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Abstract This paper investigates a security problem of simultaneously addressing two types of at-

tacks: Eavesdropping and infiltration. The authors model the target system as a discrete-event system

(DES) with subsets of concealable events and protectable events, in order to make the proposed method-

ology applicable to various practical systems and employ two existing works of DES security: Degree of

opacity and state protection. Specifically, the authors consider that all protectable events are observ-

able, and some observable events are concealable. In addition, protectable events cannot be protected

once they are concealed. Given such a constraint, the goal is to figure out which events to conceal

and which transitions to protect so that the prescribed requirements of degree of opacity and state

protection are satisfied. In this work the authors decide which events to conceal as all transitions of

a given event label are concealed or not concealed. The proposed problem formulation also requires a

solution to only involve absolutely necessary protectable events in order for the system to avoid super-

fluous protection costs. The authors first examine a general version of our security problem with an

intuitive algorithm to compute acceptable solutions, and then present a special version which results

in a reduced computation time compared to the general version.

Keywords Degree of opacity, discrete-event systems, security, state protection.

1 Introduction

Due to the proliferation of possible attack surfaces in cyber-physical systems, it is increas-

ingly crucial to protect the systems not only against malicious agents from external environ-

ments, but also against insiders who try to identify vulnerable behaviours of the systems by

eavesdropping information the systems generate.
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In this paper, we consider systems that possess two types of special states in addition to

normal states: Secret states and critical states. Secret states represent components of the

system at which external agents should not know if the system currently resides. Critical

states, on the other hand, model the system’s specific components which no one should be able

to access freely. For these special states, we address two types of attacks: Eavesdropping and

infiltration. Under eavesdropping attacks, adversaries are supposed to observe the behaviour of

their target system and try to determine whether the system is currently at a secret state. On

the other hand, infiltration attacks are more active than eavesdropping, i.e., attackers are trying

to intrude into the system and access its critical states directly. We take a two-pronged approach

to defend the system against such attacks: Obfuscation against eavesdropping and protection

against infiltration. Specifically, we model our system as a discrete-event system (DES)[1] to

make our methodology applicable to various systems and to employ two existing security works

of DES: Degree of opacity [2] for obfuscation and secure reachability [3] for protection.

There is considerable interest in the study of security among research groups in the DES

community. For instance, the degree of opacity is an enhanced notion of opacity[4–11], which is

one of the widely investigated problems of privacy and secrecy in DES, to measure how much

a secret state is indistinguishable with non-secret states for external agents. For an overview

of opacity, readers are referred to the literatures [12, 13]. The notion of opacity that we use in

this paper is current-state opacity (CSO) which was first introduced by Bryans, et al.[4], and

later extended to the representation using finite state automata[5]. The central idea of CSO is

a condition of a plant which holds if attackers can never be certain whether the current state

of the plant is a secret state. Sharing the common assumption among opacity definitions that

attackers have a full knowledge of the system structure, the work by Han, et al.[14] introduced a

stronger version of CSO which requires the system to generate strings which never reach secret

states while having the same projection as strings that reach secret states.

While CSO can be verified by building an observer automaton of the system[15], various

methodologies to enforce CSO on non-CSO systems have been proposed in the last decade.

The work by Wu and Lafortune[16] introduced an insertion function which inserts additional

observable events to the output from the system, and their methodology was extended to the

decentralized and modular versions of CSO[17]. Later on, the work by Mohajerani, et al.[18]

presented an approach of using an edit function that can not only insert additional events but

also can delete events, to solve the enforcement problem of CSO in for modular systems. On

the other hand, the work by Tong, et al.[19] proposed an enforcement technique using super-

visory control[20] on the system by computing an augmented I-observer which is the parallel

composition of the attacker’s observation and the system’s genuine output. Another approach

to enforce CSO was proposed by Barcelos and Basilio[21], which changes the order of observable

events in strings generated by the system. Assuming that an attacker can observe the subset

of observable events and that all controllable events which can be disabled by the controller

are observable, Moulton, et al.[22] showed that the computational complexity of synthesizing a

supervisor which enforces CSO can be reduced by computing a series of subobservers, a relaxed

variation of subautomaton. Another notable work is by Barcelos and Basilio[23] which intro-
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duced a notion of utility behaviour which should always be disclosed to the legitimate agents

when that behaviour occurs in the system, while ensuring that CSO remains satisfied.

Unlike many works where opacity is a binary property, the work by Schonewille, et al.[2]

developed a quantitative definition of CSO which captures to what extent secret states in the

system are opaque to external agents.

In contrast to the passive attack scheme of opacity, sensor deception [24] and actuator en-

ablement [25] consider active attackers that try to tamper the system’s behaviour by altering

the system’s observation and forcibly enabling events disabled by the controller. For sensor

deception attack, the work by Meira-Góes, et al.[26] employed a game-like structure between

the system and the controller to figure out which observable events the attacker has to insert

or delete against the controller’s observation, so that the system reaches unsafe states. The

subsequent work[27] addressed a dual problem in which the goal is to obtain a robust supervisor

against sensor deception attacks. For actuator enablement attack, the work by Lin, et al.[28]

presented a methodology to figure out which disabled transitions should be enabled by sup-

posing that the attacker eavesdrops the control commands in addition to the subset of sensor

information so that the attacker may be able to exploit the controller’s decision in order to infer

the occurrence of the attacker’s unobservable events. The subsequent work by Lin, et al.[29]

relaxed the normality assumption[28]. The work by Ma and Cai[30] addressed the synthesis

problem of a robust supervisor against actuator enablement attack in a further dire situation

from the system’s viewpoint where any controllable events can be attacked. While the afore-

mentioned works independently deal with sensor deception and actuator enablement, the work

by Meira-Góes, et al.[31] presented a methodology to synthesize a robust supervisor against

both types of attack by applying standard supervisory control with partial observation.

This paper also investigates active attackers who attempt to evade security mechanisms.

Unlike much of the literature on sensor deception and actuator enablement, however, based

on previous work[3], we consider that the goal of active attackers is to reach special states

called critical states in the system, instead of leading the system to its unsafe state. The main

difference from other security notions in DES is that the systems are supposed to be equipped

with security modules that can “protect” certain transitions in the system. Protection here is a

somewhat general term that indicates a test which must be passed by external agents (including

both legitimate ones and adversaries). One example of such protections is setting up a password

to connect to a Wi-Fi access point. This central notion of protection over transitions in the

system is analogous to transition disablement of standard supervisory control of DES in [20]. In

this context, our goal is to ensure that every critical state is protected, i.e., every path from the

initial state to special states contains at least the required number of protected transitions. The

related works of state protection include a quantitative notion of dynamic clearance level [32] to

capture that the authorization given to agents to access critical states is transient, that is, agents

must pass protected transitions again once a given number of consecutive unprotected events

happen. Another relevant work of state protection was presented by Liu, et al.[33], investigating

a situation where a protectable event must not be protected once the prefix of a string contains

a certain number of protected events. The work by Ma, et al.[34] is also intriguing, as it assigns
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a cost weight, a positive real number instead of a positive integer level, to each protectable

event and addresses the problem of finding a (globally) optimal policy so that all critical states

are protected.

The main contributions of this paper are threefold.

1) We propose a novel approach to simultaneously deal with passive attacks and active attack

by combining the existing methodologies of degree of opacity and state protection against

passive attacks and active attacks, respectively. Specifically, supposing that some events in

the system are concealable and/or protectable, we formulate the problem of determining

which events and transitions in the system should be concealed and/or protected, so

that the target system satisfies prescribed quantitative requirements of degree of opacity,

called an obfuscation requirement, and state protection, called a protection requirement.

We also require the overall cost level of protection to be feasibly minimum, i.e., a solution

to the problem should not yield unnecessarily costly (protectable) events, while both the

obfuscation requirement and the protection requirement are satisfied. One key feature

of our problem formulation is that concealed events cannot be protected, and vice versa.

We believe that this limitation is realistic in practical implementations such as packet

filtering and gateway authentication[35], and it also motivates us to formally show that

the system with full observation can be protected once we can determine how to protect

the system under partial observation. While such a cybersecurity scheme involving two

protection mechanisms is one of the potential applications of this work, another example

could be hiring an external security company that checks identities of employees at a

building entrance but is not authorized to enter specific office floors where the company’s

sensitive information is stored, so that the internal information is concealed to external

entities while the access to the information is protected.

2) An effective algorithm to compute possible solutions is presented. Due unavoidably to

the nature of partial observation in DES, our algorithm has exponential time complex-

ity. It is also worth noting that there could be multiple solutions that satisfy all of our

security requirements, because our problem essentially requires that two incomparable

properties, namely degree of opacity and state protection, be satisfied at the same time,

while imposing a trade-off between event concealment and transition protection.

3) Finally, we present a special version of our problem formulation which is solvable by two

different algorithms with reduced computation complexity. By proving the monotonicity

of degree of opacity in a special case, it is also shown that one of the two algorithms always

results in a higher degree of opacity than the other one, while both produce solutions with

the same overall level of protection cost.

The rest of this paper is organized as follows. We present some preliminary definitions,

specifically DES with partial observation, degree of opacity, and state protection in Section 2.

Next, Section 3 formulates a general version of the problem of finding which events to be con-

cealed and which transitions to be protected, and presents an algorithm to compute acceptable
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solutions. In Section 4, we formulate a special version of the problem in Section 3 by intro-

ducing additional constraints so that the overall computation time is reduced compared to the

general version. Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Discrete-Event Systems and Partial Observation

One of the central notions employed in this paper is discrete-event system (DES) which

illustrates systems as deterministic finite state automata, or simply automata. Specifically, we

represent the target system as an automaton G defined as a 4-tuple:

G = (Q, Σ, δ, q0), (1)

where Q is the set of states, Σ is the set of events, δ : Q × Σ → Q is the (partial) transition

function, and q0 ∈ Q is the initial state. The automaton G is usually called a plant which is the

system without our intervention. The transition function δ is extended to δ : Q × Σ∗ → Q in

the standard manner[20], where Σ∗ is the Kleene closure of Σ that comprises an empty string ε

and all strings composed of the events in Σ. We call a set of strings language, and the language

generated by G is denoted by L(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Q}. Henceforth, the subsets of secret

states and critical states in a plant G are denoted by Qs ⊆ Q and Qc ⊆ Q, respectively. Note

that Qs ∩Qc may not be empty, that is, there could be states that are both secret and critical,

depending on how the target system is modelled as a DES.

To introduce the concept of obfuscation into our system model, we divide the set of events

Σ into two (disjoint) subsets of observable events Σo and unobservable events Σuo, i.e., Σ =

Σo
˙⋃Σuo. When the attacker is eavesdropping the system’s behaviour, they cannot directly

determine whether any events in Σuo have happened in the target system. In other words, when

the attacker observes a specific string, there could be multiple possible strings that have actually

been generated by the system, resulting in multiple possible states in which the eavesdropper

thinks the system could reside.

In the DES framework, there is a useful tool called an observer automaton [20] which enables

us to emulate the attacker’s conjecture of the system behaviour. Given a set of observable

events Γ ⊆ Σo, an observer H(Γ ) of a plant G with respect to Γ is denoted by Obs(G, Γ )

which is also represented as a 4-tuple:

H(Γ ) = Obs(G, Γ ) = (A, Γ, δH(Γ ), A0), (2)

where A ⊆ 2Q is the set of observer states, i.e., the set of subsets of states in Q, δH(Γ ) :

A × Γ → A is the partial transition function which is extended to δH(Γ ) : A × Γ ∗ → A in

the same manner as δ, and A0 is the initial state of H(Γ ). The observer automaton can be

constructed by replacing unobservable events with ε and then doing the standard conversion

from a nondeterministic automaton to a deterministic one[36].

Another useful notation of partial observation is natural projection P : Σ∗ → Γ ∗ defined
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recursively by

P (ε) := ε, P (σ) :=







σ, if σ ∈ Γ,

ε, if σ /∈ Γ,

P (sσ) := P (s)P (σ) for s ∈ Σ∗ and σ ∈ Σ.

In other words, the natural projection P removes unobservable events from a given string. The

domain and codomain of P can be extended to languages, i.e., P : 2Σ∗

→ 2Γ∗

which is given

by P (L) =
⋃

s∈L P (s) for a language L ⊆ Σ∗. The inverse of a natural projection P is defined

as P−1 : Γ ∗ → 2Σ∗

which returns all possible strings resulting in a given string by P . That is,

given an observable string s ∈ Γ ∗, we have that P (s′) = s for all strings s′ ∈ P−1(s).

2.2 Degree of Opacity

We measure to what extent secret states are obscured from adversaries by using the notions

of degree of opacity. Although degree of opacity in the original work[2] is defined by an arbitrary

weighting function, in this paper we employ a specific example function in [2] based on the

number of non-secret states indistinguishable with the secret states. That is, as the adversaries

confuse more non-secret states with a secret state, the system is said to be more obscure.

Definition 2.1 (Degree of opacity[2]) Consider a plant G, a set of secret states Qs ⊆ Q,

a subset of observable events Γ ⊆ Σo, and an observer H(Γ ) in (2). The degree of opacity for

a secret state qs ∈ Qs is given by

ΘH(Γ )(qs) = min
A∈A|qs∈A

w(A), (3)

where w(A) = |A \ Qs|, i.e., the number of indistinguishable (non-secret) states in A.

Roughly speaking, in Definition 2.1 the degree of opacity of a secret state is defined by the

number of non-secret states reachable by strings that look the same to an observer as strings

leading to the secret state. We take the minimum of the number of confusing states, since the

same secret state can appear in multiple states of the observer H(Γ ).

We also need a way to represent how we can achieve obfuscation in practical systems. In

this paper, we suppose that some observable events in the system can be “concealed”, meaning

that we can make some observable events unobservable to external entities. The subset of

concealable events is denoted by Σco ⊆ Σo, and one of our main interests in this paper is to

find Σ′
co ⊆ Σco so that the system can achieve obfuscation against an eavesdropping attack.

We will define such a condition in Subsection 3.1 in order to formulate our problem of achieving

obfuscation and protection.

2.3 Secure Reachability

As a countermeasure against infiltration attacks, we employ the concept of secure reachabil-

ity in the framework of state protection† for critical states in the plant. Specifically, protecting

†This notion in the original work was called secret protection, but in this paper we refer it as state protection

to avoid confusion with the notion of secret states in opacity.
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critical states means forcing all users (including malicious ones) to pass designated transitions

before reaching critical states.

In the framework of state protection, the events in a plant G are partitioned into two types of

events: Protectable events and unprotectable events. Protectable events model activities in the

system to which protection technologies can be applied, e.g., authentication and authorization.

We denote the (disjoint) subsets of protectable events and unprotectable events by Σp ⊆ Σ

and Σup ⊆ Σ respectively. Namely, we have that Σ = Σp
˙⋃Σup. Here, we assume that all

protectable events are observable, namely Σp ⊆ Σo, modelling that a controller must observe

events to apply protection technologies. As we mentioned in (1), we believe that this assumption

is realistic, e.g., authentication gateways in cyber-physical systems must detect and identify

communication packets in order to interfere the user activities and ask users to input their

credentials. This assumption is also consistent with another limitation that concealed events

cannot be protected.

Similar to the original work, our main tool of indicating which transitions in the plant

should be protected is a protection policy defined as a mapping function from states to a

subset of events. Here, it is important that we constrain ourselves to construct protection

policies over the observer instead of the original plant, because we are simultaneously ensuring

the obfuscation of secret states against the eavesdropping attacks. Moreover, this constraint

effectively assures that in practical systems, we can still achieve the obfuscation of secret states

even if the attackers further intrude into the security module of the system. In other words,

we can keep our system from being completely compromised even if the attackers can somehow

evade the protections. Mathematically, a protection policy over an observer is defined as follows.

Definition 2.2 (Protection policy over observer) Consider a plant G in (1), a subset of

protectable events Σp, a subset of observable events Γ ⊆ Σo, and an observer H(Γ ) in (2). A

protection policy over an observer H(Γ ) is a mapping function

PH(Γ ) : Q → 2Σp∩Γ (4)

returning a set of protectable and observable events which should be protected at each state in

H(Γ ).

Although the policy PH(Γ ) is our main tool against infiltration, it is also crucial to verify

that the policy over observer is effective over the original plant G. In order for the effectiveness

of PH(Γ ) for the plant G to be verified, we derive a protection policy over G from PH(Γ ) by a

straightforward approach which protects (active) events specified by PH(Γ ) at all states in the

observer state, that is, we drive a protection policy over G, denoted by PG, from PH(Γ ) by

(∀q ∈ Q) PG(q) :=




⋃

A∈{A′∈A|q∈A′}

PH(Γ )(A)



 ∩ Ξ(q), (5)

where Ξ : Q → 2Σ gives the set of active events at state q by Ξ(q) = {σ ∈ Σ | δ(q, σ)}. For

example, if a state q of G is included in a state A of H(Γ ) and PH(Γ ) specifies an event σ at A

to protect, then σ at q will also be protected (if σ is active, or defined, at state q).

smatsui
This seems \dot\bigcup. If so, please use instead \dot\cup.
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Using the protection policy over the plant in (5), we define in the following that a critical

state is securely reachable with a specific number of transitions specified by a policy PG.

Definition 2.3 (Secure reachability[37]) Consider a plant G in (1) and a protection policy

PG in (5). Let ΣPG
=

⋃

q∈Q PG(q) be the subset of protectable events specified by PG. A critical

state qc ∈ Qc is said to be r-securely reachable with respect to PG if

(∀s ∈ Σ∗)δ(q0, s) = qc =⇒ s ∈ Σ∗ΣPG
Σ∗ · · ·Σ∗ΣPG

Σ∗

︸ ︷︷ ︸

ΣPG
appears r times

. (6)

That is, every string from the initial state to a critical state qc contain at least r protectable

events specified by ΣPG
.

Definition 2.3 emphasizes that critical states are still reachable after we apply protections to

the specified transitions, which is one of the main differences of state protection from supervisory

control.

3 Two-Pronged Security Problem

3.1 Problem Formulation

Before we formulate our problem of tackling eavesdropping and infiltration by employing

degree of opacity and state protection, let us introduce two additional key notions, protection

cost levels and security requirements, which the administrators usually need to take into account

in practical systems.

First, as done in the previous work[3], we consider that protectable events are grouped

into n disjoint subsets, that is, Σp = ˙⋃n

i=1Σcl,i. The cost level index i indicates how costly

protectable events in Σcl,i are to be actually protected in real systems. For instance, if the

system can be equipped with three protection mechanisms: Passcode, IC card, and fingerprint

authentication, then we have n = 3. In general, it is more costly to implement a protection

mechanism using physical devices than passcodes, because physical devices require specific

equipment to read the user identity while passcodes can be entered using keyboards, which are

widely available peripherals. Moreover, the protection mechanisms with high security levels

are usually more costly than those with low security levels. Observe that different protectable

events could belong to the same cost level, e.g., both fingerprints and retina authentication

require a biometrics scanner, depending on how they are implemented in practical systems. For

simplicity, the cost levels are just indices and not quantitatively comparable. Namely, the cost

of a single event in Σcl,i+1 is sufficiently larger than the total cost of all events in Σcl,i.

Furthermore, we consider that each of secret states and critical states has its own security

requirement as to what extent it needs to be obscured/protected. Such requirements are defined

as mapping functions Ro : Qs → N
+ ‡ and Rp : Qc → N

+ where Ro and Rp return a required

(minimum) degree of opacity for a secret state and a required (minimum) number of protected

transitions before reaching a critical state, respectively. We henceforth call Ro an obfuscation

requirement and Rp a protection requirement.

‡We add superscript + to explicitly indicate that N
+ is a set of all positive integers that does not contain 0.
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With the two types of requirements being presented, we define two crucial conditions which

represent our goals of ensuring obfuscation and protection against attackers.

Definition 3.1 (Obfuscation) Consider a plant G and an obfuscation requirement Ro.

Given a subset of concealed events Σ′
co ⊆ Σco, a plant G is said to be obfuscated with respect

to Ro and Σ′
co if

(∀qs ∈ Qs) ΘH(Σ′
o)(qs) ≥ Ro(qs), (7)

where Σ′
o = Σo \ Σ′

co.

Definition 3.2 (Protection) Consider an automaton G and a protection requirement Rp.

Given a protection policy PG, a plant G is said to be protected with respect to Rp and PG if

every critical state qc ∈ Qc is Rp(qc)-securely reachable with respect to PG, namely,

(∀qc ∈ Qc)(∀s ∈ Σ∗)δ(q0, s) = qc =⇒ s ∈ Σ∗ΣPG
Σ∗ · · ·Σ∗ΣPG

Σ∗

︸ ︷︷ ︸

ΣPG
appears Rp(qc) times

. (8)

In words, the condition (7) requires that for every secret state in G, the degree of opacity

is greater than or equal to the required value given by Ro. On the other hand, Definition 3.2

states that a plant G is protected if every critical state qc is Rp(qc)-securely reachable, that

is, there are at least Rp(qc) protectable events in every trajectory from the initial state to the

critical state.

Since we constrain ourselves to the construction of protection policy PH(Γ ) in (4) over an

observer H(Γ ) for a given subset of observable events Γ ⊆ Σo instead of its original plant G,

we also need another property with PH(Γ ) corresponding to Definition 3.2.

Definition 3.3 (Feasible protection) Consider a plant G, a subset of observable events

Γ ⊆ Σo its observer H(Γ ) in (2), a protection requirement Rp, and a protection policy PH(Γ )

over H(Γ ). Derive PG from PH(Γ ) by (5). A plant G is said to be feasibly protected with

respect to Rp and PH(Γ ) if every critical state qc ∈ Qc in G is Rp(qc)-securely reachable with

respect to PG.

Definition 3.3 is quite similar to Definition 3.2, and the only difference is that Definition 3.3

is defined for PH(Γ ) instead of PG which is indirectly given by (5). In other words, when we

have a protection policy with partial observation, we say even under such a restricted protection

policy a plant G can still achieve the protection goal of satisfying Rp.

We now have the properties of obfuscation and protection to formulate our goal of finding

a pair of concealed event subset and protection policy that satisfy Ro and Rp simultaneously.

However, it is also reasonable to question whether we can compare two different solutions and

determine a “better” one for the same system. To determine what solution is “good” in this

context, we define a binary relation of two solutions which takes both properties of obfuscation

and protection into account rather than comparing that two properties independently, as a

natural consideration to address eavesdropping and infiltration at the same time by finding

solutions such that both Ro and Rp are satisfied. Although some solutions may end up being

incomparable in this way, such solutions are still acceptable as long as the requirements of

obfuscation and protection are satisfied.
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While one might come up with various definitions of comparing two solutions to implement

our methodology in practical systems, specifically in this paper, we define that a solution is

better than another one if as a result the minimum degree of opacity is no lower and the

maximum cost level is no higher than the other one. First for convenience, let us denote the

minimum degree of opacity with respect to an observer H(Γ ) and the maximum cost level of a

protection policy PH(Γ ) by

dH(Γ ) := min
qs∈Qs

ΘH(Γ )(qs)

and

kPH(Γ )
:= max{i ∈ [1, n] | ΣPH(Γ )

∩ Σcl,i 6= ∅}, (9)

respectively. Recall that protectable events are partitioned into n subsets of cost levels, which

is why the maximum value of PH(Γ ) is n.

Given the aforementioned notations, we define a binary relation of two pairs of concealed

event subset and protection policy as follows.

Definition 3.4 (Policy comparison) Consider a plant G, a subset of observable events

Σo, a subset of concealable events Σco ⊆ Σo, two subsets of concealed events Σco,1 ⊆ Σco

and Σco,2 ⊆ Σco, and two protection policies PH(Σ′
o,1) and PH(Σ′

o,2), where Σ′
o,1 = Σo \ Σco,1

and Σ′
o,2 = Σo \ Σco,2. We denote ≤ as a binary relation on two pairs (Σco,1,PH(Σ′

o,1)
) and

(Σco,2,PH(Σ′
o,2)

) that holds if

dH(Σ′
o,1) ≤ dH(Σ′

o,2) ∧ kPH(Σ′
o,1

)
≥ kPH(Σ′

o,2
)
. (10)

This means that if (Σco,1,PH(Σ′
o,1)

) ≤ (Σco,2,PH(Σ′
o,2)), then the second pair (Σco,2,PH(Σ′

o,2)
)

is better than (or just as good as) the first pair (Σco,1,PH(Σ′
o,1)

).

By defining the binary relation in Definition 3.4, we are also able to state that one pair is

locally optimal in terms of the degree of opacity and the protection cost level.

Definition 3.5 (Local optimality) Consider a plant G, a subset of observable events Σo,

an obfuscation requirement Ro, a protection requirement Rp, and a pair of a concealed event

subset and a protection policy M1 = (Σco,1,PH(Σ′
o,1)

) where Σ′
o,1 = Σo \Σco,1. Assume that G

is obfuscated with respect to Ro and Σco,1 and G is feasibly protected with respect to Rp and

PH(Σ′
o,1). The policy pair M1 is locally optimal if for any other pair M2 = (Σco,2,PH(Σ′

o,2)
)

(where Σ′
o,2 = Σo \ Σco,2) such that G is obfuscated with respect to Ro and Σco,2 and G is

protected with respect to Rp and PH(Σ′
o,2), it does not hold that M1 ≤ M2.

With the aforementioned definitions, we are ready to formulate our problem of finding a

policy pair such that both requirements Ro and Rp are satisfied.

Proposition 3.6 (Two-pronged state security problem) Given a plant G, an obfuscation

requirement Ro, a protection requirement Rp, a subset of observable events Σo, and a subset

of concealable events Σco ⊆ Σo, find a pair of concealed event subset and protection policy

(Σ′
co,PH(Σ′

o)) (where Σ′
co ⊆ Σco and Σ′

o = Σo \ Σ′
co) such that

A1. G is obfuscated with respect to Ro and Σ′
co; and

smatsui
This should be "Problem".
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A2. G is feasibly protected with respect to Rp and PH(Σ′
o); and

A3. (Σ′
co,PH(Σ′

o)) is locally optimal.

A solution to Problem 3.6 may not be unique, since there could be more than one pair such

that properties A1–A3 hold, due to the existence of incomparable pairs with the binary relation

in Definition 3.4. In other words, a set of solutions is not totally ordered but partially ordered

according to the relation ≤. Moreover, one pair may be strictly better than another one due to

1) The degree of opacity being higher and the protection policy being the same; or

2) The protection policy resulting in lower cost but the degree of opacity being the same; or

3) Both the degree of opacity being higher and the protection cost being lower.

Example 3.7 Let us consider an example system in Figure 1. Suppose that the system

contains one secret state q4 and two critical states q4 and q7, i.e., we have Qs = {q4} and

Qc = {q4, q7}. For example in practical systems, q4 could be a service for a finance department,

in which any unauthorized access should be forbidden, and the employees in other departments

should not be able to know that the financial service at q4 is currently running. The critical

state q7, on the other hand, is an internal service which all employees can access as long as they

provide proof of their identity. Also, assume that we can conceal the events in Σco = {σ1, σ3, σ4}

and let the set of protectable events be Σp = {σ1, σ2, σ3, σ4}. The system does not have any

unobservable events at first, i.e., Σuo = ∅. Let us simply partition the protectable events

into three cost levels, namely, Σcl,1 = {σ1, σ2}, Σcl,2 = {σ3}, and Σcl,3 = {σ4}. Finally,

consider that we are required to satisfy an obfuscation requirement Ro(q4) = 1 and a protection

requirement Rp(q4) = 1, Rp(q7) = 2.

Figure 1 Example plant G1

Our goal is to find a subset of concealable events Σ′
co ⊆ Σco and a protection policy PH so

that all the three properties in Problem 3.6 are satisfied. Indeed, we cannot satisfy property

A1 if no events are concealed, namely, Σ′
co = ∅, since H = Obs(G, Σo) = G in this case and

ΘΣo\Σ′
co

(q4) = 0 < Ro(q4). Similarly, we cannot satisfy property B2 if we conceal all events in

Σco, namely Σ′
co = Σco, because PH can only protect observable (and not concealed) events,

resulting in the critical state q7 being unable to be 2-securely reachable.
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Notably, we can have two incomparable solutions for this example system. First, let us pick

Σ′
co = {σ1}.

This results in an observer H1 = H({σ2, σ3, σ4}) in Figure 2 and dH1 = 2. The resulting

protection policy is

PH1({q1}) = {σ3, σ4}, PH1({q2}) = {σ2}, PH1({q3}) = {σ2},

which yields kPH1
= 3 due to protecting σ4.

Figure 2 Observer H1 = H({σ2, σ3, σ4})

Next, let Σ′
co = {σ3, σ4} which results in an observer H2 = H({σ1, σ2}) in Figure 3 and

yields

PH2({q1, q2, q3}) = {σ2}, PH2({q4, q5}) = {σ1}.

Figure 3 Observer H2 = H({σ1, σ2})

In this case, we have dH2 = 1 and kPH2
= 1. Observe that both solutions are incomparable

according to Definition 3.4 because the former solution yields the higher (minimum) degree of

opacity but the higher (maximum) cost level than the latter one, while both solutions satisfy

all properties in Problem 3.6.

3.2 Policy Computation

The main idea to find a solution to Problem 3.6 is very simple. We first let all concealable-

and-unprotectable events (i.e., Σco\Σp) be unobservable, then compute an observer automaton

of G, check whether there exists a protection policy that satisfies property A2, using the existing

algorithm[3] which returns a protection policy with minimum cost levels (if it exists). If yes,

then we check if the degree of opacity for every secret state is greater than or equal to the
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obfuscation requirement Ro. That is, we check if (7) holds with Σ′
co = Σco \ Σp. If the

requirement Ro is satisfied, i.e., property A1 holds, then we add a pair of Σ′
co and PH(Σo\Σ′

co)

to the candidate set of solutions. We repeat this procedure for all combinations of concealable-

and-protectable events, namely all subsets in 2Σco∩Σp . After aggregating all candidate pairs,

we remove ones which violate property A3 from the candidate set. In summary, we gather

solution candidates that satisfy A1 and A2 for all combinations (including the empty subset)

of concealable-and-protectable events, and then we evict candidates that violate A3.

We present our algorithm to find a solution to Problem 3.6 in Algorithm 1 and its sub-

routines in Algorithm 2. Procedures MRCMC, Spec, and RCMC are adopted as is from [37].

Algorithm 1 computes a pair of a concealed event subset and a protection policy for every

combination of concealable-and-protectable events. In each iteration of computing a pair, if the

algorithm detects either type of policy does not exist for the temporary subset of protectable

events Σco (i.e., Line 13 and Line 18), then it skips that subset and continues to the next sub-

set in 2Σo∩Σp . Roughly speaking, Algorithm 1 examines all possible capabilities of concealing

and protecting events, by calling MRCMC and CheckDoO so that properties A1 and A2 in

Problem 3.6 are satisfied. Once the set of solution candidates POL is formed, from Line 26, the

policy pairs violating property A3 are removed from POL, and then Algorithm 1 finally returns

POL which only contains the policy pairs satisfying all properties in Problem 3.6.

In particular for property A2 of Problem 3.6, we conservatively derive a protection require-

ment R′
p for each observer state from Rp in Line 11 by taking the maximum of the required

number of protected transitions among states contained in the observer state. That is, letting

Ac = {A ∈ A | A ∩ Qc 6= ∅} be the set of observer states which contains any critical states, we

derive a conservative protection requirement R′
p from Rp by

(∀Ac ∈ Ac) R′
p(Ac) = max

qc∈Ac

Rp(qc). (11)

For example, say Rp(qc,1) = 1 and Rp(qc,2) = 2. If an observer has a state Ac = {q1, q2, qc,1, qc,2}

where q1 and q2 are not critical states, then we have R′
p(Ac) = max{0, 0, 1, 2} = 2.

The worst-time complexity of Algorithm 1 is O
(
2Σco∩Σp+|Q| +

(
2|Σco∩Σp|

2

))
which comes

from Lines 2, 7, 26, and 27. The exponential portion 2|Σco∩Σp|+|Q| is due to the iteration

between Lines 2 and 22 as it enumerates all subsets in the powerset of Σco ∩Σp and constructs

an observer of G having the set of states Q. The combination portion, denoted by a binomial

coefficient, is due to the iteration between Lines 26 and 36 which compares every combination

of two pairs in POL in the worst case, with the largest possible POL whose size is 2|Σco∩Σp|.

To prove that Algorithm 1 produces correct solutions to Problem 3.6, i.e., all the properties

of Problem 3.6 are satisfied, we first need to show that by computing a protection policy PH(Γ )

for an observer of G, the requirement Rp for the original plant G is also satisfied, especially for

property A2.



14 SHOMA MATSUI · KAREN RUDIE · KAI CAI

Algorithm 1 Try all
This algorithm produces a set of pairs of concealed event subsets and protection policies which solve Problem 3.6.

The algorithm first enumerates all subsets of concealable-and-protectable events to examine whether both the

obfuscation requirement and the protection requirement are satisfied. After gathering solution candidates, pairs

which are not locally optimal are removed from candidates

Require: G = ( , Σ, , ), Σo, Σp, Σco, Qs, Qc, Ro, Rp

Ensure: POL or NOT FOUND

POL = ∅, Σuo = Σ \ Σo

for Σ′
co ∈ 2Σco∩Σp do

Σ′
uo = Σuo ∪ (Σco \ Σp) ∪ Σ′

co ⊲ Make all concealable-and-unprotectable events and concealed events

unobservable.

Σ′
o = Σo \ Σ′

uo

Σ′
p = Σp \ Σ′

co ⊲ Make concealed protectable events unprotectable.

Σ′
up = Σ \ Σ′

p

H(Σ′
o) = (A, Σ′

o, , )

PH(Σ′
o)(A) = ∅ for all A ∈ A ⊲ Initialize the protection policy for all observer states as an empty set.

Ac = {A ∈ A | A ∩ Qc 6= ∅}

for Ac ∈ Ac do

R′
p = maxqc∈Ac

Rp(qc) ⊲ Using (11), compute a conservative protection requirement an observer

state Ac containing critical states.

P ′ = MRCMC(H(Σ′
o), Σ′

p, Ac, R′
p) ⊲ Compute a protection policy such that Ac is R′

p-securely

reachable using non-concealed protectable events in Σ′
p. The policy P ′ is Null if Ac cannot be protected.

if P ′ is Null then

Go to Line 2

end if

PH(Σ′
o)(A) = PH(Σ′

o)(A) ∪ P ′(A) for all A ∈ A

end for

if CheckDoO(H(Σ′
o), Qs, Ro) is False then ⊲ Check if the degree of opacity of every

observer state containing any critical states is greater than or equal to the obfuscation requirement Ro. If

not, CheckDoO returns False.

Go to Line 2

end if

POL = POL ∪ {(Σ′
co,PH(Σ′

o))} ⊲ Add a solution candidate to the set POL.

end for

if POL = ∅ then

return NOT FOUND ⊲ No solution candidates found.

end if

for (Σco,1,PH,1) ∈ POL do

for (Σco,2,PH,2) ∈ POL \ {(Σco,1,PH,1) do}

if (Σco,1,PH,1) ≤ (Σco,2,PH,2) then

POL = POL \ {(Σco,1,PH,1)} ⊲ The solution candidate is not locally optimal, so remove it from

POL.

Go to Line 26

else if (Σco,2,PH,2) ≤ (Σco,1,PH,1) then

POL = POL \ {(Σco,2,PH,2)} ⊲ The solution candidate is not locally optimal, so remove it from

POL.

Go to Line 27

end if

end for

end for

return POL

smatsui
Algorithms need line numbers.



A TWO-PRONGED APPROACH TO SECURITY OF DES 15

Algorithm 2 Subroutines
procedure CheckDoO(H(Γ ), Qs, Ro) ⊲ This checks if the degree of opacity of every secret state is

greater than or equal to the opacity requirement.

for qs ∈ Qs do

if ΘH(Γ )(qs) < Ro(qs) then

return False

end if

end for

return True

end procedure

procedure MRCMC(G, Σp, qc, r) ⊲ This produces a protection policy for a plant

G which specifies at least r protectable events in every path from the initial state to a critical state qc with

the minimum cost level due to RCMC.

G1 = G = (Q, , , )

for j ∈ [1, r] do

GK,j = Spec(Gj , qc)

Mj = RCMC(Gj , GK,j , Σp)

if Mj 6= Null then

Derive Pj from Mj

if j < r then

Form Gj+1 from Pj

end if

else

return Null

end if

end for

P(q) :=
⋃r

j=1 Pj(q) for all q ∈ Q

return P

end procedure

procedure Spec(G, qc) ⊲ This produces a specification automaton by removing a critical state qc from G

and transitions to and from qc.

δK(q) =
undefined if q = qc ∨ δ(q) = qc

δ(q) otherwise

GK = (Q \ {qc}, Σ, δK , q0)

return GK

end procedure

procedure RCMC(G, GK , Σp) ⊲ This produces a supervisor which specifies protectable events with the

minimum cost level.

K = L(GK)

for k = 1, 2, · · · , n do

Σp,k = ˙⋃k

j=1Σcl,j ∩ Σp

Compute a supervisor M s.t. L(M) = sup ⌋(K) w.r.t. Σp,k

if M is nonempty then

return M

end if

end for

return Null

end procedure

smatsui
Algorithms need line numbers.
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Lemma 3.8 Consider a plant G, a subset of observable events Γ ⊆ Σo, an observer

H(Γ ) = (A, Γ, δH(Γ ), A0), and a protection requirement Rp for G. Given a protection policy

PH(Γ ) for H(Γ ), if H(Γ ) is protected with respect to a conservative protection requirement R′
p

in (11) and PH(Γ ), then by constructing a protection policy PG for G as in (5), the original

plant G is feasibly protected with respect to Rp and PH(Γ ).

Proof Let Ac = {A ∈ A | A ∩Qc 6= ∅} be the subset of observer states which contain any

critical states. Since the condition (8) holds for H(Γ ) and R′
p, we have that

(∀Ac ∈ Ac)(∀s ∈ Γ ∗) δH(Γ )(A0, s) = Ac =⇒ s ∈ Γ ∗ΣPH(Γ )
Γ ∗ · · ·Γ ∗ΣPH(Γ )

Γ ∗

︸ ︷︷ ︸

ΣPH(Γ )
appears R′

p(Ac) times

. (12)

Note that all events in the observer H(Γ ) are observable, so in (12) we consider all strings in

Σ∗
o instead of Σ∗, and it is equivalent to

(∀s ∈ Γ ∗) δH(Γ )(A0, s) ∈ Ac =⇒ s ∈ Γ ∗ΣPH(Γ )
Γ ∗ · · ·Γ ∗ΣPH(Γ )

Γ ∗

︸ ︷︷ ︸

ΣPH(Γ )
appears R′

p(δH(Γ )(A0, s)) times

. (13)

Expressions (12) and (13) mean that if an observable string s leads H(Γ ) to an observer state

which contains any critical states of G, then s contains at least the number of protectable events

required by R′
p.

By the definition of Ac, we have that

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ δH(Γ )(A0, s) ∈ Ac.

Thus, by syllogism, (13) implies that

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ s ∈ Γ ∗ΣPH(Γ )
Γ ∗ · · ·Γ ∗ΣPH(Γ )

Γ ∗

︸ ︷︷ ︸

ΣPH(Γ )
appears R′

p(δH(Γ )(A0, s)) times

. (14)

Since we know that ΣPH(Γ )
= ΣPG

from (5), it holds that by (14),

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ s ∈ Γ ∗ΣPG
Γ ∗ · · ·Γ ∗ΣPG

Γ ∗

︸ ︷︷ ︸

ΣPG
appears R′

p(δH(Γ )(A0, s)) times

. (15)

From (11), we naturally have the following property of the conservative requirement R′
p and

the original requirement Rp.

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ Rp(qc) ≤ R′
p(δH(Γ )(A0, s)). (16)

Since ΣPG
= ΣPH(Γ )

⊆ Γ by (4) and (5), for any r, r′ ∈ N
+ where r ≤ r′, it holds that

Γ ∗ΣPG
Γ ∗ · · ·Γ ∗ΣPG

Γ ∗

︸ ︷︷ ︸

ΣPG
appears r times

⊇ Γ ∗ΣPG
Γ ∗ · · ·Γ ∗ΣPG

Γ ∗

︸ ︷︷ ︸

ΣPG
appears r′ times

.
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In words, for any string s ∈ Γ ∗, if s contains at least r′ protected events, then s contains at

least r protected events, and the converse is not true. Hence, from (15) and (16), we have that

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ s ∈ Γ ∗ΣPG
Γ ∗ · · ·Γ ∗ΣPG

Γ ∗

︸ ︷︷ ︸

ΣPG
appears Rp(qc) times

. (17)

Expressions (15) and (17) mean that if a string s in the observer H leading to a secret state qc

contains at least R′
p(δH(Γ )(A0, s)) protected events, then s contains at least Rp(qc) protected

events because Rp(qc) ≤ R′
p(δH(Γ )(A0, s)).

Next, let P : Σ∗ → Γ ∗ be a natural projection and P−1 : Γ ∗ → 2Σ∗

be the inverse of P .

From (17), we have that

(∀qc ∈ Qc)(∀s ∈ Γ ∗) qc ∈ δH(Γ )(A0, s) =⇒ P−1(s) ∩ L(G) ⊆ Σ∗ΣPG
Σ∗ · · ·Σ∗ΣPG

Σ∗

︸ ︷︷ ︸

ΣPG
appears Rp(qc) times

. (18)

In words, since we know that a string s in H(Γ ) contains at least Rp(qc) protected events, the

strings in G projected to s should also contain at least Rp(qc) protected events. Thus (18) is

equivalent to

(∀qc ∈ Qc)(∀t ∈ Σ∗) qc ∈ δH(Γ )(A0, P (t)) =⇒ t ∈ Σ∗ΣPG
Σ∗ · · ·Σ∗ΣPG

Σ∗

︸ ︷︷ ︸

ΣPG
appears Rp(qc) times

. (19)

Note that string t in (19) can contain unobservable events.

By the construction of observer H(Γ ), we have that

(∀qc ∈ Qc)(∀t ∈ Σ∗) δ(q0, t) = qc =⇒ qc ∈ δH(Γ )(A0, P (t)). (20)

That is, if a critical state qc is reachable in G by a string t, then an observer state containing

qc should be reachable by a projected string P (t).

Thus, from (19) and (20) by syllogism, it holds that

(∀qc ∈ Qc)(∀t ∈ Σ∗) δ(q0, t) = qc =⇒ t ∈ Σ∗ΣPG
Σ∗ · · ·Σ∗ΣPG

Σ∗

︸ ︷︷ ︸

ΣPG
appears Rp(qc) times

.

This is the same as (8), and recall that we derive PG from PH(Γ ) via (5). Therefore, as defined

in Definition 3.3, if an observer H(Γ ) is protected with respect to R′
p and PH(Γ ), then the

original plant G is feasibly protected with respect to Rp and PH(Γ ).

The converse of Lemma 3.8 cannot be proved because the converse of (20) does not hold.

This is the nature of the observer construction, that is, we cannot restore the original plant

when we only know its observer, because some information of the structure of the plant is lost

due to unobservable events.

Using Lemma 3.8, we will show that the solutions to Problem 3.6 produced by Algorithm 1

are correct. Namely, we will show that

1) If a solution to Problem 3.6 exists, then Algorithm 1 will not produce NOT FOUND; and

2) When Algorithm 1 produces pairs of concealed events together with protection policies,

each of those pairs is indeed a solution to Problem 3.6.

smatsui
Needs black square here as q.e.d.
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Theorem 3.9 The pairs of concealed events and protection policies produced by Algo-

rithm 1 are solution to Problem 3.6.

Proof Algorithm 1 terminates since 2Σco∩Σp , the set of observer states Ac in every itera-

tion, and POL are finite.

Assume that there is no solution to Problem 3.6. This means that for given G, Ro, and

Rp, there does not exist any candidate that satisfies both properties A1 and A2 simultaneously.

Note that property A3 holds as long as there is at least one pair such that both A1 and A2

hold.

If property A1 does not hold, then Procedure CheckDoO at Line 18 of Algorithm 1 returns

False and Algorithm 1 continues to the next iteration without adding a policy pair to POL.

From Lemma 3.8, if G is not feasibly protected, then the observer H(Σ′
o) of G is not protected.

In that case, from Definition 3.3, there exists a state Ac ∈ Ac such that MRCMC in Line 12

returns Null, and thus Algorithm 1 continues to the next iteration without adding a policy pair

to POL.

Hence, if no pair satisfies both A1 and A2 simultaneously, then POL remains empty, so

Algorithm 1 returns NOT FOUND at Line 24. Therefore, Algorithm 1 always returns NOT FOUND

if there exists no solution to Problem 3.6.

Conversely, if POL is nonempty, then all policy pairs in POL satisfy A1 and A2, and

Algorithm 1 continues to Line 26. Between Lines 26 and 36, all pairs that violate A3 are

removed from A3 by Lines 28 and 31. Therefore, all policy pairs in POL satisfy A1, A2, A3.

Example 3.10 Let us revisit the example system in Example 3.7. The power set 2Σco∩Σp

includes both {σ1} and {σ3, σ4}, and the set of candidate solutions POL after Line 22 contains

the solution pairs we presented in Example 3.7. In particular, property A3 holds since these

two solutions are incomparable according to Definition 3.4.

4 Special Version of the Two-Pronged Security Problem

As seen in Section 3, finding solutions to Problem 3.6 requires us to examine all subsets in

2Σco∩Σp , resulting in two exponential portions for the worst-time complexity. In this section,

we try to remove the exponential portion of 2Σco∩Σp by imposing additional constraints on

Problem 3.6. The main idea is to gradually reveal/hide protectable events one by one instead

of enumerating all subsets of 2Σco∩Σp .

4.1 Algorithm that Uses Full Concealment First

Let us define a couple of notions before formulating the special version of Problem 3.6. The

first definition will be used to impose a total order on protectable events according to their

cost levels. Specifically, we need protectable events to be totally ordered according to their cost

levels so that we can deterministically pick a protectable event to be revealed or hidden. For

example, let us say Σp = {σ1, σ2}. If two protectable events belong to the same cost level,

e.g., Σcl,i = {σ1, σ2}, then there are three options of events to reveal/hide, i.e., {σ1}, {σ2}, or

{σ1, σ2}, which we want to avoid.
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Definition 4.1 (Event cost comparison) Consider two protectable events σ1 and σ2. We

denote < as a binary relation on σ1 and σ2 that holds if σ1 ∈ Σcl,i and σ2 ∈ Σcl,j where

i, j ∈ [1, n] and i < j, i.e., σ1 < σ2 simply means that the event σ2 is more costly than event

σ1.

Next, we define a key condition which will replace property A3 of Problem 3.6. The main

idea is to only focus on the protection cost levels, in order to prevent solutions from being

incomparable and to determine the best pair of concealed events and a protection policy.

Definition 4.2 (Minimal feasible protection policy) Consider a plant G, a protection

requirement Rp, a set of observable events Σo ⊆ Σ, a set of concealable events Σco ⊆ Σo, a

subset of concealed events Σ′
co ⊆ Σco, and a protection policy PH(Σ′

o) : Q → 2Σp∩Σ′
o (where

Σ′
o = Σo \ Σ′

co) such that G is feasibly protected with respect to Rp and PH(Σ′
o). A protection

policy PH(Σ′
o) is said to be minimally feasible with respect to Σ′

co if for any other protection

policy P ′
H(Σ′

o) : Q → 2Σp∩Σ′
o such that G is feasibly protected with respect to Rp and P ′

H(Σ′
o),

it holds that

kPH(Σ′
o)

≤ kP′
H(Σ′

o)
. (21)

That is, after concealing all events in Σ′
co, a policy PH(Σ′

o) is minimally feasible if it does not

yield unnecessarily costly events.

Using Definition 4.1 and Definition 4.2, we modify Problem 3.6 as follows.

Proposition 4.3 (Special two-pronged state security problem) Consider a plant G, a

subset of observable events Σo ⊆ Σ, a subset of concealable events Σco ⊆ Σo, an obfuscation

requirement Ro, and a protection requirement Rp. Assuming that Σp is totally ordered according

to the binary relation < in Definition 4.1, find a pair of a subset of concealed event and a

protection policy (Σ′
co,PH(Σ′

o)) (where Σ′
co ⊆ Σco and Σ′

o = Σo \ Σ′
co) such that

B1. G is obfuscated with respect to Ro and Σ′
co; and

B2. G is feasibly protected with respect to Rp and PH(Σ′
o); and

B3. PH(Σ′
o) is minimally feasible with respect to Σ′

co.

Similar to Problem 3.6, a solution to Problem 4.3 may not be unique, since property B3 does

not impose any additional condition on the degree of opacity. It can be seen that Problem 4.3

is neither a restricted nor a relaxed version of Problem 3.6 but a “special” version, that is, we

are not required to find a better solution in terms of the degree of opacity, but need to find the

best solution for cost levels.

The central idea to find a solution to Problem 4.3 is similar to that of Problem 3.6, except

we exploit that protectable events are totally ordered to deterministically find the best solution

in terms of cost level according to property B3 without examining all subsets in the power set

of Σco ∩ Σp, while Problem 3.6 can result in incomparable solutions due to property A3.

Our algorithm to find a solution to Problem 4.3 is presented in Algorithm 3, sharing the

same techniques of the same subroutines in Algorithm 2 with Algorithm 1. The main difference

smatsui
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between Algorithm 3 and Algorithm 1 is that Algorithm 3 begins with concealing all events in

Σco and in each iteration, the current least costly (concealed-and-protectable) event is made

observable on Line 17, instead of evaluating all subsets of 2Σco∩Σp . Unlike Algorithm 1, thanks

to MRCMC, it is not required to examine multiple candidate solutions in order to satisfy

property B3.

Algorithm 3 Full concealment first
This algorithm produces a pair of a concealed event subset and a protection policy which solves Problem 4.3. The

algorithm first conceals all concealable events in Σco, and then tests whether both the obfuscation requirement

and the protection requirement are satisfied. If not, this algorithm makes the most costly event in Σco ∩ Σp

observable, and then tests the requirements again. Once a pair which satisfies the requirements is found, then

this algorithm returns that pair as a solution to Problem 4.3.

Require: G = ( , Σ, , ), Σo, Σco, Σp, Qs, Qc, Ro, Rp

Ensure: (Σ′
co,PH(Σ′

o)) or NOT FOUND

Σuo = Σ \ Σo, Σ′
co = Σco,

Σ′
uo = Σuo ∪ Σ′

co, ⊲ Make all concealable events unobservable.

Σ′
o = Σ \ Σ′

uo,

Σ′
p = Σp \ Σ′

co, ⊲ Make concealed protectable events unprotectable.

Σ′
up = Σ \ Σ′

p,

H(Σ′
o) = Obs(G, Σ′

o) = (A, Σ′
o, , ),

PH(Σ′
o)(A) = ∅ for all A ∈ A, ⊲ Initialize the protection policy for all observer states as an empty set.

Ac = {A ∈ A | A ∩ Qc 6= ∅}

for Ac ∈ Ac do

R′
p = maxqc∈Ac

Rp(qc) ⊲ Using (11), compute a conservative protection requirement for an observer

state Ac containing critical states.

P ′ = MRCMC(H(Σ′
o), Σ′

p, A, R′
p) ⊲ Compute a protection policy such that Ac is R′

p-securely reachable

using non-concealed protectable events in Σ′
p. The policy P ′ is Null if Ac cannot be protected.

if P ′ is Null then

if Σ′
co ∩ Σp = ∅ then

return NOT FOUND ⊲ Terminate if there is no concealed event to reveal left.

end if

σp = min(Σ′
co ∩ Σp, <),

Σ′
co = Σ′

co \ {σp}, ⊲ Reveal the least costly concealed-and-protectable event.

Σ′
uo = Σuo ∪ Σ′

co, ⊲ Make all concealed events unobservable.

Σ′
o = Σo \ Σ′

co,

Σ′
p = Σp \ Σco,

Σ′
up = Σ \ Σ′

p.

Go to Line 6

end if

PH(Σ′
o)(A) = PH(Σ′

o)(A) ∪ P ′(A) for all A ∈ A

end for

if CheckDoO(H(Σ′
o), Qs, Ro) is False then ⊲ Check if the degree of opacity

of every observer state containing any critical state is greater than or equal to the obfuscation requirement

Ro. If not, CheckDoO returns False.

return NOT FOUND

end if

return (Σ′
co,PH(Σ′

o))

smatsui
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The time complexity of Algorithm 3 in the worst case is O(|Σco ∩ Σp| × 2|Q|). The expo-

nential part 2|Q| is due to the observer construction, and |Σco ∩ Σp| comes from the iteration

between Lines 6 and 22 as the maximum number of the iterations is |Σco ∩ Σp|. Although the

complexity is still exponential, we conclude that Algorithm 3 is less computationally expensive

than Algorithm 1.

To show that solutions produced by Algorithm 3 will solve Problem 4.3, we utilize Lemma 3.8

again.

Proposition 4.4 A pair of a concealed event subset and a protection policy produced by

Algorithm 3 is a solution to Problem 4.3.

Proof Algorithm 3 terminates since Σco ∩ Σp is finite and all protectable events will

eventually be removed from Σ′
co in Line 17.

If Algorithm 3 returns a pair, then it reaches Line 28. From MRCMC in Line 11 and the

construction of PH(Σ′
o) in Line 24, the observer H(Σ′

o) is protected with respect to R′
p in Line

10 and PH(Σ′
o). From Lemma 3.8 and Line 24, the original plant G is feasibly protected with

respect to Rp and PH(Σ′
o) in Line 24. Thus, property B2 of Problem 4.3 is satisfied.

Next, since Algorithm 3 also returns a candidate subset of concealed event, CheckDoO in

Line 26 returns True. CheckDoO ensures that the degree of opacity of every secret state qs

is greater than or equal to the requirement Ro(qs). Thus, by concealing all events in Σ′
co, (7)

holds for Ro given to Algorithm 3. Therefore, property B1 of Problem 4.3 is satisfied by Σ′
co.

Finally, the cost level of protectable events specified by P ′ from MRCMC on Line 11 is

minimal (cf. [37]). That is, the condition in (21) holds for PH(Σ′
o) in every iteration between

Lines 9 and 25 of Algorithm 3. Thus, property B3 of Problem 4.3 is satisfied by PH(Σ′
o).

Therefore, if Algorithm 3 returns a pair (Σ′
co,PH(Σ′

o)) where Σ′
o = Σo \ Σ′

co, then Σco and

PH(Σ′
o) are a solution to Problem 4.3.

Observe that Algorithm 3 returns NOT FOUND immediately after it confirms that CheckDoO

returns False. This is because the degree of opacity defined by the number of confusing (non-

secret) states is monotonic in the special case where the set of observable events in each iteration

is a subset of that in the previous iteration. In other words, if the degree of opacity with Σ′
uo

is below the requirement Ro, then there is no chance for the degree of opacity to become larger

than Ro, since Σ′
uo shrinks in each iteration. We show this property in the following proposition.

Proposition 4.5 Consider a plant G and a set of secret states Qs ⊆ Q. Let Σo,1 ⊆ Σ and

Σo,2 ⊆ Σ be sets of observable events, and H(Σo,1) = Obs(G, Σo,1) and H(Σo,2) = Obs(G, Σo,2)

be observers based on G, Σo,1, and Σo,2. It holds that for all qs ∈ Qs,

Σo,1 ⊆ Σo,2 =⇒ ΘH(Σo,1)(qs) ≥ ΘH(Σo,2)(qs).

Proof For i ∈ {1, 2}, let Pi : Σ∗ → Σ∗
o,i be a natural projection and P−1

i : Σ∗
o,i → 2Σ∗

be

the inverse of Pi. From Σo,1 ⊆ Σo,2, it holds that for all s ∈ L(G),

P−1
1 (P1(s)) ∩ L(G) ⊇ P−1

2 (P2(s)) ∩ L(G). (22)
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In words, since P1 erases more events than P2, P−1
1 produces more strings in L(G) than P−1

2 . For

convenience, let Bi(s) = P−1
i (Pi(s))∩L(G) for i ∈ {1, 2}, and Ls(q) = {s ∈ L(G) | δ(q0, s) = q}

for all q ∈ Q. From (22), for all qs ∈ Qs and s ∈ Ls(qs), it holds that

{q ∈ Q \ Qs | (∃s′ ∈ L(G)) δ(q0, s
′) =q ∧ s′ ∈ B1(s)} (23)

⊇{q ∈ Q \ Qs | (∃s′ ∈ L(G)) δ(q0, s
′) = q ∧ s′ ∈ B2(s)}.

That is, for some string s that leads the plant G to a secret state, there are more strings in

L(G) that P1 makes them look the same as s than P2 does. This implies that there can be

more non-secret states reached by a string s′ ∈ L(G) such that P1(s
′) = P1(s) than that by a

string s′′ ∈ L(G) such that P2(s
′′) = P2(s). For convenience, let

Ei(qs, s) = {q ∈ Q \ Qs | (∃s′ ∈ L(G)) δ(q0, s
′) = q ∧ s′ ∈ Bi(s)},

for all qs ∈ Qs, s ∈ Ls(qs), and i ∈ {1, 2}. From (23), for all qs ∈ Qs and s ∈ Ls(qs), it holds

that

|E1(qs, s)| ≥ |E2(qs, s)|. (24)

Thus, for all qs ∈ Qs, it holds that

min
s∈Ls(qs)

|E1(qs, s)| ≥ min
s∈Ls(qs)

|E2(qs, s)|. (25)

By the construction of Obs(G, Σo,i) = (Ai, Σo,i, , ) for i ∈ {1, 2}, letting A′
i(q) = {A ∈ Ai |

q ∈ A} for q ∈ Q, it holds that for all qs ∈ Qs,

min
Ai∈A′

i
(qs)

|Ai \ Qs| = min
s∈Ls(qs)

|Ei(qs, s)|.

In words, this is because Ei(qs, s) represents how the construction of observers merges different

states into one state, that is, states are merged if they can be reached by different strings in

L(G) which are projected to the same string. Hence, from (25), it holds that for all qs ∈ Qs,

min
A1∈A′

1(qs)
|A1 \ Qs| ≥ min

A2∈A′
2(qs)

|A2 \ Qs|. (26)

By Definition 2.1, for all qs ∈ Qs

ΘH(Σo,i)(qs) = min
Ai∈Ai|qs∈A

|Ai \ Qs|

= min
Ai∈A′

i
(qs)

|Ai \ Qs|.

Therefore, from (26), for all qs ∈ Qs,

Σo,1 ⊆ Σo,2 =⇒ ΘH(Σo,1)(qs) ≥ ΘH(Σo,2)(qs). (27)

The proof is completed.

smatsui
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Example 4.6 Let us consider an example plant in Figure 4. Suppose that G2 contains

two secret states q6 and q10, and critical states q8 and q10, that is, we have Qs = {q6, q10}

and Qc = {q8, q10}. Also, consider the set of concealable events Σco = {σ1, σ2, σ3, σ5, σ6, σ7},

the set of protectable events Σp = {σ1, σ2, σ5, σ6, σ7, σ8} which are partitioned into six levels

Σcl,1 = {σ1}, Σcl,2 = {σ2}, Σcl,3 = {σ5}, Σcl,4 = {σ6}, Σcl,5 = {σ7}, Σcl,6 = {σ8}. In this

example, there are no unobservable events (namely Σuo = ∅), and the requirements are given

by Ro(q6) = 2, Ro(q10) = 1, Rp(q8) = 1, and Rp(q10) = 2.

Figure 4 Example plant G2

By running Algorithm 3, we obtain a solution (Σ′
co,PH(Σ′

o)) where

Σ′
co = {σ3, σ5, σ6, σ7}, Σ′

o = Σo \ Σ′
co = {σ1, σ2, σ4, σ8}, PH(Σ′

o)(q1) = {σ1, σ2},

PH(Σ′
o)({q5, q6, q7, q8}) = {σ8}, PH(Σ′

o)({q4, q5, q6, q7, q8}) = {σ8}.

From (5), we can confirm that the original plant G2 is feasibly protected with respect to Rp

and PH(Σ′
o), that is, q8 and q10 are 1-securely reachable and 2-securely reachable, respectively.

Observe that from PH(Σ′
o)({q5, q6, q7, q8}) = {σ8}, event σ8 at state q6 will be protected, even

though protecting σ8 at state q6 serves no purpose since the only state reachable from q6 by

σ8 is non-critical state q9. Such a policy, however, is still acceptable as all three conditions in

Problem 4.3 are satisfied. That is, a policy which unnecessarily protects transitions is acceptable

unless it increments the maximum cost level.

Figure 5 depicts the observer H(Σ′
o) of G2 computed in Algorithm 3 where Σ′

o = {σ1, σ2, σ4,

σ8}. From states {q5, q6, q7, q8} and {q9, q10}, the degrees of opacity of q6 and q10 are 3 and 1,

respectively. Since PH(Σ′
o) specified event σ8, the maximum cost level invoked for this example

is 6.

In fact, we can also employ Algorithm 1 to find a solution to Problem 4.3 by replacing

condition (10) of the binary relation in Definition 3.4 with (21), so that Algorithm 1 does not

compare, in Lines 28 and 31, policy pairs by the degree of opacity, but by the protection cost

level.
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Figure 5 Observer H(Σ′
o)

Proposition 4.7 Denote ≤ as a binary relation on two policy pairs ( ,PH,1) and ( ,PH,2)

that holds if kPH,1 ≥ kPH,2 . If Algorithm 1 returns a nonempty POL, namely not NOT FOUND,

then the policies of every pair in POL are solutions to Problem 4.3.

Proof Since properties A1 and A2 are the same as properties B1 and B2, respectively,

by Theorem 3.9, the policies in POL satisfy B1 and B2. Moreover, since Algorithm 1 removes

from POL all policy pairs that violate (21), the remaining pairs in POL satisfy B3.

Although adjusting Algorithm 1 in this way can yield a solution to Problem 4.3, the result

inherits the same computational shortcomings as the original Algorithm 1. Thus, we presented

Algorithm 3, which provides a computational improvement over Algorithm 1.

4.2 Algorithm that Uses Least Concealment First

In Algorithm 3, all concealable events are first labelled as unobservable events, and then it

gradually reveals concealable-and-protectable events with the least cost level. It is, however,

also natural to question whether an algorithm which first reveals all concealable-and-protectable

events and then gradually hides them can produce the same result as Algorithm 3. To examine

this question, we adjust Algorithm 3 and present the result as Algorithm 4.

The main differences from Algorithm 4 are that in Algorithm 4, the set of temporarily

unobservable events Σ′
uo in Line 3 does not contain any protectable events, and the most costly

protectable event will be hidden by Lines 19 and 21 in each iteration. The time complexity of

Algorithm 4 in the worst case is the same as Algorithm 3, namely O(|Σco ∩ Σp| × 2|Q|). As we

did for Algorithm 3, we show that the policy pair produced by Algorithm 4 solves Problem 4.3.

Proposition 4.8 A pair of a concealed event set and a protection policy produced by

Algorithm 4 is a solution to Problem 4.3.

Proof Proposition 4.8 can be proved in the same manner as Proposition 4.4. If Algorithm 4

returns a policy pair (Σ′
co,PH(Σ′

o)), then Algorithm 4 does not terminate at Line 14. That is,

there exists a pair (Σ′
co,PH(Σ′

o)) such that P ′ in Line 12 is not Null and CheckDoO in Line

18 is True. From MRCMC in Line 12 and the construction of PH(Σ′
o) in Line 16, the observer

H(Σ′
o) is protected with respect to PH(Σ′

o) and R′
p derived by (11) from Rp. By Lemma 3.8,
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Algorithm 4 Least concealment first

This algorithm produces a pair of a concealed event subset and a protection policy which solves Prob-

lem 4.3. The algorithm first only conceals concealable-and-unprotectable events, and then tests whether

both the obfuscation requirement and the protection requirement are satisfied. If not, this algorithm

makes the most costly event in Σco ∩ Σp unobservable, and then tests the requirements again. Once

a pair which satisfies the requirements is found, then this algorithm returns that pair as a solution to

Problem 4.3.

Require: G = ( , Σ, , ), Σo, Σco, Σp, Qs, Qc, Ro, Rp

Ensure: (Σ′
co,PH(Σ′

o)) or NOT FOUND

1: Σuo = Σ \ Σo

2: Σ′
co = Σco \ Σp ⊲ Conceal concealable-and-unprotectable events be unobservable.

3: Σ′
uo = Σuo ∪ Σ′

co

4: Σ′
o = Σo \ Σ′

co

5: Σ′
p = Σp

6: Σ′
up = Σ \ Σ′

p

7: H(Σ′
o) = Obs(G, Σ′

o) = (A, Σ′
o, , )

8: PH(Σ′
o)(A) = ∅ for all A ∈ A ⊲ Initialize the protection policy for all observer states as an empty

set.

9: Ac = {A ∈ A | A ∩ Qc 6= ∅}

10: for Ac ∈ Ac do

11: R′
p = maxqc∈Ac Rp(qc) ⊲ Using (11), compute a conservative protection requirement for an

observer state Ac containing critical states.

12: P ′ = MRCMC(H(Σ′
o), Σ

′
p, Ac, R

′
p) ⊲ Compute a protection policy such that Ac

is R′
p-securely reachable using non-concealed protectable events in Σ′

p. The policy P ′ is Null if Ac

cannot be protected.

13: if P ′ is Null then

14: return NOT FOUND

15: end if

16: PH(Σ′
o)(A) = PH(Σ′

o)(A) ∪ P ′(A) for all A ∈ A

17: end for

18: if CheckDoO(H(Σ′
o), Qs, Ro) is False then ⊲ Check if the degree of opacity of every

observer state containing any critical state is greater than or equal to the obfuscation requirement

Ro. If not, CheckDoO returns False.

19: σp = max(Σp \ Σ′
co, <)

20: Σ′
co = Σ′

co ∪ {σp} ⊲ Hide the most costly concealable-and-protectable event.

21: Σ′
uo = Σuo ∪ Σ′

co ⊲ Make all concealed events unobservable.

22: Σ′
o = Σo \ Σ′

co

23: Σ′
p = Σp \ Σ′

co

24: Σ′
up = Σ \ Σ′

p

25: Go to line 7

26: end if

27: return (Σ′
co,PH(Σ′

o))
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the plant G is feasibly protected with respect to Rp and PH(Σ′
o) in Line 16. Thus, property B2

of Problem 4.3 is satisfied.

Since CheckDoO in Line 18 is True, by concealing all events in Σ′
co, property B1 of

Problem 4.3 holds.

Finally, the construction of PH(Σ′
o) in Line 16 which only merges the protection policies by

MRCMC, the cost level of protectable events which are in the subsets returned by PH(Σ′
o) for

all states of H(Σ′
o) is minimum. Thus, the condition in (21) holds for PH(Σ′

o) in every iteration

between Lines 10 and 17 of Algorithm 4. Hence, property B3 of Problem 4.3 is satisfied.

Therefore, if Algorithm 4 returns a pair, then it is a solution to Problem 4.3.

Similar to Algorithm 3, we can return NOT FOUND immediately after MRCMC returns Null.

This is because MRCMC returns Null for any subsets of Σp (⊆ Σ) if it returns Null with Σp.

Specifically, for two subsets of protectable events Σp ⊃ Σ′
p and two subsets of observable events

Σo ⊃ Σ′
o, if H(Σo) cannot be protected with respect to R′

p and Σp, then H(Σ′
o) cannot be

protected with respect to R′
p and Σ′

p, i.e., with fewer protectable events and fewer observable

events available.

Proposition 4.9 Consider a plant G = (Q, Σ, , ), a subset of critical states Qc ⊆ Q,

and a protection requirement Rp. Denote R′
p as a conservative protection requirement derived

from Rp by (11). Given two subsets of protectable events Σp ⊆ Σo and Σ′
p ⊂ Σ′

o where Σ′
p ⊂ Σp

and Σ′
o ⊂ Σo, let H(Σo) = (A, Σo, δH(Σo), A0), and H(Σ′

o) = (A′, Σ′
o, δH(Σ′

o), A
′
0). If there is

no policy PH(Σo) : A → 2Σp∩Σo such that H(Σp) is protected with respect to Rp and PH(Σo),

then there is no policy PH(Σ′
o) : A′ → 2Σ′

p∩Σ′
o such that H(Σ′

o) is protected with respect to Rp

and PH(Σ′
o).

Proof By assumption, it holds that

(∃qc ∈ Qc)(∃s ∈ Σ∗
o ) qc ∈ δH(Σo)(A0, s) ∧ s /∈ Σ∗

oΣpΣ
∗
o · · ·Σ

∗
oΣpΣ

∗
o

︸ ︷︷ ︸

Σp appears Rp(qc) times

. (28)

Letting M : Σ∗
o → Σ′∗

o be a natural projection, we have that

(∀qc ∈ Qc)(∀s ∈ Σ∗
o ) qc ∈ δH(Σo)(A0, s) =⇒ qc ∈ δH(Σ′

o)(A
′
0, M(s)). (29)

Also, letting r ∈ N
+ be an arbitrary positive integer, from Σ′

p ⊂ Σp and Σ′
o ⊂ Σo, it holds that

(∀s ∈ Σ∗
o ) s /∈ Σ∗

oΣpΣ
∗
o · · ·Σ

∗
oΣpΣ

∗
o

︸ ︷︷ ︸

Σp appears r times

=⇒ M(s) /∈ Σ′∗
o Σ′

pΣ
′∗
o · · ·Σ′∗

o Σ′
pΣ

′∗
o

︸ ︷︷ ︸

Σ′
p appears r times

. (30)

In words, if a string s ∈ Σ∗
o does not contain r events in Σp, then M(s) ∈ Σ′∗

o cannot contain r

events in Σ′
p, since the number of events in Σ′

p contained in M(s) is always less than or equal

to the number of events in Σp contained in s. Therefore, from (29) and (30), the property (28)

implies that

(∃qc ∈ Qc)(∃t ∈ Σ′∗
o ) qc ∈ δH(Σ′

o)(A
′
0, t) ∧ t /∈ Σ′∗

o Σ′
pΣ

′∗
o · · ·Σ′∗

o Σ′
pΣ

′∗
o

︸ ︷︷ ︸

Σ′
p appears Rp(qc) times

.
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The proof is completed.

Here, we can observe that the two similar Algorithm 3 and Algorithm 4 have the following

relationship.

Theorem 4.10 Algorithm 4 returns NOT FOUND if and only if Algorithm 3 returns

NOT FOUND.

Proof (If) Assume that Algorithm 3 returns NOT FOUND at Line 14. This means that

MRCMC returns Null with Σ′
co∩Σp = ∅. Thus, in this case, Algorithm 4 also returns NOT FOUND

at Line 14 because it lets Σ′
co = Σco \ Σp in Line 2.

Next, assume that Algorithm 3 returns NOT FOUND in Line 27. Algorithm 3 lets Σ′
o = Σo\Σ′

co

by Line 19, and calls MRCMC whenever it removes one least-costly protectable event from Σ′
co

in Line 17. Thus, when Algorithm 3 reaches Line 25, the set Σ′
o is the first set such that

MRCMC returns a non-empty protection policy P ′. That is, MRCMC returns Null for any

Σ′′
o ⊂ Σ′

o. Also, when Algorithm 3 returns NOT FOUND with Σ′
o at Line 27, from Proposition 4.5,

CheckDoO returns False for any Σ′′
o ⊃ Σ′

o. Therefore, since CheckDoO in Line 18 of

Algorithm 4 returns False for such Σ′
o and one protectable event is removed from Σ′

o, MRCMC

in Line 12 returns Null and then Algorithm 4 returns NOT FOUND.

(Only If) Assume that Algorithm 4 returns NOT FOUND at Line 14 with Σ′
co = Σco \ Σp. In

this case, since MRCMC returns Null for Σ′
p = Σp, by Proposition 4.9, MRCMC also returns

Null for any Σ′
p ⊆ Σp. Thus, in Algorithm 3, since MRCMC on Line 11 returns Null for all

Σ′
p ⊆ Σp, from Line 17, Σ′

co will eventually be equal to Σco \Σp, and then Algorithm 3 returns

NOT FOUND at Line 14.

Next, assume that there exists Σ′
p ⊂ Σp such that Algorithm 4 returns NOT FOUND at Line 14.

This implies that CheckDoO returns False with any Σ′′
p ⊃ Σ′

p. Denoting such Σ′
p by Σp,no,

in Algorithm 3, from Proposition 4.9, MRCMC in Line 11 returns Null for all Σ′
p ⊆ Σp,no and

CheckDoO in Line 26 returns False with any Σ′
p ⊃ Σp,no. Therefore, in this case, Algorithm 3

returns NOT FOUND at Line 27.

In words, Proposition 4.10 states that if Algorithm 3 can find a solution to Problem 4.3,

then Algorithm 4 can also do so, and vice versa.

Although a pair returned by Algorithm 4 solves Problem 4.3, a solution by Algorithm 3

always yields a higher (or equal) minimum degree of opacity compared to that of Algorithm 4,

while they result in the same cost level.

Theorem 4.11 Assume that Algorithm 3 and Algorithm 4 return (Σco,1,PH(Σ′
o,1)) and

(Σco,2,PH(Σ′
o,2)

), respectively, where Σ′
o,1 = Σo \ Σco,1 and Σ′

o,2 = Σo \ Σco,2. Both of the

following properties hold:

P1. (∀qs ∈ Qs) ΘH(Σ′
o,1)(qs) ≥ ΘH(Σ′

o,2)(qs);

P2. kPH(Σ′
o,1

)
= kPH(Σ′

o,2
)
.

Proof First, consider that there exist two subsets of unobservable events Σuo,1 and Σuo,2

such that Σco,1 is returned when Σ′
uo = Σuo,1 in Algorithm 3 and Σco,2 is returned when

smatsui
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Σ′
uo = Σuo,2 in Algorithm 4. From Lines 2 and 17 in Algorithm 3, Lines 3 and 21 in Algorithm 4,

and Proposition 4.10, if there exists Σuo,2 ⊆ Σuo such that Algorithm 4 returns a pair, then

it holds that Σuo,1 ⊇ Σuo,2. Thus, from Lines 1 in Algorithm 3 and Lines 2 in Algorithm 4,

we have that Σco,1 ⊇ Σco,2. Therefore, since Σo \ Σco,1 ⊆ Σo \ Σco,2, property P1 holds by

Proposition 4.5.

Next, consider that there exists two subsets of protectable events Σp,1 and Σp,2 such that

PH(Σ′
o,1) is returned when Σ′

p = Σp,1 in Algorithm 3 and PH(Σ′
o,2)

is returned when Σ′
p = Σp,2

in Algorithm 4. From Lines 4 and 20 in Algorithm 3 and Lines 5 and 23 in Algorithm 4, by

Σuo,1 ⊇ Σuo,2, we have that Σp,1 ⊆ Σp,2. Thus, since both PH,1 and PH,2 satisfy property B3

of Problem 4.3, it holds that ΣPH(Σ′
o,1

)
= ΣPH(Σ′

o,2
)
. Therefore, property P2 holds by (9).

According to Definition 3.4, we can conclude that Algorithm 3 always results in a better (or

equally good) solution, compared to Algorithm 4.

Example 4.12 Let us revisit the example plant G2 in Example 4.6. By running Algo-

rithm 4, we obtain a solution (Σ′
co,PH(Σ′

o)) where

Σ′
co = {σ3, σ6, σ7}, Σ′

o = {σ1, σ2, σ4, σ5, σ8}, PH(Σ′
o)({q1}) = {σ1, σ2},

PH(Σ′
o)({q4, q5, q6, q7}) = {σ8}, PH(Σ′

o)({q5, q6, q7}) = {σ8}, PH(Σ′
o)({q6, q7, q8}) = {σ8}.

By mapping back PH(Σ′
o) to the original plant G2 as in (5), we can confirm that the protection

requirement Rp for both critical states q8 and q10 is satisfied.

Figure 6 illustrates the observer H(Σ′
o) of G2 computed in Algorithm 4. The secret state

q6 has degree of opacity of 2 and q10 has degree of opacity of 1. The maximum cost level of

this example solution is 6 since σ8 is protected and σ5 is not. By comparing the solution in

Example 4.6, we can conclude that the two properties of Theorem 4.11 hold, that is, Algorithm 3

produced a better solution than Algorithm 4.

Figure 6 Observer H(Σ′
o)

Even if there exists a solution to Problem 4.3, the aforementioned three algorithms (Algo-

rithms 1, 3, 4) may not be able to find a solution since Lemma 3.8 is only sufficient. However,

from Proposition 4.7 and the following example, it can be seen that Algorithm 1 is more likely

to find a solution than Algorithm 3 and Algorithm 4, as Algorithm 1 searches a larger space of

concealable-and-protectable events than the other two.
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Example 4.13 Consider an example plant G3 in Figure 7. This plant has one secret

state q6 and two critical states q6 and q7. The event set Σ is partitioned into the subsets

of concealable events Σco = {σ3, σ4, σ5} and of protectable events Σp = {σ1, σ2, · · · , σ5}. The

protectable events are grouped into five levels as one event per one level in this example to meet

the constraint of Problem 4.3, namely Σcl,1 = {σ1}, Σcl,2 = {σ2}, Σcl,3 = {σ3}, Σcl,4 = {σ4},

and Σcl,5 = {σ5}. Suppose that the obfuscation requirement and the protection requirement in

this example are Ro(q6) = 2 and Rp(q6) = 1, Rp(q7) = 2, respectively.

Figure 7 Example plant G3

Algorithm 1 produces only one pair (Σ′
co,PH(Σ′

o)) where

Σ′
co = {σ3, σ5}, Σ′

o = {σ1, σ2, σ4}, PH(Σ′
o)({q1}) = {σ1, σ2},

PH(Σ′
o)({q3, q5}) = {σ4}, PH(Σ′

o)({q4, q5, q6}) = {σ4}.

The observer H(Σ′
o) of G3 computed by Algorithm 1 is depicted in Figure 8. We can

confirm that both requirements Ro and Rp are satisfied. We see here the trade-off between

algorithm capability and computational resources: Whereas Algorithm 1 found a solution,

both Algorithm 3 and Algorithm 4 return NOT FOUND for this example, since neither examines

Σ′
co = {σ3, σ5}, in the interest of reduced computation time.

Figure 8 Observer H(Σ′
o)
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5 Conclusion

We have studied a two-pronged approach to produce countermeasures against eavesdropping

and infiltration by employing degree of opacity and state protection, respectively. General and

special versions of two-pronged security problem are formulated. The general problem requires

a solution (i.e., a pair of concealed event subset and protection policy) should not yield smaller

minimum degree of opacity and larger maximum cost level than other solutions while accepting

incomparable solutions. We have presented an algorithm to compute solutions to the general

problem, illustrating it with example plants. The special version has also been introduced so as

to reduce the computation time of the general version, by imposing additional constraints on a

given plant and changing the way to compare two solutions to determine which one is better.

In the obfuscation part of the two-pronged security problem, we constrained the designer

to concealable events instead of concealable transitions, i.e., every occurrence of a given event

is either concealed or not concealed. Under this assumption, we proved that degree of opacity

is monotonic. We did not need to make a similar restriction for the protection part of the

security problem; rather, we allow specific transitions to be protected and do not require that

all transitions associated with a particular event must either be protected or not protected.

Our choice constrains us to enforce degree of opacity based on events instead of on transitions.

In future work, we aim to extend our methodology by taking a transition-based approach

for satisfying the obfuscation requirement instead of the current event-based approach, which

would enable us to consider more flexible implementations in practical systems. Other possible

directions of extension include the adoption of advanced notions of state protection such as

dynamic clearance level[32] and K-protection[33].
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