σ1 is sufficiently larger than that

to protect all events in Σ0. This also means that the

total cost of protecting secrets according to the de-

rived protection policy is determined by the largest

index of the subset of protectable events specified by

the policy.

For convenience, we define Σk
p as the disjoint union

of subsets of protectable events until index k (from

index 0), namely Σk
p := Σ0 ∪̇Σ1 ∪̇ . . . ∪̇Σk. We also

define that the set of secret states Qs is m-securely

reachable with respect to Σk
p if every trajectory from

the initial state to secret states contains at least m

protectable events which belong to Σk
p. Based on

the above discussion of secret states, event partition,

and protection policy, our question here is “how can

we find a protection policy (if one exists) to protect

secrets with m protections and minimum protection

計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号 3



costs?”. We formulate our problem by rephrasing

this question.

Problem 1 (Secret Securing with Multiple Protec-

tions and Minimum Costs Problem, or m-SSMCP).

Given the plant with the partitions of states and

events and a positive integer m ≥ 1, find a protection

policy (if it exists) such that the set of secret states

Qs is m-securely reachable with respect to Σk
p and k

is the least index.

The least index k means that the largest index of

the subsets of protectable events specified by the pro-

tection policy is minimum. For example in the plant

of Fig. 1, k = 1 if every path from the initial state to

secret states contains at least m protectable events

in either Σ0 or Σ1.

3. Solution Existence and Compu-
tation

3.1 Solvability of m-SSMCP

The existence of the solution ofm-SSMCP depends

on the given plant and the given partition of events.

In this section, we introduce a necessary and suffi-

cient condition under which there exists a solution

of m-SSMCP. Recall that m-SSMCP is a problem of

finding a protection policy such that Qs ism-securely

reachable with the minimum protection costs. As can

be seen from the definition ofm-secure reachability, if

there exists a trajectory containing fewer thanm pro-

tectable events, then Qs cannot be m-securely reach-

able. Thus a protection policy of m-SSMCP does not

exist. Moreover, it can be observed that if Qs is m-

securely reachable with respect to Σk
p (k > 0), then

Qs should not be m-securely reachable with respect

to Σk−1
p , because k is required to be the least index.

The following theorem provides a necessary and suf-

ficient condition under which there exists a solution

for m-SSMCP, namely m-SSMCP is solvable.

Theorem 1. m-SSMCP is solvable if and only if ei-

ther of the following conditions holds:

1. Qs is m-securely reachable w.r.t. Σ0

2. Qs is m-securely reachable w.r.t. Σk
p but not

w.r.t. Σk−1
p

Condition 2 means that if 1 ≤ k ≤ n− 1, then se-

cret states in Qs can be protected with m protections

by protecting the events in Σk
p, and some states in Qs

can be protected only with m−1 or fewer protections

if we only protect the events in Σk−1
p . Condition 1 is

similar to Condition 2, but if k = 0, then there does

not exist Σk−1
p .

3.2 Policy Computation

When the necessary and sufficient condition in

Theorem 1 holds, we compute a protection policy of

m-SSMCP by converting it to a control problem and

resorting to the SCT. First, we convert m-SSMCP

to a corresponding control problem. Next, we derive

a solution of the control porblem, namely a control

policy, by employing the SCT, then have that so-

lution revert to a solution of m-SSMCP, namely a

protection policy.

In the SCT framework, we compute a supervisor

which disables particular events so that the behavior

of the target plant does not violate the given specifi-

cation. In the control problem, generally there are

two classes of events, controllable events and un-

controllable events. Events are called controllable

if they can be disabled by the supervisor. Disabled

events are never invoked in the plant. We change

m-SSMCP to a supervisory control problem by in-

terpreting the set of protectable events Σp as con-

trollable events denoted by Σc, and the set of unpro-

tectable events Σp as uncontrollable events denoted

by Σuc. Σc inherits the same partition of Σp, namely

Σk
c = Σ0 ∪̇Σ1 ∪̇ . . . ∪̇Σk. Note that in real systems,

secret states should still be reachable. It is not suit-

able to disable events to protect secrets because it

can inhibit the nominal behavior of regular system

users.

According to the conversion from the security

problem to the control problem, the definition of m-

securely reachability are changed to m-controllable

reachability, that is, Qs is m-controllably reachable

with respect to Σk
c if every path from the initial

state to secret states contains at least m control-

lable events which belong to Σk
c . Also, a protection

policy corresponds to a control policy indicating the

decision of which events to be disabled by the su-

pervisor. Therefore, the following formulation of the

control problem is derived from Problem 1.

Problem 2 (Reachability Control with Multiple

Controllable Events and Minimum Costs Problem,

or m-RCMCP). Given the plant with the partitions

of states and events and a positive integer m ≥ 1,

find a control policy (if it exists) such that the set

of secret states Qs is m-controllably reachable with

4 計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号



respect to Σk
c and k is the least index.

In the same way, the necessary and sufficient con-

dition under which m-RCMCP is solvable is derived

from the conditions in Theorem 1.

Corollary 1. m-RCMCP is solvable if and only if

either of the following conditions holds:

1. Qs is m-controllably reachable w.r.t. Σ0

2. Qs is m-controllably reachable w.r.t. Σk
c but not

w.r.t. Σk−1
c

To utilize the SCT to compute a solution of m-

RCMCP in Problem 2, we design the control speci-

fication automaton. This is done by removing from

the plant automaton all secret states and the tran-

sitions to and from removed secret states. This

implies that we want to make secret states un-

reachable from the initial state, as a solution to

the supervisory control problem. Fig. 2 depicts

q0

q1 q2

q3 q4

q5

σ0

σ3

σ1

σ2
σ4

σ5

σ8

σ10

σ10

Fig. 2: Specification Automaton for Fig. 1

the specification automaton for the plant in Fig. 1,

which is derived by removing the secret states q6,

q7, and q8. The transitions connected to these

states, (q2, σ6, q6), (q6, σ7, q7), (q2, σ7, q7), (q7, σ8, q5),

(q5, σ9, q8), (q6, σ10, q0), (q7, σ10, q0) and (q8, σ10, q0)

are also removed.

Given the plant and the specification designed

above, we compute by the SCT a supervisor to de-

termine which controllable events should be disabled

so that the secret states are unreachable. We point

out that the supervisor computed by the SCT allows

the largest behavior of the plant as long as the spec-

ification is not violated. For example, in Fig. 1, if

reaching q1 is not followed by eventually leaving the

states in the specification in Fig. 2, namely eventually

reaching secret states, by uncontrollable events, then

σ0 is not disabled by the supervisor. The supervisor

does not exist, if the plant always leaves the realm

of the specification by uncontrollable events, result-

ing in that a control policy for m-RCMCP does not

exist. This means that we cannot prevent the plant

from reaching prohibited states in this case the secret

states. By the SCT, one supervisor only specifies a

single event of each trajectory reaching secret states

from the initial state. Therefore, we need to compute

m supervisors which specify controllable events dif-

ferently, to determine m distinct events on each path

from the initial state to secret states.

For example, consider m = 2. To compute the sec-

ond supervisor (SUP2) that specifies different con-

trollable events from the first supervisor (SUP1), we

relabel controllable events already specified by the

control policy derived from SUP1 as uncontrollable

events. For instance, if event σ0 (∈ Σc) at state q0
is specified by the control policy of SUP1 to be dis-

abled, then we add uncontrollable event σ′
0 to Σuc

and relabel σ0 at state q0 as σ′
0. There is no need to

remove σ0 from Σc.

Based on the above discussions, we propose Al-

gorithm 1 to compute a solution of m-RCMCP. Al-

Algorithm 1 RCMCm

Input: Automata of the plant and the specification; integer m

Output: m supervisors

1: for i = 1, 2, . . . ,m do

2: Compute the supervisor (SUPi) by RCMC1 with the plant

and specification

3: if SUPi exists then

4: Derive a control policy (POLi) from SUPi

5: Relabel controllable events specified by POLi as new un-

controllable events

6: Derive the specification from the plant whose events are

relabeled

7: Set the relabeled plant and specification as the new au-

tomata of plant and specification

8: else

9: return Nothing

10: end if

11: end for

12: return SUP1, SUP2, . . . , SUPm

13:

14: function RCMC1(plant, specification)

15: for k = 0, 1, . . . , n− 1 do ▷ assuming n classes in Σc

16: Σk
c =

k∪̇
i=0

Σi

17: Compute by the SCT a supervisor (SUP) which can dis-

able events in Σk
c so that the plant does not violate the specifi-

cation

18: if SUP exists then

19: return SUP

20: end if

21: end for

22: return Nothing

23: end function

計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号 5



gorithm 1 returns supervisors if they exist with re-

spect to the given plant and the specification. If we

obtain m supervisors from Algorithm 1, then there

exist corresponding control policies that solves m-

RCMCP. From the construction of the specification,

these m control policies specify different m control-

lable events on every path from the initial state to

secret states. Thus we merge these m control policies

derived from the m supervisors by Algorithm 1 into

one control policy. Observe that the largest index

of the subsets to which events specified the merged

control policy belong is minimum, because the index

in RCMC1 starts from 0 and is incremented by 1 at

each iteration. Therefore, the control policy derived

from policies of SUP1, . . . , SUPm is a solution of

m-RCMCP. It is also true that if Algorithm 1 re-

turns nothing, then there does not exist a solution of

m-RCMCP, and consequently there is no solution of

m-SSMCP.

Finally as introduced in the beginning of this sec-

tion, by interpreting disabled events as protected

events, a solution of m-SSMCP is derived from the

control policy which has been computed by Algo-

rithm 1 and the merging of control policies.

4. Illustrating Example

In this section, we take the example in Fig. 1 again

to demonstrate our solution for m-SSMCP where

m = 2, namely 2-SSMCP.

First, 2-SSMCP is changed to 2-RCMCP. Recall

that the set of controllable events of this plant are

partitioned into three subsets: Σ0 = {σ0, σ1, σ4},
Σ1 = {σ6, σ7, σ8}, and Σ2 = {σ9}. From the event

partition of the plant in Fig. 1 and the specification

in Fig. 2, SUP1 in line 2 of Algorithm 1 (i = 1) exists

and results in the following control policy:

• At state q0, disable σ0 and σ1.

Based on this policy, we relabel σ0 and σ1 of control-

lable events at state q0 to σ′
0 and σ′

1 of uncontrollable

events. Thus from the plant and the specification af-

ter relabeling, SUP2 in line 2 of Algorithm 1 (i = 2)

exists and results in the following control policy:

• At state q2, disable σ6 and σ7.

• At state q4, disable σ8.

Finally by merging two policies and change dis-

abling to protecting, we obtain the following protec-

tion policy as a solution of 2-SSMCP:

q0

q1 q2

q3 q4

q7

q6

q5 q8

σ0
�

σ3

σ1�

σ2
σ4

σ5

σ6
�

σ7
�

σ8
�

σ7

σ8

σ9

σ10

σ10

σ10

σ10

σ10

Fig. 3: Solution of 2-SSMCP w.r.t. the plant in Fig. 1

• At state q0, protect σ0 and σ1.

• At state q2, protect σ6 and σ7.

• At state q4, protect σ8.

Fig. 3 indicates the plant with the solution policy of

m-SSMCP. “�” means that the event is protected.

5. Conclusions

We have introduced the problem of protecting se-

cret states in the plant with at least m (≥ 1) pro-

tections and minimizing protection costs. This prob-

lem has been formulated as that of finding a protec-

tion policy such that every string leading to secret

states from the initial state has at leastm protectable

events, and the protection costs are minimum simul-

taneously. We have presented an algorithm to pro-

vide a solution of the problem. This algorithm has

been demonstrated with an illustrating example.

In real systems, secrets can belong to different

classes of importance. For example, credit card num-

bers are generally more important than addresses

of users in an e-commerce website, whereas both

kinds of information should not be revealed to non-

permitted users. In future work, we aim to address

such a case by partitioning Qs into subsets according

to the importance levels of secrets.

（年月日受付）
参 考 文 献

1） A. Teixeira, D. Pérez, H. Sandberg and K. H. Johansson :

Attack models and scenarios for networked control systems,

Proceedings of the 1st international conference on high confi-

dence networked systems, 55/64 (2012)

6 計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号



2） C. G. Cassandras and S. Lafortune : Introduction to Discrete

Event Systems, Springer-Verlag (2008)

3） P. J. Ramadge and W. M. Wonham : Supervisory control of

a class of discrete event processes, SIAM Journal on Control

and Optimization, 25-1, 206/230 (1987)

4） W. M. Wonham and K. Cai : Supervisory Control of Discrete-

Event Systems, Springer International Publishing (2019)

5） Y. Guo, X. Jiang, C. Guo, S. Wang and O. Karoui : Overview

of Opacity in Discrete Event Systems, IEEE Access, 8,

48731/48741 (2020)

6） M. Ben-Kalefa and F. Lin : Supervisory control for opacity

of discrete event systems, the 49th Annual Allerton Confer-

ence on Communication, Control, and Computing, 1113/1119

(2011)

7） A. Saboori and C. N. Hadjicostis : Notions of security and

opacity in discrete event systems, Proceedings of 46th IEEE

Conference on Decision and Control, 5056/5061 (2007)

8） A. Saboori and C. N. Hadjicostis : Verification of initial-state

opacity in security applications of des, Proceedings of 9th

International Workshop on Discrete Event Systems, 328/333

(2008)

9） Y. C. Wu and S. Lafortune : Comparative analysis of re-

lated notions of opacity in centralized and coordinated archi-

tectures, Discrete Event Dynamic Systems: Theory and Ap-

plications, 23-3, 307/339 (2013)

10） S. Matsui and K. Cai : Secret Securing with Minimum Cost,

Proceeding of the 61st Japan Joint Automatic Control Con-

ference, 1017/1024 (2018)

11） S. Matsui and K. Cai : Secret Securing with Multiple Pro-

tections and Minimum Costs, Proceedings of the 58th IEEE

Conference on Decision and Control, 7635/7640 (2019)

［著 者 紹 介］
Shoma Matsui

Shoma Matsui received the B. Eng. degree in Electrical and In-

formation Engineering from Osaka City University in 2019. He is

currently a master student in Electrical and Computer Engineering

at the University of Michigan, Ann Arbor. His research interests

include secrecy, privacy, and safety of discrete-event systems, and

applications to computer and network systems.

Kai Cai
Kai Cai received the B. Eng. degree in Electrical Engineering

from Zhejiang University in 2006, the M.A.Sc. degree in Electrical

and Computer Engineering from the University of Toronto in 2008,

and the Ph.D. degree in Systems Science from Tokyo Institute of

Technology in 2011. He is currently an Associate Professor in Os-

aka City University. His research interests include distributed con-

trol of discrete-event systems and cooperative control of networked

multi-agent systems.

計測と制御 第 XX 巻 第 XX 号 XX 年 XX 月号 7


