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Abstract—In this paper, we study a secret protection problem
in discrete-event systems. The system is modeled by an automaton
in which several states are assigned with different secret levels.
Our aim is to protect some of the events in the system such
that any sequence yielding a secret state contains a number of
protected events no less than the required security level. We
first study the secret protecting problem with minimum cost, i.e.,
to design a protecting policy whose cost is minimal. We prove
that the decision version of such a secret protection problem is
NP-hard, which implies that there unlikely exists a polynomial
algorithm to solve it. As a result, we developed a heuristic method
to obtain a locally optimal solution to protect the secrets using
the notion of cost-weighted centrality. Then, we consider the
disruptiveness, i.e., the degree of disruptiveness of protecting
policies to legal users’ normal operations. We formulate the
disruptiveness to users incurred by the protection on events as
a penalty function which describes the impact of events and
transitions on the paths leading to marker states. A heuristic
method based on the notion of cost-penalty-weighted centrality is
analogously developed to obtain a protecting policy which can
well balance the cost and the disruptiveness to users.

Index Terms—Secret protection, cyber-physical systems, au-
tomata, discrete-event systems

I. INTRODUCTION

Information security in cyber-physical systems has drawn
much attention in the past three decades [1], [2], [3], [4],
[5]. One of the main concerns in cyber-security is to ensure
that the secrets in a system should not be accessed by
unauthorized users, i.e., the intruders. To protect the secrets, it
is necessary to set some protective measures on some actions
in the system to verify the identity of users. For example, a
user of a mobile phone must pass a two-step verification to
prove his/her identity, before getting access to some sensitive
information such as the numbers of credit cards. By doing so,
an unauthorized intruder who cannot provide a legal identity
must hack through these protected actions (i.e., events) before
reaching the secrets. If the effort needed for hacking through
these protected events is high enough, an attack towards the
secrets can be considered practically prevented.

Theoretically, the administrator of a system may protect
as many events as possible to ensure a security requirement.
However, such a protecting policy is usually infeasible in real
systems due to the following two reasons. First, protecting an
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event usually incurs some cost, e.g., to develop and deploy
encrypting algorithms, or to purchase fingerprint detectors.
Hence, the cost to protect all events may be too high to be
affordable. Second, such protections on events usually causes
some inconvenience to legal users. As a result, protecting
too many events in a system (e.g., requesting a password
verification for each click) may greatly degrade the experience
of legal users who use the system. In practice, we are interested
in designing protecting policies that satisfy the security re-
quirement and have as little cost and disruptiveness as possible.

The problem of secret protection in discrete-event systems
was first studied in [6], [7], [8], [9], and [10]. In [6], [7], the set
of protectable events is partitioned into distinct levels, and the
total cost is defined as the maximum of the levels of protected
events. The work of [8] is a generalization of [6], [7] which
takes the users’ convenience into consideration: the users’
convenience is treated as a one-level increase on the cost level.
In the work of [10], the cost to protect each event can be an
arbitrary nonnegative real value, and the total cost is defined as
the sum of the costs of all protected events. Then, a polynomial
algorithm is developed to find an optimal protecting policy
based on a structure called secret automaton. Besides, [10]
also considers a criteria of optimality on disruptiveness that is
not to protect any event unless it has to. In [10] an assumption
is introduced such that each transition is protected separately,
which means that all transitions in a system are distinctly
labeled.

Based on the motivation above, in this paper we further
explore the secret protection problem with three important
generalizations of [10] which will be explained in the sequel.
In a system modeled by an automaton, some states are
considered as secrets. Each secret state is associated with
a security level which is the minimal number of protected
events required before reaching the state (from the initial
state). Moreover, in the system, a subset of events can be
protected (i.e., a protectable operation such as password checks
can be imposed on it by the administrator). By successfully
executing a protected event, a user is granted with a certain
clearance level. On the other hand, protecting an event incurs
a nonnegative cost, and causes disruptiveness to legal users.
A secret protection problem (SPP) is to design an event-
protecting policy to enforce such a security requirement such
that every sequence from the initial state and reaching a secret
state contains a number of protected events such that the total
granted clearance level is no less than the required security
level of that secret.

The first generalization done in this work is that we consider
the case in which the cost of protection is defined on the
events (i.e., the labels) in the system, by which we remove a
potentially restrictive assumption in [10] which requires that
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all transitions are distinctly labeled. In other words, while
transitions and events are isomorphic in [10], they are not in
this work, and several transitions sharing the same event/label
can be simultaneously protected by paying the corresponding
cost only once. This setting is fairly common in practice. For
example, to purchase and install a fingerprint detector is costly,
but to use it after installation one just need to put his/her
finger on the scanner whose cost is negligible. The second
generalization is that we allow that the execution of a protected
event to raise multiple clearance levels. For example, a user
who passes a face recognition check is more trustable than the
one who passes a password check, although they both pass
only one security check. The case in [10] can be viewed as
a particular case in which the raise of the clearance level is
unitary when passing any protected events. In this new setting,
we will show that the SPP is NP-hard (more challenging
than the P-class SPP in [10] with a restrictive assumption).
We tackle this new problem by proposing a novel approach
borrowing a centrality concept [11] from network science [12].

The third generalization is that we consider the disruption
on the normal usage of the system by legal users. Besides
the secret states, a system typically contains some marker
states that represent the featured functions of the system.
Hence, a trajectory from the initial state to a marker state
can be viewed as a normal use of the system by a legal user.
This formulation of disruption is different from that in [8]
where the disruption is treated as a binary variable (i.e., either
“disrupted” or “undisrupted”) so that the disruption, if it exists,
is modeled as a “one level-up” of the cost. Moreover, note that
in practice using featured functions (e.g., streaming a video
clip) and checking confidential information (e.g., modifying
the account’s password) in a system are typically separated.
Hence, we do not impose any special relation between marker
states and secret states. The protection on an event that is
on a trajectory of normal use incurs disruption to legal users,
which can be viewed as a penalty of protection. Although it
is expected that such disruptions should be minimized, this
objective is usually incompatible with that of minimizing the
cost of protection. Hence, the balance between the cost and
the disruptiveness must be considered.

The main contributions of this work are summarized as
follows.
• We first consider the SPP with cost optimality without

specifying the marker states. It has been proved that SPP
in distinctly labeled finite state automata and unitary raise
of clearance level belongs to complexity class P in [10].
Here, with the removal of the distinctly labeling and
unitary raise of clearance level assumptions, we prove
that the decision version of such SPP is NP-complete
by proving that (i) SPP is reducible from the Knapsack
Problem, which implies its NP-hardness, and (ii) a candi-
date solution of SPP can be verified in polynomial time,
which implies the NP-membership of SPP. As a result,
the problem of determining an optimal event-protecting
policy is NP-hard, which implies that there unlike exists
an algorithm with polynomial complexity to solve it.

• Then, we develop a heuristic method that is of polynomial
complexity to compute a locally optimal solution for

SPP. Our method is established based on the notion of
centrality [11], a widely used concept in the field of
social networks which characterizes the importance of the
arcs in a network. By considering the influence of cost,
we propose a new notion called cost-weighted centrality
which is then used to develop our heuristic algorithm.

• Finally, we consider a more general version of SPP with
both secret states and marker states. We formulate a
penalty function that characterizes the impact of events
and transitions on the paths leading to marker states, i.e.,
the disruptiveness. Then, a notion called cost-penalty-
weighted centrality is proposed with a parameter λ to
balance the weight between the protection cost and the
disruptiveness. For this general SPP, the centrality-based
method is adapted to obtain a locally optimal policy
which balances the cost and disruptiveness.

Furthermore, a series of simulation is carried out which shows
that our method is practically efficient and can obtain a locally
optimal solution which is close to the global optimal one in
most cases.

It is worth noting that in the literature, there is a related no-
tion in cyber-security called opacity [13], [14], [15], [16], [17]
(also called secrecy, anonymity) that characterizes whether a
secret concerning systems’ behaviors can be hidden from an
intruder who passively observes (some of) the events generated
by the system. We point out that opacity is essentially different
from the secret protecting problem studied in this work.
Opacity is defined from the side of an intruder who has
partial observability of a system, while the SPP is defined
from the side of the administrator to whom the system is
fully observable. In autonomous systems with eavesdropping
intruders, for a non-opaque system, it is common to develop
security supervisors [18], [19], [20] or to use output mod-
ification [21], [22] to ensure opacity or other properties of
information security. Here, our method are suitable in systems
that are operated by the input of the users. Since we require
that the system be usable to legal users, we cannot change
the dynamics and preferably not to modify the output of a
system. For example, we cannot disable an event leading to
a secret state since otherwise some normal functions of the
system may become unavailable. Other related perspective
of research include intrusion detection [23], [24] and attack-
resilience [25], [26], [27]. Since we assume that an intruder
may disguise as a legal user such that no abnormal behavior
can be observed, we do not try to detect the existence of
intruders. Instead, we set protective measures on the events in
the system to increase the difficulty of unauthorized access to
the secrets, which may practically prevent potential intruders.

Some preliminary results related to the approach that we
develop in this paper were presented in [28]. In [28] only
the minimization of cost is considered. In this paper the NP-
completeness of the SPP is formally proved. Furthermore, in
this work a general version of SPP with both secret states
and marker states is studied, and a centrality-based method is
developed accordingly.

The rest of this paper is organized in seven sections. Basic
notions of nondeterministic finite automata are recalled in
Section II. In Section III, multiple secret protecting problem
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with minimum costs is formulated. Section IV proves the
NP-hardness of the optimal secret protecting problem. In
Section V, a heuristic method is developed which generates
a local optimal solution, and two illustrative examples are
provided. In Section VI, the penalty function to evaluate the
disruptiveness is formulated, and the centrality-based method
is adapted to obtain a locally optimal policy which balances
the cost and disruptiveness. Section VII concludes the paper.

II. PRELIMINARIES

A nondeterministic finite automaton1 (automaton for short)
is a five-tuple G = (Q,Σ, δ, q0, Qm), where Q is a finite set
of states; Σ is a finite set of events; δ : Q × Σ → 2Q is the
transition function2; q0 ∈ Q is the initial state; and Qm ⊆ Q
is the set of marker states. An automaton G is also denoted
as (Q,Σ, δ, q0) if the marker states are not specified. We use
Σ∗ to denote the Kleene closure of Σ, consisting of all finite
sequences composed by the events in Σ (including the empty
sequence ε).

The transition function δ is extended to δ∗ : 2Q×Σ∗ → 2Q

by recursively defining (i) δ∗(Q′, ε) = Q′, (ii) δ∗(Q′, σ) =⋃
q∈Q′ δ(q, σ), (iii) δ∗(Q′, sσ) = δ∗(δ∗(Q′, s), σ), where

Q′ ⊆ Q, s ∈ Σ∗, and σ ∈ Σ. The language of G is defined
as L(G) = {s ∈ Σ∗ | δ∗({q0}, s) ∈ Q}.

Given an automaton G = (Q,Σ, δ, q0, Qm), the accessi-
ble part of G, denoted as Ac(G), is the automaton G′ =
(Q′,Σ, δ′, q0, Q

′
m) obtained from G by removing all un-

reachable states and their corresponding transition relations.
Precisely speaking, Q′ = {q ∈ Q | (∃s ∈ L(G)) q ∈
δ∗({q0}, s)}, and δ′ is the restriction of δ to Q′ × Σ.

Given a sequence s ∈ Σ∗, we use |s| to denote the length
of s, i.e., the total number of events in s. A sequence s̄ ∈ Σ∗

is a prefix of a sequence s ∈ Σ∗ if s = s̄s′ where s′ ∈ Σ∗.
We use s̄k (where 0 ≤ k ≤ |s|) to denote the prefix of s of
length k, i.e., s = s̄ks

′ where |s̄k| = k and s′ ∈ Σ∗. The
prefix closure of a language L ⊆ Σ∗ is the set L = {s ∈ Σ∗ |
∃s′ ∈ Σ∗, ss′ ∈ L}.

III. SECRET PROTECTION WITH MINIMAL COSTS

A. Secret Protecting Problem Formulation

In this section, we recall some preliminary notions in [10].
Given a system G = (Q,Σ, δ, q0) that models a physical
system, some states in it may contain sensitive data (such as
credit card numbers) that should be kept secret. To protect
the secrets from being accessed by unauthorized intruders,
some events in the system should be protected (e.g., by adding
security checks on them) such that any user who accesses
the plant from the entry of the system must passes through
a certain number of security checks before reaching a secret
state. Formally, a security requirement is a function ` : Q→ N
that assigns each state a security level, i.e., `(q) means that

1Preliminary notions on finite automaton used in this paper are derived
from [29].

2The nondeterministic finite automaton considered in this paper does not
include silent transitions, i.e., each transition in it is assigned with a label in
Σ. On the other hand, it allows that from one state two or more outbound
arcs are assigned with the same label.

to reach state q from entry q0, at least `(q) protected events
must be passed. All states with positive security levels are
secret states (“secrets” for short), the set of which is denoted
as QS = {q ∈ Q | `(q) > 0}. We assume that `(q0) = 0,
i.e., the initial state is not secret. Note that in this section and
Sections IV, V, we do not consider marker states Qm which
represents featured functions of the system: we will consider
Qm in Section VI where the measure of disruptiveness is
involved.

We assume that in the system G = (Q,Σ, δ, q0) some events
are protectable. Precisely speaking, the set of events Σ is
partitioned into the set of protectable events Σp and the set of
unprotectable events Σup, i.e., Σ = Σp ∪ Σup.

Definition 1: [10] A protecting policy is a function:

ϑ : L(G)→ 2Σp (1)

such that, after a sequence s ∈ L(G) is generated, the set of
protected events following s is ϑ(s) ⊆ Σp.3 ♦

The execution of a protected event σ (meaning that the user
passes the corresponding security check on σ) grants the user
a clearance level γ(σ). Formally, γ is a clearance function that
assigns each event in Σp a nonnegative integer, i.e., γ : Σp →
N. Given a protecting policy ϑ, we define θ(s, σ) = 1 (resp.,
θ(s, σ) = 0) if σ ∈ ϑ(s) (resp., σ /∈ ϑ(s)). To ensure that
the secret states are not visited by unauthorized intruders, our
objective is to design a policy that ensures that any sequence
yielding a secret state must contain a sufficient number of
protected events such that the total granted clearance level by
executing the sequence is no fewer than the corresponding
security level `(q).

Definition 2: [10] Given a system G = (Q,Σ, δ, q0) and
a security requirement ` : Q → N, a protecting policy ϑ is
valid if for any sequence s = σ1 · · ·σn ∈ L(G) such that
δ∗({q0}, s) = q, there holds:

n−1∑
j=0

θ(s̄j , σj+1) · γ(σ) ≥ `(q). (2)

♦
On the other hand, in practice, to protect events usually

incurs cost due to the deployment of new encrypting algo-
rithms or purchasing of expensive biometric detectors. Hence,
we consider a cost function c : Σ→ R≥0 ∪ {∞} that assigns
each event a nonnegative real number or ∞, i.e.:{

c(σ) ∈ R≥0 \ {∞}, σ ∈ Σp

c(σ) =∞, σ ∈ Σup
(3)

In plain words, the cost of protecting a protectable event in
Σp is a finite number while that of protecting an unprotectable
event in Σup is ∞. The cost of a protecting policy is thus
defined as the following.

3Policy ϑ may protect an event σ ∈ Σp after s where sσ is not in L(G).
In such a case, whether protecting σ or not after s does not affect the result
of the information security.
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Definition 3: [10] Given a system G = (Q,Σ, δ, q0), a
security requirement ` : Q→ N, and a cost function defined
by (3). The cost of the protecting policy ϑ is defined as:

C(ϑ) =
∑

σ∈P (ϑ)

c(σ) (4)

where P (ϑ) = {σ ∈ Σp | (∃s ∈ L(G)) σ ∈ ϑ(s)} is the set
of protected events of ϑ. ♦

Definition 4: [10] A protecting policy ϑ is optimal if there
does not exist any other protecting policy ϑ′ such that C(ϑ′) <
C(ϑ). ♦

The cost c(σ) of event σ is counted (as part of the cost
of ϑ) if σ is protected after at least one sequence s ∈ L(G).
Note that such a cost incurred by the protection of event σ is
irrelevant to the number (when it is not zero) of sequences after
which σ is protected. This setting may be useful in practice: for
example, to protect a transition one may purchase a biometric
detector once, while the cost of each subsequent usage of the
detector is comparatively negligible. The problem studied in
this paper is then formulated as the following.

Problem 1: [Secret Protecting Problem] Given a system
G = (Q,Σ, δ, q0) with Σ = Σp ∪Σup, a security requirement
`, a clearance function γ, and a cost function c, determine an
optimal protecting policy ϑ. ♦

Remark 1: Different from the work in [10] in which all
transitions are assumed to be distinctly labeled (Assumption 1
in [10]), in this paper we remove this possibly restrictive
assumption and allow that one event (or label) σ ∈ Σ be
assigned to several transitions in the system.

We emphasize that, when modeling a physical system as
an automaton, the way to assign the events/labels to transi-
tions depends on the physical means of protection. Precisely
speaking, a group of transitions will be assigned with the
same event/label if and only if these transitions can be
protected simultaneously. For example, all transitions that
can be equipped with the same password check program are
assigned with the same event/label. If the corresponding event
is protected (i.e., the program is developed and deployed),
all such transitions are protected simultaneously. On the other
hand, two transitions that cannot be protected simultaneously
by a single means will be assigned with different labels. For
example, two transitions that represent two secrets at distant
locations whose protections require the deploy of biometric
detectors will be assigned with different labels, since the
administrator cannot buy one detector and use it at two distant
locations. ♦

B. Protecting Policy Conversion

In the sequel, we perform a protecting policy conversion
such that the secret protection problem can be solved by
exploring the so-called maximal protecting policies.

Definition 5: A protecting policy ϑ : L(G)→ 2Σp is called
maximal if the following condition holds:

(∃s ∈ L(G)) σ ∈ ϑ(s)⇔ (∀s ∈ L(G)) σ ∈ ϑ(s). (5)

A maximal protecting policy is denoted as ϑm. ♦

A maximal protecting policy is that if it protects an event
σ after some sequence s ∈ L(G), then it protects σ after all
sequences. In other words, each event is either protected for
all s ∈ L(G) or not protected for any s ∈ L(G). Then, for
any protecting policy ϑ defined by (1), we can always define
a protecting policy ϑm as the following.

(∃s ∈ L(G)) σ ∈ ϑ(s)⇔ (∀s ∈ L(G)) σ ∈ ϑm(s). (6)

The following proposition shows that ϑm is valid if ϑ is valid,
and ϑm has the same cost as ϑ.

Proposition 1: Given a system G = (Q,Σ, δ, q0), a security
requirement ` : Q → N, a clearance function γ, and a cost
function defined by (3). If a protecting policy ϑ is valid, then
(i) the corresponding maximal protecting policy ϑm is valid;
(ii) C(ϑ) = C(ϑm).

Proof: First, for any sequence s ∈ L(G), ϑ(s) ⊆ ϑm(s).
This indicates that for any sequence s = σ1 · · ·σn ∈ L(G)
such that q ∈ δ∗({q0}, s),

∑n−1
j=0 θm(s̄j , σj+1) · γ(σj+1) ≥∑n−1

j=0 θ(s̄j , σj+1) ·γ(σj+1) ≥ `(q) holds. Hence, ϑm is valid.
On the other hand, C(ϑ) = C(ϑm) holds since P (ϑ) =
P (ϑm) according to (6). �

Proposition 1 shows that for any optimal protecting policy,
its corresponding maximal protecting policy ϑm is also opti-
mal. Notice that in a maximal protecting policy an event σ is
either protected or not protected in all cases. Thus, a maximal
protecting policy ϑm can be represented by a set P ⊆ Σp that
is the set of all events it protects:

P = {σ ∈ Σp | σ ∈ P (ϑm)}. (7)

Hence, to solve the secret protection problem, we can design
a maximal protecting policy ϑm instead of seeking (possibly
non-)maximal ones since the former can be simply described
by a subset of Σp. In the sequel, we simply use P to denote
a maximal protecting policy.

We use ϕ(s, σ), where s is a string in Σ∗ and σ is an event
in Σ, to denote the number of occurrences of event σ in string
s. Given a maximal protecting policy P and a sequence s ∈
L(G), the clearance level after executing s is

∑
σ∈P ϕ(s, σ) ·

γ(σ). The validity and the optimality of a protecting policy
(Definitions 2 and 4) can thus be rewritten as follows.

Definition 6: A protecting policy P is valid if for any
sequence s ∈ L(G) such that q ∈ δ∗({q0}, s),

∑
σ∈P ϕ(s, σ) ·

γ(σ) ≥ `(q) holds. ♦
Definition 7: A protecting policy P is optimal if there

does not exist any other protecting policy P ′ such that∑
σ∈P′ c(σ) <

∑
σ∈P c(σ). ♦

Next, we use the following example (augmented from [6])
to illustrate the secret protecting problem that will be studied
in this paper.

Example 1: Consider the automaton G in Figure 1 which
represents a computer network. A user who visits the system
is first initialized at the initial state q0. State q1 means that
the user has accessed a wireless router. The user can connect
to or disconnect from the router via σ1 or σ2, respectively.
States q2 and q4 represent two different LANs. From the state
q1, the user can switch between states q1 and q2, or between
q1 and q4, via two cyclic transitions. From both states q2 and
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𝑞0 𝑞1

𝑞2 𝑞3

𝑞4 ℓ 𝑞5 = 3𝑞5
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𝜎4
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𝜎7

𝜎5

𝜎3

𝜎4
𝜎5

𝜎8

ℓ 𝑞3 = 2

𝜎9

𝒫 = {𝜎1, 𝜎3, 𝜎9}

Fig. 1: The system G

𝜎1

𝑞0 𝑞1

Item 1 Item 2

𝜎2 𝜎𝑛

𝑞𝑛𝑞𝑛−1

Item 𝑛

ℓ 𝑞𝑛 = 𝑉

Fig. 2: The automaton G constructed in the proof of Proposi-
tion 2.

q4, the user can directly reach the state q5 to access secret
files, such as credit card numbers. From state q2 the user can
switch between states q2 and q3, where q3 is a bastion server
which allows users to access to q5 via a different channel. We
consider a security requirement ` as `(q3) = 2, `(q5) = 3 and
`(qi) = 0 where i ∈ {0, 1, 2, 4}. That is, the security level of
state q3 (resp., state q5) is two (resp., three).

Notice that the process to connect to LAN q2 and q4 from
q1 is similar. Hence, we can develop a password verification
module and deploy it on transitions q1 → q2 and q1 → q4.
The development of the module may be costly, while the
cost of deploying it is comparatively negligible (since we just
make another copy of the module). Hence, in the system the
two transitions q1 → q2 and q1 → q4 are assigned with
the same event σ3. That is, when imposing a protection on
event σ3, both transitions are protected without doubling the
cost. Similarly, σ4 and σ5 are also assigned to two transitions,
respectively, since σ4 means to disconnect from the LANs
while σ5 is to access the secret file q5 from LANs.

For simplicity, assume that all events are protectable while
the cost to protect each event is unitary. Namely, Σ = Σp and
c(σi) = 1 where i ∈ {1, 2, . . . , 9}. On the other hand, the
channels between server q1 and q2, q4 are robust and difficult
to be penetrated. Hence, a successfully execution of a protected
σ3 grants 2 clearance levels to the user while a successfully
execution of other protected events grants 1 clearance level,
i.e., γ(σ3) = 2 and γ(σi) = 1 for i 6= 3. In such a case, one
can readily verify that an optimal protecting policy is P =
{σ1, σ3, σ9} (marked with locks in Figure 4) whose total cost
is 3 which ensures that any user who reaches secret states q3

and q5 must get 2 and 3 clearance levels, respectively. ♦

IV. COMPLEXITY ANALYSIS OF DETERMINING
PROTECTING POLICIES WITH MINIMAL COSTS

A. NP-hardness

In [10], by assuming that each transition is assigned with a
unique event and each event only raises the clearance level
by one, the problem of optimal secret protection can be
solved in polynomial time. In this paper, we remove the two
assumptions: by doing so the problem studied in this work
is more general than that in [10]. In this section, we show
that such a generalization makes the secret protection problem
NP-hard, which implies that there unlikely exists a polynomial
algorithm to obtain an optimal solution.

In the following, we prove that the decision version of the
secret protection problem is NP-Complete, which implies that
the global optimization version of the problem is NP-Hard.
To see this, we reduce the 0-1 Knapsack problem (decision
version) that is known to be NP-Complete to the optimal secret
protection problem (decision version).

Problem 2: [0-1 Knapsack Problem] Given a set of n items
each of which with a weight wi ∈ N (a set of natural numbers)
and a value vi ∈ N, and a knapsack with a maximal weight
limit W ∈ N, determine if a total value equal to or greater than
a given threshold V ∈ N can be achieved without exceeding
the weight limit W .

Problem 3: [Secret Protecting Problem: Decision Version]
Given a system G = (Q,Σ, δ, q0) with Σp = Σ, a secret state
qs with `(qs) = V , a cost function c : Σ → N, and a budget
limit W ∈ N, determine if there exists a maximal protecting
policy P such that C(P) ≤W .

Proposition 2: Problem 2 is polynomially reducible to
Problem 3.

Proof: Given an instantiation of Knapsack Problem 1
(n,w,v, V,W ) where w = [w1 · · ·wn] and v = [v1 · · · vn],
we construct an automaton G = (Q,Σ, δ, q0) by the following
procedure:

1) let Q = {q0} where q0 is the initial state;
2) for each i in 1, 2, . . . , n, add a state qi to Q;
3) for each state pair (qi−1, qi) where i in 1, . . . , n, define

δ(qi−1, σi) = qi, i.e. add a transition labeled by σi from
qi−1 to qi, respectively.

Such a construction is illustrated in Figure 2. Eventually,
automaton G has n + 1 states and n transitions, which is
polynomial with respect to the size of the Knapsack problem.
We then define:
• security requirement `(qn) = V and `(qi,j) = 0 for all
qi,j 6= qn;

• Σp = Σ, i.e. all events are protectable;
• cost function c(σi) = vi and clearance function γ(σi) =
wi for all σi ∈ Σ.

Then, the answer of the instantiation (n,w,v, V,W ) of the
Knapsack Problem 2 is positive if and only if in G there
exists a protecting policy P ⊆ Σp such that the following
two statements hold:

1) for any sequence s ∈ Σ∗ such that qn ∈ δ∗({q0}, s),∑
σ∈P ϕ(s, σ) · γ(σ) ≥ V holds (i.e. s must go through

the events in P such that the total increase of the
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clearance level is no less than V , which means that P
is valid);

2)
∑
σ∈P c(σ) ≤W (i.e. the cost of P is less than or equal

to W ).
Therefore, Problem 2 is polynomially reducible to Problem 3.

�
On the other hand, we prove that Problem 2 is in NP by

showing that a protecting policy candidate can be validated
in polynomial time. Given a system G = (Q,Σ, δ, q0) with
Σ = Σp∪Σup, a clearance function γ, a security requirement
`, and a protecting policy P ⊆ Σp, let GP = (Q,T,w) be
the weighted underlying digraph of G where Q is the set of
vertices, T is the set of directed arcs, and w is the weight
function that assigns each transition t = (q, σ, q′) in T a
weight:

w(t) =

{
γ(σ), σ ∈ P
0, σ /∈ P

Clearly, GP can be constructed in polynomial complexity.
The following proposition shows that whether P is valid can
be determined by solving the shortest path problem (which
belongs to class P [30]) in GP . Since one shortest path can
be solved in O(|Q|2) [30], the complexity of determining the
validity of a protecting policy P is O(|Q|3).

Proposition 3: A protecting policy P ⊆ Σp is valid if and
only if for all qs ∈ Qs, the weight of a shortest path from q0

to qs in GP is equal to or greater than `(q).
Proof: (Only if) By contrapositive. Suppose that there

exists a shortest path from q0 to qs in GP whose weight is
less than `(q). Then the sum of the raised clearance level on
the trajectory from q0 to qs in G corresponding to such a path
is less than `(q), which indicates that P is not valid.

(If) Suppose that P is not valid, i.e., there exists a sequence
s ∈ Σ∗ such that δ∗({q0}, s) = q,

∑
σ∈P ϕ(s, σ)·γ(σ) ≥ `(q).

From s we can extract a sequence s′ such that δ∗({q0}, s′) = q
and the corresponding trajectory does not visit any state more
than once. Since s′ contains no more events than s (in the sense
of set containment),

∑
σ∈P ϕ(s′, σ) · γ(σ) ≤

∑
σ∈P ϕ(s, σ) ·

γ(σ) < `(q) holds, which indicates that the weight of the
corresponding shortest path in GP is less than `(q). �

Theorem 1: Problem 3 is NP-Complete.
Proof: Straightforward by Propositions 2 and 3. �

Since Problem 3 is NP-Complete, its optimization version
(Problem 1, i.e., to determine an optimal protecting policy) is
NP-hard, which implies that a corresponding algorithm with
polynomial complexity unlikely exists.

One may notice that the NP-hardness of Problem 1 arises
from the value of W in Problem 3, and W comes from
the bound of protecting cost and may not be very large in
practice. Hence, we conjecture that there may exist some
pseudo-polynomial-time algorithm or exact algorithm whose
complexity is polynomial in the number of states in the system.
However, this problem is quite challenging, requires further
investigation which is beyond the scope of this work, and
hence remains open at this moment. In particular, we point out
that the method developed in our previous work [10] (whose
complexity is O(n2) in the number of states in G) cannot
be used to achieve an optimal solution for Problem 1, since
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𝑞2
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Fig. 3: Construction in the proof of Theorem 2.

the min-cut approach requires all arcs be dependent. Overall,
the complexity class of weak NP-hard is a theoretical lower
bound of computational complexity of the SPP Problem 1. As
a result, in the next section we develop a heuristic algorithm
to design a locally optimal protecting policy.

Definition 8: A protecting policy P is locally optimal if
there does not exist any other protecting policy P ′ such that
P ′ ( P . ♦

B. Modeling Power of SPPs with Uniform/Non-uniform Clear-
ance Levels

So far, we focus on Problem 1 in which the clearance func-
tion γ is arbitrary, possibly non-uniform. This naturally leads
to the question: what if in Problem 1 the clearance function γ
is uniform (as was considered in [10])? In this subsection, we
show that the introducing the clearance function γ does not
increase the modeling power of the problem, or conversely,
restricting γ(σ) = 1 for all σ ∈ Σ does not decrease the
modeling power. However, the computationally complexity of
the problem is different in SPPs with uniform/non-uniform
clearance levels. To simplify the presentation, in this subsec-
tion let us denote an SPP (i.e., Problem 1) with a non-uniform
clearance level γ as SPP-N while we denote an SPP with a
uniform clearance level (γ(σ) = 1 for all σ ∈ Σ) as SPP-U.

Theorem 2: SPP-N and SPP-U has the same modeling
power.

Proof: Since SPP-U is a subclass of SPP-N, we only
need to prove that any SPP-N can be converted to an SPP-U
with the same solution space.

Given an instantiation of Problem 1 (G, `, γ, c), we convert
G into a new automaton by replacing each σi-transition in
G with γ(σi) = wi > 1 by a sequence of wi σ-transitions
and wi − 1 new states, yielding automaton G′. Then we
define γ′(σi) = 1 for all events in G′, and (G′, `, γ′, c) is
an instantiation with uniform clearance function γ′. Such a
construction is illustrated in Figure 3. Clearly, (G, `, γ, c) and
(G′, `, γ′, c) have the same solution space, which concludes
the proof. �

Consequently, introducing the non-uniform clearance level
γ into the problem does not increase its modeling power.
However, SPP-N and SPP-U may have different computational
complexity. As we have proved in the previous subsection, SPP
with non-uniform clearance level γ is weakly NP-complete.
On the other hand, although SPP-U and SPP-N have the same
modeling power, SPP-U may not be weakly NP-complete since
the conversion from an SPP-N to its equivalent SPP-U using
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the manipulation above is not binarily polynomial. In fact, the
conversion from SPP-N to SPP-U using the manipulation in
Figure 3 will generate wi states for each σi-transition with
γ(σi) = wi > 1: the size of the resulting SPP-U is of

∑
wi

which is exponential to
∑

log(wi) in the Knapsack problem.
So far, the complexity class of SPP-U remains open and will
be explored in our future work.

V. COMPUTING LOCAL OPTIMAL SOLUTIONS BASED ON
CENTRALITY

In this section, we develop a heuristic method to solve
the secret protecting problem with a locally optimal policy.
The intuition of our method is to protect the events that are
assigned to some transitions that block a large number of
routes to secrets. Intuitively, for two transitions t1 and t2,
if all simple paths4 from q to q′ pass t1 more often than
t2, then t1 is likely to be more “important” than t2 since
protecting t1 raises the protection level of more paths than
protecting t2 (i.e., protecting t1 blocks out more paths from
the side of intruders). Analogously, an event that is assigned
to important transitions is likely to be more important than an
event assigned to transitions that are less important.

For example, in Figure 1, transition q0
σ1−→ q1 is more

“important” than transition q3
σ8−→ q5. The reason is that

when σ1 is protected all trajectory with length 1 has to pass
the security check. In comparison, transition q3

σ8−→ q5 is
not so “important” since protecting it does not set a security
check on the trajectory: q0

σ1−→ q1
σ3−→ q3

σ5−→ q5. Hence,
among all events we determine which events are possibly more
“important” — for the aim of secret protection — than others.
To this end, we introduce a notion called centrality to measure
the importance of the transitions in a system.

A. Notion of Centrality

The notion of centrality plays an important role in the
context of social networks [11] [31] [32]. In brief, centrality
describes which vertices/edges are most central in a (directed
or undirected) network. In the literature, various different
notions of centrality (such as betweenness centrality, degree
centrality, closeness centrality) have been proposed. In this
paper, the notion of centrality we consider is the so-called be-
tweenness centrality [11] which well describes the importance
of transitions from the aspect of the secret protection problem
studied in this work.

Definition 9: [11] Given a digraph (V,E) where V,E
are sets of nodes and arcs, respectively, the (betweenness)
centrality of an arc e in E is defined as:

CB(e) =
∑
∀v,v′∈V

N(v, v′|e)
N(v, v′) (8)

where N(v, v′) is the number of shortest paths from v to v′

and N(v, v′|e) is the number of shortest paths from v to v′

that passing through the arc e. ♦
4In an automaton G = (Q,Σ, δ, q0), a path from state qi1 ∈ Q to state

qin ∈ Q is a sequence of alternated states and transitions: qi1
σi1−−→ qi2

σi2−−→
· · ·

σin−1−−−−→ qin . Such a path is said to be simple if all states qi1 , . . . , qin
appearing in it are distinct.

In this section, to simplify the presentation, the sum operator∑
is such that it ignores the summands whose denominator

is zero. That is, in Eq. (8), any item with N(v, v′) = 0 (i.e.,
v′ is not reachable from v) are ignored.

B. Transition Centrality and Event Centrality

Given two states q, q′ ∈ Q, we denote by Π(q, q′) (resp.,
Πmin(q, q′)) the set of all simple paths (resp., all shortest
paths) starting from q and ending at q′. Moreover, we denote
by Π(q, q′|t) (resp., Πmin(q, q′|t)) the set of all simple paths
(resp., all shortest paths) starting from q, ending at q′, and
passing transition t. Analogous to Definition 9, the transition
centrality can be defined as the following.

Definition 10: Given an automaton G = (Q,Σ, δ, q0) with
Σ = Σp ∪ Σup, the centrality of a transition t = (q, σ, q′) in
G is defined by:

CB(t) =

{∑
q,q′∈Q

|Πmin(q,q′|t)|
|Πmin(q,q′)| , σ ∈ Σp

0, σ ∈ Σup.
(9)

♦
In plain words, the centrality of a protectable transition

is the sum of the fraction of all shortest paths from q to
q′ that pass through transition t. On the other hand, the
centrality for any unprotectable event is zero. If for each pair
of states (q, q′) in G there exists at most one transition from
q to q′, G can be viewed as a digraph such that computing
CB(t) can be done using the method of Brandes [33] in
O(|Q| · |E| + |Q|2 log |Q|) time. However, in general some
states in G may have more than one outgoing transitions such
that Brandes’s algorithm cannot be directly applied. Hence, we
propose an implementation of Brandes’s algorithm to compute
the centrality of a transition. The procedure is explained in the
Appendix. After we have the transition centralities, the event
centrality for event σ ∈ Σ is defined as the maximal centrality
of transitions labeled by it.

Definition 11: Given an automaton G = (Q,Σ, δ, q0) with
Σ = Σp ∪ Σup, the centrality CB(σ) of protecting the event
are defined as:

CB(σ) = max
∀t=(q,σ,q′)∈δ

{CB(t)} (10)

♦
The event centrality characterizes the importance of an event

σ in the automaton from the graphical point of view. Hence,
if the cost of event protection and the raise of the clearance
level are both unitary, we can choose those events with high
centrality so that the security is ensured by protecting a few
of those events. When the cost for protection is not unitary,
besides the centrality, the cost of protection must also be taken
into account. Intuitively, an event that is very expensive to be
protected (i.e., c(σ) is high) will have a low score so that it
is unlikely to be chosen in our algorithm; on the other hand,
an event whose protection raises the clearance level a lot (i.e.,
γ(σ) is high) should have a high score so that it is likely to
be chosen. Hence, we introduce the cost-weighted centrality
of an event as the following.
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Definition 12: Given an automaton G = (Q,Σ, δ, q0), the
cost-weighted centrality of an event σ is defined as:

Ec(σ) =
γ(σ)

c(σ)
· CB(σ) (11)

♦

C. Heuristic Algorithm

In this section, we provide a heuristic method to compute a
locally optimal protecting policy. The method is summarized
in Algorithm 1. In the beginning, the centrality of transitions
and events are computed according to Eqs. (9) and (10). Set P
is initialized as the empty set, i.e., no event is protected. In the
first phase (steps 4–9), in each iteration, the validity of P is
determined by solving a series of shortest path problems in a
weighted digraph of G (see Proposition 3) whose complexity
is O(|Q|3). If P is not valid, an unsafe shortest path π will
be returned on which the number of protected events is fewer
than `(q). Then, among all protectable but not protected events
in (π \ P) ∩ Σp, an event with the maximal cost-weighted
centrality value (Ec(σ)) is added to P . If no such σ exists,
the algorithm quits since there is no solution. Otherwise, a
candidate solution P is found which, however, may not be
locally optimal. Then, in the second phase (steps 10–12), a
local search is performed to remove the redundant events from
P and eventually outputs a locally optimal solution (in step
13).

In Algorithm 1, Steps 1–2 compute Πmin(q, q′) for |Q|2
times. Computing one Πmin(q, q′) has complexity O(|Q|2 ·
|E|+ |Q|2 log |Q|). Since in a nondeterministic automaton the
number of transitions is |E| ≤ |Q|2 · |Σ|, O(|Q|2 · |E| +
|Q|2 log |Q|) becomes O(|Q|4 · |Σ| + |Q|2 log |Q|). Hence,
Steps 1–2 has complexity O(|Q|6 · |Σ| + |Q|4 log |Q|) =
O(|Q|6 · |Σ|). Steps 3–12 solve at most 2 · |Σp| shortest path
problems, whose complexity is O(|Q|2 · |Σ|) which is dom-
inated by that of Steps 1–2. Therefore, the gross complexity
of Algorithm 1 is O(|Q|6 · |Σ|) that is polynomial in the size
of the system.

Theorem 3: The protecting policy P returned by Algo-
rithm 1 is a locally optimal protecting policy.

Proof: According to Proposition 3, a protecting policy P
is valid if and only if its corresponding shortest path problem
returns no solution. Hence, P returned by Algorithm 1 is valid.
The local optimality is guaranteed by the local optimization
procedure in Steps 10-12 in Algorithm 1. �

Example 2: [Ex. 1 cont.] Again consider the system in
Figure 1 with `(q3) = 2, `(q5) = 3 and `(qi) = 0 for
i ∈ {0, 1, 2, 4}. Assume that the costs of all events in Σ
are unitary, and γ(σ3) = 2 and γ(σi) = 1 for i 6= 3.
The centrality of transitions and events are depicted in Ta-
bles I and II, respectively. For example, consider transition
t̂ : q2 → q5 labeled by σ5. Since q5 is reachable from q2, we
have CB(t̂) =

∑
q,q′∈Q

|Πmin(q,q′|t̂)|
|Πmin(q,q′)| . We observe that for the

following (q, q′) ∈ Q×Q, |Πmin(q, q′|t̂)|/|Πmin(q, q′)| > 0:

|Πmin(q0, q5|t̂)| = 2, |Πmin(q0, q5)| = 4

|Πmin(q1, q5|t̂)| = 1, |Πmin(q0, q5)| = 2

|Πmin(q2, q5|t̂)| = 1, |Πmin(q0, q5)| = 1

Algorithm 1 Compute a Locally Optimal Protecting Policy

Input: A system G = (Q,Σ, δ, q0) with Σ = Σp ∪ Σup, a
clearance function γ, a cost function c ∈ R≥0, a security
requirement `, an integer k ∈ N \ {0}

Output: A locally optimal protecting policy or NONE
1: compute centrality of transitions in G by Eq. (9);
2: compute centrality and the cost-weighted centrality of

events in Σ by Eqs. (10) and (11);
3: let P = ∅, determine if P is valid;
4: while P is not valid (i.e., an unsafe path π is detected),

do
5: if (π \ P) ∩ Σp = ∅, output NONE and exit.
6: select an event σ ∈ (π \ P) ∩ Σp whose E(σ) is

maximal;
7: let P = P ∪ {σ};
8: determine if P is valid;
9: end while

10: for all σ ∈ P , do
11: if P \ {σ} is valid, let P = P \ {σ};
12: end for
13: output P .

Hence, CB(t̂) = 2/4 + 1/2 + 1/1 = 2. Analogously we have
CB(t̃) = 2 for t̃ : q3 → q5 labeled by σ5. Therefore, CB(σ5) =
max∀t=(q,σ5,q′)∈δ {CB(t)} = max{2, 2} = 2.

Once the cost-weighted event centrality is obtained, the
heuristic algorithm runs as follows:

1) Initially, P = ∅;
2) Solve two shortest path problems (from q0 to q3 and

q5, respectively) in the weighted digraph in Figure 4(a)
(corresponding to P = ∅). Since there exists a shortest
path (red) π = q0 → q1 → q2 → q3 whose weight is 0
that is lower than `(q3) = 2, protecting policy P = ∅
is not valid.

3) Add an event on the shortest path with the highest
centrality that is σ3 (with CB(σ3) = 14.0).

4) Solve two shortest path problems (from q0 to q3 and
q5, respectively) in Figure 4(b) (corresponding to P =
{σ3}). Since there exists a shortest path (red) π = q0 →
q1 → q2 → q3 → q5 whose weight is 2 that is lower
than `(q5) = 3, protecting policy P = {σ3} is not valid.

5) Add an event on the shortest path with the highest
centrality that is σ6 (with CB(σ6) = 4.0).

6) By repeatedly doing the above procedure for another
two iterations we obtain P = {σ1, σ3, σ6, σ9}. There
does not exist a shortest path whose weight is fewer
than `(q), which indicates that P is valid.

7) Examine if P ′ = P \ {σi}, i = 1, 3, 6, 9 is valid. In this
case, P ′ = P\{σ6} is valid. Hence, by removing σ6 we
obtain a locally optimal protecting policy {σ1, σ3, σ9}.

Hence, Algorithm 1 outputs the locally optimal protecting
policy P = {σ1, σ3, σ9} whose cost is 3. ♦

Example 3: Consider the system G in Figure 5 which
represents the architecture of a website. This system consists
of 19 states, 24 transitions, and 16 events. In the system there
are three databases whose states are secret ones (marked in
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Fig. 4: The weighted underlying digraph in each iteration in
Example 2: (a) iteration 0, (b) iteration 1, (c) iteration 2-3, (d)
after the local optimization. The unsafe trajectories are marked
in red.

Transition label T-centrality Transition label T-centrality
0→ 1 σ1, σ9 2.5 2→ 5 σ5 2.0

1→ 0 σ2 4.0 3→ 2 σ7 4.0

1→ 2 σ3 7.0 3→ 5 σ8 1.0

1→ 4 σ3 5.0 4→ 1 σ4 4.0

2→ 1 σ4 6.0 4→ 5 σ5 2.0

2→ 3 σ6 4.0

TABLE I: The centrality of transitions in Example 2.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
2.5 4.0 14.0 6.0 2.0 4.0 4.0 1.0 2.5

TABLE II: The centrality of events in Example 2.
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Fig. 5: The system in Example 3.

Run1 Run2 Run3 Run4 Run5
c(σ1) 1 8 2 7 7
c(σ2) ∞ ∞ ∞ ∞ ∞
c(σ3) 1 8 6 6 6
c(σ4) 1 5 5 5 5
c(σ5) 1 7 4 4 4
c(σ6) 1 5 2 5 1
c(σ7) 1 5 1 5 2
c(σ8) ∞ ∞ ∞ ∞ ∞
c(σ9) 1 1 1 2 3
c(σ10) 1 5 5 5 5
c(σ11) 1 5 8 5 5
c(σ12) 1 4 4 4 4
c(σ13) 1 1 2 2 2
c(σ14) 1 6 3 6 6
c(σ15) 1 4 1 4 6
c(σ16) 1 4 1 4 4

TABLE III: Cost of benchmark in Example 3.
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A1 Solution Cost GO Solution Cost
Run1 σ3, σ5 2 σ1, σ5 2
Run2 σ3, σ5 15 σ3, σ5 15
Run3 σ1, σ5 6 σ1, σ5 6
Run4 σ3, σ5, σ7 15 σ3, σ5, σ7 15
Run5 σ3, σ5, σ7 12 σ3, σ5, σ6 11

TABLE IV: Results of the benchmark in Example 3. In the
headline, “A1 Solution” denotes the locally maximal pro-
tecting policy obtained by Algorithm 1, and “GO Solution”
denotes a globally optimal solution obtained by a bruteforce
search.

shadow), i.e., visiting these databases requires a certain con-
fidential level. In this system, events σ2, σ8 are unprotectable,
while all other events are protectable.

We execute Algorithm 1 with k = 2 (2-sampled centrality)
for five runs with different parameters. The cost functions in
five runs are generated at random and are listed in Table III.
The security requirement for each server i = 1, 2, 3 is 1, 2, 3
in Runs 1-3 and 1, 2, 5 in Runs 4-5. Precisely speaking:

1) in Runs 1-3, `(q5) = 1, `(q6) = 1, `(q7) = 1, `(q15) =
2, `(q16) = 2, `(q17) = 2, `(q11) = 3, `(q12) = 3;

2) in Runs 4-5, `(q5) = 1, `(q6) = 1, `(q7) = 1, `(q15) =
2, `(q16) = 2, `(q17) = 2, `(q11) = 5, `(q12) = 5.

Results are summarized in Table IV. We can see that four
cases the solution is optimal, while in Run 5 the solution is
very close to the optimal one. ♦

D. Large Benchmark in Randomized Automata

A benchmark for several of randomly generated systems
with 50−100 states whose results are summarized in Table V.5

The cost to protect each event is randomly set from 1 to
10, while each event is assigned to label on average 1.5–2
transitions. The columns |P| and C(P) are the number of
protected events and total cost of the solutions (protecting
policy) obtained by Algorithm 1. The columns |Pgo| and
C(Pgo) are those of the global optimal solutions obtained by
a brute-force search. In 37% of the cases, the solution by our
algorithm is globally optimal, i.e., its cost is minimal. In 50%
and 70% of the cases our solution can get a solution with
<10% and <20% cost deviated from the global optimal one,
respectively. It is also notable that in those entries where the
solutions are suboptimal, the number of protected events by
Algorithm 1 are usually close to the globally optimal one: the
number of events in P is 1–2 more than that in Pgo (note
P is locally optimal and is not a superset of Pgo). As far as
we know, there exists no efficient way to find a global optimal
solution for an SPP except the brute-force search which is very
time consuming (taking about eight hours for each entry in
Run 11 to obtain Pgo) comparing with Algorithm 1 (less than
five minutes for Run 11 in Table V), which demonstrates the
efficiency of the centrality-based heuristic algorithm proposed
in this section.

5Some cases have fewer experiments because a cutoff time (8h) was set to
exclude exceedingly time-consuming brute-force searches.

VI. SECRET PROTECTING PROBLEM WITH
DISRUPTIVENESS

In previous sections we consider SPP with the cost criterion.
In this section, besides the cost, we consider the disruption
to legal users of the system incurred by the protections. In
general, a system contains some featured functions designed
for legal users for daily use (e.g., streaming a video clip,
sending an email). We model the featured functions of a
system as marker states Qm in an automaton. That is, each
sequence of activities ending at a marker state represents
a completed use of the system, and thus language Lm(G)
characterizes the normal behavior of legal users of the system.
Note that in practice using featured functions (e.g., streaming
a video clip) and checking confidential information (e.g.,
account password) in a system are typically separated. Hence,
we do not impose any special relation between marker states
Qm and the secret level function `.

As we have mentioned before, to protect secrets in the
system from unauthorized visits, some events in the system
must be protected. However, the protection (such as password
check) on an event that is on a trajectory of normal use
incurs disruption to users, which can be viewed as a penalty
of protection. In theory, to minimize such disruptions the
protections should be placed on the events that are not on the
trajectory between the initial and the marker states whenever
possible. However, this goal is usually incompatible with
the goal of minimizing the cost of protection discussed in
previous sections. Hence, the balance between the cost and
the disruptiveness must be considered. Note that since the
SPP with cost criterion solely is NP-hard, the general form
of SPP studied in this section with both criteria of cost and
disruptiveness is also NP-hard.

A. Penalty Function and CP-weighted Centrality

In this subsection first we formulate the notion of disrup-
tiveness incurred by event/transition protections as a penalty
function. Intuitively, to reduce the disruption to users, a tran-
sition should not be protected unless we have to. That is, the
penalty of protecting a transition close to reach marker states
should be no higher (and possibly lower) than the penalty of
protecting a transition far to reach marker states. For example,
in the system in Figure 6 to protect σ1 is more disruptive than
to protect σ3, since a user may repeatedly visit q0 and q1

before reaching the marker state q2. On the other hand, for
two transitions t1 and t2, if t1 is coreachable to more marker
states than t2, to protect t1 should cause a higher penalty than
to protect t2 since it disrupts more featured functions. Hence,
we expect a penalty function that assigns a high penalty to the
transitions that are far from the marker states (in the sense of
co-reachability) and those transitions that are co-reachable to
many marker states. By such a motivation, we define the event
penalty as the following.

Definition 13: Given a system G = (Q,Σ, δ, q0, Qm), let
t be a transition from state q′ ∈ Q to state q′′ ∈ Q. We
define N(t, Qm) = |{q ∈ Qm | (∃s ∈ Σ∗) δ(q′′, s) = q}| as
the number of marker states Qm reachable from transition t.
We define d(t, q) = πmin(q′′, q) + 1 where πmin(q′′, q) is the
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Run Size No. Trans. No. Events No. Secrets Security Level |P| C(P) |Pgo| C(Pgo) Deviation

1 50 90

44 3 1,1,2 3 14 3 13 0.08 (0)
34 3 2,3,3 7 24 6 22 0.09 (1)
33 2 4,4 11 56 9 42 0.33 (2)
35 3 2,4,5 9 43 8 38 0.13 (1)
35 2 4,5 11 65 10 60 0.08 (1)
39 3 1,2,2 3 19 3 19 0 (0)
37 3 1,2,2 3 10 3 10 0 (0)
43 3 1,2,2 4 11 3 11 0 (1)

2 55 107

49 3 1,1,1 1 2 1 2 0 (0)
45 3 1,2,2 3 13 2 10 0.30 (1)
39 3 3,4,4 8 22 5 17 0.29 (3)
39 3 2,3,3 4 23 3 19 0.21 (1)
46 3 1,2,2 2 4 2 4 0 (0)
45 3 1,1,2 2 10 2 8 0.25 (0)
43 3 1,1,2 2 4 2 4 0 (0)

3 60 102

44 3 1,1,1 2 3 2 3 0 (0)
43 3 1,1,2 4 10 3 9 0.11 (1)
37 4 2,2,2,3 8 42 7 38 0.11 (1)
43 3 1,2,2 6 15 6 13 0.15 (0)
37 2 3,4 11 65 9 53 0.23 (2)
44 2 1,2 3 21 3 19 0.11 (0)
43 3 1,1,2 4 16 4 16 0 (0)

4 65 122

54 3 1,1,2 8 16 6 11 0.45 (2)
50 3 1,1,2 4 18 2 17 0.06 (2)
45 2 4,5 10 46 10 45 0.02 (0)
52 3 1,1,1 1 2 1 2 0 (0)
51 3 1,2,2 5 11 4 11 0 (1)
54 3 1,2,2 6 11 4 11 0 (2)

5 70 111

48 3 1,2,2 7 28 6 23 0.22 (1)
43 2 3,4 7 33 7 33 0 (0)
46 3 1,1,2 4 22 3 18 0.22 (1)
50 3 2,2,2 6 24 5 19 0.26 (1)
46 3 1,2,2 6 32 6 28 0.14 (0)
49 2 1,2 3 10 3 10 0 (0)

6 75 133

49 3 1,3,3 8 34 9 29 0.17 (-1)
51 3 1,1,2 3 11 3 11 0 (0)
51 3 2,2,3 12 39 10 27 0.44 (2)
51 2 2,2 10 52 8 39 0.33 (2)
55 3 1,1,2 7 30 4 27 0.11 (3)

7 80 148
53 4 1,1,2,3 6 28 4 27 0.04 (2)
58 2 2,2 3 9 3 9 0 (0)

8 85 155

58 3 1,2,2 3 11 3 11 0 (0)
61 3 2,2,3 11 47 6 31 0.52 (5)
60 2 1,4 9 31 8 27 0.15 (1)
60 3 1,2,2 3 6 3 6 0 (0)
55 3 2,3,3 10 27 5 20 0.35 (5)

9 90 169
63 2 1,2 6 21 6 18 0.17 (0)
65 2 1,2 4 15 4 11 0.36 (0)

10 95 156

58 3 1,2,2 3 4 3 4 0 (0)
56 2 3,3 6 18 6 18 0 (0)
57 3 2,2,2 6 14 4 12 0.17 (2)
59 3 3,3,4 9 33 8 29 0.14 (1)
57 4 2,2,3,3 8 42 7 33 0.27 (1)
61 3 3,3,3 6 29 6 22 0.32 (0)

11 100 189
70 3 1,1,1 4 13 3 12 0.08 (1)
73 2 1,1 3 4 3 4 0 (0)
72 2 1,4 6 32 6 32 0 (0)

TABLE V: Benchmark on randomized systems. The “Deviation” is denoted as “a (b)” in which a = CP/CPgo − 1 is the
cost ratio and b = |P| − |Pgo| is the difference of number of protected events between the solution by Algorithm 1 and the
global optimal solution by brute-force.
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Fig. 6: A system with marker states q2, q4 and secret state q5.

length of the shortest path from state q′′ to state q.6 We also
note that the penalty for disruptiveness is not related to the
security specification `. ♦

Definition 14: [Transition Penalty] Given a system G =
(Q,Σ, δ, q0, Qm), the penalty of a transition t is defined as:

P (t) = N(t, Qm) ·H(t, Qm)

= N(t, Qm) · N(t, Qm)∑
q∈Qm

1
d(t,q)

.
(12)

where H(t, Qm) = N(t,Qm)∑
q∈Qm

1
d(t,q)

is the harmonic mean
distance from transition t to the states in Qm.

Eq. (12) is motivated by the work of [34] in which harmonic
mean distance is introduced to measure the connectivity of a
node in a graph. Since P (t) = N(t, Qm) · H(t, Qm), one
can verify that P (t) increases when: (i) N(t, Qm) increases,
meaning that t is coreachable to more marker states, and
(ii) H(t) increases, meaning that t is far from the marker
states. Consequently, we define the event penalty as the sum
of transition penalties that the event is assigned to, since
the protection of an event incurs disruptions on all those
transitions.

Definition 15: [Event Penalty] Given a system G =
(Q,Σ, δ, q0, Qm), the penalty of a transition t is:

P (σ) =

{
Σ`(t)=σP (t), σ ∈ Σp

∞, σ ∈ Σup
(13)

♦
Example 4: Consider the system in Figure 6. Since all

transitions are labeled distinctly, the penalty of each event
σi is equal to the transition penalty P (t) where t is the
transition that σi labels. According to Eqs. (12) and (13),
we have P (σ1) = 5.33, P (σ2) = 6, P (σ4) = 4, P (σ3) =
P (σ5) = P (σ6) = 1, and P (σ7) = 0. This coincide with
our intuition that to protect σ1, σ4 is more disruptive than to
protect σ3, σ5, σ6 since σ1, σ4 are coreachable to two marker
states while σ3, σ5, σ6 are coreachable to only one marker
state. Moreover, to protect σ1 is more disruptive than to protect
σ4: although they are both coreachable to two marker states,
the distance between σ1 to the marker states is larger than the
distance between σ4 to the marker states. Besides, the penalty
to protect event σ7 is zero, since the transition labeled by σ7

is not coreachable to any marker state. ♦
Now let us consider the SPP with both criteria of cost

and disruption. In [8] the disruption is treated as a binary
variable (i.e., either “disrupted” or “undisrupted”) so that the

6In plain words, d(t, q) is the number of states that appear on the shortest
path from q′′ to q. If q = q′′, then d(q, t) = 1.

disruption, if it exists, is modeled as a “one level-up” of the
cost. However, in practice, it is usually difficult to quantify
the “disruption” in monetary terms. Therefore, in this section
we introduce a parameter λ ∈ [0, 1] to balance the cost and
the disruption of event protection.

Definition 16: Given an automaton G = (Q,Σ, δ, q0, Qm),
the cost-penalty-weighted centrality (CP-weighted centrality)
of an event σ is defined as:

Ecp(σ) = λ · γ(σ)

c(σ)
· CB(σ)− (1− λ) · P (σ). (14)

♦
Compared with Eq. (11) which contains a single term

associated with the cost-weighted centrality, Eq. (14) contains
an additional term −P (σ) which characterize the affect of
penalty. When λ = 1, Ecp(σ) ∼ Ec(σ) which is equivalent
to the event centrality developed in Section V, meaning that
the disruptiveness to users is not considered. On the other
hand λ = 0 implies Ecp(σ) = −P (σ), meaning that only the
disruptiveness is interested regardless the cost. Note that if σ
is unprotectable, Ecp(σ) is −∞ (such that σ will never be
chosen to be protected) due to the definition of P (σ).

Remark 2: In this work we use linear combination function
since it is commonly used to effectively describe the tradeoff
of two aspects. Other meaningful ways of combination will
be considered in our future work. ♦

Remark 3: In this section, we consider static protecting poli-
cies as a set of events. Another interesting type of protecting
policies is the dynamic protecting policies in our previous
work [10]. We point out that for dynamic protecting policies,
disruptiveness may not be defined as penalties on transitions
and events (like Definitions 14 and 15). Hence, the SPP with
both cost and disruptiveness and dynamic protecting policies
requires further investigation. ♦

B. Heuristic Algorithm

To find a locally optimal solution for an SPP with both
cost and disruptiveness, Algorithm 1 in Section V.C can be
analogously used. In brief, a Step 0 needs to be added to
compute the penalty function P (σ), and the CP-weighted
centrality Ecp(σ) needs to be computed for each event σ and
then be used in Step 6 instead of Ec(σ). The gross complexity
of such heuristic algorithm is also O(|Q|4 · k + |Q|2 · |Σ|)
as discussed in the previous section. We use the following
example to illustrate the method.

Example 5 (Ex. 3 continued): Now, let us consider the
system in Fig. 5 with both cost and disruptiveness. In this
system, state q13 is the only marker state that represents
the featured service provided by the system. Since a user
may repeatedly visit states q2, q4, q9, q10 and so on before
visiting marker state q13, intuitively, to protect event σ3 is
more disruptive than to protect σ16. In other words, to reduce
the disruptiveness to the user, we prefer to protect events close
to the marker state. So, the penalty of each transition and each
event are computed according to Eqs. (12) and (13). Then the
modified Algorithm 1 is applied whose results are summarized
in Table VI. From Run 3 and Run 5 one can see that with
the increase of the parameter λ from 0 to 1, our algorithm
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λ A2 Solution Total Cost Total Disruptiveness

Run 1

0.0 σ1, σ5 2 21
0.2 σ1, σ5 2 21
0.4 σ1, σ5 2 21
0.6 σ3, σ5 2 29
0.8 σ3, σ5 2 29
1.0 σ3, σ5 2 29

Run 2

0.0 σ1, σ5 15 21
0.2 σ1, σ5 15 21
0.4 σ1, σ5 15 21
0.6 σ1, σ5 15 21
0.8 σ3, σ5 15 29
1.0 σ3, σ5 15 29

Run 3

0.0 σ1, σ5 6 21
0.2 σ1, σ5 6 21
0.4 σ1, σ5 6 21
0.6 σ1, σ5 6 21
0.8 σ1, σ5 6 21
1.0 σ1, σ5 6 21

Run 4

0.0 σ1, σ5, σ6, σ7 21 28
0.2 σ1, σ5, σ6, σ7 21 28
0.4 σ1, σ5, σ6, σ7 21 28
0.6 σ1, σ5, σ6, σ7 21 28
0.8 σ3, σ5, σ7 15 32
1.0 σ3, σ5, σ7 15 32

Run 5

0.0 σ1, σ5, σ6, σ7 14 28
0.2 σ1, σ5, σ6, σ7 14 28
0.4 σ1, σ5, σ6, σ7 14 28
0.6 σ1, σ5, σ6, σ7 14 28
0.8 σ3, σ5, σ6 11 33
1.0 σ3, σ5, σ6 11 33

TABLE VI: Results of the benchmark in Example 5 with k =
2.

tends to output a protecting policy with less cost but more
disruptiveness. On the other hand, when λ is relatively small,
the algorithm will output a protecting policy with more cost
but less disruption. ♦

C. A Large Benchmark

Note that the system in Example 5 is relatively small
so that sometimes (e.g., Run 3) the output is not sensitive
with the parameter λ. Hence, we carry out a benchmark
for several of randomly generated systems with 100 − 300
states whose results are summarized in Table VII. For better
readability, the results are also illustrated in Figure 7. The
cost to protect each event is randomly set from 1 to 30,
while each event is assigned to about 1.5-2 transitions in
average. The total cost of a protecting policy is defined by
Definition 3, while the “disruptiveness” of a protecting policy
P is defined as

∑
σ∈P P (σ), i.e., the sum or all penalties

of the events protected. One can see that with the increase
of the parameter λ, our algorithm tends to output a protecting
policy with less cost. For example, in Run 2 with an automaton
with 100 states, 224 transitions, 136 events, 2 secret states
(whose security levels are 1, 2, respectively), and 10 marker
states, while we increase λ from 0 to 1, the cost of the output
protecting policy decreases from 35 to 18, while the measure
of disruptiveness P increases from 252 to 474. As a result,
by adjusting the parameter λ, the administrator of a system
can use the proposed approach to compute a protecting policy
which well balance the cost and the disruptiveness.

Second, we compare our performance with a greedy non-
centrality-based algorithm with randomized starting point. The

result of each run is shown on the last row of the run (marked
as “Greedy”) in Table VII. One can see that the non-centrality-
based greedy search always falls into some locally optimum
whose total cost and total penalty are higher than those
obtained by centrality-based heuristics. Empirically, the cost
of the solution obtained by the non-centrality-based greedy
search is 1∼1.5 times higher than that of the solution obtained
by centrality-based heuristics, while the disruptiveness of the
former is 2∼5 times higher than the latter.

Remark 4: The locally optimal solution obtained by Algo-
rithm 1 may not be always optimal, which is due to the nature
of the heuristics. However, due to the NP-completeness of the
problem, for large-scale systems (such as those presented in
this subsection) it is difficult or even impossible to get the
global optimum. Hence, we do not evaluate the closeness of
our solutions to global optimum. On the other hand, according
to the centrality defined in Eq. (11), if some events has high
Ec(σ) with both dominatingly high centrality and dominatingly
high cost of protection, the proposed heuristic may prefer
these transitions so that the solution may deviate from the
global optimum. In these systems, our method could also
be combined with other heuristic methods such as simulated
annealing, genetic algorithm to improve its performance in
these systems. ♦

VII. CONCLUSION

In this paper, we have studied a secret protection problem
with minimum costs. We have proved that computing a global
optimal solution is NP-hard when events are assigned to
multiple transitions. Therefore, we have developed a heuristic
method using the notion of centrality to find a local optimal
protection policy. Furthermore, the disruptiveness caused by
the protected events to users have been taken into consider-
ation. Then, we have considered the disruptiveness, i.e., the
degree of disruptiveness of protecting policies to legal users’
normal operations. A heuristic method is developed to obtain
a protecting policy which can well balance the cost and the
disruptiveness to users.
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APPENDIX

Here we show how to compute the proportion of shortest
paths that passes a transition. The method consists of four
main steps: (i) unfold the automaton from each node to get
n unfolding graphs; (ii) in each unfolding graph compute the
number of shortest paths from the root node to other nodes;
(iii) in each unfolding graph, compute the reverse flow of each
arc; (iv) sum the flow of all corresponding arcs in all unfolding
graphs to obtain the transition centrality. An illustration is
shown in Figure 8.

The correctness of the method is based on the fact that
it is the standard Brandes’s algorithm (Algorithm 1 in [33])
with an additional treatment on multiple transitions. For better
understanding, instead of presenting the technical algorithmic
procedure (which can be found in [33]), we use the following
example to illustrate the implementation, since most of the
steps are self-explanatory. Consider the automaton in Fig-
ure 8(a) (labels are omitted).
• Step 1: Compute unfolding graphs. We take state A for

example. We explore from state A and discard all non-
shortest branches. Observe that in this automaton, state
A is 0 transition away from itself, state B is 1 transition
away, states C/D are 2 transitions away, and state E is
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Fig. 8: The implementation to compute transition centrality.

3 transitions away. The unfolding graph from state A is
shown in Figure 8(b).

• Step 2: Compute the number of shortest paths from
the root node to other nodes in unfolding graphs. In
Figure 8(b), we first set the shortest path count φ(A) for
state A as 1 and iteratively compute φ for other states
(red numbers in the figure). For multiple transitions, the
shortest path count will be multiplied by the degree (mul-
tiplication) of the transitions, e.g., φ(C) = 2φ(B) = 2.
For a joint node, its shortest path count is the sum of
all shortest path counts of its successors. For example,
φ(E) = φ(C) + φ(D) = 2 + 1 = 3, meaning that there
are 3 shortest paths from A to E.

• Step 3: Compute the backward flow. In Figure 8(b),
we first determine the terminal nodes, which is only one
state E. We assign the initial flow on E as 1, denoted
as ρ(E) = 1. Then we compute the flows in the graph
backwardly from the terminal node (blue numbers in the
figure) following two rules. First, for a joint node, the
flow on each incoming transition is determined according
to their proportions of the shortest path count, e.g., arcs
C → E and D → E contribute 2 and 1 shortest paths,
respectively. So, the flow distribution on C → E and
D → E is 2:1 that is 0.67:0.33. Second, whenever
passing a node (backwardly), the flow is summed and is
increased by 1 (one). For example, the flow on transition
C → E is 0.67. When passing state C backwardly, the
flow is increased to 1.67 = 0.67+1 which is then equally
distributed to the two arcs from B to C: each has 0.83
flow.

• Step 4: Sum the flows to obtain the transition cen-
trality. We perform the procedure (Steps 1–3) for other
nodes B, C, D, E whose results are shown in Figure 8(d).

Now, to compute transition centrality of a transition in the
automaton, we sum the flows of the corresponding arcs
in all unfolding graphs. For example, for the transition t
colored in green, we have:

CB(t) = 0.83 + 0.83 + 0 + 0 + 0 = 1.67

One can verify that: from A to C there are 2 shortest paths
among which 1 passes t (0.5), from A to E there are 3
shortest paths among which 1 passes t (0.33), from B to
C there are 2 shortest paths among which 1 passes t (0.5),
from B to E there are 3 shortest paths among which 1
passes t (0.33), and t does not appear in any other shortest
paths. Hence, CB(t) = 0.5 + 0.33 + 0.5 + 0.33 = 1.67
according to Eq. (9). Similarly, for the transitions t′ and
t′′ colored in orange and yellow, respectively, we have
CB(t′) = 4 + 0 + 0 + 0 + 0 = 4 and CB(t′′) = 0.33 +
0.33 + 0 + 1 + 0 = 1.66.


