
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Secret Protection in Discrete-Event Systems with Generalized
Confidentiality Requirements

Ziyue Ma, Senior Member, IEEE , Kai Cai, Senior Member, IEEE

Abstract— In this paper we propose a general framework
to design optimal secret protection policies in discrete-
event systems. The system is modeled by an automaton
in which several states are secret and assigned with dif-
ferent confidentiality requirement. Events in the system
can be protected to verify the identity of the user, and a
user who successfully executes/passes a protected event
gains some authorization. Our purpose is to design an
event-protecting policy such that any user, either legal or
unauthorized, who visits a secret state must have an autho-
rization that satisfy the requirement of confidentiality of the
state. We consider the criteria of optimality on protecting
policies as to protecting policies with a minimum degree
of disturbance to legal users’ normal operations. To this
aim, we use Moore machines to model the dynamics of the
clearance level of users when using the system. Then, we
develop an auxiliary data structure called the generalized
secret automaton, based on which we propose a method to
design a protecting policy using the classical supervisory
control theory. The minimally disruptive protecting policy
is then represented by an automaton called the secret
enforcer whose state size is polynomial both in the number
of the plant states and the number of secret states in the
plant.

Index Terms— Discrete-event systems, automata, secret
protection, supervisory control, security, cyber-physical
systems

I. INTRODUCTION

Security issues in cyber physical systems have drawn much
attention in recent years [1]–[3]. Secret protection [4]–[7] is
to ensure that the secrets of a system are not exposed to
unauthorized external intruders. To this aim, any operational
sequence that allows a user to reach a secret state must contain
a number of security checks for which a user must perform an
identity verification to pass. For example, a user of a mobile
phone must enter a password to unlock the phone and then
pass a two-step verification (i.e., receiving an SMS code from
the server) to prove his/her identity before getting access to
some sensitive information such as the credit card numbers.
In such a case, an unauthorized intruder who cannot legally

This work was supported in part by the National Natural Science
Foundation of China under Grant No. 62373313, JSPS KAKENHI Grant
nos. 21H04875 and 22KK0155, and by Open Foundation of the State
Key Laboratory of Fluid Power and Mechatronic Systems (Grant No.
GZKF-202324).

Z. Ma is with School of Electro-Mechanical Engineering, Xidian Uni-
versity, Xi’an 710071, China, and also with the State Key Laboratory of
Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou
310027, China (email: maziyue@xidian.edu.cn).

K. Cai is with Department of Core Informatics, Osaka Metropolitan
University, Osaka 558-8585, Japan (e-mail: cai@omu.ac.jp).

pass the identity checks must pay some efforts to hack through
them by stealing the password or forging the identity tokens.
If the effort of hacking these security checks is high enough,
an attack towards the secrets can be considered practically
prevented.

In theory, the secret protection can be done by protecting
all events at all times in a system, e.g., we associate an
identity check for all events in the system. However, such
a strategy is possibly too costly and will surely annoy legal
users if each click triggers a password check. So, a series
of work has been done to develop protecting policies (which
determine the events to be protected next) from the prospective
of both cost and disruptiveness. The cost criterion means the
minimization of the physical expenditure on implementing the
protecting policy. In [4], [5], the set of protectable events is
partitioned into distinct levels, and the objective is to minimize
the maximum of the levels of protected events. In [6] it is
proved that the problem of minimizing the cost of secret
protection belongs to complexity class P if all transitions
are distinctly labeled (using a construction of s-t min-cut
in the secret automaton), and the problem is weakly NP-
hard if shared labels are allowed [7]. The other direction
is to minimize the disruptiveness to users, which means a
minimum degree of disturbance to the normal operations of
legal users, which we believe even more important since the
users’ experience is strongly (negatively) correlated with the
customer attrition. In [6] it is proved that the synthesis of
such an optimal protecting policy can be transformed into a
supervisory control problem in an auxiliary structure called the
secret automaton. A protecting policy that minimally disturbs
the users can then be obtained by achieving the maximally
permissive supervisor in the corresponding secret automaton.
The work in [8] generalizes the approach in [6] in which
a particular type of dynamic clearance levels called the k-
lifespan clearance is considered.

In this paper we follow the direction of [8] and study
the secret protection problem with generalized confidentiality
requirements. We consider systems modeled by a fully observ-
able finite state automata1 in which some states are defined
as secrets. Each state is associated with a confidentiality
requirement. An event is said to be protected if a security

1In this work, we consider that we are the system administrator who aims
to design secret protecting strategies in the system’s design stage. Thus, it is
reasonable to assume that the plant is fully observable to the administrator.
Secret protection with partially observation may occur if the plant is pre-
designed and our aim is to design an external validating agent. Such a problem
is challenging and is part of our future work.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

check is associated with it, and a user can gain/increase his/her
clearance level by passing/executing protected events. A secret
protection problem (SPP) is to design an event-protecting
policy to enforce a confidentiality requirement such that every
sequence from the initial state and reaching a secret state must
grant the user a clearance that is not lower than the required
confidentiality requirement of the secret.

Comparing with existing works, this paper focus on a gen-
eralized framework from two aspects. The first generalization
is that in the paper we propose a general formalism to model
the dynamical change of the clearance levels (based on which
a solution is developed). In the aforementioned works [4]–
[7], the clearance level of a user is granted once and forever.
That is, when a user passes a protected event, his/her security
clearance level monotonically increases and will not decrease
for any actions thereafter. This means that after passing a
sufficient number of security checks, a user is granted a full
authority to the entire system permanently. However, we find
that such a model may be oversimplified to describe real
systems. For example, a user of a cellphone is granted the
access to the bank statement after passing a face verification.
Nevertheless, after a long period of idle time, when the user
wants to access bank statement again, it is often necessary
to ask for another identity check since the actual person who
is currently using the phone may not be the same one who
passes the face verification long time ago. In other words, it
is meaningful to consider the case where the clearance level
may both increase and decrease (or more complex logical
dynamics) when operating the system, which is done in this
paper. The aforementioned works such as [6]–[8] can be
viewed as a particular case of the systems considered here.

The second generalization done in this work is that we
consider multi-type of clearances. In [8] and other previous
work, although not explicitly stated, the model has a unique
identity check counter so that (i) a user can infinitely increase
his/her clearance level by repeatedly passing low-level identity
checks, and (ii) if a user has the access to high-level secrets,
he/she is also accessible to all low-level secrets. However, such
an access control logic is also oversimplified since a user may
repeatedly enter the password to get a very high clearance
level so that all secrets are accessible to him/her, which we
do not want happen. In practice, it may be desired that some
secrets must pass some particular types of identity checks, e.g.,
we may require that in order to access the bank statement a
face recognition is mandatory regardless how many times the
user has entered a password. This motivates us to introduce
multi-type of clearances in this paper.

When generalizing the secret protecting problem from our
previous work [6] to multi-type dynamic clearance conditions,
several challenges are encountered. First, the secret specifica-
tion for a single, monotonically increasing clearance level is
defined by “a number of protected events on each trajectory”
in [6], which is not suitable for describing multi-type dynamic
clearance levels. Hence, new formal methods have to be
developed to model the generalized clearance specification,
and the monolithic model of systems with multi-type of

clearance levels needs to be established. Moreover, multi-
type clearance levels usually lead to a complex monolithic
model, the structural complexity of the secret protecting policy
needs to be optimized. These challenges, both conceptual and
technical, are effectively addressed in this work, and our main
contributions are summarized in the following.

1) First, we model the dynamic changes of a clearance level
as a Moore machine called clearance Moore machine
(CM) in which the relation of a plant sequence executed
by a user and the resulting clearance level is encoded.
If the system has multi-type of clearances, n-type of
clearances can be modeled by n Moore machines. This
framework is fairly general which provides a convenient
way to model confidentiality requirements in practice. In
the aforementioned works such as [6]–[8], the clearance
level is hard-coded as “the number of protected events
in a sequence” which can be viewed as a particular type
of Moore machines introduced here.

2) We define an operator called the clearance parallel
synchronization that is applied on a plant and the associ-
ated CMs, which returns a generalized secret automaton
(GSA) in which the information of all possible protect-
ing decisions are encoded. This is a new operator which
is mandatory to solve our generalized problem since in
[6] the monotonically increasing clearance level is hard-
coded into the SA, which cannot be straightforwardly
extended to multi-type clearance formulation. Thanks to
this newly developed secret parallel synchronization, we
prove that secret protecting problems can be reduced to
a standard supervisory control problem on the structure
of GSA. Hence, a minimally disruptive protecting pol-
icy can be obtained by first computing the maximally
permissive supervisor based on the GSA, followed by
converting it to its corresponding protecting policy.

3) Finally, the supervisor obtained by solving the supervi-
sory control problem based on GSA turns out to have
redundancy, which is not amenable to be used directly
as a secret protecting enforcer. Therefore, a trimming
procedure is newly proposed to remove the redundancy
in the supervisor computed from GSA, resulting in a
compact automaton called the secret enforcer to describe
the synthesized protecting policy. It is shown that the
scale of the secret enforcer is polynomial to the scale of
the secret protection problem.

A closely related notion in cyber-security, called opacity [3],
[9], [10], is also extensively studied in discrete-event systems.
We point out that opacity is different from secret protection
studied in this paper. In brief, opacity assumes that an intruder
can passively observe the events and infer some secrets. In our
problem, however, we assume that an intruder may disguise as
a legal user to access the plant, which may not be recognized
by an operator. Since we require that the plant be usable
to legal users, the dynamics and the output of a plant are
not allowed to be modified. For example, we cannot disable
an event in the plant using supervisory control [11]–[13] or
modify the output of the system [14], [15] as in opacity, since

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 3

legal users may still need the event. Other related perspective
of research include intrusion detection [16]–[21] and attack-
resilience (tolerance) control [22]–[27]. Since we assume that
an intruder may disguise as a legal user and does not act
beyond the nominal functionality of the system (e.g., to corrupt
sensor readings), no abnormal behavior can be observed.
Hence, we do not try to detect the existence of intruders.
Instead, we set protective measures on the operational routines
to increase the difficulty of unauthorized access to the secrets,
which may practically prevent potential intruders.

The rest of this paper is organized in seven sections. Basic
notions of automata are recalled in Section II. In Section III,
the problem of secret protection is formulated, and the notions
of the clearance Moore machines are proposed. In Section IV,
the generalized security automaton are proposed. In Section V,
we develop a method to compute a minimally disruptive
protecting policy using supervisory control In Section VI
we synthesize the secret enforcer automaton to encode the
minimally disruptive protecting policy. Section VII draws our
conclusions.

II. PRELIMINARIES

A. Finite State Automaton
A finite state automaton (automaton for short) is a four-

tuple G = (Q,Σ, δ, q0), where Q is a set of states; Σ is a set
of events; δ : Q × Σ → Q is the partial transition function;
and q0 ∈ Q is the initial state.

We use Σ∗ to denote the Kleene closure of Σ, consisting of
all finite sequences composed by the events in Σ (including the
empty sequence ε). Given a sequence s ∈ Σ∗, |s| denotes the
length of s. The transition function δ is extended to δ∗ : Q×
Σ∗ → Q by recursively defining δ∗(q, ε) = q and δ∗(q, sσ) =
δ(δ∗(q, s), σ), where s ∈ Σ∗ and σ ∈ Σ. The language of G,
denoted by L(G), is defined as L(G) = {s ∈ Σ∗ | δ∗(q0, s) ∈
Q}.

We use ΓG(q) = {σ ∈ Σ | δ(q, σ) is defined} to denote the
set of events that are enabled at state q ∈ Q in G, and we
use ΓG(s) = ΓG(δ∗(q0, s)) to denote the set of events that
are enabled after sequence s.

Given an automaton G = (Q,Σ, δ, q0), the accessible part
of G, denoted as Ac(G), is the automaton G′ = (Q′,Σ, δ′, q0)
obtained from G by removing all unreachable states and their
corresponding transitions. Precisely speaking, Q′ = {q ∈ Q |
(∃s ∈ L(G)) δ∗(q0, s) = q}, and δ′ is the restriction of δ to
Q′ × Σ→ Q′.

A sequence s̄ ∈ Σ∗ is a prefix of a sequence s ∈ Σ∗ if
s = s̄s′ where s′ ∈ Σ∗, which is denoted as s̄ ≺ s. We use s̄k
(where 0 ≤ k ≤ |s|) to denote the prefix of s of length k, i.e.,
s = s̄ks

′ where |s̄k| = k and s′ ∈ Σ∗. The prefix closure of
a language L ⊆ Σ∗ is the set L = {s ∈ Σ∗ | ∃s′ ∈ Σ∗, ss′ ∈
L}.

B. Supervisory Control in Discrete-Event Systems
Supervisory control theory of discrete-event systems was

first proposed by Ramadge and Wonham [28]. For a plant
automaton G = (Q,Σ, δ, q0), the event set Σ is partitioned

into two disjoint subsets Σ = Σc∪Σuc where Σc is the set of
controllable events and Σuc is the set of uncontrollable events.

In [28], the control objective, called the (language) spec-
ification, is defined by a regular language K ⊆ Σ∗. A
supervisor S that dynamically disables events of the plant
such that the closed-loop language of S over G is restricted
within K. Here we use S/G to denote the closed-loop system
composed by the plant G under the supervision of S, and we
use L(S/G) to denote the language of S/G. A supervisor S
runs in parallel with the plant and, when a plant generates a
sequence s ∈ L(G), makes a control decision ξ(s) ⊆ Σc that
allows all events in ξ(s) to execute (or equivalently, to disable
all controllable events not in ξ(s)). Note that a supervisor
cannot disable any uncontrollable σ ∈ Σuc in any case. A
language K is said to be controllable with respect to L(G)
if KΣuc ∩ L(G) ⊆ K. If K is not controllable, a supervisor
S enforcing K can be obtained by computing the supremal
controllable sublanguage [29] of L(G) with respect to K, i.e.:

L(G)↑K =
⋃
{H ⊆ L(G) | H is controllable to L(G)}.

by iterative manipulations on regular languages.
A state specification defines a set of forbidden states Ql ⊆

Q that requires that the plant does not reach any state in Ql.
A supervisor S that enforces Ql can be similarly obtained by
first converting the state specification Ql into its equivalent
language specification K = {s ∈ L(G) | δ∗(q0, s) /∈ Ql}
followed by computing the corresponding L(G)↑K .

C. Moore Machine
A Moore machine is a six-tuple M = (Q,Σ, δ, q0, O,ΣO),

where (Q,Σ, δ, q0) is an automaton and O : Q → ΣO is the
output function which maps each state to the output alphabet
ΣO (a finite set). In this paper, the output alphabet used is
N.2 Hence, we omit the output alphabet and simply denote a
Moore machine as M = (Q,Σ, δ, q0, O) where O : Q→ N.

III. SECRET PROTECTING PROBLEM FORMULATION

A. Plant Automata and Clearance Moore Machines
We consider a plant modeled by an automaton G =

(Q,Σ, δ, q0); at a subset of states Qs ⊂ Q some secrets,
such as credit numbers or crucial personal data, are stored.
By reaching these states, secret information may be obtained.
To protect the secrets from being accessed by unauthorized
intruders, some events of the plant should be protected such
that any user (legal or unauthorized) who accesses the plant
must have a clearance no less than the security requirement of
the secret state he/she attempts to visit. In the previous works,
a simplified access control logic is used such that (i) a user can
infinitely increase his/her clearance level by repeatedly passing
low-level identity checks, and (ii) if a user has the access to
high-level secrets, he/she is also accessible to all low-level
secrets. In this work, we consider a general and more practical

2Precisely speaking, the output alphabet we will use is the finite subset
of consecutive natural numbers Nb = {0, 1, 2, . . . , b − 1, b} where b is an
integer bound dependent on the secret protecting problem instance. Thus the
output alphabet is finite.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

0 1
𝜎1

2
𝜎2

𝜎3

3

𝜎4

A B

C

Σ𝜆,2

Σ𝛼

Σ𝛼
Σ𝛼

ℓ 𝑞3 = [2, 0]

4

5

𝜎5 𝜎6

𝜎8 𝜎7

A
Σ𝜆,1

Σ𝛼

B C
Σ𝜆,1

ℓ 𝑞4 = [0, 1]

ℓ 𝑞4 = [1, 1]

Σ𝛼 Σ𝛼 Σ𝜆,2

Σ𝜆,2
0 1 2

0 1

1

Σ𝜆,1 = {𝜆1, 𝜆3, 𝜆5, 𝜆7}

Σ𝜆,2 = {𝜆1, 𝜆2, 𝜆5, 𝜆7}

Fig. 1. A plant automaton that contains three secret states (q3, q4, q5)
and two clearance types (Type-1 in blue, Type-2 in red).

scenario of access control by allowing multiple independent
types of clearances. Hence, we define the security requirement
as the following.

Definition 1: Given a system G with n types of clearances,
a confidentiality requirement is a function ` : Q → Nn
(N = {0, 1, 2, . . .}) that assigns a confidentiality level `(q) =
[l1(q), l2(q), . . . , ln(q)] to each state q, which means that to
reach state q a user must be granted for each clearance type i
a clearance level ui no less than li(q). ♦

In plain words, a security requirement assigns each state
q a vector [l1(q), l2(q), . . . , ln(q)] so that a user who visits
state q must hold clearance type-1 no less than level l1(q),
clearance type-2 no less than level l2(q), and so on. Such
multi-type of clearance is very common in practice. For
example, in an airport a staff must hold different badges to
enter different zones, where in general the authorization of the
two badges are not inclusive. As another example, to access
the bank statement on a phone a face recognition is mandatory
regardless how many times the user has entered a password.

Example 1: Consider the automaton in Figure 1 which
represents a computer network. For readability, each state qi is
denoted as “i” in the state circle. A user who visits the system
is first initialized at the initial state q0. The user can connect to
the system from the router via σ1 and then can switch between
two servers q1 and q2 via σ2 and σ3. Several secret files are
located at database q3, q4, and q5 in the system, and the access
control consists of two types of clearances. To visit secret q3

one need level 2 of clearance type-1 while to visit secret q4

one need level 1 of clearance type-2. On the other hand, to
access secret q5 one must hold both types of clearances with
level 1. For readability, clearance type-1 is marked in blue
and clearance type-2 in red. Our aim is to design a proper
protecting strategy so that any user who visits any of the three
secret states must holds both the clearance types and levels
required by the corresponding state. ♦

B. Protecting Policies and Dynamics of Clearance Levels
We use ϑ to denote a protecting policy whose definition is

given below. Intuitively, for each sequence s ∈ L(G) observed,
ϑ decides which events are protected after s.

Definition 2: Given a plant G = (Q,Σ, δ, q0), a protecting
policy is a function ϑ : L(G)→ 2Σ such that after observing
an event sequence s ∈ L(G), the set of protected events
following s is ϑ(s) ⊆ Σ. ♦

Remark 1: In previous works, it is assumed that some
events are unprotectable, i.e., Σ = Σp ∪ Σup where only
events in Σp can be protected. In this work we follow this
setting: only a subset of the events can be protected. However,
we do not explicitly announce the set of un/protected events.
The (un)protectability of events are implicitly encoded into the
clearance Moore machines which will be introduced shortly.

In a system with n types of clearances, a user’s total
clearance can be characterized by an n-dimensional vector
u = [u1, u2, . . . , un] where ui (1 ≤ i ≤ n) denotes the level
of the type-i clearance. When the user executes a sequence of
events s in L(G), eventually he/she will be granted a clearance
level of [u1, u2, . . . , un] depending on the action of protecting
events in s made by ϑ. To characterize how ϑ affects sequence
s, for each event σi in Σ, we introduce two new events λi and
αi to denote whether event σi is protected or unprotected,
respectively. Hence, given a sequence s = σ1 · · ·σk ∈ L(G)
and a protecting policy ϑ, we map s into a new sequence in a
way such that each σi (i = 1, . . . , k) is successively replaced
by αi (resp., λi) if it is unprotected (resp., protected) by ϑ
after s̄i−1. We use Σλ and Σα to denote the sets of λ- and
α-events, respectively. That is, for Σ = {σ1, . . . , σl}, we have
Σλ = {λ1, . . . , λl} and Σα = {α1, . . . , αl}.

Definition 3: Given a plant G = (Q,Σ, δ, q0) and a se-
quence s = σ1 · · ·σk ∈ L(G), the protected sequence of
s with respect to a protecting policy ϑ is a new sequence
s′ = σ′1 · · ·σ′k ∈ (Σα ∪ Σλ)∗ such that:

σ′i =

{
αi if σi /∈ ϑ(s̄i−1)

λi if σi ∈ ϑ(s̄i−1).

This is denoted as s↑ϑ := s′, and s is said to be the original
sequence of s′. The protected language of L(G) over ϑ is
defined as: Lϑ(G) = {s↑ϑ | s ∈ L(G)}. ♦

It is reasonable to assume that a user who visits the system
from the entry (i.e., the initial state q0) is granted a zero
clearance level for all types of clearances, i.e., u0 = 0 =
[0, . . . , 0]. After the execution of each event σ, the clearance
level u may vary, depending on the current and the history of
the protecting decision. The dynamics of each type i clearance
level are usually problem-dependent. Notice that for each
protection sequence ϑs ∈ (Σα ∪ Σλ)∗, the final level of
each type of clearance level is deterministic. For each type
i clearance level, we define a clearance function

Ci : Lϑ(G)→ N, 1 ≤ i ≤ n. (1)

That is, given G and ϑ, if a user executes s from state q0 to
some state q, then the resulting clearance level of type i is
Ci(s↑ϑ). The total clearance level vector after s is given by a
total function C : Lϑ(G)→ Nn:

C(s) = [C1(s), . . . , Cn(s)].

Therefore, a protecting policy ϑ is valid if, after executing
a sequence s to yield state q, the final level for each type of
clearance is no fewer than the confidentiality requirement li(q)
of state q.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 5

0 1

2

Σ𝜆

Σ𝛼

Σ𝛼Σ𝛼

Σ𝜆

Σ𝜆

0 1

1

3

4

Σ𝛼

Σ𝜆

Σ𝜆

Σ𝛼

Σ𝜆

2

2

0
Σ𝜆

Σ𝛼

1 2
Σ𝜆

Σ𝛼 Σ𝛼

0 1 2

(a)

(b)

(c)

0 1 2
𝜎1 𝜎2

ℓ 𝑞2 = 1

0

𝜆1
Σ𝛼

1

3

Σ𝛼 ∪ {𝜆1}

Σ𝛼

0

1

2

𝜆2

2𝜆2 𝜆1
1

Σ𝛼 ∪ {𝜆2}

Fig. 2. Several clearance Moore machines. The output of each state is
located next to the state with an underline “ ”, e.g., in (a) O(q2) = 2.

Definition 4: Given a security requirement ` and clearance
functions Ci for each type i of clearance, a protecting policy
ϑ is valid if for any sequence s ∈ L(G) that yields a state
q ∈ Q, C(s) ≥ `(q) holds, i.e., Ci(s↑ϑ) ≥ li(q) holds for all
i. ♦

The specific total function C and all Ci in Eq (1) are
problem-dependent. In this paper we consider Ci’s that can
be described by Moore machines.

Definition 5: A clearance Moore machine (CM) for Si is a
five-tuple Mi = (QMi

,ΣMi
, δMi

, qMi,0, Oi) where:
• (QMi

,ΣMi
, δMi

, qMi,0) is an automaton;
• the alphabet is ΣMi

⊆ (Σα ∪ Σλ);
• the output function is Oi : QMi → N.

Thus Mi simulates a clearance function Ci : Lϑ(G)→ N such
that:

(∀s ∈ L(Mi))Oi(δMi
(qMi,0, s)) = Ci(s). (2)

♦
In a clearance Moore machine, the state transition describes

how the clearance level changes when executing a sequence
of protected/unprotected events. Normally, the alphabet of Mi

contains all unprotected events, i.e., ΣMi
⊇ Σα, since “not

to protect an event” is always an option. On the other hand,
it may happen that some events in Σλ do not appear in ΣMi

because of the following reasons.

0 1
𝜎1

2
𝜎2

𝜎3

3

𝜎4

ℓ 𝑞3 = [2, 0]

4

5

𝜎5 𝜎6

𝜎8 𝜎7

ℓ 𝑞4 = [0, 1]

ℓ 𝑞4 = [1, 1]

0
Σ𝜆,1

Σ𝛼

1 2
Σ𝜆,1

Σ𝛼 Σ𝛼

0 1 2

Σ𝜆,1 = {𝜆1, 𝜆3, 𝜆5, 𝜆7}

0 1

2

Σ𝜆,2

Σ𝛼

Σ𝛼
Σ𝛼

Σ𝜆,2

Σ𝜆,2

0
1

1

Σ𝜆,2 = {𝜆1, 𝜆2, 𝜆5, 𝜆7}

(a)

(b)

Fig. 3. The clearance automaton in Example. 2. The output of each
state is located next to the state with an underline “ ”.

• If protecting an event σj does not affect the output
Oi(δMi

(qMi,0, s)) for all s, i.e., event σj does not affect
the clearance level, the corresponding λj does not appear
in the alphabet of Mi. For example, the clearance type for
accessing the bank statement is related to face recognition
but unrelated to password check. In such a case transitions
which are physically associated with password checks do
not appear in the CM for that clearance type.

• If an event σj is not protectable (which means that we
cannot set an identification check on that event), the
corresponding λj does not appear in all CMs.

The dynamics of clearance levels used in the literature can
be considered as particular cases of CMs in Definition 5. For
example, the monotonically nondecreasing level considered in
[6] can be modeled by the Moore machine in Figure 2(a),
while the “k-lifespan security function” in [8] as that in
Figure 2(b). Figure 2(c) models another situation such that:
executing protected event σ1 (i.e., λ1) alone or event σ2 (i.e.,
λ2) alone can only increase the clearance level to 1 at most,
while executing both λ1 and λ2 can increase the clearance
level to 2. Hence, Moore machines are expressive models
for capturing many different evolutions of clearance levels in
practice. In the running example of this paper, we consider
the two CMs in Figure 3 that model the dynamics of the two
types of clearance levels of the plant in Figure 1.

Example 2: Recall the plant in Figure 1 in which the
confidentiality requirements contains two types (type-1 in blue
and type-2 in red) of clearances which are associated with
two types of users. Type-1 clearance is with students who
can pay the fee at q3. Once the user’s student identity is
verified, the clearance is permanently granted. On the other
hand, type-2 clearance is with teachers who give scores of

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

exams at q4. Hence, a more strict rule to regularly recheck
the teacher’s identity is applied. The corresponding clearance
Moore machine

M1 = (QM1 ,ΣM1 , δM1 , qM1,0, O1)

and
M2 = (QM2 ,ΣM2 , δM2 , qM2,0, O2)

are depicted in Figure 3. Moore machine M1 models a
standard nondecreasing clearance change: executing protected
events λ1, λ3, λ5, λ7 increases the type-1 clearance level by 1,
and the maximal clearance level of type-1 is 2. Moore machine
M2 models a standard nondecreasing clearance change: exe-
cuting protected events λ1, λ2, λ5, λ7 increases the clearance
level by 1, and the maximal clearance level of type-2 is 1.
Moreover, if two unprotected events are executed consecu-
tively, the type-2 clearance level decreases by 1, i.e., to zero,
meaning that the authorization of type-2 clearance has expired.

We can see that protecting event λ2 only affects type-2
clearance and protecting event λ3 only affects type-1 clear-
ance, since λ2 does not appear in M1 while λ3 does not
appear in M2. The protection on σ1, σ5, σ7 affects both type
of clearances, so λ1, λ5, λ7 appears in both M1 and M2.
Moreover, in this example we assume that events σ4, σ6, σ8 are
unprotectable. So, the corresponding λ4, λ6, λ8 do not appear
in neither CMs. ♦

C. Secret Protecting Problem and Minimally Disruptive
Protecting Policy

Given a plant G = (Q,Σ, δ, q0), a security requirement ` :
Q → Nn such that n types of clearances are modeled by
n CMs M1, . . . ,Mn, our aim is determine a valid disruptive
protecting policy ϑ. This can be done by choosing the most
conservative protecting policy ϑmax that protects all events at
all times, i.e.:

(∀s ∈ L(G)) ϑ(s) = Σ.

It is reasonable to assume that such ϑmax is valid, otherwise
the secret protecting problem has no solution. However, it is
clear that such a conservative protecting policy will surely an-
noy legal users. For user’s convenience, security checks should
not be popped out when the user just wants to use calculator or
check the weather, but should be required only if he/she wants
to inspect the credit cards and other private information of the
account. This motivates us to design a protecting policy such
that it protects events only when necessary. In plain words, a
protecting policy is minimally disruptive if it does not protect
any events unless it has to.

Definition 6: [Minimal Disruptiveness] Given a plant G =
(Q,Σ, δ, q0), a security requirement ` : Q → Nn such that
n types of clearances are modeled by n CMs M1, . . . ,Mn,
a protecting policy ϑ is minimally disruptive if there does
not exist another protecting policy ϑ′ 6= ϑ and a sequence
s = σ1 · · ·σm ∈ L(G) that satisfy the following conditions
simultaneously:{

ϑ(σ1 · · ·σi) = ϑ′(σ1 · · ·σi),∀i ∈ {1, . . . ,m− 1}
ϑ′(s) (ϑ(s).

(3)

0 1

2

Σ𝜆

Σ𝛼

Σ𝛼Σ𝛼

Σ𝜆,2

Σ𝜆

0 1

1

3

4

Σ𝛼

Σ𝜆,2

Σ𝜆

Σ𝛼

Σ𝜆

2

2

0
Σ𝜆

Σ𝛼

1 2
Σ𝜆

Σ𝛼 Σ𝛼

0 1 2

0
Σ𝜆 ∖ 𝜆0

Σ𝛼

1 2

Σ𝛼 Σ𝛼

0 1 2

𝜆0

Σ𝜆 ∖ 𝜆0

(a)

(b)

(c)

0 1 2
𝜎1 𝜎2

ℓ 𝑞2 = 1

Fig. 4. An automaton for the illustration of minimal disruptiveness of
protecting policies.

♦
In plain words, ϑ is minimally disruptive if there does not

exist a different protecting policy ϑ′ such that for a sequence s
of length m, the first m− 1 protecting decisions are the same
while for the last decision ϑ protects more events than ϑ′.

Remark 2: We point out that in Definition 6 the equality of
decisions of the first m−1 steps (i.e., the first line of Eq. (3))
is necessary. Suppose that we remove the first condition in
Eq. (3) from Definition 6. Consider the plant in Figure 4
in which both σ1 and σ2 are protectable and two protecting
policies:

ϑ1 : ϑ1(ε) = {σ1}, ϑ1(σ1) = ∅
ϑ2 : ϑ2(ε) = ∅, ϑ2(σ1) = {σ2}

Clearly, ϑ2 is minimally disruptive since it does not protect σ1

but σ2. However, one can see ϑ1(ε) ⊇ ϑ2(ε) and ϑ1(σ1) ⊆
ϑ2(σ1), i.e., ϑ protects more events than ϑ1 when observing
σ1. Hence, the condition “ϑ(σ1 · · ·σi) = ϑ′(σ1 · · ·σi),∀i ∈
{1, . . . ,m − 1}” rules out such a phenomenon: under such
condition ϑ2 is minimally disruptive while ϑ1 is not. ♦

Now we are ready to formalize the secret protection problem
(SPP) that will be studied in this paper.

Problem 1: [Secret Protection Problem] Given a plant G =
(Q,Σ, δ, q0), a security requirement ` : Q → Nn such that
n types of clearances are modeled by n CMs M1, . . . ,Mn,
determine a valid, minimally disruptive protecting policy ϑ.

IV. GENERALIZED SECURITY AUTOMATA

In this section, we first introduce a structure called the
security automaton in which both the plant behavior and
the protecting actions are encoded. First, given n clearance
Moore machines, we establish a monolithic Moore machine
by applying the parallel synchronization on them [30].

Definition 7: [30] Given two Moore machines M1 =
(Q1,Σ1, δ1, qM1,0, O1) and M2 = (Q2,Σ2, δ2, qM2,0, O2), the
parallel synchronization of M1 and M2 is a Moore machine
M = M1||M2 by:

M = (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qM1,0, qM2,0), O1 ×O2),

where

δ((q′, q′′), σ) =

(δ1(q′, σ), δ2(q′′, σ)), σ ∈ Σ1 ∩ Σ2

(δ1(q′, σ), q′′), σ ∈ Σ1 \ Σ2

(q′, δ2(q′′, σ)), σ ∈ Σ2 \ Σ1

and
O(q′, q′′) = (O1(q′), O2(q′′))

for all (q′, q′′) ∈ Q1 ×Q2. ♦

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 7

00

Σ𝛼

01 02

10

11 12

20

21 22

𝜆2

𝜆3

𝜆1, 𝜆5, 𝜆7

𝜆2

𝜆1, 𝜆5, 𝜆7
𝜆3

Σ𝛼

𝜆2

𝜆1, 𝜆5, 𝜆7

Σ𝛼

𝜆3

𝜆1, 𝜆2, 𝜆5, 𝜆7

Σ𝛼 , 𝜆3

Σ𝛼 , 𝜆3

𝜆1, 𝜆2, 𝜆5, 𝜆7

Σ𝛼 , 𝜆3

𝜆1, 𝜆2, 𝜆5, 𝜆7Σ𝛼

𝜆2

𝜆3

𝜆1, 𝜆5, 𝜆7

11

10

Σ𝛼

𝜆3

𝜆2

𝜆1, 𝜆5, 𝜆7

Σ𝛼

𝜆3

𝜆2
𝜆1, 𝜆5, 𝜆7

Fig. 5. The parallel synchronization H = M1||M2 of the two
clearance Moore machines M1,M2 in Figure 3. For readability state
11 and 10 are duplicated on the right.

Namely, the parallel synchronization M1||M2 is formed by
running Moore machines M1 and M2 in parallel and giving
outputs synchronously. One example is given in Figure 5.
Parallel synchronization can be easily generalized to n > 2
Moore machines. Then, by doing parallel synchronization
for n clearance Moore machines M1, . . . ,Mn, we obtain
a monolithic Moore machine H = M1||M2|| · · · ||Mn =
(QH ,ΣH , δH , h0, OH). Now we are ready to define a secret
parallel synchronization function ||S that applies on a plant
and its corresponding clearance Moore machines.

Definition 8: Given a plant G = (Q,Σ, δ, q0), a security
requirement ` : Q → Nn modeled by n CMs M1, . . . ,Mn,
let H = M1|| · · · ||Mn = (QH ,ΣH , δH , h0, OH) be the
monolithic clearance Moore machine. The secret parallel
synchronization of G and H is a Moore machine GS =
G||SH = Ac(Q×QH ,Σα ∪ Σλ, δS , (q0, h0), OS) where{

δS((q, h), αj) = (δ(q, σj), δH(h, αj))

δS((q, h), λj) = (δ(q, σj), δH(h, λj))

in case that the corresponding δ(q, σj) and δH(h, αj) /
δH(h, λj) are defined, and OS(q, h) = OH(h). Here we write
each state hi = [hi,1, . . . , hi,n] as a vector to denote each
Moore machine j is at its state i. Moore machine GS is called
the generalized security automaton (GSA) of G and H . ♦

In plain words, a GSA GS is a Moore machine consisting
of |QH | copies of G, while only the accessible part of these
copies is considered. The physical interpretation of a state
(qi, hj) in GSA is that the plant G is at state qi while the
current clearance vector u of the user is OH(hj) in H .
Clearly, GS contains no more than |Q| · |QH | states and
|Q| · |QH | · (2 · |Σ|) arcs.

Example 3: Again consider the plant automaton G in Fig-
ure 1 and the clearance Moore machines M1,M2 in Figure 3.
The corresponding GSA GS is shown in Figure 6. For read-
ability:
• the G-component of each state is shown in the state circle

while the H-component [a, b] is depicted as “h = [a, b]”
in the grey box along with the corresponding output.

• A grey box with “O = [a, b]” indicates that all states in
the box have the same output [a, b].

• Blue and red transitions are α- and λ-transitions, respec-
tively, while their labels (events) are omitted in the figure.

Although we omit the events on the transitions, they can be
uniquely recognized from the leaving and entering states. For
example, since in G the label of the transition from state q0 to
state q1 is σ1, the blue transition from state q0 in box h = [0, 0]
to state q1 in the same box has label α1, while the red transition
from state q0 in box h = [0, 0] to state q1 in another box
h = [1, 1] has label λ1.

We use the left-top part of GS as an example. In the left-
top box, transition δS((q0, [0, 0]), α1) = (q1, [0, 0]) indicated
by a blue arrow means: if the plant is at state q0, the user’s
current clearance level vector is u = [0, 0], and event σ1 is
not protected; then by executing σ1 the plant moves to state q1

while the clearance level vector remains u′ = OS(q1, [0, 0]) =
OH([0, 0]) = [0, 0]. On the other hand, the red transition
δS((q0, [0, 0]), λ1) = (q1, [1, 1]) means that if σ1 is protected,
by executing σ1 the plant moves from state q0 to state q1 while
the clearance level vector is changed to u′ = OS(q1, [1, 1]) =
OH([1, 1]) = [1, 1]. ♦

According to Definition 8, it is not difficult to understand
that a GSA can be used to simulate the evolution of a plant
and the clearance level for any protecting policy ϑ. In fact, GS
can simulate G when any ϑ is given in a way that whenever
G executes s, GS executes s↑ϑ. Precisely speaking:

• G and GS are initialized at q0 and (q0, h0) where h0 = 0,
respectively;

• Suppose that G and GS are at q and (q, h), respectively.
When G executes the next event σi with δ(q, σi) =
q′. If σi is protected, GS executes event λi to reach
(q′, δH(h, λi)); otherwise, if σi is not protected, GS
executes event αi to reach (q′, δH(h, αi)).

Moreover, the following proposition shows that OS(q, h) is
the final clearance level of s with respect to ϑ, where (q, h)
is the state in GS reached by executing s↑ϑ.

Proposition 1: Given a plant G = (Q,Σ, δ, q0), a security
requirement ` : Q → Nn modeled by n CMs M1, . . . ,Mn,
let H = M1|| · · · ||Mn = (QH ,ΣH , δH , h0, OH) be the
monolithic clearance Moore machine and its GSA be GS =
G||SH = Ac(Q × QH ,Σα ∪ Σλ, δS , (q0, h0), OS). For any
protecting policy ϑ and any sequence s ∈ L(G), it holds:

C(s↑ϑ) = OS(δ∗S((q0, h0), s↑ϑ))

Proof: We prove this proposition by induction. First, for
|s| = 0 (i.e., s = ε), the statement holds.

Now, suppose that for all s = σ1 · · ·σm (i.e., |s| = m),
the statement hold. Consider an arbitrary sequence sσm+1

with σm+1 ∈ Σ and δ∗(q0, s) = qi, δ(qi, σm+1) = q′. By
the assumption above, it holds that δ∗S((q0, h0), s↑ϑ) = (q, h)
in GS and C(s↑ϑ) = OS(δ∗(s↑ϑ)). By the definition of the
GSA, at state (q, h), events αm+1 and λm+1 are both defined
such that δS((q, h), αm+1) = (q′, αm+1), δS((q, h), λm+1) =
(q′, δS(h, λm+1)). Hence, if σm+1 ∈ ϑ(s), at state (q, h) the
GSA GS can execute λm+1 to reach state (q′, δS(h, λm+1),

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

1
2

4

5

2

4

5

1 2 3

4

5

1 2 3

4

5

2

0 1 2 3

4

5
𝑂 = [0, 0]

𝑂 = [1, 1]

𝑂 = [2, 1]

𝑂 = [1, 0]

1 3

5
𝑂 = [2, 1]

3

5
𝑂 = [0, 1]

1 2 3

4

5
ℎ = [2, 0]

ℎ = [0, 0]

ℎ = [1, 1]

ℎ = [2, 1]

ℎ = [2, 2]

ℎ = [1, 0]

ℎ = [0, 2]

𝑂 = [2, 0]

𝑂 = [1, 1]

ℎ = [1, 2]

𝑂 = [0, 1]

ℎ

= [0, 1]

Fig. 6. Generalized security automaton GS = G||SH where G is the automaton in Figure 1. For readability, the G-component of each state is
shown in the state circle while the H-component is depicted in the grey box along with the corresponding output.

otherwise it executes αm+1 to reach state (q′, δS(h, αm+1).
This indicates

C((sσm+1)↑ϑ) = OS(δS(h, ϑ(s, σm+1))

= OS(δ∗S((sσm+1)↑ϑ))

which concludes the proof.

V. DESIGN OF MINIMALLY DISRUPTIVE PROTECTING
POLICIES USING SUPERVISORY CONTROL

In this section we first recall the standard supervisory
control in discrete-event systems.

Problem 2: Given a plant G = (Q,Σ, δ, q0) with Σ =
Σc ∪ Σuc where Σc denotes the set of controllable events
and Σuc denotes the set of uncontrollable events, and given a

state specification QF ⊆ Q defining a set of forbidden states,
determine a supervisor ξ : L(G)→ 2Σc such that G does not
reach any state in QF when controlled by ξ.

It has been known that the supervisor ξ (if exists) can
be represented by GSup a subautomaton of G obtained by
removing all states in Q \ QF and all states that can reach
Q \QF via uncontrollable sequences in Σ∗uc [29]. Moreover,
a supervisor obtained via such a procedure is maximally
permissive and unique. A maximally permissive supervisor is
denoted as ξmax. The control action for a sequence s is given
by

ξ(s) = Γξ/G(q) ∩ Σc, where q = δ′(q′0, s),

i.e., all controllable events that are not defined after executing
s are disabled.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 9

In the sequel we show that Problem 1 can be transformed
to a supervisory control problem in the corresponding GSA.
Given a secret protection problem (i.e., SPP in Problem 1),
we define its corresponding supervisory control problem in
the corresponding GSA (SCP-GSA) as follows.

Problem 3: [SCP-GSA] Given a plant G = (Q,Σ, δ, q0),
a security requirement ` : Q → Nn modeled by n CMs
M1, . . . ,Mn, let H = M1|| · · · ||Mn = (QH ,ΣH , δH , h0,
OH) be the monolithic clearance Moore machine and its GSA
be GS = G||SH = Ac(Q × QH ,Σα ∪ Σλ, δS , (q0, h0), OS).
Design a maximally permissive supervisor ξmax : L(GS) →
2Σc for automaton GS with respect to

Σc = Σα, Σuc = Σλ (4)

and a state specification QF = {(q, h) | OS(q, h) � `(q)}.
We then define the duality of a protecting policy ϑ of an

SPP and a control policy ξ in the corresponding SCP-GSA.
The physical interpretation of the duality of ϑ and ξ is that, if
we run ϑ and ξ in parallel, ϑ protects event σi after a sequence
s ∈ L(G) if and only if ξ disables event αi after a sequence
s̃ = s↑ϑ ∈ L(GS).

Definition 9 (ϑ− ξ Duality): Consider an SPP for plant G
and the corresponding SCP-GSA for the GSA GS . A control
policy ξ of the SCP-GSA and a protecting policy ϑ of the SPP
are dual if for each sequence s ∈ L(G) and each σi ∈ Σp,
the following condition holds:

σi ∈ ϑ(s) ⇔ αi ∈ ΓGS
(s↑ϑ) \ ξ(s↑ϑ) (5)

♦
The duality of ξ and ϑ given by Definition 9 is analogous

to the duality in [6] (Definition 4.3 in [6]). Such a property
establishes the link between the solutions of the SPP and the
SCP-GSA whose intuition is the following. Suppose that the
plant is at state q while H is at state h, and G is about to
execute event σ. Setting a protection on σ is associated with
the disablement of the corresponding α-event at state (q, h)
in the GSA GS = G||SH , which forces GS to follow the
corresponding λ-event. Similar to [6], we have the following
theorem.

Theorem 1: A protecting policy ϑ is valid if and only if its
dual supervisor ξ is a solution of the corresponding SCP-GSA.

Proof: (⇒) Let ϑ be an arbitrary valid protecting policy
that enforces `. We prove that its dual supervisor ξ is a solution
to the SCP-GSA. The proof is by contradiction. Suppose that
ξ permits a sequence s in GS to reach a forbidden state (q, h)
with OS(q, h) � `(q). Since OS(q, h) = C(s↑ϑ) � `(q), ϑ is
not valid, which is a contradiction.

(⇐) Let ξ be a supervisor of the SCP-GSA problem, whose
supervisor automaton Gξ is a subautomaton of GS . We prove
that its dual protecting policy ϑ is a valid protecting policy
that enforces `. The proof is again by contradiction. Suppose
that there exists a sequence s = σ1 · · ·σm ∈ L(G) such that
C(s↑ϑ) � `(q), q = δ∗(q0, s). It implies that in the GSA by
executing s↑ϑ a state (q, h) with OS(q, h) � `(q) is reached.
Since each execution of unprotected event σi corresponds to
a control action that permits αi, it indicates that ξ permits s↑ϑ

in GS , i.e., the forbidden state (q, h) is reachable under the
control of ξ, which is a contradiction.

Example 4: Again consider the GSA in Figure 6. We
construct the corresponding SCP-GSA as follows. For safety
requirement `(q3) = [2, 0], `(q4) = [0, 1], `(q5) = [1, 1],
and `(qi) = 0 for other states, the forbidden states are
QF = {(qi, h) | OS(qi, h) � `(qi)} and are depicted in
orange in the same figure . The uncontrollable transitions are
Σuc = Σλ (in red). Then, such a problem can be solved by the
Ramadge-Wonham paradigm to obtain the automaton GSup
in Figure 7: it is the maximally permissive supervisor ξmax
enforcing QF for G. ♦

By Theorem 1, for each supervisor in an SCP-GSA, its dual
protecting policy is a valid protecting policy of the original
SPP. Now we show that for the maximally permissive super-
visor of an SCP-GSA, its dual protecting policy is minimally
disruptive. In other words, Problem 1 can be transformed
into Problem 3 that is a standard supervisory control problem
which can be solved by standard algorithms [29].

Theorem 2: Given a plant G = (Q,Σ, δ, q0), a security
requirement ` : Q → Nn modeled by n CMs M1, . . . ,Mn,
let H = M1|| · · · ||Mn = (QH ,ΣH , δH , h0, OH) be the
monolithic clearance Moore machine and its GSA be GS =
G||SH = Ac(Q × QH ,Σα ∪ Σλ, δS , (q0, h0), OS). Let ξmax
be the maximally permissive supervisor of the SCP-GSA.
The protecting policy ϑmin that is dual to ξmax is minimally
disruptive.

Proof: By contradiction, suppose that ϑmin is not min-
imally disruptive. By Definition 6 there exists another valid
protecting policy ϑ and a sequence s = σ1 · · ·σm such that
ϑ(s̄i) = ϑmin(s̄i) holds for all i ∈ {1, . . . ,m − 2}, and
ϑ(s̄m−1) = ϑmin(s̄m−1) \ {σm} holds. In other words, the
protecting decisions of ϑmin and ϑ are the same for all events
in s except the last one: ϑmin protects the last event σm while
ϑ does not protect σm. According to Theorem 1, the dual
supervisor ξ of ϑ is a solution of the SCP-GSA and permits
(s̄m−1)↑ϑ·αm in the GSA, which implies that (s̄m−1)↑ϑ·αm is
valid. However, sequence (s̄m−1)↑ϑ ·αm is forbidden by ξmax.
This contradicts the fact that ξmax is maximally permissive.

The reduction from an SPP to its corresponding SCP-GSA is
polynomial (since for a given plant the corresponding GSA can
be constructed in polynomial time according to Definition 8),
and the existence of solutions of SCP-GSA can be verified
using existing supervisory control methods. Note that an SPP
has a solution if and only if the corresponding SCP-GSA has
a solution, i.e., ξmax is not empty. Hence, the existence of a
solution of an SPP can be verified by checking the emptiness
of the corresponding supremal controllable sublanguage of the
SCP-GSA. Moreover, notice that the maximally permissive
supervisor ξmax (whenever it exists) is unique. Therefore, the
minimally disruptive protecting policy ϑmin is also unique
when it exists.

Corollary 1: The minimally disruptive protecting policy, if
it exists, is unique.

Proof: The conclusion is immediate from the uniqueness
of ξmax and the duality of ξmax and ϑmin by Theorem 2.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

1 2

2

4

5
1

2

2

4
5

0

𝑂 = [0, 0]

𝑂 = [1, 1]

𝑂 = [2, 1]

𝑂 = [1, 0]

𝑂 = [1, 1]

1

3

5
𝑂 = [2, 1]

1
2 3

ℎ = [2, 0]

ℎ = [0, 0]

ℎ = [1, 1]

ℎ = [2, 1]

ℎ = [2, 2]

ℎ = [1, 0]

ℎ = [1, 2]

𝑂 = [2, 0]

Ac Supervisor

Fig. 7. The maximally permissive supervisor GSup of SCP-GSA GS = G||SH in Figure 6. For readability, the G-component of each state is
shown in the state circle while the H-component is depicted in the grey box along with the corresponding output.

VI. SECURITY ENFORCER AUTOMATON

Suppose that an SPP has a solution, i.e., the maximally
permissive supervisor ξmax for the corresponding SCP-GSA
exists. The supervisor ξmax can be viewed as a secret protect-
ing policy ϑmin by the duality in Definition 9, since in ξmax
all protecting decisions are encoded. Let ξmax be represented
by automaton Gsup = (Q×QH ,Σα∪Σλ, δS , (q0, h0), OS). In
this section we propose a trim procedure for Gsup to obtain
a new compact automaton called the enforcer. The enforcer
automaton functions the same as Gsup but in general has fewer
states.

Notice that by the duality Eq. (5), the set of protected events
in each step is unambiguously decided by the disablement of
α-transitions (since ϑmin protects event σi if and only if its
dual supervisor ξmax disables event αi). Hence, if both events
αi and λi are defined at a state (q, h) in GSup, the λi-transition
is redundant since the protecting decision at (q, h) is “not to
protect σi”. Hence, at state (q, h) the λi-transition is never
executed. Hence, we can remove all such redundant transitions
from GSup to obtain a concise automaton — which we call
the security enforcer — to represent protecting policy ϑmin.

Definition 10: Given an SPP and let ξmax be represented
by automaton Gsup = (Q × QH ,Σα ∪ Σλ, δS , (q0, h0), OS).
The security enforcer is an automaton

GE = (QE ,Σα ∪ Σλ, δE , (q0, h0), OE)

that is a subautomaton of GSup obtained by removing all
λi transitions at all states (q, h) in GSup if αi transitions
are defined at the same state (q, h), followed by taking its
accessible part. This is denoted as GE = Trimλ(Gsup). ♦

3’’

3

Illustrating

𝜆𝑖

3’𝛼𝑖

3’’

3

3’𝛼𝑖

1 1’
𝛼𝑖

1 1’
𝛼𝑖

2’2
𝜆𝑖

2’2
𝜆𝑖

Fig. 8. The illustration of the trimming of GSup to obtain GE .

The construction of GE from GSup is illustrated in Figure 8.
Precisely speaking, automaton GSup is trimmed as follows:
• for each state (q, h) in Gsup and each event σi ∈ Σi, if

both δS((q, h), αi) and δS((q, h), λi) are defined, remove
transition δS((q, h), λi);

• taken the accessible part of the resulting automaton to
obtain GE .

Such a procedure can be done in polynomial time (by checking
|Q| × |QH | × 2 · |Σ| transitions). The number of states in the
enforcer automaton GE in the worst case3 is the same as that in
GS but the number of transitions is reduced to |Q|×|QH | · |Σ|
since at each state in GE for each event σi either λi or αi (or

3It is also notable that, as we show in Example 5, the state in GE can be
much less than the corresponding Gsup.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 11

TABLE I
ILLUSTRATION FOR THE EXECUTION OF SEQUENCE

σ1σ5σ6σ2σ3σ4σ7 IN EXAMPLE 5.

s s↑ϑ ϑ(s) u
ε ε σ1 [0, 0]
σ1 λ1 ∅ [1, 1]
σ1σ5 λ1α5 ∅ [1, 1]
σ1σ5σ6 λ1α5α6 σ5 [1, 0]
σ1σ5σ6σ2 λ1α5α6α2 σ3, σ7 [1, 0]
σ1σ5σ6σ2σ3 λ1α5α6α2λ3 ∅ [2, 0]
σ1σ5σ6σ2σ3σ4 λ1α5α6α2λ3α4 σ7 [2, 0]
σ1σ5σ6σ2σ3σ4σ7 λ1α5α6α2λ3α4λ7 ∅ [2, 1]

neither) is defined, but not both. The security enforcer GE runs
in parallel with G and outputs the decision of event protection:

ϑ(s) = {σi ∈ Σ | ΓGE
(δE((q0, h0), s↑ϑ)) ∩ Σλ}. (6)

i.e., GE protects all events σi’s such that their corresponding
λi’s are defined while does not protect any events σj’s such
that their corresponding αj’s are defined. The reason is that
according to the ξ − ϑ duality, all transitions deleted from
GSup will never been executed. Hence, GE with Eq. (6) and
GSup with Eq. (5) produces the same protecting policy.

Example 5: Consider the supervisor GSup in Figure 7.
Then, to obtain the security enforcer GE , we remove all
transitions λi in Σλ from state (q, h) if the corresponding
unprotected event αi is defined at the same state. For example,
since both events α1 and λ1 are defined at state (q1, [1, 1])
(in the top-middle box), the transition λ1 from (q0, [0, 0]) to
(q2, [1, 1]) is removed. By taking the accessible part of the
resulting automaton, we obtain GE that is depicted in Figure 9.

Now we illustrate how the secret enforcer GE works. As-
sume that a user executes an event sequence σ1σ5σ6σ2σ3σ4σ7

by which he/she visits states q4, q3, q5 sequentially. Accord-
ing to the secret enforcer GE in Figure 9, the minimally
disruptive protecting policy is: ϑ(ε) = {σ1}, ϑ(σ1) =
∅, ϑ(σ1σ5) = ∅, ϑ(σ1σ5σ6) = {σ5}, ϑ(σ1σ5σ6σ2) =
{σ3, σ7}, ϑ(σ1σ5σ6σ2σ3) = ∅, ϑ(σ1σ5σ6σ2σ3σ4) = {σ7},
ϑ(σ1σ5σ6σ2σ3σ4σ7) = ∅. The detailed protecting decision
made by GE for each step is summarized in Table I. ♦

We recap the procedure of the developed approach for
solving an SPP. Given a plant G with security requirement
` that contains n types of clearances, the entire algorithm
includes the following steps:

1) Compose n clearance Moore machines M1, . . . ,Mn into
a monolithic clearance automaton H;

2) Use secret parallel synchronization to compute the GSA
GS = G||SH;

3) Solve the SCP-GSA in GS to obtain the maximally
permissive supervisor Gsup (if Gsup does not exist, the
algorithm terminates since there is no solution for the
original SPP);

4) Trim GSup to finally obtain the secret enforcer au-
tomaton GE whose protecting policy ϑmin is given by
Eq. (6).

The roadmap of the algorithm above is illustrated in Figure 10.

At the end of this section we discuss the complexity of
the proposed approach. Given a plant G with |Q| states, |Σ|
events, and n types of clearance levels modeled by n Moore
machines with |Qc,i| states, the corresponding GSA GS has
at most |Q| ×

∏n
i=1 |Qc,i| states and |Q| × 2|Σ| ×

∏n
i=1 |Qc,i|

events. The number of states in the enforcer automaton GE
in the worst case is the same as that in GS that is |Q| ×∏n
i=1 |Qc,i|, while the number of transitions in GE reduces

to |Q| × |Σ| ×
∏n
i=1 |Qc,i| since at each state in GE for each

event σi either λi or αi (or neither) is defined, but not both.
When n = 1, the secret enforcer contains |Q|×|Qc| states and
|Q|× |Σ|× |Qc| events which is also smaller than the security
automaton in [6] (which is |Q| × |Qc| × 2 · |Σ|). Hence, the
structural complexity of GE is polynomial to the scale of the
secret protection problem.

Remark 3: The exponential complexity with respect to
number of types of clearances n when constructing monolithic
model is unavoidable, like in many other properties in discrete-
event systems such as fault diagnosis with n multi-type of
faults, opacity estimation with n multi-site observers, etc. Pos-
sible approaches to reduce the complexity include supervisor
decomposition/localization techniques, which will be part of
our future work.

On one hand, we believe that in practice the types of
clearance n is are typically not too many, since each type
of clearance is associated with a basic, individual type of
users of the system. For example, in Example 2, the two basic
roles who can access the database are students and teachers.
So, we need two types of clearance levels l1 and l2. For
administrators who can access both types of data, we do not
need to create a new clearance type for them but define their
authority as a combined security specification [l1, l2] in the
system. Therefore, state q5 in Figure 1 is a location to store
data that can only be visited by administrators, not students
nor teachers. ♦

VII. CONCLUSIONS

In this paper, we have introduced a secret protection prob-
lem in discrete-event systems modeled by automata with multi-
type of clearances modeled by Moore machines. We have pro-
posed a secret parallel synchronization operator on the plant
and its clearance automaton, based on which an auxiliary data
structure called the generalized secret automaton is obtained.
Based on the generalized secret automata, we have proposed
a method to design a minimally disruptive protecting policy
using the supervisory control theory. The minimally disruptive
protecting policy we have designed is represented by a secret
enforcer automaton that is polynomial in the size of the given
secret protection problem.

Our future work includes extending the current centralized
setup to a decentralized one with multiple subsystems contain-
ing local secrets, as well as applying supervisor localization
to decompose the centralized protecting policies into local
protection policies.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

1

4

5

1

2

2

4

0

𝑂 = [0, 0]

𝑂 = [1, 1]

𝑂 = [2, 1] 𝑂 = [1, 0]

𝑂 = [1, 1]

1

𝑂 = [2, 1]

2 3

ℎ = [2, 0]

ℎ = [0, 0]

ℎ = [1, 1]

ℎ = [2, 1]

ℎ = [2, 2]

ℎ = [1, 0]

ℎ = [1, 2]

𝑂 = [2, 0]

Ac Enforcer

𝜆1 𝛼2

𝛼5

𝛼2

𝛼2

𝜆7

𝜆5

𝛼6

𝜆3
𝜆7

𝜆3

𝛼3
𝛼4

𝛼8

𝜆5𝛼6

𝜆7

Fig. 9. The security enforcer in Example 5. The G-component of each state is shown in the state circle while the H-component is depicted in the
grey box along with the corresponding output.

𝐺

𝑀1 𝑀2 𝑀𝑛

𝐻

𝐺𝑆 = 𝐺||𝑆𝐻

𝐺𝑆𝑢𝑝 = 𝑆𝑢𝑝(𝐺𝑆, ℓ)

𝐺𝐸 = 𝑇𝑟𝑖𝑚𝜆(𝐺𝑆𝑢𝑝)

…

Clearance Moore Machines

Plant

Generalized
Secret Automaton

Enforcer Automaton

Maximally Permissive
Supervisor of SCP-GSA

Fig. 10. The roadmap (algorithm) of the approach in this work.

[1] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A
survey of intrusion detection techniques in cloud,” Journal of Network
and Computer Applications, vol. 36, no. 1, pp. 42–57, 2013.

[2] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys,
vol. 42, no. 1, pp. 1–31, 2009.

[3] S. Lafortune, F. Lin, and C. Hadjicostis, “On the history of diagnosability
and opacity in discrete event systems,” Annual Reviews in Control,
vol. 45, pp. 257–266, 2018.

[4] S. Matsui and K. Cai, “Secret securing with multiple protections and
minimum costs,” in Proceedings of the 58th IEEE Conference on
Decision and Control, 2019, pp. 7635–7640.

[5] ——, “Usability aware secret protection with minimum cost,” Nonlinear
Analysis: Hybrid Systems, vol. 43, p. 101111, 2021.

[6] Z. Ma and K. Cai, “Optimal secret protections in discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 67, no. 6, pp. 2816–2828,
2022.

[7] Z. Ma, J. Jiang, and K. Cai, “Secret protections with costs and disrup-
tiveness in discrete-event systems using centralities,” IEEE Transactions
on Automatic Control, vol. 69, p. to appear, 2024.

[8] Z. Ma and K. Cai, “Optimal secret protection in discrete event systems
with dynamic clearance levels,” in Proceedings of the 22nd IFAC World
Congress (IFAC WC’23), 2023, pp. 3579–3584.

[9] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Reviews
in Control, vol. 41, pp. 135–146, 2016.

[10] F. Lin, “Opacity of discrete event systems and its applications,” Auto-
matica, vol. 47, no. 3, pp. 496–503, 2011.

[11] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140–2154,
2016.

[12] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Transactions on Automatic
Control, vol. 57, no. 5, pp. 1155–1165, 2012.

[13] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, 2010.

[14] Y. Ji, X. Yin, and S. Lafortune, “Enforcing opacity by insertion functions
under multiple energy constraints,” Automatica, vol. 108, p. 108476,
2019.

[15] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[16] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” in Proceedings of the 14th IFAC Workshop on
Discrete Event Systems, Sorrento, Italy, 2018, pp. 285–290.

[17] M. Agarwal, “Rogue twin attack detection: A discrete event system
paradigm approach,” in Proceedings of the 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Oct 2019, pp.
1813–1818.

[18] L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 13

and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121–133, 2018.

[19] Y. Tong, Y. Wang, and A. Giua, “A polynomial approach to verifying
the existence of a threatening sensor attacker,” IEEE Control Systems
Letters, vol. 6, pp. 2930–2935, 2022.

[20] M. R. Alves, P. N. Pena, and K. Rudie, “Discrete-event systems subject
to unknown sensor attacks,” Discrete Event Dynamic Systems, vol. 32,
no. 1, pp. 143–158, 2022.

[21] C. Gao, C. Seatzu, Z. Li, and A. Giua, “Multiple attacks detection
on discrete event systems,” in 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2019, pp. 2352–2357.

[22] R. Meira-Goes, E. Kang, R. Kwong, and S. Lafortune, “Synthesis
of sensor deception attacks at the supervisory layer of cyber-physical
systems,” Automatica, vol. 121, p. Article 109172, 2020.

[23] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Applica-
tions, vol. 9, pp. 965–983, 2019.

[24] L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers,”
Automatica, vol. 130, p. Article 109714, 2021.

[25] R. Su, “About existence of resilient supervisors against smart sensor
attacks,” in 2022 IEEE 61st Conference on Decision and Control (CDC),
2022, pp. 4263–4269.

[26] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Security
of cyber-physical systems: Design of a security supervisor to thwart
attacks,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 3, pp. 2030–2041, 2022.

[27] R. Su, “On decidability of existence of nonblocking supervisors resilient
to smart sensor attacks,” Automatica, vol. 154, p. 111076, 2023.

[28] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[29] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Springer, 2019.

[30] J. Moerman, “Learning product automata,” in International Conference
on Grammatical Inference. PMLR, 2019, pp. 54–66.

Ziyue Ma (Senior Member, IEEE) received the
B.Sc. degree and the M.Sc. degree in Chemistry
from Peking University, Beijing, China, in 2007
and 2011, respectively. In 2017 he got the Ph.D
degree in cotutorship between the School of
Electro-Mechanical Engineering of Xidian Uni-
versity, China (in Mechatronic Engineering), and
the Department of Electrical and Electronic En-
gineering of University of Cagliari, Italy (in Elec-
tronics and Computer Engineering). He joined

Xidian University in 2011, where he is currently an Associate Professor
in the School of Electro-Mechanical Engineering. His current research
interests include control theory in discrete event systems, automata and
Petri net theories, fault diagnosis/prognosis, resource optimization, and
information security.

Dr. Ma is a member of Technical Committee of IEEE Control System
Society on Discrete Event Systems and IFAC Technical Committee 1.3
on Discrete Event and Hybrid Systems. He is serving as the Associate
Editor of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND
ENGINEERING and is serving/has served in the Conference Editorial
Board of IEEE Conference on Automation Science and Engineering
(CASE’17–’24), European Control Conference (ECC’19–’24), and IEEE
International Conference on Systems, Man, and Cybernetics (SMC’19–
’24). He is/was the Track Committee Member of the International Con-
ference on Emerging Technologies and Factory Automation (ETFA’17–
’24). In 2016 and 2022 he received the Outstanding Reviewer Award
from the IEEE TRANSACTIONS ON AUTOMATIC CONTROL and IEEE
CONTROL SYSTEM LETTERS, respectively.

Kai Cai (Senior Member, IEEE) received the
B.Eng. degree in Electrical Engineering from
Zhejiang University, Hangzhou, China, in 2006;
the M.A.Sc. degree in Electrical and Com-
puter Engineering from the University of Toronto,
Toronto, ON, Canada, in 2008; and the Ph.D.
degree in Systems Science from the Tokyo In-
stitute of Technology, Tokyo, Japan, in 2011. He
is currently a Full Professor at Osaka Metropoli-
tan University. Previously, he was an Associate

Professor at Osaka City University (2014–2020), an Assistant Professor
at the University of Tokyo (2013–2014), and a Postdoctoral Fellow at the
University of Toronto (2011–2013).

Dr. Cai’s research interests include cooperative control of multi-agent
systems, discrete-event systems, and cyber-physical systems. He is
the co-author with Z. Lin of “Directed Cooperation” (KDP 2023), and
with W.M. Wonham of “Supervisory Control of Discrete-Event Systems”
(Springer 2019) and “Supervisor Localization” (Springer 2016). He is
serving as a Senior Editor for Nonlinear Analysis: Hybrid Systems. He
was an Associate Editor for IEEE Transactions on Automatic Control
(2017–2023), the Chair for IEEE CSS Technical Committee on Discrete
Event Systems (2019–2022), and a member of IEEE CSS Conference
Editorial Board (2017–2022). He received the Pioneer Award of SICE in
2021, the Best Paper Award of SICE in 2013, the Best Student Paper
Award of IEEE Multi-Conference on Systems & Control in 2010, and the
Young Author’s Award of SICE in 2010.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3481030

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

