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Abstract— In this paper we study a resilient supervisory
control design problem in discrete-event systems. Con-
sider that there are certain unsafe states in the system that
must be prevented from entering, and this can be ensured
by a supervisor disabling certain controllable events. Also
consider that the system is subject to actuator attacks
from intruders: some controllable events disabled by a
supervisor may be re-enabled by an intruder. Our purpose
is to address a challenging scenario where the controllable
events that are vulnerable to attacks are indefinite, i.e., any
controllable event can be attacked. Associating to each
unsafe state with a required safety level (a positive integer),
our aim of this work is to design a resilient supervisor
such that for every unsafe state q, if the number of actuator
attacks is no greater than the safety level of q, then the
controlled system is guaranteed to avoid entering q. We
first encode the behavior of the system under attack into an
automaton called the resiliency automaton. We then show
that the resilient supervisor synthesis problem may be cast
into a supervisory control problem in the resiliency automa-
ton. Hence, a maximally permissive resilient supervisor can
be obtained by using the Ramadge-Wonham supervisory
control paradigm. To the best of our knowledge, this is the
first result on supervisory control design against indefinite
actuator attacks in discrete-event systems.

Index Terms— Secret protection, security, discrete-event
systems, automata

I. INTRODUCTION

SAFE and resilient control against potential attacks in
cyber-physical systems has drawn much attention in recent

years [1]–[4], [6]–[9], [11], [15]. It is required that a plant be
tolerant for potential attacks from external malicious intruders.
The aim of an intruder is to lead the plant to unsafe or
critical states by altering the information transmitted between
the plant and the supervisor. Therefore, a supervisor must be
resilient to guarantee the normal functionalities of a system
under potential attacks.

In the last decade, researchers in discrete-event systems
(DES) have done much work on the analysis and synthesis
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of resilient supervisors against various types of attacks. By
sensor attacks [9], [11], [19], [20] an intruder can modify the
information of sensor reading to cheat the supervisor to issue
some wrong control actions. On the other hand, by actuator
attacks [2], [8] an intruder can alter the control command from
the supervisor to re-enable some events that are supposed to
be disabled. Some works also consider the combined types of
attacks [3], [7], [15]. The work in [6], [11] studies this problem
from the dual point of view by solving a covert attacker
synthesis problem. Besides, the work in [1], [3], [4] focus on
the intrusion detection where the aim of the operator of a plant
is to detect the invasion of an intruder by detecting abnormal
behaviors in the plant. Moreover, passive/eavesdropper attacks
are also studied (such as opacity [13], [5], [17], [10]) that are
to infer some secrets in the system without interfering the
behavior of it.

In this work we focus on the design of resilient supervisors
against actuator attacks, i.e., some controllable events disabled
by a supervisor may be re-enabled by an intruder so that they
can be unexpectedly executed. In the work on actuator attacks
in the literature (e.g., [2], [3], [7], [8], [15]), it is usually
assumed that some events are not attackable by the intruder,
while other events are vulnerable to attacks and can be attacked
infinitely often. However, such an assumption need not be
satisfied in practice. On one hand, we (the designer of the
plant) often do not have a priori knowledge of which events
may be attacked or of the capability of the attackers, which
implies that it is unknown to us which events are vulnerable
or not to attackers. In other words, the events that can be
attacked by the intruder are indefinite. On the other hand,
since an unexpected execution of a “disabled” event is an
abnormal behavior, it should be immediately noticeable by
the supervisor. This means that an intruder may not be able
to perform actuator attacks infinitely often but only within a
limited time window.

By the motivations above, in this paper we study the design
of resilient supervisors against indefinite actuator attacks in
DES. In the plant some states are considered to be unsafe
and should be prevented from entering. Each unsafe state
is associated with a required safety level depending on the
importance of preventing the plant from entering it. Our aim
is to design a resilient supervisor such that for every unsafe
state q, if the number of actuator attacks is no greater than the
safety level of q, then the controlled system is guaranteed to
avoid entering q. Note that conventional framework of actuator
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attacks is incomparable with the problem we consider, and the
existing methods cannot be used here. In fact, since all events
can be attacked, the methods in [2], [6], [8], [11] always return
no solution. On the other hand, we do not consider sensor
attacks [9], [11], [19], [20] on the observation channel (that is
related to sensor readings), which implies that the plant is fully
observable to the supervisor. Also, due to the limit of space, we
assume that the plant is deterministic. However, our method
can be straightforwardly generalized to partially observed,
nondeterministic systems since the main results developed in
this work also hold in such cases.

The main contents and contributions of this paper are
summarized as follows. We first encode the behavior of the
system under attack into an automaton called the resiliency
automaton. Then, we prove that the resilient supervisor syn-
thesis problem can be transformed into a standard supervisory
control problem in the resiliency automaton. Hence, a maxi-
mally permissive resilient supervisor can be obtained by using
the Ramadge-Wonham supervisory control paradigm. To the
best of our knowledge, this is the first result on supervisory
control design against indefinite actuator attacks in DES.

II. PRELIMINARIES

A. Deterministic Finite Automaton
A deterministic finite automaton (automaton for short) is a

four-tuple G = (Q,Σ, δ, q0) where Q is a set of states; Σ is a
set of events; δ : Q×Σ→ Q is the partial transition function;
and q0 ∈ Q is the initial state.

We use Σ∗ to denote the Kleene closure of Σ, consisting of
all finite sequences composed by the events in Σ (including
the empty sequence ε). Given a sequence s ∈ Σ∗, |s| denotes
the length of s. The transition function δ is extended to
δ∗ : Q × Σ∗ → Q by recursively defining δ∗(q, ε) = q
and δ∗(q, sσ) = δ(δ∗(q, s), σ), where s ∈ Σ∗ and σ ∈ Σ.
Henceforth for simplicity we write δ for δ∗. The language
of G, denoted by L(G), is defined as L(G) = {s ∈ Σ∗ |
δ(q0, s) ∈ Q}.

We use ΓG(q) = {σ ∈ Σ | δ(q, σ) is defined} to denote
the set of events that can occur at state q ∈ Q, and we use
ΓG(s) = ΓG(δ(q0, s)) to denote the set of events that can
occur after sequence s.

Given an automaton G = (Q,Σ, δ, q0), the accessible part
of G, denoted as Ac(G), is the automaton G′ = (Q′,Σ, δ′, q0)
obtained from G by removing all unreachable states and their
corresponding transitions. Precisely speaking, Q′ = {q ∈ Q |
(∃s ∈ L(G)) δ(q0, s) = q}, and δ′ is the restriction of δ to
Q′ × Σ→ Q′.

A sequence s̄ ∈ Σ∗ is a prefix of a sequence s ∈ Σ∗ if
s = s̄s′ where s′ ∈ Σ∗. We use s̄k (where 0 ≤ k ≤ |s|) to
denote the prefix of s of length k, i.e., s = s̄ks

′ where |s̄k| = k
and s′ ∈ Σ∗. The prefix closure of a language L ⊆ Σ∗ is the
set L = {s ∈ Σ∗ | (∃s′ ∈ Σ∗)ss′ ∈ L}.

B. Supervisory Control in Discrete-Event Systems
Supervisory control theory of DES was first proposed by

Ramadge and Wonham [12]. For a plant automaton G =
(Q,Σ, δ, q0), the event set Σ is partitioned into two disjoint

subsets Σ = Σc ∪ Σuc where Σc is the set of controllable
events and Σuc is the set of uncontrollable events.

In [12], the control objective, called the (language) specifi-
cation, is defined by a regular language K ⊆ Σ∗. A supervisor
S that dynamically disables events of the plant such that the
closed-loop language of S over G is restricted within K. Here
we use S/G to denote the closed-loop system composed by
the plant G under the supervision of S, and we use L(S/G) to
denote the language of S/G. A supervisor S runs in parallel
with the plant and, when a plant generates a sequence s ∈
L(G), makes a control decision ξ(s) ⊆ Σc that is to disable all
controllable events not in ξ(s). Note that a supervisor cannot
disable any uncontrollable σ ∈ Σuc. Supervisor S can be
represented by an automaton S = (QS ,Σ, δS , qs,0). For a
sequence s ∈ L(S), the control decision ξ(s) is given by:
ξ(s) = Σc ∩ Γ(δS(qs,0, s)), i.e., S disables all controllable
events not defined at the current supervisor state δS(qs,0, s).
For details of the synthesis of S please refer to [16].

A language K is said to be controllable with respect to
L(G) if KΣuc ∩L(G) ⊆ K holds. If K is not controllable, a
supervisor S enforcing K can be obtained by computing the
supremal controllable sublanguage [16] of L(G) with respect
to K, i.e.:

K↑C =
⋃
{H ⊆ K | H is controllable to L(G)}.

by iterative manipulations on regular languages.
A state specification defines a set of forbidden states QF ⊆

Q that requires that the plant does not reach any state in QF .
A supervisor S that enforces QF can be similarly obtained by
first converting the state specification QF into its equivalent
language specification K = {s ∈ L(G) | δ(q0, s) /∈ QF }
followed by computing the supremal controllable sublanguage
of K.1

III. RESILIENT SUPERVISORS AGAINST INDEFINITE
ACTUATOR ATTACKS

In this paper, a plant is modeled by an automaton G =
(Q,Σ, δ, q0) with Σ = Σc ∪ Σuc where Σc,Σuc are the sets
of controllable and uncontrollable events, respectively. In G
some states are considered to be unsafe and should be pre-
vented from entering. When there is no intruder, a maximally
permissive supervisor S can be obtained by computing the
supremal controllable sublanguage K↑C with respect to L(G)
using standard supervisory control paradigm [12]. Due to the
existence of an intruder performing actuator attacks, however,
a supervisor S that enforces K↑C may not be resilient against
such attacks. An actuator attack (illegally) allows disabled
event to execute, which may result in a plant sequence that
is outside of L(S/G) = K↑C and eventually violates the
specification K. Hence, a resilient supervisor which will be
denoted by Sr must guarantee that even if some events are
attacked, the supervisor is still able to stop the plant from
reaching the unsafe states.

In the literature, it is assumed that some controllable events
are invincible to attacks; other events are vulnerable which can

1Marking and nonblocking supervisory control can also be considered with
no affect on the problem/solution developed below.
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Fig. 1. Plant and supervisor in Example 1

be attacked infinitely often. However, as we have mentioned in
Section I, this assumption may not be satisfied in practice. On
one hand, which events are subject to malicious attacks may
well be indefinite (unknown a priori to the designer). On the
other hand, an intruder may not be able to perform actuator
attacks infinitely often but only within a limited window before
it is detected and wiped out from the system. Therefore, the
aim of resilient control can be achieved by setting a barrier
for the intruder such that the intruder has to attack a certain
number of events in order to drive the plant to an unsafe state.
If the barrier is sufficiently high, the potential attack will be
practically prevented.

Definition 1: Given a plant G = (Q,Σ, δ, q0), a safety
requirement is a function S : Q → N that assigns to each
state q ∈ Q a safety level S(q).

In plain words, S(q) means that to reach state q an intruder
must (successfully) attack at least S(q) controllable events.
Particular attention is given to those unsafe states, the safety
level of which can be viewed as a measure of importance
for the plant to avoid entering them. Note that S(q) > 0 if
and only if state q is unsafe. We illustrate this point by the
following example.

Example 1: Consider the plant G in Figure 1 which is an
abstracted model of a zone-controlled auto-guided vehicle,
i.e., an vehicle run following guide-routines to visit different
locations. In G, the set of controllable events is Σc =
{σ1, σ3, σ4, σ6, σ8, σ9, σ11} and the set of controllable ones
is Σuc = {σ2, σ5, σ7, σ10} (underlined). Assume that states
q4 and q6 are unsafe states. The conventional supervisor S
enforcing K↑C is shown in Figure 1.

Suppose that we have a safety requirement S(q4) =
3,S(q6) = 1, and S(qi) = 0 for all i 6= 4, 6; that is, from
the viewpoint of the system designer, it is acceptable that the
intruder must successfully attack three actuators in order to
make the system enter q4 and one actuator to enter q6. It is not
difficult to see that supervisor S cannot achieve this resilient
control aim. Indeed, supervisor S allows the plant to reach
state q3 by executing σ1σ3σ4, where event σ6 is disabled. If
the intruder succeeded an actuator attack to enable σ6 at this

moment, the plant will reach state q4 by just one actuator
attack.

Remark 1: The value of S(q) for each state q is dependent
on the crucialness of state q. For example, consider the
following two unsafe states: (i) an AGV enters an empty zone
without authorization, (ii) two AGVs run on the same track
from opposite directions. The first unsafe state is undesirable
but is no harm, since even if such situation happens, it is easy
to instruct the AGV to quit the zone. On the other hand, the
latter unsafe state is rather fatal since the two AGVs may crash.
Hence, we may expect a resilient supervisor to ensure that an
intruder must (successfully) attack at least one actuator before
reaching unsafe state 1 while attack at least two actuators
before reaching unsafe state 2.

Before we proceed, we note a key difference between
the resilient control aim in this work and the conventional
control specification. In the conventional supervisory control
paradigm, the actuator attack is not considered and the unsafe
states are strictly forbidden. Here, since the actuator attacks
exist and are indefinite, it is in general not possible to achieve
the conventional goal. Instead, we design a resilient supervisor
that continues to function when attack occurs. Essentially, the
resilient supervisor sets a sufficiently high barrier to practically
prevent the intruder from making the system reach those
unsafe states.

Notice that a conventional supervisor (see Example 1) can-
not make control decisions when a sequence not belonging to
L(S) is executed: such a sequence may comes from the illegal
re-enabling of disabled events. This indicates that a resilient
supervisor should contain both the normal and the attacked
behavior of the system to function after observing the attacks.
Given a plant G whose set of controllable events is Σc, we
define Σa to be a duplicate of Σc, i.e., for Σc = {σ1, . . . , σn},
Σa = {σ1,a, . . . , σn,a}. (Formally, Σc and Σa are disjoint and
isomorphic.) The resilient supervisor is then defined as the
following.

Definition 2: Given a plant G = (Q,Σ, δ, q0) with Σ =
Σc∪Σuc, a resilient supervisor is an automaton Sr = (Qr,Σ∪
Σa, δr, qr,0) where Σa is a duplicate of the controllable event
set Σc. For a sequence s ∈ L(Sr), the control decision ξr(s)
is given by: ξr(s) = Σc ∩ Γ(δr(qr,0, s)), i.e., S disables all
controllable events in Σc not defined by δr at the current
supervisor state δr(qr,0, s).

The feature of a resilient supervisor Sr is that it contains
a type of transitions labeled by Σa called the “attacked
transitions”. These attacked transitions are not used for issuing
control decisions but to let Sr correctly react to the actuator
attacks. When the plant executes an event σi ∈ Σ, Sr execute
the same event σi as in the conventional control paradigm.
On the other hand, when the plant executes an event σi that
is supposed to be disabled by Sr, the supervisor ‘knows’ that
an attack has occurred. Thus Sr executes the corresponding
attacked event σi,a and continues to issue control actions
accordingly.

Example 2: Consider the plant G (with Σc = {σ2, σ3}) and
two supervisors S, Sr in Figure 2, where the plant state 2 is
unsafe and has a safety level 2, i.e., S(q2) = 2. One can
intuitively design a conventional supervisor S that disables
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Fig. 2. Plant G, supervisor S, and resilient supervisor Sr in Example 2.

event σ2 at the initial state (note that S is smaller than
the conventional maximally permissive supervisor: the latter
cannot enforce the specification). However, if event σ2 is
attacked/re-enabled by an intruder, S cannot respond to the
execution of σ2 and hence ceases to function.

On the other hand, the resilient supervisor Sr contains a
transition labeled by σ2,a which represents the “attacked event
σ2”. Hence, when there is no attack, Sr disables σ2, which
is the same control action as S does. When σ2 is attacked,
by observing the execution of σ2, Sr moves to its state 1 by
executing σ2,a where it disables event σ3.

We propose some notions useful to formalize the problem.
Given a resilient supervisor Sr, a sequence s ∈ L(Sr), and
an event σi ∈ Σ, we define D(s, σi) = 1 if δ(δ(q0, s), σi) is
defined but δr(δr(qr,0, s), σi) is not defined (i.e., disabled by
Sr), and D(s, σi) = 0 otherwise. Then, for a plant sequence
s = σ1 · · ·σn ∈ L(G), we define `(s) = σ′1 · · ·σ′n as:

(∀i = 1, . . . , n) σ′i =

{
σi, D(σ1 · · ·σi−1, σi) = 0

σi,a, D(σ1 · · ·σi−1, σi) = 1
(1)

(Here σ−1 := ε.) In plain words, when the plant executes a
sequence s, the resilient supervisor Sr simultaneously executes
`(s) — a sequence obtained from s such that each attacked
event σi is replaced by σi,a. For example, in Figure 2 when
G executes s = σ1σ2σ4, Sr executes `(s) = σ1σ2,aσ4 since
event σ2 is disabled after executing σ1. Now we are ready to
formalize the problem studied in this paper as the following.

Problem 1: Given a plant G = (Q,Σ, δ, q0) and a safety
requirement S : Q → N, construct a resilient supervisor Sr

that enforces S, i.e., for every q with S(q) > 0 and every
sequence s = σ1 · · ·σn ∈ L(G) such that δ(q0, s) = q, there
holds:

n−1∑
i=0

D(`(s̄i), σi+1) ≥ S(q). (2)

We note that the methods in the literature are incomparable
with our setting. Since we allow all events to be attacked
(while instead set an additional constraint on the number of
attacks), the methods in [2], [6], [8], [11] return no solution.

IV. SYNTHESIS OF RESILIENT SUPERVISORS USING
RESILIENCY AUTOMATON

A. The Intruder Automaton
Given a safety requirement S : Q → N, let k be the

maximum safety level in S, i.e., k = maxq∈Q S(q). Evi-

0 1
Σ𝑎

2
Σ𝑎

Σ Σ Σ

Fig. 3. The intruder automaton in Example 3.

dently, to achieve this safety requirement, we do not need
to consider attacks on more than k controllable events. The
relevant behavior of the attack intruder can be described by
an automaton which we call the Intruder Automaton (IA)
A = (QA,ΣA, δA, qa,0) where:
• QA = {qa,0, . . . , qa,k−1} is a set of states;
• ΣA = Σ∪Σa is the event set, where Σ is the plant event

set in G and Σa = {σ1,a, . . . , σn,a} is the duplicate of
the controllable event set Σc of the plant;

• qa,0 is the initial state;
• δA : QA × ΣA → QA is the partial transition function:

δA(qa,i, σ) =

{
qa,i, σ ∈ Σ, i = 0, . . . , k − 1

qa,i+1, σ ∈ Σa, i = 0, . . . , k − 2

Intuitively speaking, the IA contains two types of events.
Events in Σ are plant events not attacked by the intruder.
On the other hand, each event σi,a in Σa represents the
controllable event σi ∈ Σc attacked by the intruder.

B. Resiliency automaton
We now define an operator called the A-synchronization.

The A-synchronization can be viewed as a special kind of
parallel synchronization that yields a model of plant under
attack.

Definition 3: Given a plant G = (Q,Σ, δ, q0) and an IA
A = (QA,ΣA, δA, qa,0) of it, the A-synchronization of G and
A, denoted as H = G � A, is an automaton H = Ac(Q ×
QA,Σ ∪ Σa, δH , (q0, qa,0)) where the transition function is{

δH((q, qa,i), σ) = (δ(q, σ), δA(qa,i, σ))

δH((q, qa,i), σa) = (δ(q, σ), δA(qa,i, σa))

if σ is defined at state q in G and σa is the corresponding at-
tacked event. Automaton H is called the resiliency automaton
(RA) of G and A.

Intuitively speaking, in the resiliency automaton H (A-
synchronized by G and A), the attacked behavior of the system
is encoded. A state (q, qa,i) in H means that the plant is at
state q while i actuator attacks have occurred.

Example 3: Again consider the plant automaton G in Fig-
ure 1 with S(q4) = 3, S(q6) = 1, and S(qi) = 0 for other
states. The intruder automaton A is depicted in Figure 3. The
resiliency automaton H = G � A is depicted in Figure 4.
In H , transition δH((q0, qa,0), σ1) = (q1, qa,0) means: if the
plant is at state q0 and event σ1 is executed normally (i.e.,
it is not attacked), then by executing σ1 the plant moves to
state q1 while the attack counter remains 0. On the other
hand, transition δH((q0, qa,0), σa,1) = (q1, qa,1) means that
if σ1 is disabled but attacked/re-enabled by the intruder, by
executing σa,1 the plant moves to state q1 while the attack
counter increases to 1. ♦
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Fig. 4. The resiliency automaton H in Example 3. Notation: state
(qi, qa,j) is denoted as “ij”.

C. Resilient Supervisor Design Using Supervisor Control

In this subsection, we show the main result of this work;
that is, a resilient supervisor of G can be derived by solving
a conventional supervisory control problem in the RA. This
problem in the RA is formulated as follows.

Problem 2: Given a plant G = (Q,Σ, δ, q0), a safety
requirement S : Q → N, and the corresponding RA H =
(Q × QA,Σ ∪ Σa, δH , (q0, qa,0)), construct a (conventional)
supervisor S for H to enforce the state specification:

QF = {(q, qa,i) ∈ Q×QA | i < S(q)}

(set of forbidden states) with respect to controllable transitions
Σc and uncontrollable transitions Σuc ∪ Σa.

Problem 2 is a standard supervisory control problem which
can be solved using the Ramadge-Wonham paradigm. This
will illustrated in Example 4 shortly. Then, by the following
theorem we show that the resilient supervisor design problem,
i.e., Problem 1, can be reduced to Problem 2.

Theorem 1: A resilient supervisor Sr = (Qr,Σ ∪
Σa, δr, qr,0) for plant G that solves Problem 1 if and only
if it is a conventional supervisor2 for the RA H that solves
Problem 2.

Proof: (⇒) Let Sr be a valid resilient supervisor that
enforces the safety requirement S for the plant G. We prove
that Sr is also a solution to Problem 2. By contraposition,
suppose that Sr is not a solution of Problem 2, i.e., Sr

permits a sequence s ∈ L(H) to reach a forbidden state
(q, qa,i) ∈ QF with i < S(q). According to the construction
of the RA H , the subscript i in state (q, qa,i) indicates that
the number of attacked events in s is i that is less than S(q),

2When Sr is viewed as a conventional supervisor, all of its events are
treated as normal events, i.e. not attacked.

i.e.,
∑n−1

i=0 D(s̄i, σi+1) < S(q), which implies that Sr is not
a valid resilient supervisor for G. This is a contradiction.

(⇐) Let Sr be a solution of Problem 2. Suppose on the
contrary that Sr is not a resilient supervisor of Problem 1.
Then there exists a sequence s = σ1 · · ·σn ∈ L(G) such that∑n−1

i=0 D(s̄i, σi+1) < S(q), q = δ(q0, s). It means that in H
by executing s a state (q, qa,i) with i < S(q) is reached, i.e.,
supervisor Sr permits s in H . This indicates that Sr violates
the state specification in Problem 2 and is thus not a valid
solution. This is a contradiction.

Since G is fully observable and every attack causes an
abnormal behavior, the RA H is also fully observable. Hence,
by [12] there exists a unique maximally permissive supervisor
Ŝr for Problem 2. Next, we show that such a supervisor Ŝr of
Problem 2 is also the maximally permissive resilient supervisor
of Problem 1.

Definition 4: A resilient supervisor Sr is maximally per-
missive if for any other resilient supervisor S′r 6= Sr and any
sequence s = σ1 · · ·σn ∈ L(G), ξr(s) ⊇ ξ′r(s) holds, where
ξr, ξ

′
r are the control decisions made by Sr and S′r.

Theorem 2: A maximally permissive supervisor Ŝr for
Problem 2 is a maximally permissive resilient supervisor for
Problem 1.

Proof: By contraposition, suppose that a maximally
permissive supervisor Sr for Problem 2 is not a maximally
permissive resilient supervisor for Problem 1. By Definition 4
there exists another resilient supervisor Sr for Problem 1 and
a sequence s = σ1 · · ·σn such that ξr(s̄k) = ξ′r(s̄k) holds
for all k ∈ {1, . . . , n − 2}, and ξr(s̄n−1) = ξ′r(s̄n−1) \ {σn}
holds. In other words, the control decisions of Sr and S′r are
the same for the first n− 1 events in s, while Sr disables the
last event σn in s while S′r does not. By Theorem 1, both
Sr, S

′
r are solutions of Problem 2, and Sr disallows s in H

while S′r permits s. This contradicts the assumption that Sr is
a maximally permissive supervisor for Problem 2.

Example 4: Again consider the resiliency automaton H in
Figure 4. We construct Problem 2 as follows. For specification
S(q4) = 3, S(q6) = 1, and S(qi) = 0 for other states, the
forbidden states are (in orange) (q4, qa,0), (q4, qa,1), (q4, qa,2),
(q6, qa,0). The uncontrollable transitions are those Σuc (un-
derlined) and those in Σa (in red). Then, such a problem
can be solved by the Ramadge-Wonham paradigm so that the
maximally permissive supervisor Sr is shown in Figure 5:
according to Theorems 1 and 2 it is the maximally permissive
resilient supervisor Sr enforcing S for G.

Let us see how Sr works. Initially, Sr permits σ1. By
executing σ1 the plant reaches state q1 while Sr moves to
state (q1, qa,0) where event σ3 is disabled. Suppose that now
an actuator attack occurs which re-enables σ3. By noticing
the unexpected execution of σ3, i.e., σa,3, Sr moves to state
(q2, qa,1) and tries to disable σ4 to let G stay at q2. When the
second attack re-enables and executes σ4 , Sr moves to state
(q3, qa,2) where it tries to disable σ6 while permits σ11 and
σ5 (the latter is uncontrollable) to provide the plant a way to
go to state q1 or state q6. In any case, state q4 will not be
reached if less than three actuator attacks are preformed.

Note that after the second attack at supervisor state (q3, qa,2)
(plant state q3) event σ11 is enabled, which indicates that the
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Fig. 5. Resilient supervisor Sr in Example 4. Notation: state (qi, qa,j)
is denoted as “ij”.

plant may reach unsafe state q6 by executing σ11. However,
this does not violate the safety specification S. Since S(q6) =
1, from the viewpoint of the designer of the plant it is
acceptable that the plant reaches state 6 after one actuator
attack (in this case two attacks have happened).

At the end of this section we have the following remarks.
First, by Theorem 1, a valid resilient supervisor exists if and
only if the corresponding supervisory control problem in the
RA has a solution, i.e., the maximally permissive Ŝr for
Problem 2 is not empty. Hence, the existence of a resilient
supervisor for G and safety requirement S can be verified by
checking the emptiness of the corresponding supremal control-
lable sublanguage of the resiliency automaton H with respect
to the state specification. According to its definition, resiliency
automaton H has at most k · |Q| states and at most twice of
the transition numbers of G. Since checking the emptiness
of a supremal controllable sublanguage is polynomial ( [16]
Chapter 3), we conclude that the complexity of designing a
resilient supervisor is also polynomial.

Second, although so far we have focused on fully observable
systems, we point out that Theorems 1 and 2 also hold for
partially observable plants. When plant G is partially observ-
able, a maximally permissive resilient supervisor can still be
obtained by solving Problem 2 in the corresponding resiliency
automaton H . In such a case, however, there may not exist
a maximally permissive supervisor but several incomparable
locally maximal solutions. The latter can be obtained by using
synthesis techniques in [14], [18].

V. CONCLUSION

In this paper we have studied the resilient controller design
problem in DES against indefinite actuator attacks. We have

proposed a new structure called the resiliency automata, based
on which we have developed a polynomial method to design
a resilient supervisor such that the plant under control does
not reach any unsafe state by a number of actuator attacks
no greater than the required safety level of the state. In
future work, we will investigate this problem in a decentral-
ized/hierarchical setting.
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