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Abstract

Supervisor Localization: A Top-Down Approach to Distributed Control of

Discrete-Event Systems

Cai, Kai

Master of Applied Science and Engineering

Graduate Department of Electrical & Computer Engineering

University of Toronto

2008

In this thesis we study the design of distributed control for discrete-event systems (DES)

in the framework of supervisory control theory. Our DES comprise a group of agents,

acting independently except for specifications on ‘global’ (group) behavior. The central

problem investigated is how to synthesize ‘local’ controllers for individual agents such that

the resultant controlled behavior is identical with that achieved by global supervision.

The investigation is carried out with both language- and state-based models. In the

language-based setting, a supervisor localization algorithm is developed that solves the

problem in a top-down fashion: first, compute a global supervisor, then decompose it

into local controllers while preserving the global controlled behavior. In the case of large-

scale DES where a global supervisor might not be feasibly computable owing to state

explosion, a decomposition-aggregation solution procedure is developed. In the state-

based setting, specifically that of ‘state tree structures’ (STS), a counterpart supervisor

localization algorithm is obtained having potential to exploit the known efficiency of STS

for large-DES control design.
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Chapter 1

Introduction

1.1 Motivation and Background

Rapid advances in communication networks and embedded computing technologies have

made distributed systems pervasive in engineering practice. By these are meant systems

that consist of multiple interconnected agents locally interacting in pursuit of a global

goal. Instances of distributed systems abound: multi-robot search teams explore ter-

rain, ocean, and even space; wireless sensor networks support military reconnaissance

and surveillance; and automated guided vehicles transport material in a manufacturing

workcell or serve a loading dock. The evolving relevance of distributed systems has at-

tracted researchers from diverse scientific disciplines, leading them to propose underlying

mechanisms effective in governing this type of system. Particular attention has been

focused on designing individual ‘built-in’ strategies (as opposed to devising external su-

pervisors), subject to interagent coupling constraints, to arrive at prescribed collective

behavior. This is usually referred to as distributed control. It has been significantly

motivated by sociobiological studies on aggregate actions of animal groups.

Flocks [of birds] and related synchronized group behaviors such as schools

of fish or herds of land animals are both beautiful to watch and intriguing

1
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to contemplate. A flock [of birds] exhibits many contrasts. It is made up

of discrete birds yet overall motion seems fluid; it is simple in concept yet

is so visually complex; it seems randomly arrayed and yet is magnificently

synchronized. Perhaps most puzzling is the strong impression of intentional,

centralized control. Yet all evidence indicates that flock motion must be

merely the aggregate result of the actions of individual animals, each acting

solely on the basis of its own local perception of the world [45].

Stimulated by the above biological observation, Reynolds [45] wrote boids, a celebrated

program that successfully simulates a flock of birds in flight, each navigating according to

a handful of local rules. Following Reynolds numerous computer animations have been

created, reproducing various natural grouping phenomena. In one remarkable example

[19], McCool reports a simulation of a barnyard where 16,000 virtual chickens move

towards a rooster; the collective locomotion again emerges from the individual maneuvers

of these faux fowl.

A considerable body of biologically inspired research has also been reported in the ar-

tificial intelligence and robotics communities, with the hope of endowing robotic systems

with desirable behavioral traits such as those observed in biological systems. Two seminal

studies – Brooks’ subsumption architecture [8] and Arkin’s motor schema [3] – introduced

the prominent behavior-based paradigm, which in turn initiated a large number of inves-

tigations in intelligent agents [1, 41] and cooperative robotics [2, 10]. The behavior-based

approach seems so promising that multi-robot teams have been increasingly applied to

a variety of engineering domains. However, the corresponding research results are typ-

ically presented via dogmatic description and illustrated with heuristic simulation and

experiment; namely the approach “is thin when it comes to providing controllers with

guarantees; and engineers and theorists want guarantees [4]”. This gap has generated

interest in the rigorous mathematical treatment of distributed control design, so that the

derived results can be formally justified for validity and completeness.
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Systems control theorists have investigated distributed systems with continuous- and

discrete-time dynamics (i.e., with system states evolving as a function of time). A col-

lection of component agents is considered as the plant to be controlled, and the desired

global behavior as the specification; the control objective is to synthesize local strategies

for individual agents so as to enforce the specification. A crucial feature of this dis-

tributed control design is the ‘disturbance’ due to possibly dynamic interagent coupling,

an issue which gives rise to an extensive exploration and application of mathematical

graph theory [33]. So far, rigorous results have been established for collective behaviors

as diverse as rendezvous (all agents congregate at the same location) [25, 34], coverage

(all agents spread out to cover a space uniformly) [13], and formation (agents cooper-

atively maneuver to form a geometric shape such as a line, a circle, and even various

polygons) [35, 40].

A rigorous approach is taken as well by researchers in distributed computing. Here the

distributed system of concern is typically a collection of interleaving sequential programs,

an instance of discrete-event systems (DES) 1. These programs are regarded as executing

in parallel on multiple processors, while now and then communicating with one another

by passing messages. Desired properties of synchronized global behavior usually include

safety (e.g., mutual exclusion of a non-sharable resource), liveness (or absence of star-

vation), and deadlock-freeness [6]. An approach commonly taken is first to design, with

respect to specified global properties, communication protocols for individual programs,

and then to employ mathematical tools – notably I/O automata [36] and temporal logics

[38] – to prove formally whether or not the specifications are satisfied; if not, the two steps

above are repeated. In that sense, this approach is, however, a trial-and-error process

that could involve considerable heuristic effort in design, as contrasted with systematic

1A DES is a dynamic system that is equipped with a discrete state space and an event-driven transition
structure (i.e., state transitions are triggered by occurrences of events other than, or in addition to, the
tick of a clock) [63]. DES can be thought of as an abstraction of continuous- or discrete-time systems,
an abstraction that allows reasoning about a system’s logical behavior without reference to time-driven
quantitative detail.
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synthesis from a systems control perspective.

This thesis studies distributed control design for general DES (in contrast to the spe-

cific instance studied in distributed computing) in the framework of supervisory control

theory (SCT) 2. SCT models a DES as the generator of a formal language, and “sup-

ports the formulation of various control problems of standard types, like the synthesis of

controlled dynamic invariants by state feedback, and the resolution of such problems in

terms of naturally definable control-theoretic concepts and properties, like reachability,

controllability and observability” [63]. Having adopted SCT as the framework of choice,

the thesis undertakes a control-theoretic approach, the principal objective being local

strategy synthesis. Namely, given a set of coupled DES as the plant and some desired

global property as the specification, one aims to design an algorithm that automati-

cally generates local controllers for each of the plant components that participate in the

specification.

1.2 System Architectures in SCT

A system architecture is a mode of organization of collective actions of both plant com-

ponents and their controllers. In this section a survey is given of system architectures

that have been studied in SCT, with the aim of placing the author’s work on distributed

control in perspective in the SCT literature. While by no means exhaustive, our survey

does cite key references in each of the categories of architecture identified.

1.2.1 Monolithic Architecture

SCT was initiated by Ramadge and Wonham [43, 64], with cornerstone results of the field

established for a monolithic architecture, an organization where all plant components are

controlled by a single centralized supervisor. With the supervisor, the controlled behavior

2See [11, 63] for textbook treatment, and [44, 54] for surveys.
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can be made ‘optimal’ (i.e., minimally restrictive) with respect to imposed specifications,

typically safety and nonblockingness 3. This architecture is extended by constraining

the scope of the supervisor’s observation; partial event observation [31] and partial state

observation [29] are investigated separately.

Although monolithic architecture plays a fundamental conceptual role, the complex

transition structure of the centralized supervisor typically renders it prohibitively difficult

for a human designer to grasp the overall control logic. In other words, the synthesized

control typically lacks transparency. The situation is made worse by the fact, proved by

Gohari and Wonham [18], that global supervisor synthesis is NP-hard, inasmuch as the

state space size grows exponentially in the number of individual plant components and

specifications.

1.2.2 Modular Architecture

Stimulated by the twin goals of improving understandability of control logic and reducing

computational effort, subsequent literature has witnessed the emergence of a variety of

alternative modular system architectures – decentralized architecture, hierarchical archi-

tecture, and heterarchical architecture.

1. Decentralization can be viewed as horizontal modularity, wherein the overall syn-

thesis task is decomposed into several smaller-scale subtasks. In a decentralized

architecture, specialized individual supervisors, each synthesized to perform a par-

ticular subtask, operate in parallel, each observing and controlling only the relevant

subset of plant components. Early work in this vein includes [30, 32, 65], where it

was assumed that the global specification is decomposable (as a ‘shuffle’ product)

into independent local subspecifications. This assumption was later dropped in

3Safety and nonblockingness in the SCT context have a broader meaning than their counterparts
in distributed computing: safety refers to the avoidance of prohibited regions of state space; while
nonblockingness means that distinguished target states always remain reachable [63].
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[12, 48, 58, 66], where a decentralized solution was sought to a possibly indecom-

posable specification. More recently, this architecture was extended by permitting

communications among decentralized supervisors, which thus may cooperatively

resolve ambiguity due to ‘myopic’ local observation [5, 46, 47, 55, 59].

2. Hierarchy, by contrast, can be viewed as vertical modularity that constructs a

high-level aggregate model of the underlying system dynamics, separating control

synthesis into ‘low-level’ and ‘high-level’ design procedures. Here high-level design

is based on an aggregate model of the underlying system dynamics, constructed by

abstracting out information irrelevant to high-level control objectives. Thus in a

purely hierarchical architecture, all plant components are placed under the control

of a single hierarchical supervisor that runs at a higher level of temporal and/or

logical abstraction. This architecture is studied in [7, 67], and a general hierarchical

control theory emerges in [60].

3. Both horizontal decomposition and vertical aggregation can be effective approaches

to handling complexity. Combining them gives rise to a heterarchical architecture,

wherein all plant components are controlled by a hierarchy of decentralized super-

visors. Research on this architecture is currently very active; notable results are

reported in [16, 23, 28, 49, 61].

1.2.3 Purely Distributed Architecture

The defining characteristic of the preceding architectures is a ‘supervisor-subordinate’

paradigm: a monolithic supervisor, or an organization of modular supervisors, monitors

the behavior of subordinate agents and makes all decisions on their behalf, while the con-

trolled agents themselves act ‘blindly’ based on the commands they receive. Intuitively

one could think of these supervisors as ‘external to’, rather than ‘built into’, the subordi-

nate agents. From this perspective, monolithic and modular architectures are not, in our
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view, properly considered to be purely distributed. We adopt the view that distributed

architecture is a ‘flat’ system organization where global functions emerge through the col-

lective actions of individual agents and are not, at least directly, guided by higher-level,

external supervisors [22].

What are the possible advantages of a purely distributed organization over a supervisor-

subordinate one? One important motivator is the goal of higher system reliability (or

greater robustness). When control functions are distributed over many agents, an indi-

vidual agent failure, while it may admittedly degrade performance, may be much less

likely to bring other agents down; on the other hand, a supervisor malfunction is quite

likely to incapacitate all its associated agents, possibly wreaking major havoc on system

performance. Another potential benefit of distributed architecture is easier maintainabil-

ity (or in a narrower sense, scalability). Many systems have to be modified in order to

cope with changes in the dynamic environment in which they function, and/or changes

in the tasks they undertake. For example, new functions have to be added to a bank’s

computer system if and when it offers a new line of business. In a supervisor-subordinate

architecture, such changes are likely to entail major redesign, whereas with a distributed

organization, system modifications could more likely be confined to the agents directly

affected, leaving the rest intact.

In the present state of knowledge, these benefits are mainly envisaged intuitively.

Their rigorous validation would require a quantitative analysis of the tradeoffs involved

in each particular case. While such analysis falls outside the scope of this thesis, its

potential interest does provide underlying motivation for our research on the structural

issues for DES explored in the thesis. In any case, it will turn out that these latter issues

have (in the author’s view) ample intrinsic interest in themselves.

In the SCT literature, the term “distributed architecture” along with “distributed

control” and “agent” have been used by other authors. Lafortune argues [27] that “...one

limitation of decentralized architecture is the fact that they do not allow real-time com-
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munication among supervisors. Allowing real-time communication could greatly enhance

the classes of specifications that can be achieved under control...such distributed archi-

tectures could be costly in terms of communication required.” He further formulates

the distributed control problem: “Consider a distributed networked DES modeled by

automaton G. There are n agents observing the behavior of G using their own sets of

sensors. The agents may be supervisors or diagnosers. The agents are able to com-

municate among each other...”. A similar argument and formulation are also found in

[20, 24, 26], and some related results are implemented using distributed extended finite

state machines [39]. In these authors’ usage, “distributed architecture” actually refers

to decentralized architecture with communicating modular supervisors (or diagnosers)

as mentioned in Section 1.2.2, while the local strategy design for individual subordinate

agents is not an explicit objective.

To fill this gap, the thesis initiates the study of distributed control design for DES,

thereby adding a new ‘dimension’ – the purely distributed architecture – to the ‘space’

of system architectures in SCT.

1.3 Outline of Thesis and Contribution

This thesis investigates distributed control design for DES in the SCT framework. The

objective is local controller synthesis. Concretely, given a DES plant comprised of in-

terconnected components, and control specifications constraining collective behavior, the

thesis proposes a systematic design procedure for individual local controllers that as a

whole satisfy the imposed specifications. The rest of the thesis with its primary contri-

butions is in outline as follows.

Chapter 2 begins by assuming that the optimal nonblocking monolithic supervisor for

a given control problem exists and can be computed. Given this assumption, we formulate

the distributed control problem as that of decomposing the monolithic supervisor into
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local controllers for individual plant components, while preserving the optimality and

nonblocking properties of the monolithic solution. We solve this problem by developing

a supervisor localization algorithm, which is then implemented by a computer program

and validated by examples familiar in the literature. Further, two boundary cases of

the localization algorithm are identified which indicate, as a property of the localization

problem itself, an extreme degree of ‘easiness’ or ‘hardness’, respectively.

Contribution of Chapter 2: To our knowledge, the formulated distributed con-

trol problem is original in the SCT literature, and the proposed supervisor localization

algorithm is the first solution to this problem.

Chapter 2 leaves open the question of how to solve the formulated distributed control

problem for large-scale DES. In that case it is often not feasible to compute the mono-

lithic supervisor owing to state space explosion. In Chapter 3, we address this question

by proposing a decomposition-aggregation procedure that in essence combines supervisor

localization with modular supervisory control theory in the following manner: first, de-

sign an organization of modular supervisors that achieves optimal nonblocking control,

then decompose each of these modular supervisors into local controllers for the relevant

components. This procedure is then applied to solve two medium-sized but nontrivial

industrial examples.

Contribution of Chapter 3: The established decomposition-aggregation procedure

is the first, and usually efficient, solution to the distributed control problem for large-scale

DES.

The modelling setup of the above two chapters is language-based. By contrast, Chap-

ter 4 turns to a state-based setting, specifically the state tree structure, and studies

distributed control design therein. The counterpart distributed control problem is for-

mulated, and the counterpart supervisor localization algorithm developed. The algorithm

is implemented by a computer program and validated by a familiar example.

Contribution of Chapter 4: The formulation of the distributed control problem in
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the state tree structure is original, and the state-based supervisor localization algorithm

is the first solution to this problem.

Finally, in Chapter 5 we conclude the thesis and propose some future research topics.



Chapter 2

On Supervisor Localization

2.1 Introduction

This chapter takes the first and fundamental step towards distributed control design for

DES. Special attention is given to the class of DES consisting of independent components

whose coupling is due solely to specifications via shared events. With the goal of local

strategy synthesis in mind, we address the following question: given a control problem,

what should each individual do (in terms of sensing and decision making) so as to satisfy

the control objective, and realize performance identical to that achieved by monolithic or

modular control?

Consider an idealized scenario of motorists at an intersection. Monolithic supervisory

control could be the case where the intersection is controlled by traffic lights which, we

assume, are strictly respected by every motorist. It is the lights that ‘command’ motorists

whether to stop or to move. On the other hand, distributed control is needed if and when

the lights happen to fail. Since no motorist is a supervisor of others, each has to be alert

in order to survive. The above generic question for this specific problem is: how should

individual motorists behave to cross the intersection safely, while maintaining traffic flow

just as well as when the lights are operating? Common sense suggests that each motorist

11
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must keep an eye on his immediate neighbors and respond accordingly. We shall pose

this kind of problem as one of “mutual exclusion”, or generally “resource allocation”,

and present a formal solution.

We address this issue in the standard framework of SCT. To design local strategies for

each component agent, we propose a top-down approach: first build an external (mono-

lithic or modular) optimal nonblocking supervisor through synthesizing the supremal

controllable sublanguage of the given specification language; then develop a localization

procedure which systematically decomposes the external supervisor to local controllers

for individual agents. We call this procedure supervisor localization, as displayed in

Fig.2.1.

. . . . . .

. . .

Localization

Supervisor Controller 1 Controller n

Plant Plant

Agent 1 Agent 1Agent n Agent n

Figure 2.1: Supervisor localization

The goal of supervisor localization is first of all to preserve the optimality and non-

blocking property of the external supervisor, namely realizing performance identical to

that achieved by monolithic or modular control.

It is also desired that each localized controller be as ‘simple’ as possible, so that indi-

vidual strategies are more readily comprehensible. Among diverse criteria of ‘simplicity’,

we focus on the state size. This goal is achieved by a straightforward extension of su-

pervisor reduction [56, 53], of which the essence is to ‘project’ the plant model out of

the supervisor model while preserving the controlled behavior. To localize an external
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supervisor to a local controller for an individual agent, we carry the reduction idea one

step further: in addition to projecting the plant model out of the supervisor, we also

project out the transition constraints enforced by other agents. Namely, the localization

procedure is conducted based solely on control information directly relevant to the target

agent; we proceed this way for each agent in the plant, taken individually. The result is

that each agent acquires its own local controller, as displayed in Fig.2.1. Intuitively one

could think of these controllers as ‘built in’, rather than ‘external to’, the corresponding

agents. It will be shown that the local controllers, when running concurrently, achieve

the same control behavior as that achieved by the external supervisor.

The rest of this chapter is organized as follows. Section 2.2 formulates the distributed

control problem; Section 2.3 presents the development and main results of supervisor

localization; Section 2.4 proposes an efficient algorithm for computation; Section 2.5

illustrates supervisor localization with two familiar examples; and Section 2.6 discusses

boundary cases of localizability.

2.2 Problem Formulation

The plant to be controlled is modeled, as usual, by a generator

G = (Y, Σ, η, y0, Ym)

where Y is the nonempty state set; y0 ∈ Y is the initial state; Ym ⊆ Y is the set of

marker states; Σ is the finite event set, partitioned into the controllable event set Σc and

the uncontrollable event set Σu; η : Y ×Σ → Y is the (partial) state transition function.

In the usual way, η is extended to η : Y × Σ∗ → Y (pfn), and we write η(y, s)! to mean

that η(y, s) is defined. The closed behavior of G is the language

L(G) := {s ∈ Σ∗|η(y0, s)!}
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and the marked behavior of G is thesublanguage

Lm(G) := {s ∈ L(G)|η(y0, s) ∈ Ym} ⊆ L(G)

For a language L ⊆ Σ∗, the (prefix) closure of L is the language L̄ consisting of all

prefixes of strings in L:

L̄ = {t ∈ Σ∗|t ≤ s for some s ∈ L}

We say that G is nonblocking if Lm(G) = L(G).

Consider the case where G consists of component agents Gk defined over pairwise

disjoint alphabets Σk (k ∈ K, K an index set):

Σ =
⋃̇
{Σk|k ∈ K}

With Σ = Σc ∪̇ Σu we assign control structure to each agent:

Σk
c = Σk ∩ Σc , Σk

u = Σk ∩ Σu

Let k ∈ K. We say LOCk (over Σ) is a local controller for agent Gk if LOCk can disable

only events in Σk
c . Precisely, for all s ∈ Σ∗ and σ ∈ Σ, there holds

sσ ∈ L(G) & s ∈ L(LOCk) & sσ /∈ L(LOCk) ⇒ σ ∈ Σk
c

The observation scope of LOCk is, however, neither confined within Σk nor fixed before-

hand. Indeed, it will be systematically determined to guarantee the correct local control.

Thus, while a local controller’s control authority is strictly local, its observation scope

need not, and generally will not, be.
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Let F ⊆ Σ∗, and recall that F is controllable (with respect to G) if

FΣu ∩ L(G) ⊆ F

If F is not controllable, we denote by C(F ) the set of all controllable sublanguages of

F . C(F ) is nonempty because ∅, the empty language, is trivially controllable and hence

always belongs to C(F ). Further, C(F ) contains a (unique) supremal element, denoted

sup C(F ) [64].

The independent components of the plant are implicitly coupled through an imposed

specification language E ⊆ Σ∗ that (as usual) imposes a behavioral constraint on G. Let

SUP = (X, Σ, ξ, x0, Xm) be a generator that represents the language sup C(E ∩Lm(G)).

SUP is the monolithic optimal nonblocking supervisor for G (with respect to E).

Now we formulate the Distributed Optimal Nonblocking Control Problem (>) :

Given G and SUP described above, construct a set of local controllers LOC =

{LOCk|k ∈ K}, one for each agent, with L(LOC) =
⋂{L(LOCk)|k ∈ K}

and Lm(LOC) =
⋂{Lm(LOCk)|k ∈ K}, such that the following two prop-

erties hold:

L(G) ∩ L(LOC) = L(SUP) (1a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (1b)

We say that LOC, satisfying (1a) and (1b), is control equivalent to SUP with

respect to G.

For the sake of easy implementation and transparent comprehensibility, it would be

desired in practice that the state sizes of local supervisors be very much less than that
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of their ‘parent’ monolithic supervisor:

(∀k ∈ K) |LOCk| ¿ |SUP|

where |·| denotes the state size of the argument. Inasmuch as this property is neither pre-

cise nor always achievable, it must needs be omitted from the formal problem statement;

in applications, nevertheless, it should be kept in mind.

2.3 Supervisor Localization

We solve (>) by developing a supervisor localization procedure, essentially a straightfor-

ward extension of supervisor reduction [56, 53].

It follows from Σ =
⋃̇{Σk|k ∈ K} that the set {Σk

c ⊆ Σc|k ∈ K} forms a partition

on Σc. Fix an element k ∈ K. Following [53], we first establish a control cover on X, the

state space of SUP, based only on control information pertaining to Σk
c , as captured by

the following four functions. First define E : X → Pwr(Σ) according to

E(x) = {σ ∈ Σ|ξ(x, σ)!}

Thus E(x) denotes the set of events that are enabled at x. Next define Dk : X →
Pwr(Σk

c ) according to

Dk(x) = {σ ∈ Σk
c |¬ξ(x, σ)! & (∃s ∈ Σ∗)[ξ(x0, s) = x & η(y0, sσ)!]}

So Dk(x) is the set of controllable events in Σk
c that must be disabled at x. Notice that

if σ ∈ Σk
c is not in Dk(x), then either σ ∈ E(x) or σ was not defined at any state in Y

that corresponds to x. Define M : X → {1, 0} according to

M(x) = 1 iff x ∈ Xm
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Thus M is a predicate on X that determines if a state is marked in SUP. Finally define

T : X → {1, 0} according to

T (x) = 1 iff (∃s ∈ Σ∗)ξ(x0, s) = x & η(y0, s) ∈ Ym

So T is a predicate on X that determines if some corresponding state is marked in

G. Note that for each x ∈ X, we have by (1b) that T (x) = 1 ⇒ M(x) = 1 and

M(x) = 0 ⇒ T (x) = 0.

Definition 2.1.

We define a binary relation Rk on X as follows. Let x, x′ ∈ X. We say x and x′ are

control consistent (with respect to Σk
c ) (cf [53]), and write (x, x′) ∈ Rk, if

(i) E(x) ∩Dk(x′) = ∅ = E(x′) ∩Dk(x)

(ii) T (x) = T (x′) ⇒ M(x) = M(x′) ♦

Informally, a pair of states (x, x′) is in Rk if (i) there is no event in Σk
c that is enabled

at x but is disabled at x′, or vice versa (consistent disablement information); and (ii) x

and x′ are both marked or unmarked in SUP provided that they were both marked or

unmarked in G (consistent marking information). In addition, it should be noted that

Rk is a tolerance relation on X, namely it is reflexive and symmetric but in general need

not be transitive.

Example 2.1.

As shown in Fig.2.2, (x0, x1) ∈ Rk, for E(x0) ∩ Dk(x1) = ∅ = E(x1) ∩ Dk(x0) and

T (x0) 6= T (x1). Also, (x1, x2) ∈ Rk, for E(x1)∩Dk(x2) = ∅ = E(x2)∩Dk(x1) and T (x0) 6=
T (x1). But (x0, x2) /∈ Rk, for E(x2)∩Dk(x0) 6= ∅ and T (x0) = T (x2) & M(x0) 6= M(x1).

¨

Thus, in general Rk need not be an equivalence relation. This fact leads to the

following definition of control cover (with respect to Σk
c .) First recall that a cover on a
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β β

β

α α

y0 y1 y2

x0 x1 x2

β β

β

α

G

SUP

α ∈ Σ
k ⊆ Σc

β ∈ Σu

E(x0) = {β} E(x1) = {β} E(x2) = {α, β}

Dk(x0) = {α} Dk(x1) = ∅ Dk(x2) = ∅

T (x0) = 1 T (x1) = 0 T (x2) = 1

M(x0) = 1 M(x1) = 0 M(x2) = 0

Figure 2.2: Example: Rk is not transitive

set X is a collection of nonempty subsets of X whose union is X. Precisely, a collection

{Xi|i ∈ I} is a cover on X if

(i) (∀i ∈ I) Xi 6= ∅

(ii) (∀i ∈ I) Xi ⊆ X

(iii)
⋃{Xi|i ∈ I} = X

Definition 2.2.

Let Ik be some index set, and Ck = {Xk
ik
⊆ X|ik ∈ Ik} be a cover on X. Ck is a

control cover (cf [53]) on X (with respect to Σk
c ) if

(i) (∀ik ∈ Ik)(∀x, x′ ∈ Xk
ik

) (x, x′) ∈ Rk

(ii) (∀ik ∈ Ik,∀σ ∈ Σ)[(∃jk ∈ Ik)(∀x ∈ Xk
ik

)ξ(x, σ)! ⇒ ξ(x, σ) ∈ Xk
jk ] ♦

Informally, a control cover Ck groups states of SUP into (possibly overlapping) cells

Xk
ik
, ik ∈ Ik. According to (i) all states that reside in a cell Xk

ik
have to be pairwise control

consistent; and (ii) for each event σ ∈ Σ, all states that can be reached from any state

in Xk
ik

by a one-step transition σ have to be covered by a certain cell Xk
jk . Recursively,

two states x, x′ belong to a common cell in Ck if and only if (1) x and x′ are control

consistent; and (2) two future states that can be reached from x and x′, respectively, by
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the same string are again control consistent. In addition we say that a control cover Ck

is a control congruence if Ck happens to be a partition on X.

Having established a control cover Ck on X based only on the control information

of Σk
c , we can then always obtain an induced generator Jk = (Ik, Σ, κk, ik0, I

k
m) by the

following construction (cf [53]):

(i) ik0 ∈ Ik such that x0 ∈ Xk
ik0

(ii) Ik
m = {ik ∈ Ik|Xk

ik
∩Xm 6= ∅}

(iii) κk : Ik × Σ → Ik (pfn) with κk(ik, σ) = jk if

(∃x ∈ Xk
ik

)ξ(x, σ) ∈ Xk
jk & (∀x′ ∈ Xk

ik
)[ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xk

jk ]

Note that, owing to overlapping, the choices of ik0 and κk may not be unique, and conse-

quently Jk may not be unique. In that case we pick an arbitrary instance of Jk. Clearly

if Ck happens to be a control congruence, then Jk is unique.

Let J := {Jk|k ∈ K} be a set of induced generators for the partition {Σk
c ⊆ Σc|k ∈

K}, and define L(J) :=
⋂{L(Jk)|k ∈ K} and Lm(J) :=

⋂{Lm(Jk)|k ∈ K}. Our first

result shows that J is a solution to (>).

Proposition 2.1.

J is control equivalent to SUP with respect to G, i.e.,

L(G) ∩ L(J) = L(SUP)

Lm(G) ∩ Lm(J) = Lm(SUP)

Proof.

See Appendix.

Next we investigate if the converse is true: that is, can a set of generators that is

control equivalent to SUP always be induced from a set of suitable control covers on X?
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In response, we bring in the following two definitions.

Definition 2.3.

A generator LOC = (Z, Σ, ζ, z0, Zm) is normal (with respect to SUP) [53] if

(i) (∀z ∈ Z)(∃s ∈ L(SUP)) ζ(z0, s) = z

(ii) (∀z ∈ Z, ∀σ ∈ Σ)ζ(z, σ)! ⇒ (∃s ∈ L(SUP))[ζ(z0, s) = z & sσ ∈ L(SUP)]

(iii) (∀z ∈ Zm)(∃s ∈ Lm(SUP)) ζ(z0, s) = z ♦

Informally, a generator is normal with respect to SUP if (1) each of its states is

reachable by at least one string in L(SUP); and (2) each of its one-step transitions, say

σ, defined at a state that is reached by a string s in L(SUP), preserves membership of

sσ in L(SUP); and (3) each of its marked states is reachable by at least one string in

Lm(SUP).

Example 2.2.

ββ

α

SUP

α

γ

β
β

α α

γ

LOC2

γ

α

γ

(i)

(ii)

(iii)

β
β

α α

γ

LOC1

One can verify by inspection that LOC1 is normal with respect to SUP, but LOC2

is not. Indeed for LOC2, (i), (ii), and (iii) respectively display the violation of the three

conditions in the definition of normality. ¨

If a generator LOC = (Z, Σ, ζ, z0, Zm) is not normal (with respect to SUP), the

following three normalization operations will replace it by one that is.

(N1) Delete z ∈ Z, if (¬∃s ∈ L(SUP)) ζ(z0, s) = z.
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(N2) Delete σ ∈ Σ at z ∈ Z, if (∀s ∈ L(SUP)) ζ(z0, s) = z ⇒ sσ /∈ L(SUP).

(N3) Unmark z ∈ Zm, if (¬∃s ∈ Lm(SUP)) ζ(z0, s) = z.

It is straightforward to verify that (N1)–(N3) will convert LOC into a normal generator.

Also note that (N1)–(N3) will not increase the state size of LOC. More importantly, the

following proposition asserts that (N1)–(N3) preserve control equivalence. From now on

we can safely consider localization only for normal generators.

Proposition 2.2.

Let LOC := {LOCk = (Zk, Σ, ζk, zk
0 , Z

k
m)|k ∈ K} be a set of generators that are

not normal (with respect to SUP). Assume that LOC is control equivalent to SUP

(with respect to G). Convert each LOCk (k ∈ K) into a normal generator NLOCk

by (N1)–(N3). Then NLOC := {NLOCk|k ∈ K} is control equivalent to SUP (with

respect to G).

Proof.

See Appendix.

Definition 2.4.

Given generators LOC = (Z, Σ, ζ, z0, Zm) and J = (I, Σ, κ, io, Im). LOC and J are

DES-isomorphic [53] if there exists a DES-isomorphism θ : Z → I such that

(i) θ : Z → I is a bijection

(ii) θ(z0) = i0 & θ(Zm) = Im

(iii) (∀z ∈ Z, σ ∈ Σ)ζ(z, σ)! ⇒ [κ(θ(z), σ)! & κ(θ(z), σ) = θ(ζ(z, σ))]

(iv) (∀i ∈ I, σ ∈ Σ)κ(i, σ)! ⇒ [(∃z ∈ Z)ζ(z, σ)! & θ(z) = i] ♦

Under normality and DES-isomorphism, we have the following result in response to

the converse question posed above.
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Theorem 2.1.

Let LOC := {LOCk = (Zk, Σ, ζk, zk
0 , Z

k
m)|k ∈ K} be a set of normal generators that

is control equivalent to SUP with respect to G. Then there exists a set of control covers

C := {Ck|k ∈ K} on X with a corresponding set of induced generators J := {Jk|k ∈ K}
such that (∀k ∈ K) Jk and LOCk are DES-isomorphic.

Proof.

See Appendix.

It is important to notice that Theorem 2.1 is not valid if “control cover” is replaced

by “control congruence”.

Example 2.3.

β

SUP

α

LOC

β

α

G

β

β

α

x0 x1

x2

α

β

β

x0 x1 x1 x2

α ∈ Σc

β, γ, λ ∈ Σu

γ

γ

γ
γ

γ

γ

The supervisor’s control action is to disable event α at state x2. It is straightforward

by inspection that x0, x2 are not control consistent, while x0, x1 and x1, x2 are. But the

partition {{x0, x1}, {x2}} is not a control congruence, for ξ(x0, β) = x1 and ξ(x1, β) =

x2; neither is the partition {{x1, x2}, {x0}}, because ξ(x1, γ) = x1 and ξ(x2, γ) = x0.

Therefore, there does not exist a control congruence that can reduce the state size of

SUP.

On the other hand, the generator LOC with two states displayed above can be verified

to be control equivalent to SUP with respect to G. It is induced from the control cover
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{{x0, x1}, {x1, x2}}. ¨

To summarize, every set of control covers generates a solution to (>) (Proposition

2.1); and every solution to (>) can be induced from some set of control covers (Theorem

2.1). In particular, a set of state-minimal normal generators can be induced from a

set of suitable control covers. However, such a set is in general not unique, even up to

DES-isomorphism. This conclusion accords with that for a state-minimal supervisor in

supervisor reduction [53].

2.4 Localization Algorithm

It would be desirable to have an efficient algorithm that always computes a set of state-

minimal normal generators, despite its non-uniqueness. Unfortunately, this minimal state

problem is NP-hard [53], and consequently we cannot expect a polynomial-time algorithm

that can compute a control cover which yields a state-minimal generator.

Nevertheless, a polynomial-time algorithm for supervisor reduction is proposed in

[53]. The algorithm generates a control congruence, rather than a control cover, and

empirical evidence is given showing that significant state size reduction can often be

achieved. Therefore we employ this algorithm, suitably modified to work for supervisor

localization, and call the altered version a localization algorithm (LA).

We sketch the idea of LA as follows. Given SUP = (X, Σc∪̇Σu, , , ) and Σk
c ⊆ Σc,

LA generates a control congruence Ck on X with respect to Σk
c . LA initializes Ck to be

the singleton partition on X, i.e.,

Ck
init = {[x] ⊆ X|[x] = {x}}

where [x] denotes a cell in Ck to which x belongs. Then LA merges [x] and [x′] into one

cell if x and x′, as well as all their corresponding future states reachable by identical
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strings, are control consistent. This mergibility condition is checked by lines 14 and 19

in the pseudocode displayed below: line 14 checks control consistency for the current

state pair (x, x′) and line 19 recursively checks consistency for all their related future

states. Throughout, in order to generate a control congruence, it is crucial to prevent

states from being shared by more than one cell. This is achieved by inserting in LA

three ‘filters’ – at lines 3, 5, and 18 – to eliminate redundant mergibility tests as well as

element overlapping in Ck. LA loops until all of the states are checked.

Notation: X = {x0, . . . , xn−1} is an ordering of states; wl ⊆ X ×X is a list of state

pairs whose mergibility is pending. T , F denote true, false respectively.

int main()1

for i : 0 to n− 2 do2

if i > min{k|xk ∈ [xi]} then continue;3

for j : i + 1 to n− 1 do4

if j > min{k|xk ∈ [xj]} then continue;5

wl = ∅;6

if Check Mergebility(xi, xj,wl, xi) = T then7

Ck = {[x] ∪⋃
x′:{(x,x′),(x′,x)}∩wl 6=∅[x

′] | [x], [x′] ∈ Ck}
end8

end9

bool Check Mergibility(xi, xj,wl , cnode)10

for each xp ∈ [xi] ∪
⋃

x:{(x,xi),(xi,x)}∩wl 6=∅[x] do11

for each xq ∈ [xj] ∪
⋃

x:{(x,xj),(xj ,x)}∩wl 6=∅[x] do12

if {(xp, xq), (xq, xp)} ∩ wl 6= ∅ then continue;13

if (xp, xq) /∈ Rk then return F ;14

wl = wl ∪ {(xp, xq)};15

for each σ ∈ Σ with ξ(xp, σ)!, ξ(xq, σ)! do16

if [ξ(xp, σ)] = [ξ(xq, σ)] ∨17

{(ξ(xp, σ), ξ(xq, σ)), (ξ(xp, σ), ξ(xq, σ))} ∩ wl 6= ∅ then continue;
if min{k|xk ∈ [ξ(xp, σ)]} < cnode ∨ min{k|xk ∈ [ξ(xq, σ)]} < cnode18

then return F ;
if Check Mergebility(ξ(xp, σ), ξ(xq, σ),19

wl, cnode) = F then return F ;
end20

end21

end22

return T ;23
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Remark 2.1. LA preserves all computational properties of the reduction algorithm in

[53]. Namely, LA terminates, generates a control congruence, and has time complexity

O(n4), where n is the state size of SUP.

Example 2.4.

β

α

SUP

α

LOC

x0

x1

x2

x3

α αx1

x3x0 x2

α is disabled at x3

β

γ γ

γ γ

Σ
k
c

= {α}

This example is a simple illustration of LA.

(0) Initially, Ck
init = {[x0], [x1], [x2], [x3]}.

(1) (x0, x1) cannot be merged: they pass line 14 because (x0, x1) ∈ Rk, but they fail

at line 19 for (ξ(x0, α), ξ(x1, α)) /∈ Rk; (x0, x2) can be merged: they pass line 14

because (x0, x2) ∈ Rk, and they trivially pass line 16 since there is no common

event defined on them, so that no further control consistency needs to be verified;

(x0, x3) cannot be merged: they fail at line 14, for (x0, x3) /∈ Rk.

So, Ck
1 = {[x0, x2], [x1], [x3]}.

(2) (x1, x2) cannot be merged: they cannot pass line 5, because x2 and x0 are now in

the same cell and 2 > 0; (x1, x3) cannot be merged: they failed at line 14, since

(x1, x3) /∈ Rk.

Thus, Ck
2 = {[x0, x2], [x1], [x3]}.

(3) (x2, x3) cannot be merged: they failed at line 3 for, again, x2 and x0 are now in the

same cell and 2 > 0.

Finally, Ck
3 = {[x0, x2], [x1], [x3]}, and the induced generator LOC (unique in this

case) is displayed above. ¨
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2.5 Examples

In this section, we apply the supervisor localization procedure to solve the distributed

control problem for two familiar examples. The results are computed by the presented

localization algorithm (implemented in a C++ program); the desired control equivalence

between the set of local controllers and the optimal nonblocking supervisor is verified in

TCT [62], by confirming

isomorph(meet({LOCk|k ∈ K}, G),SUP) = TRUE

2.5.1 Distributed Control: Transfer Line

MACH1 MACH2BUF1 BUF2 TU

1 2 3 4 5 6

8

1

0 4

5

6, 8

2,8

3

4

5

3

MACH1 MACH2

BUF1 BUF2

TU

2,8

3

2,8

3

The transfer line system [63, Section 4.6] consists of two machines MACH1, MACH2

followed by a test unit TU; these components are linked by two buffers with capacities

of three slots and one slot, respectively. We model MACH1, MACH2, and TU as the

plant to be controlled, and the specification is to protect the two buffers against overflow

and underflow. The distributed control objective is to design for each component a local

controller – but with no external supervisor.
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By using the standard method of SCT, we first build the monolithic optimal non-

blocking supervisor, which has 28 states. Then we employ the localization algorithm to

compute for each component a local controller from the global supervisor. The resultant

controllers are displayed in Fig. 2.3, having 4, 6, and 2 states, respectively.

With these individual controllers, we can account for the local strategies of each

component. MACH1, controlling event 1, ensures that no more than three workpieces

can be processed simultaneously in the system, i.e., prevents ‘choking’ in the ‘material

feedback’ loop; MACH2, controlling event 3, guarantees the safety of both buffers in

an interleaving manner; and TU, controlling event 5, is only responsible for the safety

of BUF2.

2 2 2

6 6 6

1 1 1

2 8 2 8 2 8

333

5

4

2 8

2 8

4 5
45

4

5

Local controller for MACH 1

Local controller for MACH 2

Local controller for TU

Figure 2.3: Distributed control of transfer line
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2.5.2 Distributed Control: Dining Philosophers

P1

P2

P3P4

P5

F1

F2

F3

F4

F5

Spaghetti

Consider the celebrated dining philosopher problem (due to E.W. Dijkstra), adapted

from [63, Exercise 4.9.5]. Five philosophers (P1,...,P5) are seated at a round table, at

the center of which is placed a bowl of spaghetti. There are five forks (F1,. . .,F5) on

the table, one between each pair of adjacent philosophers. Taking (P1,. . .,P5) to be the

plant, we model them symmetrically as follows:

i0

Pi

i1

i2

i0: request for forks

i1: obtain forks and start eating

i2: finish eating and return forks

(i = 1,...,5)

There are two control specifications that restrict the philosophers’ behavior: (1) a

fork is used by at most one philosopher at a time; and (2) no philosopher may commence

eating if either of his two neighbors has been ready longer.
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i1, (i+1)1

(SPEC1) Fi

i2, (i+1)2

(i = 1,...,5)

i0

i2

(i-1)0, (i+1)0 (i-1)0, (i+1)0

(i-1)0, (i+1)0
i2 i2

i0 i0

(i-1)2, (i+1)2
(i-1)2, (i+1)2

(i-1)2, (i+1)2(i-1)2, (i+1)2

(i-1)2, (i+1)2

(i-1)0, (i+1)0

(i-1)0

(i+1)0

(SPEC2) Qi

The distributed control objective is to design for each philosopher a local controller

– but with no external supervisor.

By using the standard method of SCT, we first build the monolithic optimal non-

blocking supervisor, which has 341 states. Then we employ the localization algorithm to

compute for each philosopher a local controller from the global supervisor. The resul-

tant controllers each have 6 states and are symmetric in terms of transition structure, as

displayed in Fig.2.4.

According to these symmetric local strategies, every philosopher lines up with both of

his immediate neighbors and eats the spaghetti in the order that he requests the forks. It

is also worth noting that each philosopher only needs the information from his immediate

neighbors in order to make a correct local decision.

i0, i1

(i-1)0, (i+1)0 (i-1)0, (i+1)0

i0 i0

(i-1)2, (i+1)2 (i-1)2, (i+1)2

(i-1)2, (i+1)2

(i-1)2, (i+1)2

(i-1)2, (i+1)2

(i-1)0
(i+1)0

i1 i1

Figure 2.4: Local controller for Pi (i=1,...,5)
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2.6 Boundary Cases

In this section we identify two boundary cases of supervisor localization which indicate, as

a property of the localization problem itself, an extreme degree of ‘easiness’ or ‘hardness’,

respectively.

2.6.1 Fully-localizable

This case is the ‘easy’ situation where component agents are completely decoupled: each

agent works independently without interaction through shared events.

Example 2.5.

α1 α2

β1 β2

γ1 γ2

α1 α2

A1 A2

α1

γ1

α1

S2S1

α2

β2

αi, βi ∈ Σc

γi ∈ Σu

i = 1, 2

Σ
i
= {αi, βi, γi}

Σ = Σ
1∪̇Σ

2
= Σc∪̇Σu

The plant consists of two independent agents A1 and A2, while two specifications

S1 and S2 are imposed over the disjoint alphabets corresponding to the two agents

respectively. The centralized approach generates the monolithic supervisor SUP through

synthesizing the language

sup C([Lm(S1)||Lm(S2)] || [Lm(A1)||Lm(A2)])

At the local level, we can obtain SUPi (i = 1, 2) by synthesizing the language

sup C(Lm(Si)||Lm(Ai))
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Let Pi : Σ∗ → (Σi)∗. The global extension of SUPi, denoted SUPi, recognizes the

language

P−1
i (sup C(Lm(Si)||Lm(Ai)))

One can easily verify that the set {SUP1,SUP2} is control equivalent to SUP, and

therefore SUPi is a valid local controller for Ai; here it can be obtained locally without

going through the top-down localization procedure.

¨

In general given a plant G (over Σ) composed of independent agents over disjoint

alphabets Σk (k ∈ K), let Pk : Σ∗ → (Σk)∗ and SUP be a supervisor with respect to

some specification.

Definition 2.5.

SUP is fully-localizable if there exists a set of local controllers LOC = {LOCk|k ∈
K} such that (∀k ∈ K) L(LOCk) = P−1

k (Lk), for some Lk ⊆ (Σk)∗; and LOC is control

equivalent to SUP. ♦

A sufficient condition that ensures full-localizability is immediate.

Proposition 2.3.

Assume the overall specification is S = {Sm|m ∈ M}, where M is an index set. If

(∀m ∈ M)(∃k ∈ K) L(Sm) ⊆ (Σk)∗, then SUP (with respect to S and G) is fully-

localizable.

Proof.

See Appendix.

2.6.2 Non-localizable

The other extreme of the localization problem is the ‘hard’ case where component agents

are coupled so tightly that each one has to be ‘globally aware’.
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Example 2.6 (Mutual Exclusion).

0 1
i = 1, 2

: controllable

: uncontrollable
Ai

Enteri

Exiti

Enteri

Exiti

Agents Ai (i = 1, 2) share a common resource. The specification is mutual exclusion

(i.e., two agents must not simultaneously occupy the resource). In terms of state, the

combination (1, 1) is not allowed. The scenario of motorists can perhaps be viewed as an

instance of this model.

It is easy to see that the following is a valid supervisor SUP that satisfies the mutual

exclusion requirement.

0 1

Enter2Enter1

Exit1 Exit2

SUP

Now we localize SUP by our algorithm, which results in two local controllers LOCi

for agents Ai (i = 1, 2), respectively.

0 1

Enter2Enter1

Exit1 Exit2

LOC
1

0 1

Enter2Enter1

Exit1 Exit2

LOC
2

responsible for event ‘Enter1’

responsible for event ‘Enter2’

These are nothing but the same as SUP. Namely, our supervisor localization accom-

plished nothing useful. ¨

In the above example, the localization procedure fails to achieve a ‘truly local’ result.

In general, we aim to find conditions that can identify this situation before we perform

localization, for in that case we need only make copies of SUP for the relevant agents.

Definition 2.6.



Chapter 2. On Supervisor Localization 33

Let MLOCk be a state-minimal local controller (w.r.t. Σk ⊆ Σ and SUP). SUP is

non-localizable with respect to Σk ⊆ Σ if |SUP| = |MLOCk|.
♦

First note that |SUP| = |MLOCk| implies SUP = MLOCk. This is because if

SUP is already state-minimal, then no more pairs of states in SUP can be merged,

which in turn implies that the transition structure will remain the same.

We proceed to determine the number of cells of the control cover Ck, corresponding

to MLOCk, on X (the state set of SUP). By the definition of control cover, two states

x, x′ ∈ X that belong to an identical cell must satisfy both conditions

(1) (x, x′) ∈ Rk

(2) (∀s ∈ Σ∗) ξ(x, s)! & ξ(x′, s)! ⇒ (ξ(x, s), ξ(x′, s)) ∈ Rk

Negating (1) and (2), we get

(3) (x, x′) /∈ Rk

(4) (∃s ∈ Σ∗) ξ(x, s)! & ξ(x′, s)! & (ξ(x, s), ξ(x′, s)) /∈ Rk

Hence, two states x, x′ belong to different cells of Ck if and only if either (3) or (4) holds.

Let

ΩCk := max {n|(∃X ′ ⊆ X) |X ′| = n & (∀x, x′ ∈ X ′) x 6= x′ ⇒ (3) or (4)}

The above discussion has proved the following fact.

Proposition 2.4.

|MLOCk| = ΩCk ¤

Now a necessary and sufficient condition for non-localizability is immediate.

Proposition 2.5.

SUP is non-localizable with respect to Σk ⊆ Σ if and only if |SUP| = ΩCk
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Proof.

Follows directly from Definition 2.6 and Proposition 2.4.

Admittedly the above condition is hardly more than a restatement of the definition of

non-localizability. We still know nothing about how to check whether or not the condition

holds. Nevertheless, a slight modification of ΩCk will lead to a computationally verifiable

sufficient condition for non-localizability.

Consider

Ωk := max {n|(∃X ′ ⊆ X) |X ′| = n & (∀x, x′ ∈ X ′) x 6= x′ ⇒ (x, x′) /∈ Rk}

That is, we disregard those cases where control inconsistency is caused by related future

states. It should be obvious that Ωk ≤ ΩCk . More importantly, if we construct an undi-

rected graph G = (V, E) with V = X and E = {(x, x′)|(x, x′) /∈ Rk}, then calculating Ωk

amounts to finding the maximum clique in G. Although the maximum clique problem

is a well-known NP-complete problem, there exist efficient algorithms that compute sub-

optimal solutions [42]. In particular, the implemented polynomial-time algorithm that

computes lbe (lower bound estimate) in [53] can be directly employed for our purpose.

Let us denote by lbek the outcome of the suboptimal algorithm w.r.t. Rk. Thus we have

lbek ≤ Ωk ≤ ΩCk ≤ |SUP|, which gives rise to the following result.

Proposition 2.6.

If |SUP| = lbek, then SUP is non-localizable with respect to Σk ⊆ Σ.

Proof.

|SUP| = lbek implies that |SUP| = ΩCk , and consequently |SUP| = |MLOCk| by

Proposition 2.4.

This condition is not necessary for non-localizability. If we obtain |SUP| > lbek,

lbek tells us little about localizability and can only serve as a conservative lower bound
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estimate indicating how much localization might (conceivably) be achieved. However, if

|SUP| = lbek does hold, then the problem instance admits no useful solution, and we

can avoid wasting further computational effort.

Continuing Example 2.6, and applying the adopted algorithm from [53], we obtain

lbe{Enter1} = lbe{Enter2} = 2 = |SUP|. Hence, SUP is non-localizable for either of the

two agents, and we then simply assign the agents with the copies of SUP as their local

controllers.

2.7 Appendix of Proofs

Proof of Proposition 2.1:

First we show Lm(SUP) ⊆ Lm(G) ∩ Lm(J). It suffices to show (∀k ∈ K) Lm(SUP) ⊆
Lm(Jk). Let k ∈ K, and let s = σ0 · · ·σn ∈ Lm(SUP). By the definition of Ck and κk,

there exist x0, . . . , xn ∈ X such that

ξ(xj, σj)! & ξ(xj, σj) = xj+1, j = 0, . . . , n− 1

and

(∃ikj , ikj+1 ∈ Ik) xj ∈ Xk
ikj

& xj+1 ∈ Xk
ikj+1

& κk(ikj , σj) = ikj+1, j = 0, . . . , n− 1

So κk(ik0, σ0 · · ·σn)!, i.e., κk(ik0, s)!. Let ikn = κk(ik0, s). Then ξ(x0, s) ∈ Xk
ikn
∩ Xm, which

implies ikn ∈ Ik
m, i.e., s ∈ Lm(Jk).

Now that we have shown Lm(SUP) ⊆ Lm(G) ∩ Lm(J), it follows that

Lm(SUP) ⊆ Lm(G) ∩ Lm(J)

⊆ Lm(G) ∩ Lm(J)

⊆ L(G) ∩ L(J)
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So L(SUP) ⊆ L(G) ∩ L(J).

Next we show the converse: L(G) ∩ L(J) ⊆ L(SUP). Let s ∈ L(G) ∩ L(J) we

proceed by induction on the length of s.

(Base case) Since none of L(G), L(J), and L(SUP) is empty, ε belongs to all of them.

(Induction step) Suppose s ∈ L(G) ∩ L(J) ⇒ s ∈ L(SUP). Let σ ∈ Σ, and assume

sσ ∈ L(G) ∩ L(J). We must show that sσ ∈ L(SUP). By hypothesis we have s ∈
L(SUP). If σ ∈ Σu, then sσ ∈ L(SUP), because L(SUP) is controllable. If σ ∈ Σc,

then there must exist k ∈ K such that σ ∈ Σk
c . Since sσ ∈ L(J), sσ ∈ L(Jk) and thus

s ∈ L(Jk). Hence κk(ik0, sσ)! and κk(ik0, s)!. Let ikn = κk(ik0, s). Then (∃x ∈ Xk
ikn

,∃x′ ∈
X) ξ(x, σ) = x′, which implies σ ∈ E(x). It has been shown that ξ(x0, s) ∈ Xk

ikn
, so x

and ξ(x0, s) belong to a common cell, i.e., (x, ξ(x0, s)) ∈ Rk. Therefore σ /∈ Dk(ξ(x0, s)),

which implies either ξ(ξ(x0, s), σ)! or (∀t ∈ Σ∗)ξ(x0, t) = ξ(x0, s) ⇒ ¬η(y0, tσ)! But if

t = s, since we have sσ ∈ L(G), the latter case is invalid. Therefore we conclude that

ξ(ξ(x0, s), σ)!, i.e., sσ ∈ L(SUP). This accomplishes the induction, and consequently

L(G) ∩ L(J) ⊆ L(SUP).

It is left to show Lm(G) ∩ Lm(J) ⊆ Lm(SUP). Let s ∈ Lm(G) ∩ Lm(J). Since

Lm(G) ∩ Lm(J) ⊆ L(G) ∩ L(J) ⊆ L(SUP), we have s ∈ L(SUP), i.e., ξ(x0, s)!, which

in turn gives (∀k ∈ K) ikn = κk(ik0, s)! & ξ(x0, s) ∈ Xk
ikn

. In addition, s ∈ Lm(J) implies

(∀k ∈ K) ikn ∈ Ik
m, and therefore (∀k ∈ K) Xk

ikn
∩ Xm 6= ∅. Let k ∈ K, and let x′ ∈

Xk
ikn
∩Xm. Then M(x′) = 1, and thus T (x′) = 1. By s ∈ Lm(G), we have η(y0, s) ∈ Ym,

i.e., T (ξ(x0, s)) = 1. Hence both x′ and ξ(x0, s) are in Xk
ikn

, i.e., (x′, ξ(x0, s)) ∈ Rk.

Consequently M(ξ(x0, s)) = M(x′) = 1, i.e., s ∈ Lm(SUP).

Proof of Proposition 2.2:

It is assumed that

L(G) ∩ L(LOC) = L(SUP) and Lm(G) ∩ Lm(LOC) = Lm(SUP)
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We will show that

L(G) ∩ L(NLOC) = L(SUP) and Lm(G) ∩ Lm(NLOC) = Lm(SUP)

First we show L(G) ∩ L(NLOC) = L(SUP).

(⊆) By (N1) and (N2), L(NLOCk) ⊆ L(LOCk) for all k ∈ K. So
⋂{L(NLOCk)|k ∈

K} ⊆ ⋂{L(LOCk)|k ∈ K}, i.e., L(NLOC) ⊆ L(LOC). It follows that L(G) ∩
L(NLOC) ⊆ L(G) ∩ L(LOC) = L(SUP).

(⊇) Letting s ∈ L(SUP), we proceed by induction on the length of s.

(Base case) The empty string ε ∈ L(SUP) because L(SUP) 6= ∅. So ε ∈ L(G) ∩
⋂{L(LOCk)|k ∈ K}. Suppose ε /∈ L(NLOC). Then there exists k ∈ K such that

ε /∈ L(NLOCk), i.e., zk
0 was deleted by (N1). Hence (¬∃t ∈ L(SUP)) ζk(zk

0 , t) = zk
0 . But

this is a contradiction, for ε ∈ L(SUP) and ε ∈ L(LOCk). Therefore, ε ∈ L(NLOC),

and thus ε ∈ L(G) ∩ L(NLOC).

(Induction step) Suppose that s ∈ L(SUP) ⇒ s ∈ L(G) ∩ L(NLOC). Let σ ∈ Σ,

and assume that sσ ∈ L(SUP). We must show sσ ∈ L(G) ∩ L(NLOC). Since

sσ ∈ L(SUP) = L(G) ∩ ⋂{L(LOCk)|k ∈ K}, we have s ∈ L(SUP) = L(G) ∩
⋂{L(LOCk)|k ∈ K}. Let k ∈ K and zk = ζk(zk

0 , s), and suppose that sσ /∈ L(NLOCk).

It follows from sσ ∈ L(LOCk) that this one-step transition σ at zk was deleted by (N2),

which implies that (∀t ∈ L(SUP)) ζk(zk
0 , t) = zk & tσ /∈ L(SUP). But this is a contra-

diction, for s, sσ ∈ L(SUP) and ζk(zk
0 , s) = zk. So sσ ∈ L(NLOCk) for any k ∈ K, i.e.,

sσ ∈ ⋂{L(NLOCk)|k ∈ K}. Therefore sσ ∈ L(G)∩L(NLOC). This accomplishes the

induction, and establishes L(G) ∩ L(NLOC) ⊇ L(SUP).

Now we show Lm(G) ∩ Lm(NLOC) = Lm(SUP).

(⊆) By (N3) we have Lm(NLOCk) ⊆ Lm(LOCk) for all k ∈ K. So
⋂{Lm(NLOCk)|k ∈

K} ⊆ ⋂{Lm(LOCk)|k ∈ K}, i.e., Lm(NLOC) ⊆ Lm(LOC). It follows that Lm(G) ∩
Lm(NLOC) ⊆ Lm(G) ∩ Lm(LOC) = Lm(SUP).



Chapter 2. On Supervisor Localization 38

(⊇) Let s ∈ Lm(SUP). Then s ∈ Lm(G) ∩ ⋂{Lm(LOCk)|k ∈ K}. Let k ∈ K

and zk = ζk(zk
0 , s). Hence zk ∈ Zk

m. Suppose that s /∈ Lm(NLOCk), i.e., zk was

unmarked by (N3). It follows that (¬∃t ∈ Lm(SUP)) ζk(zk
0 , t) = zk. But this is a

contradiction, for s ∈ Lm(SUP) & ζk(zk
0 , s) = zk. So s ∈ Lm(NLOCk) for any k ∈ K,

i.e., s ∈ ⋂{Lm(NLOCk)|k ∈ K}. Therefore s ∈ Lm(G) ∩ Lm(NLOC). We conclude

that Lm(G) ∩ Lm(NLOC) ⊇ Lm(SUP)

Proof of Theorem 2.1

Let k ∈ K. We must show that there exists a control cover Ck such that the induced

generator Jk is DES-isomorphic to LOCk. Let zk ∈ Zk, and define

X(zk) := {x ∈ X|(∃s ∈ L(SUP))ξ(x0, s) = x & ζk(zk
0 , s) = zk}

Also define Ck = {X(zk)|zk ∈ Zk}. We claim that Ck is a control cover on X with respect

to Σk
c .

First we show that Ck covers X. Let x ∈ X. Then (∃s ∈ L(SUP))ξ(x0, s) = x. Since

LOC is control equivalent to SUP w.r.t. G, we have s ∈ L(LOCk), i.e., ζk(zk
0 , s)!. Let

zk = ζk(zk
0 , s). Then x ∈ X(zk), by the definition of X(zk).

Next we show (∀zk ∈ Zk) X(zk) 6= ∅. Let zk ∈ Zk. Since LOCk is normal w.r.t.

SUP, then (∃s ∈ L(SUP)) ζk(zk
0 , s) = zk. Hence ξ(x0, s)! & ξ(x0, s) ∈ X(zk), i.e.,

X(zk) 6= ∅.

Now we must show that two states are control consistent if they belong to the same

cell, i.e., (∀zk ∈ Zk,∀a, b ∈ X(zk)) (a, b) ∈ Rk. Let zk ∈ Zk and a, b ∈ X(zk)). It is

equivalent to show that

E(a) ∩Dk(b) = ∅ = E(b) ∩Dk(a)



Chapter 2. On Supervisor Localization 39

and

T (a) = T (b) ⇒ M(a) = M(b)

Let σ ∈ Σ, and assume σ ∈ E(a). It will be shown that σ /∈ Dk(b). If σ ∈
Σ − Σk

c , then by the definition of Dk, σ /∈ Dk(b). Otherwise if σ ∈ Σk
c , we have (∃s ∈

L(SUP)) ξ(x0, s) = a & ξ(a, σ)! because a ∈ X & σ ∈ E(a). Hence sσ ∈ L(SUP). Since

LOC is control equivalent to SUP, we obtain sσ ∈ L(LOCk), i.e., ζk(ζk(zk
0 , s), σ)!. It

then follows from a ∈ X(zk) that ζk(zk, σ)!. Because b ∈ X(zk), by definition (∃t ∈
L(SUP)) ξ(x0, t) = b & ζk(zk

0 , t) = zk, so that tσ ∈ L(LOCk). If tσ /∈ L(G), then

trivially σ /∈ Dk(b); for the case tσ ∈ L(G), i.e., η(y0, tσ)!, since only LOCk has control

authority on Σk
c :

(∀k′ ∈ K) k′ 6= k ⇒ ζk′(zk′
0 , tσ)!, i.e., tσ ∈ L(LOCk′)

we have tσ ∈ L(G) ∩ L(LOC) = L(SUP). Hence ξ(ξ(x0, t), σ)!, i.e., ξ(b, σ)!, which

implies σ ∈ E(b) & σ /∈ Dk(b). Therefore E(a) ∩Dk(b) = ∅, and by the same argument

we can show E(b) ∩Dk(a) = ∅.

We proceed to show T (a) = T (b) ⇒ M(a) = M(b) by contraposition. Suppose

M(a) 6= M(b), say M(a) = 1 & M(b) = 0. Then T (a) = 1 and a ∈ Xm. Since a ∈ X(zk)

and LOCk is normal, we have (∃s ∈ Lm(SUP)) ξ(x0, s) = a & ζk(zk
0 , s) = zk. It follows

from the control equivalence condition that s ∈ Lm(G) ∩ Lm(LOC), which gives that

(∀k′ ∈ K) zk ∈ Zk′
m (we use k′ to distinguish the index from the fixed k). Because

b ∈ X(zk), by definition (∃t ∈ L(SUP)) ξ(x0, t) = b & ζk(zk
0 , t) = zk, and because

M(b) = 0, we have t /∈ Lm(SUP). Therefore t /∈ Lm(G) or t /∈ ⋂{Lm(LOCk′)|k′ ∈ K}.
But t ∈ ⋂{Lm(LOCk′)|k′ ∈ K}, for (∀k′ ∈ K) zk ∈ Zk′

m & ζk(zk
0 , t) = zk. So t /∈ Lm(G),

i.e., T(b)=0. Thus T (a) 6= T (b). The same conclusion could be drawn if we started with

M(a) = 0 & M(b) = 1.

Finally we show (∀zk ∈ Zk,∀σ ∈ Σ)[(∀x ∈ X(zk))ξ(x, σ)!
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⇒ (∃z̃k ∈ Zk)ξ(x, σ) ∈ X(z̃k)]

Let zk ∈ Zk & x ∈ X(zk) & σ ∈ Σ, and assume ξ(x, σ)!. So (∃s ∈ L(SUP)) ξ(x0, s) =

x & ζk(zk
0 , s) = zk, which implies sσ ∈ L(SUP) = L(G) ∩ {L(LOC)}. Hence sσ ∈

L(LOCk), i.e., ζk(zk
0 , sσ)! Let z̃k = ζk(zk

0 , sσ). Then ξ(x, σ) = ξ(x0, sσ) ∈ X(z̃k).

This establishes the claim, and it is left to show that Jk is DES-isomorphic to LOCk.

Suppose Ik = Zk & ik0 = zk
0 . It will be shown that Ik

m = Zk
m & κk = ζk. Therefore Jk is

DES-isomorphic to LOCk, with the identity map the DES-isomorphism.

For Ik
m = Zk

m: (⊇) Let zk ∈ Zk
m. Since LOCk is normal, by definition (∃s ∈

Lm(SUP)) ζk(zk
0 , s) = zk, which gives ξ(x0, s)! & ξ(x0, s) ∈ Xm. It follows that

ξ(x0, s) ∈ X(zk), and X(zk) ∩ Xm 6= ∅. Hence zk ∈ Ik
m. (⊆) Let zk ∈ Ik

m. Then

X(zk) ∩ Xm 6= ∅. Let x ∈ X(zk) ∩ Xm. By definition of X(zk) we have (∃s ∈
Lm(SUP)) ξ(x0, s) = x & ζk(zk

0 , s) = zk. It then follows from the control equivalence

condition that s ∈ Lm(LOCk), and threfore zk ∈ Zk
m.

For κk = ζk: Let zk ∈ Zk and σ ∈ Σ. We must show that κk(zk, σ) = ζk(zk, σ).

(⇒) Assume κk(zk, σ) = z̃k. So (∃x ∈ X(zk)) ξ(x, σ) ∈ X(z̃k), which implies (∃s ∈
L(SUP)) ξ(x0, s) = x & ζk(zk

0 , s) = zk & ζk(zk
0 , sσ) = z̃k. Thus ζk(ζk(zk

0 , s), σ) = z̃k,i.e.,

ζk(zk, σ) = z̃k. (⇐) Assume ζk(zk, σ) = z̃k. Since LOCk is normal, by definition (∃s ∈
L(SUP))[ζk(zk

0 , s) = zk & sσ ∈ L(SUP)]. It follows that ξ(x0, s) ∈ X(zk) & ζk(zk
0 , sσ) =

z̃k. Consequently, ξ(ξ(x0, s), σ) ∈ X(z̃k), and thus κk(zk, σ) = z̃k.

Proof of Proposition 2.3:

First note that, for m ∈ M , if there exists k ∈ K such that L(Sm) ⊆ (Σk)∗, then this k

is unique. Now suppose that, for k ∈ K,

(∀m ∈ Mk) L(Sm) ⊆ (Σk)∗
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where Mk ⊆ M . Thus the overall marked language of these specifications is

Lm(SPECk) := ||{Lm(Sm)|m ∈ Mk}

Then we can obtain a local controller LOCk by synthesizing the language

Lm(LOCk) := sup C(Lm(SPECk)||Lm(Gk)) ⊆ (Σk)∗

Let Pk : Σ∗ → (Σk)∗. The global extension of LOCk, denoted LOCk, recognizes the

language P−1
k (Lm(LOCk)). For any k ∈ K, owing to the assumption that Σk are pairwise

disjoint, the P−1
k (Lm(LOCk)) are necessarily pairwise nonconflicting. Hence, {LOCk|k ∈

K} is control equivalent to the monolithic SUP, and

(∀k ∈ K) L(LOCk) = P−1
k (L(LOCk))

where L(LOCk) ⊆ (Σk)∗. Therefore, SUP is fully-localizable by Definition 2.5.



Chapter 3

Supervisor Localization of

Large-Scale DES

3.1 Introduction

In Chapter 2 we developed a supervisor localization procedure that accomplishes dis-

tributed control design for DES, whenever the monolithic supervisor for a given control

problem exists. In this chapter we move on to study the same distributed control prob-

lem for large-scale DES. “Large” is a subjective term, and so is “large-scale DES”. We

take the pragmatic view that a DES is large-scale whenever “it is made up of a large

number of parts that interact in a nonsimple way” [51]. Largeness may well bring in

formidable complexity, which can render the “one-shot” supervisor synthesis for DES

uneconomical or even intractable. Indeed, Gohari and Wonham [18] have proved that, if

either the plant or specification is described modularly, the monolithic supervisor design

in the automaton-based framework is NP-hard. This fact makes it clear that the mono-

lithic supervisor is in general not feasibly computable for large-scale DES, and hence the

supervisor localization procedure established in the previous chapter cannot be applied

directly.

42
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A promising strategy to handle complexity may be abstracted from the following

illuminating example provided by Simon and Ando [52]:

Suppose that government planners are interested in the effects of a subsidy

to a basic industry, say the steel industry, on the total effective demand in

the economy. Strictly speaking, we must deal with individual producers and

consumers, and trace through all interactions among the economic agents in

the economy. This being an obviously impossible task, we would use such

aggregated variables as the total output of the steel industry, aggregate con-

sumption and aggregate investment. The reasoning behind such a procedure

may be summarized as follows: (1) we can somehow classify all the variables

in the economy into a small number of groups; (2) we can study the inter-

actions within the groups as though the interaction among groups did not

exist; (3) we can define indices representing groups and study the interaction

among these indices without regard to the interactions within each group.

In this example, the one-shot approach with the welter of detail is considered impossible,

and instead a “decomposition-aggregation” procedure is proposed to tackle the problem

systematically. These two strategies, decomposition and aggregation, are also considered

by Siljak [50] to be two fundamental and effective processes by which we can achieve

both conceptual simplification in abstract analysis, and numerical feasibility in actual

computations. For these reasons, we are motivated to combine supervisor localization

with computationally efficient modular control theories: first design an organization of

modular supervisors that achieves optimal nonblocking control; then decompose each of

these modular supervisors into the local controllers of the relevant agents.

In Section 3.2, we begin with the basics of the modular supervisory control theory

with which the supervisor localization will be combined. Then in Section 3.3 we formulate

the distributed control problem for large-scale DES, and present the solution in terms

of a systematic procedure. Finally, in Sections 3.4 and 3.5, we illustrate our solution
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procedure by going through two large-scale examples in detail.

3.2 Preliminaries

3.2.1 Quasi-Congruences of Nondeterministic Generator

Let us begin with congruences of a deterministic dynamic system [63, Example 1.4.1].

Let Y be a set, and ξ : Y → Y be a map. A deterministic dynamic system is the pair

(Y, ξ), with the interpretation that the elements y ∈ Y are the system ‘states’, and ξ is

the ‘state transition function’. Denote by E(Y ) the set of all equivalence relations on Y ,

and let π ∈ E(Y ) with canonical projection Pπ : Y → Ȳ := Y/π. Then π is a congruence

of (Y, ξ) if there exists a map ξ̄ : Ȳ → Ȳ such that

ξ̄ ◦ Pπ = Pπ ◦ ξ

Namely, the following diagram commutes

Y
ξ−−−→ Y

Pπ

y
yPπ

Ȳ
ξ̄−−−→ Ȳ

Thus the induced deterministic dynamic system (Ȳ , ξ̄) can be viewed as a consistent

aggregated model of (Y, ξ).

Next we review quasi-congruences of a nondeterministic dynamic system [63, Exercise

1.4.10]. Again let Y be a set of states, but now let the state transition function be

δ : Y → Pwr(Y ), mapping states y into subsets of Y . A nondeterministic dynamic

system is the pair (Y, δ). Let π ∈ E(Y ) with canonical projection Pπ : Y → Ȳ := Y/π.
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With Pπ we associate the induced function Pπ∗ : Pwr(Y ) → Pwr(Ȳ ) according to

Pπ∗(S) := {Pπ(y)|y ∈ S} ⊆ Ȳ

for S ⊆ Y . Then π is a quasi-congruence of (Y, δ) if there exists a map δ̄ : Ȳ → Pwr(Ȳ )

such that

δ̄ ◦ Pπ = Pπ∗ ◦ δ

Namely, the following diagram commutes

Y
δ−−−→ Pwr(Y )

Pπ

y
yPπ∗

Ȳ
δ̄−−−→ Pwr(Ȳ )

Thus the induced nondeterministic dynamic system (Ȳ , δ̄) is a consistent ‘lumped’ ab-

straction of (Y, δ).

We now discuss quasi-congruences of a nondeterministic generator [63, Section 6.7]. A

nondeterministic generator extends a nondeterministic dynamic system, in the sense that

state transitions are triggered by the occurrences of events. Formally a nondeterministic

generator is a 5-tuple

T = (Y, Σ, τ, y0, Ym)

where the state transition function τ maps pairs (y, σ) into subsets of Y :

τ : Y × Σ → Pwr(Y )

Let π ∈ E(Y ) with canonical projection Pπ : Y → Ȳ := Y/π and its associated

induced function Pπ∗ : Pwr(Y ) → Pwr(Ȳ ). We say π is a quasi-congruence of T if there
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exists a map τ̄ : Ȳ × Σ → Pwr(Ȳ ) such that

(∀σ ∈ Σ) τ̄(·, σ) ◦ Pπ = Pπ∗ ◦ τ(·, σ)

Namely, the following diagram commutes.

Y×Σ
τ−−−→ Pwr(Y )

Pπ

y
yid

yPπ∗

Ȳ×Σ
τ̄−−−→ Pwr(Ȳ )

It follows directly from [63, Proposition 1.4.1] that π is a quasi-congruence of T if and

only if

(∀σ ∈ Σ) ker Pπ ≤ ker Pπ∗ ◦ τ(·, σ)

Namely,

(∀y, y′ ∈ Y, ∀σ ∈ Σ) (y, y′) ∈ π ⇒ (τ(y, σ), τ(y′, σ)) ∈ π

Note that ⊥ ∈ E(Y ) is trivially a quasi-congruence of T, but > ∈ E(Y ) generally

need not be. Let QC(Y ) ⊆ E(Y ) be the set of all quasi-congruences of T; then it can be

shown that QC(Y ) is a complete upper semilattice of E(Y ): QC(Y ) is closed under the

join operation, but need not be closed under the meet operation, of E(Y ). In particular,

QC(Y ) contains a (unique) supremal element, denoted by ρ := supQC(Y ).

We now consider the computation of ρ. For σ ∈ Σ we define an equivalence relation

π ◦ τ(·, σ) ∈ E(Y ) according to

(y, y′) ∈ π ◦ τ(·, σ) iff (τ(y, σ), τ(y′, σ)) ∈ π

Also let Eσ := {y ∈ Y |τ(y, σ) 6= ∅} and πσ := {Eσ, Y − Eσ} ∈ E(Y ); then we define

ρ0 :=
∧
{πσ|σ ∈ Σ} ∈ E(Y )



Chapter 3. Supervisor Localization of Large-Scale DES 47

Consider the sequence ρn ∈ E(X):

ρn := ρn−1 ∧
∧
{ρn−1 ◦ τ(·, σ)|σ ∈ Σ}, n ≥ 1

Let Y be finite. One can prove that

ρ = lim
n→∞

ρn

with the limit being achieved in finitely many steps.

Finally we turn to the induced nondeterministic generator T̄. Let π be a quasi-

congruence of T, ȳ0 = Pπ(y0), and Ȳm = Pπ∗(Ym). Then the induced nondeterministic

generator, or the reduction of T (mod π), is

T̄ = (Ȳ , Σ, τ̄ , ȳ0, Ȳm)

With ρ = supQC(Y ), the reduction of T (mod ρ) can be regarded as the canonical form

of T with respect to quasi-congruence. One can also verify that ⊥ ∈ E(Ȳ ) is the only

quasi-congruence of T̄.

3.2.2 Lm(G)-Observer

In this subsection, we introduce a key property of natural projections – Lm(G)-observer

– and provide a computational test for this property [63, Section 6.7]. In developing the

test, quasi-congruences of a nondeterministic generator play a central role.

Given a deterministic generator G = (Q, Σ, δ, q0, Qm) as before, for simplicity we

assume G is reachable and coreachable. Let Σo ⊆ Σ be a subset of observable events and

P : Σ∗ → Σ∗
o be the corresponding natural projection.

Definition 3.1.
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P is an Lm(G)-observer if

(∀s ∈ L(G),∀to ∈ Σ∗
o) (Ps)to ∈ PLm(G) ⇒ (∃t ∈ Σ∗) Pt = to & st ∈ Lm(G)

♦

Informally, whenever Ps can be extended to PLm(G) by an observable string to, the

underlying string s can be extended to Lm(G) by a string t with Pt = to. The Lm(G)-

observer property is of importance because it has been proved to ensure nonblocking

decentralized supervisory control [14, Section 4.1.2]. Thus an immediate question is how

to verify this key property. In the following, we present a computational procedure to

check whether or not a given natural projection P is an Lm(G)-observer.

First we define a nondeterministic generator by G and P :

H = (Q, Σo, η, q0, Qm)

with η : Q× Σo → Pwr(Q) given by

η(q, σ) = {δ(q, s)|s ∈ Σ∗, δ(q, s)!, Ps = σ}

Notice that η can be considered a total function because of the possible evaluation

η(q, σ) = ∅; namely, whenever

(∀s ∈ Σ∗) Ps = σ ⇒ ¬δ(q, s)!

Also note the following fact about ‘silent transitions’:

η(q, ε) = {δ(q, s)|Ps = ε} ⊇ {q}

Next we bring in a new event label µ (µ /∈ Σ) to ‘signal’ each q ∈ Qm through adding
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selfloops (q, µ, q). Denote this new nondeterministic generator

T = (Q, Σ′
o, τ, q0, Qm)

where Σ′
o = Σo ∪ {µ}, and τ is η extended to Q× Σ′

o as described above.

Following Subsection 3.2.1, we now compute the supremal quasi-congruence, denoted

by ρ, of T. For σ ∈ Σ′
o, let Eσ := {q ∈ Q|τ(q, σ) 6= ∅} and πσ := {Eσ, Q− Eσ} ∈ E(Q);

we define

ρ0 :=
∧
{πσ|σ ∈ Σ′

o} ∈ E(Q)

Consider the sequence ρn ∈ E(Q)

ρn := ρn−1 ∧
∧
{ρn−1 ◦ τ(·, σ)|σ ∈ Σ′

o}, n ≥ 1

Assuming Q is finite (as usual), ρ = limn→∞ ρn and this limit is achieved in finitely many

steps.

Having computed ρ, we obtain the reduction of T (mod ρ):

T̄ = (Q̄, Σ′
o, τ̄ , q̄0, Q̄m)

T̄ is said to be structurally deterministic if

τ̄(q̄, so) 6= ∅ ⇒ |τ̄(q̄, so)| = 1

for all q̄ ∈ Q̄, and for so = ε or so = σ ∈ Σ′
o. Otherwise T̄ is structurally nondetermin-

istic. The conclusion [63, Theorem 6.7.1] is: P is an Lm(G)-observer if and only if T̄ is

structurally deterministic.

To summarize, given a deterministic generator G over Σ and an observable event

subset Σo ⊆ Σ, checking if the natural projection P : Σ∗ → Σ∗
o is an Lm(G)-observer
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amounts to checking whether the result T̄ of the above computational procedure is struc-

turally deterministic. When P does not enjoy the observer property, we consider adding

a minimal number of events to Σo so that the augmented observable event set does define

an Lm(G)-observer. This is the minimal extension problem addressed in [14, Chapter

5]. There, it was proved that a unique extension through adding a minimal number of

events generally does not exist for Lm(G)-observers, and even finding some minimal ex-

tension is in fact NP-hard. Nevertheless, a polynomial-time algorithm is presented which

accomplishes a ‘reasonable’ extension that achieves the observer property; of course this

extension need not always be minimal. Henceforth we refer to this algorithm as the

minimal extension (MX) algorithm.

3.2.3 Computationally Efficient Modular Supervisory Control

We now present the modular control theory with which we will combine supervisor lo-

calization. This modular approach generates a heterarchical system architecture: plant

components are controlled by a hierarchy of decentralized supervisors and coordinators.

The theory first and foremost ensures that these modular supervisors, operating con-

currently, achieve performance identical to that realized by the monolithic optimal non-

blocking supervisor; furthermore the approach is (usually) computationally efficient, for

the model abstraction technique is employed to hide inessential generator dynamics. A

key role in this theory is played by the Lm(G)-observer property, which provides a model

abstraction that guarantees nonblocking control. The material presented here is adapted

from [17].

Consider a plant G consisting of component agents Gi defined over pairwise disjoint

alphabets Σi (i ∈ I, I an index set.) Thus G is defined over the alphabet

Σ =
⋃̇
{Σi|i ∈ I}
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Let Li := L(Gi) and Lm,i := Lm(Gi); then the closed and marked languages of G are

L := L(G) = ||{Li|i ∈ I} and Lm := Lm(G) = ||{Lm,i|i ∈ I}

For simplicity we assume Gi is nonblocking (i.e. L̄m,i = Li), for all i ∈ I. Then G is

necessarily nonblocking (i.e. L̄m = L.)

First we consider the case of a single specification. Let E ⊆ Σ∗
o, where Σo ⊆ Σ, be

a specification language, and P : Σ∗ → Σ∗
o be the corresponding natural projection. By

SCT, we obtain the monolithic supervisor by synthesizing the language

K := sup C(P−1E ∩ Lm) ⊆ Σ∗

On the other hand, we can obtain a decentralized supervisor by synthesizing the language

Kd := sup C(E ∩ PLm) ⊆ Σ∗
o

Thus the central question is: what condition(s) can ensure identical controlled behaviors

of the monolithic and the decentralized supervisor, i.e.,

K = P−1Kd ∩ Lm

Definition 3.2.

Let Σu ⊆ Σ be the uncontrollable event subset. The natural projection P : Σ∗ → Σ∗
o

is output control consistent (OCC) for L if for every string s ∈ L of the form

s = s′σ1 · · ·σk, k ≥ 1
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where s′ is either the empty string or terminates with an event in Σo, the following holds

(
(∀i ∈ [1, k − 1]) σi ∈ Σ\Σo

)
& σk ∈ Σo ∩ Σu ⇒

(
(∀j ∈ [1, k]) σj ∈ Σu

)

♦

Informally, whenever σk is observable and uncontrollable, its immediately preceding

unobservable events must all be uncontrollable. In other words, its nearest controllable

event must be observable.

Having a natural projection with the observer and the OCC property, we provide the

following answer (a sufficient condition) to the question above.

Proposition 3.1. ([17, Corollary 2])

For all i ∈ I, if P |Σ∗i is an Lm,i-observer and OCC for Li, then

K = P−1Kd ∩ Lm

¤

Remark 3.1. Suppose Σo ⊆ Σ is the union of a subcollection of component alphabets,

i.e.,

Σo =
⋃̇
{Σi|i ∈ I ′}

where I ′ ⊆ I. Then for all i ∈ I ′, P |Σ∗i is the identity map:

P |Σ∗i : Σ∗
i → Σ∗

i

It follows that the conditions in Proposition 3.1 hold automatically. In that case, when

synthesizing a decentralized supervisor Kd = sup C(E∩PLm), we need only compute the

synchronous product of all Lm,i (i ∈ I ′) to obtain PLm, rather than project the global

model Lm.
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Next we turn to the case of more than one specification, for instance two. Given

two specification languages Ej ⊆ Σ∗
o,j, Σo,j ⊆ Σ (j = 1, 2), let Pj : Σ∗ → Σ∗

o,j be the

corresponding natural projections. Again by SCT, we obtain the monolithic supervisor

by synthesizing the language

K := sup C(P−1
1 E1 ∩ P−1

2 E2 ∩ Lm) ⊆ Σ∗

On the other hand, we can obtain two decentralized supervisors by synthesizing the

languages

Kj := sup C(Ej ∩ PjLm) ⊆ Σ∗
o,j, j = 1, 2

Thus the central question is: what condition(s) can guarantee

K = P−1
1 K1 ∩ P−1

2 K2 ∩ Lm

Recall that two languages Fj ⊆ Σ∗
j (j = 1, 2) are called synchronously nonconflicting

[63] over (Σ1 ∪ Σ2)
∗ if

F1 || F2 = F̄1 || F̄2

It is known that if Pj (j = 1, 2) satisfy the conditions in Proposition 3.1 and K1 and K2

are synchronously nonconflicting, then

K = P−1
1 K1 ∩ P−1

2 K2 ∩ Lm

However, the computation for checking this synchronous nonconflictingness is as expen-

sive as that for synthesizing the monolithic supervisor. To gain computational efficiency,

a promising approach is first to simplify K1 and K2 using model abstraction, and then

perform the synchronously nonconflicting test on the abstracted level. It is the model

abstraction based on natural projections with the observer property that ensures the
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validity of this approach.

Let Σo ⊇ Σo,1 ∩ Σo,2 and P : Σ∗ → Σ∗
o.

Lemma 3.1. ([17, Theorem 1])

Assume P |Σ∗o,j
is a Kj-observer (j = 1, 2). Then

K1 || K2 = K̄1 || K̄2

if and only if

P |Σ∗o,1
(K1) || P |Σ∗o,2

(K2) = P |Σ∗o,1
(K1) || P |Σ∗o,2

(K2)

¤

If K1 and K2 fail to be synchronously nonconflicting, a coordinator has to be designed

to resolve the conflict. It is again the observer property that allows us to design the

coordinator on the abstracted level, thus achieving computational efficiency.

Lemma 3.2. ([17, Proposition 7])

Assume P |Σ∗o,j
is a Kj-observer (j = 1, 2). If there exists a language Lo ⊆ Σ∗

o such

that

P |Σ∗o,1
(K1) || P |Σ∗o,2

(K2) || Lo = P |Σ∗o,1
(K1) || P |Σ∗o,2

(K2) || L̄o

then

K1 || K2 || Lo = K̄1 || K̄2 || L̄o

¤

Finally,

Theorem 3.1. ([14, Proposition 4.10])

If P |Σ∗o,j
is a Kj-observer (j = 1, 2) and P |Σ∗i is OCC for Li (∀i ∈ I), then there exists
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a coordinator language C ⊆ Σ∗
o such that

K1 || K2 || C = K̄1 || K̄2 || C̄

and

K = P−1
1 K1 ∩ P−1

2 K2 ∩ P−1C

¤

Remark 3.2 (Coordinator Design). Suppose K1 and K2 are synchronously conflicting.

To design a coordinator to resolve the conflict, we present the following procedure in

TCT syntax. Let

Lm,abs = P |Σ∗o,1
(K1) || P |Σ∗o,2

(K2)

= P−1
1 |Σ∗o(P |Σ∗o,1

K1) ∩ P−1
2 |Σ∗o(P |Σ∗o,2

K2) ⊆ Σ∗
o

be the marked language of the abstract-level plant, and let Eabs = Σ∗
o be the abstract-level

specification language.

1. First remove all of the blocking states in the abstract-level plant generator:

Kabs = supcon (Lm,abs, Eabs)

2. Next create the control data file showing the disablement information corresponding

to the removal of the blocking states:

Kabs.DAT = condat (Lm,abs, Kabs)

3. Lastly project the abstract-level plant model out of its nonblocking counterpart,

based on the disablement information from the control data file as well as the
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marking information:

C = supreduce (Lm,abs, Kabs, Kabs.DAT)

3.3 Problem Formulation and Solution

First we formulate the distributed control problem, denoted by (>).

Consider a plant G consisting of component agents Gi defined over pairwise disjoint

alphabets Σi (i ∈ I, I an index set.) Thus G is defined over the alphabet

Σ =
⋃̇
{Σi|i ∈ I}

Let Li := L(Gi) and Lm,i := Lm(Gi); then the closed and marked languages of G are

L := L(G) = ||{Li|i ∈ I} and Lm := Lm(G) = ||{Lm,i|i ∈ I}

For simplicity we assume Gi is nonblocking (i.e. L̄m,i = Li), for all i ∈ I. Then G is

necessarily nonblocking (i.e. L̄m = L).

The independent agents are implicitly coupled through an imposed specification lan-

guage E that (as usual) imposes a behavioral constraint on G. Assume E is decomposable

into component specifications Ej ⊆ Σ∗
o,j (j ∈ J , J an index set), where the Σo,j ⊆ Σ need

not be pairwise disjoint; namely,

E = ||{Ej|j ∈ J}

Thus E is defined over the alphabet

Σo :=
⋃
{Σo,j|j ∈ J}
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Let Po : Σ∗ → Σ∗
o be the corresponding natural projection.

Given a control problem with the plant and the specification as described above, by

SCT the monolithic supervisor SUP can be analytically expressed as the language

K := Lm(SUP) = sup C(P−1
o E ∩ Lm) ⊆ Σ∗

We are interested in designing a set of local controllers

LOC = {LOCi over Σ|i ∈ I}

one for each agent Gi, which realizes performance identical with that achieved by SUP.

Formally let Ci := Lm(LOCi). Then

C := Lm(LOC) =
⋂
{Ci|i ∈ I} ⊆ Σ∗

We require

K = C ∩ Lm and K̄ = C̄ ∩ L

This problem (>) has been solved in Chapter 2, for small-scale DES, by a direct

localization on SUP. However, for large-scale DES, owing to the bottleneck of state

explosion, it is computationally expensive even if still possible to synthesize SUP in

the first place. Therefore, to tackle the distributed control problem of large-scale DES

we employ a divide and conquer strategy, combining supervisor localization (Chapter 2)

with modular control theory (Subsection 3.2.3): first design a hierarchy of decentralized

supervisors and coordinators which realizes performance identical with that achieved by

SUP; then localize each of these modular supervisors, generally of small state size, to

local controllers for the relevant agents.

Example 3.1.

Consider a transfer line plant consisting of three independent agents: M1, M2, and
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B1 B2 B3

TU, defined over disjoint alphabets Σ1 = {0, 1}, Σ2 = {2, 3, 4, 7}, and Σ3 = {5, 6, 8},
respectively. Thus the overall alphabet is

Σ = Σ1 ∪̇ Σ2 ∪̇ Σ3 = {0, 1, 2, 3, 4, 5, 7, 8}

and the closed and marked languages of the overall plant are

L = L(M1)||L(M2)||L(TU) and Lm = Lm(M1)||Lm(M2)||Lm(TU)

The specification imposed on this plant is that the three buffers – B1, B2, and B3

– must be protected against underflow and overflow. The component specifications are

expressed by the languages Lm(B1), Lm(B2), and Lm(B3); they are defined over the

alphabets Σo,1 = {0, 3}, Σo,2 = {4, 5}, and Σo,3 = {7, 8}, respectively. So the overall

specification language is

E = Lm(B1)||Lm(B2)||Lm(B3)
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and is defined over the alphabet

Σo = Σo,1 ∪̇ Σo,2 ∪̇ Σo,3 = {0, 3, 4, 5, 7, 8}

Let Po : Σ∗ → Σ∗
o be the corresponding natural projection.

According to SCT, the monolithic supervisor SUP for this control problem is the

language

K := Lm(SUP) = sup C(P−1
o E ∩ Lm) ⊆ Σ∗

We are to design a set of local controllers

LOC = {LOCi over Σ|i ∈ {1, 2, 3}}

one for each agent, which realizes performance identical to that achieved by SUP. Let

Ci = Lm(LOCi), and thus

C := Lm(LOC) =
⋂
{Ci|i ∈ {1, 2, 3}} ⊆ Σ∗

We require

K = C ∩ Lm and K̄ = C̄ ∩ Lm ¨

To solve the above distributed control problem (>), we now present a systematic

procedure consisting of seven steps. We call it the decomposition-aggregation supervisor

localization procedure (DASLP).

Step 1: Plant Model Abstraction

Part of the plant dynamics that is unrelated to the proposed specification may be

concealed. By hiding irrelevant transitions, we can simplify the model of the plant

components. The procedure for this step is the following.

1. Ensure the OCC property: for each σ ∈ Σo ∩Σu, add its nearest upstream control-
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lable events to Σo. Call the augmented alphabet Σ′
o, and let P ′

o : Σ∗ → (Σ′
o)
∗.

2. Check if P ′
o|Σ∗i is an Lm,i-observer, for all i ∈ I. If yes, jump to (4).

3. Employ the MX algorithm to compute a reasonable extension of Σ′
o that does define

an Lm,i-observer, for all i ∈ I 1. Denote the extended alphabet again by Σ′
o, and

the corresponding natural projection again by P ′
o.

4. Compute model abstractions for each component, denoted by G′
i, with closed and

marked languages

L′i := P ′
o|Σ∗i (Li) and L′m,i := P ′

o|Σ∗i (Lm,i)

Note that G′
i is defined over Σ′

i := Σi ∩ Σ′
o.

Example 3.1 (Continued).

We follow the procedure presented above.

1. Ensure the OCC property. For this problem, we have

Σo ∩ Σu = {0, 4, 8}

For these three events, their nearest upstream controllable event sets are {1}, {3, 7},
and {5}, respectively. While events 3, 5 and 7 already belong to Σo, event 1 does

not. Hence we add event 1 to Σo, thus obtaining

Σ′
o = {0, 1, 3, 4, 5, 7, 8}

1It is important to note that, for those P ′o|Σ∗i (i ∈ I) that are already Lm,i-observers, extending
Σ′o will not destroy their observer property. For example, assume that P ′o|Σ∗1 : Σ∗1 → (Σ1 ∩ Σ′o)

∗ is an
Lm,1-observer and that P ′o|Σ∗2 is not an Lm,2-observer. It is by adding only certain events in Σ2 that we
extend Σ′o in order to make P ′o|Σ∗2 an Lm,2-observer. It follows from the disjointness between Σ1 and
Σ2 that the codomain of P ′o|Σ∗1 , (Σ1 ∩ Σ′o)

∗, remains unchanged, and therefore the observer property of
P ′o|Σ∗1 is not affected.



Chapter 3. Supervisor Localization of Large-Scale DES 61

Let P ′
o : Σ∗ → (Σ′

o)
∗. Note that only events 2 and 6 are nulled by P ′

o.

2. Check for the observer property. While P ′
o|Σ∗1 and P ′

o|Σ∗2 are an Lm(M1)-observer

and Lm(M2)-observer, respectively, P ′
o|Σ∗3 is not an Lm(TU)-observer.

3. Employ the MX algorithm to compute a reasonable extension of Σ′
o; the algorithm

terminates with adding event 6 to Σ′
o. By inspecting the model of TU, event 6

is a transition from a marked state to an unmarked state; projecting it out will

cause structural nondeterminism of the canonical reduction. Denote the extended

alphabet again by

Σ′
o = {0, 1, 3, 4, 5, 6, 7, 8}

and the corresponding natural projection again by P ′
o. Notice that only event 2 is

nulled by P ′
o.

4. Compute model abstractions for each agent by using P ′
o|Σ∗i (i ∈ {1, 2, 3}); the ab-

stracted models are displayed below. Notice that only the model of M2 is simplified,

by projecting out event 2.

M1
′

1

0

TU
′

3, 7

4

5

6, 8

M2
′

¨

Step 2: Decentralized Supervisor Synthesis

After step one, the system consists of component abstractions and specifications. We

group for each specification Ej ⊆ Σ∗
o,j its event-coupled component abstractions: those

sharing events with Ej (i.e. Σ′
i ∩ Σo,j 6= ∅.) Then for each group, we synthesize a

decentralized supervisor.

Example 3.1 (Continued).
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We first group for each buffer specification its event-coupled component abstractions.

The grouping is displayed as follows, with solid lines denoting event-coupling.

M2
′

M1
′ TU

′

B1 B2 B3

Then we compute a decentralized supervisor for each group, and in the figure above

replace the specifications with the supervisors.

M2
′

M1
′ TU

′

SUP1 SUP2 SUP3

State # Reduced State #
SUP1 9 2
SUP2 8 2
SUP3 9 2

¨

Step 3: Subsystem Decomposition and Coordination

After step two, the system has several modules, each of which consists of a decen-

tralized supervisor with associated component abstractions. We decompose the overall

system into small-scale subsystems, through grouping these modules based on their in-

terconnection dependencies (e.g., event-coupling). If these modules admit certain special

structures, an effective approach for decomposition is control-flow nets [14, Chapter 2].

Having obtained a group of simple subsystems, we perform a nonconflicting check to

verify the nonblocking property for each subsystem. If a subsystem fails to be nonblock-

ing, we design a coordinator by using the method presented in Remark 3.2.
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Example 3.1 (Continued).

We have three decentralized supervisors, thus three modules.

• Module 1: SUP1, M1′, and M2′

• Module 2: SUP2, M2′, and TU′

• Module 3: SUP3, M2′, and TU′

We group these modules, according to their event-coupling relation, into two subsystems.

M2
′

M1
′ TU

′

SUP1 SUP2 SUP3

Sub1 Sub2

We verify the nonblocking property for each subsystem. Since Subsystem 1 has a

single supervisor, it is necessarily nonblocking. In Subsystem 2, SUP2 and SUP3 turn

out to be conflicting; we design a coordinator to ensure the nonblockingness of this

subsystem.

M2
′

M1
′ TU

′

SUP1 SUP2 SUP3

Sub1 Sub2

CO

State # Reduced State #
CO 6 2

¨
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Step 4: Subsystem Model Abstraction

After step three, the system consists of several nonblocking subsystems. We now

need to verify the nonconflicting property among these subsystems. Directly applying

nonconflicting checks requires expensive computation; instead, we again bring in the

model abstraction technique to simplify every subsystem, and test the nonconflictingness

on the abstracted level. The procedure of this step is analogous to that of step one.

1. Determine the shared event set, denoted by Σsub, of these subsystems. Let Psub :

(Σ′
o)
∗ → (Σsub)

∗ be the corresponding natural projection.

2. Ensure the OCC property: for each σ ∈ Σsub ∩ Σu, add its nearest upstream

controllable events to Σsub. Call the augmented alphabet Σ′
sub. Let P ′

sub : (Σ′
o)
∗ →

(Σ′
sub)

∗.

3. Check if P ′
sub is an observer for each subsystem. If yes, jump to (4).

4. Employ the MX algorithm to compute a reasonable extension of Σ′
sub that does

define an observer for each subsystem. Denote the extended alphabet again by

Σ′
sub, and the corresponding natural projection again by P ′

sub.

5. Compute model abstractions for each subsystem with P ′
sub.

Example 3.1 (Continued).

The two nonblocking subsystems Sub1 and Sub2 share the events of M2′, and thus

Σsub = {3, 4, 7}. Σsub is already OCC, but is not an observer for either subsystem. So

we employ the MX algorithm to compute a reasonable extension of Σsub; the algorithm

terminates with adding events 1, 6, and 8 to Σsub. Denote the extended alphabet

Σ′
sub = {1, 3, 4, 6, 7, 8}
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and the corresponding natural projection by P ′
sub, with which we compute the subsystem

model abstractions.

M2
′

M1
′ TU

′

SUP1 SUP2 SUP3

Sub1 Sub2

CO

Sub2
′

Sub1
′

Sub1 Sub1′ Sub2 Sub2′

State # 9 4 6 5

¨

Step 5: Abstracted Subsystem Decomposition and Coordination

After step four, we obtain several subsystem abstractions. We group these abstrac-

tions according to their interconnection dependencies (e.g. event-coupling). If these

abstractions admit certain special structures, control-flow nets can again be applied.

Next for each group of subsystem abstractions, we perform a nonconflicting check

to verify the nonblocking property. If a group fails to be nonblocking, we design a

coordinator by using the method presented in Remark 3.2.

Example 3.1 (Continued).

We have only two subsystem abstractions Sub1′ and Sub2′ left. Grouping them

together, we check the nonblockingness: Sub1′ and Sub2′ turn out to be nonconflicting,

and thus the group is nonblocking. ¨

Step 6: Higher-Level Abstraction
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Repeat steps four and five until there remains a single group of subsystem abstractions

in step five.

Step 7: Localization

The modular supervisory control design terminates at step six; we have obtained a

hierarchy of decentralized supervisors and coordinators. We now apply the supervisor lo-

calization algorithm to localize each of these supervisors/coordinators to local controllers

for the relevant agents.

To determine which agents are related to a supervisor/coordinator, we introduce the

control-coupling relation. Given a plant G = (Y, Σ, η, y0, Ym), a component agent Gi =

( , Σc,i∪̇Σu,i, , , ) (i ∈ I, I an index set), and a supervisor SUP = (X, Σ, ξ, x0, Xm),

recall the function Di : X → Pwr(Σc,i), which was defined according to

Di(x) = {σ ∈ Σc,i|¬ξ(x, σ)! & (∃s ∈ Σ∗)[ξ(x0, s) = x & η(y0, sσ)!]}

Di(x) is the set of controllable events in Σc,i that must be disabled at x. Thus we say

Gi is control-coupled to SUP if

(∃x ∈ X) Di(x) 6= ∅

In other words, some controllable event(s) of Gi must be disabled at some state(s) of

SUP. To determine the control coupling relation, we simply look up the table generated

by condat in TCT [62].

Finally, we localize each supervisor/coordinator for its control-coupled components.

Example 3.1 (Continued).

The modular supervisory control design generates three decentralized supervisors and

one coordinator: SUP1,SUP2,SUP3, and CO. For each of them, we determine their

control-coupled components by looking up the corresponding condat tables. We show
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the result below, with dashed lines denoting the control-coupling relation.

M2
′

M1
′ TU

′

SUP1 SUP2 SUP3

CO

Along these dashed lines we apply the localization algorithm, with the results dis-

played below.

SUP1 M2

40

SUP2 M2

53

8

7

SUP3 M2 CO M2

3,7

5

3

6,7

Local Controllers for M2

SUP1 M1

0

3

1

Local Controller for M1

8

7

SUP2 TU SUP3 TU

5

5

4

Local Controllers for TU

¨

Finally,

Theorem 3.2.

DASLP solves (>).

Proof. We sketch the proof as follows. At the end of step six of DASLP, we obtain a

hierarchy of decentralized supervisors and coordinators. It has been proved [14] that the

concurrent behavior of these modular supervisors is identical to the controlled behavior of

the monolithic optimal nonblocking supervisor (for the special case of two specifications

see Theorem 3.1; for a more general case see [17, Theorem 4].) Then in step seven, these

modular supervisors are decomposed into local controllers for the relevant agents; the
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identity, between the concurrent behavior of these local controllers and the concurrent

behavior of the modular supervisors, is guaranteed by Proposition 2.1 and Theorem 2.1

in Chapter 2. Therefore by transitivity, we conclude that the concurrent behavior of

the local controllers is identical to the controlled behavior of the monolithic optimal

nonblocking supervisor.

3.4 Example: Distributed Control of AGV System

We apply the decomposition-aggregation supervisor localization procedure to solve the

distributed control problem of automatic guided vehicles (AGVs) serving a manufacturing

workcell, adapted from [63].

IPS1


IPS2


WS1


WS2


WS3


CPS


1


2


3


4


IPS

A1


A2


A3


A4


A5


The workcell consists of two input stations IPS1, IPS2 for parts of types 1, 2; three

workstations WS1, WS2, WS3; and one completed parts station CPS. A team of five inde-

pendent AGVs – AGV1,...,AGV5 – travel in fixed criss-crossing routes, loading/unloading

and transporting parts in the cell. We model the AGV system as the plant to be con-

trolled, on which three types of control specifications are imposed: the mutual exclusion

(i.e. single occupancy) of shared zones, the capacity limit of workstations, and the mu-

tual exclusion of the shared loading area of the input stations. The generator models

of plant components and specifications are displayed in Figs. 3.1 and 3.2, respectively;

readers are referred to [63, Section 4.7] for the detailed semantic description of events.



Chapter 3. Supervisor Localization of Large-Scale DES 69

While the standard centralized approach generates a monolithic supervisor of 4406 states

[63, Section 4.7], our distributed control objective is to design for each AGV a set of local

strategies which as a whole realize performance identical to that achieved by the global

supervisor.

AGV1

11

10

13

12

AGV3

31

32

33

34

AGV5

51

50

53

52

21

18

2022

23

24

26 28

46

41

40

42

43

44

AGV4

AGV2

Figure 3.1: Generators of plant components

11,13

10,12

20,23

22,24

18,24

20,26

31,33

32,34

21,26

18,28

41,44

40,46

40,43

42,44

51,53

50,52

32

50

46

50

12

34

28

42

Z1 Z2

Z3 Z4

WS13 WS14

WS2 WS3

10

13

22

23

IPS

Figure 3.2: Generators of specifications

Step 1: Plant Model Abstraction

Let Σ and Σo denote the alphabets on which the overall plant and the overall specifi-
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cation are defined. One can verify that Σ = Σo in this example. Namely, all of the plant

dynamics are crucial for the subsequent synthesis, and therefore no plant model can be

simplified in this step.

Step 2: Decentralized Supervisor Synthesis

We group for each specification its event-coupled AGVs. The grouping is displayed

as follows, with solid lines denoting event-coupling.

AGV2 AGV1

Z1

IPS

AGV4 AGV3

Z2

AGV5

WS14 WS13

WS2WS3Z3

Z4

Then we compute a decentralized supervisor for each group, and in the figure above

replace the specifications with the supervisors. In addition, the state sizes of these

supervisors are listed in Table 3.1.

AGV2 AGV1

Z1SUP

IPSUP

AGV4 AGV3

Z2SUP

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUPZ3SUP

Z4SUP
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State # Reduced State #

Z1SUP 24 2

Z2SUP 24 2

Z3SUP 36 2

Z4SUP 18 2

WS13SUP 24 2

WS14SUP 34 2

WS2SUP 24 2

WS3SUP 62 2

IPSUP 24 2

Table 3.1: State sizes of decentralized supervisors

Step 3: Subsystem Decomposition and Coordination

We have nine decentralized supervisors, thus nine modules. The interconnection

structure of these modules can be simplified by applying the control-flow nets approach.

Specifically, the decentralized supervisors for the four zones – Z1SUP to Z4SUP, are

harmless to the overall nonblocking property, and hence can be safely removed from the

interaction structure [14, Section 4.6].

AGV2 AGV1IPSUP

AGV4 AGV3

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUP

In the above simplified structure, there are two paths – AGV1, WS2SUP, AGV3,

WS13SUP on the right and AGV2, WS3SUP, AGV4, WS14SUP on the left –

that process workpieces of types 1 and 2, respectively. Thus the system can be naturally
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decomposed into the following two subsystems.

AGV2 AGV1IPSUP

AGV4 AGV3

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUP

Sub1 Sub2

It is further verified that both subsystems are nonblocking on their own.

Step 4: Subsystem Model Abstraction

We now need to verify the nonconflicting property among the two subsystems Sub1,

Sub2, and the decentralized supervisor IPSUP. First, we determine their shared event

set, denoted by Σsub. Sub1 and Sub2 share all of the events in AGV5: 50, 51, 52, and

53. For the decentralized supervisor IPSUP, we consider its reduced generator:

11,21

13,23

IPRedu

IPRedu share events 11, 13 with Sub1, and 21, 23 with Sub2. Thus we set

Σsub = {11, 13, 21, 23, 50, 51, 52, 53}. It can then be verified that the corresponding natu-

ral projection Psub : Σ∗ → Σ∗
sub does enjoy the observer and OCC property. So that with

Psub, we can compute the subsystem model abstractions.

Sub1 Sub1′ Sub2 Sub2′

State # 140 30 330 30
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IPReduSub1
′

Sub2
′

AGV2 AGV1IPSUP

AGV4 AGV3

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUP

Sub1 Sub2

Step 5: Abstracted Subsystem Decomposition and Coordination

We treat Sub1′, Sub2′, and IPRedu as a single group, and directly check the non-

blocking property. This group turns out to be blocking; a coordinator then has to be

designed to resolve the conflict.

IPReduSub1
′

Sub2
′

AGV2 AGV1IPSUP

AGV4 AGV3

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUP

Sub1 Sub2

CO
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State # Reduced State #

CO 165 7

Step 6: Higher-Level Abstraction

The modular supervisory control design finishes at the last step.

Step 7: Localization

We start with determining the control-coupling relation through looking up the con-

dat tables of each decentralized supervisor and the coordinator. We show the result

below, with dashed lines denoting the control-coupling.

AGV2 AGV1

Z1SUP

IPSUP

AGV4 AGV3

Z2SUP

AGV5

WS14SUP WS13SUP

WS2SUPWS3SUPZ3SUP

Z4SUP

CO

Notice that the coordinator is control-coupled only to AGV1 and AGV2. Along

these dashed lines, we apply the supervisor localization algorithm. The state sizes of

the resultant local controllers are listed in Table 3.2, and the generator models of each

controller are displayed in Figs. 3.3–3.7 (for clarity irrelevant selfloops are omitted),

grouped with respect to individual AGVs. Thus we have established a purely distributed

control architecture, wherein each of the AGV ‘robots’ pursues its independent ‘lifestyle’,

while being coordinated implicitly with its fellows through their local shared observable

events.
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AGV1 (#) AGV2 (#) AGV3 (#) AGV4 (#) AGV5 (#)
Z1SUP Z1 1 (2) Z1 2 (2)
Z2SUP Z2 2 (2) Z2 3 (2)
Z3SUP Z3 2 (2) Z3 4 (2)
Z4SUP Z4 4 (2) Z4 5 (2)

WS13SUP WS13 3 (2) WS13 5 (2)
WS14SUP WS14 4 (2) WS14 5 (2)
WS2SUP WS2 1 (2) WS2 3 (2)
WS3SUP WS3 2 (2) WS3 4 (2)
IPSUP IP 1 (2) IP 2 (2)

CO CO 1 (7) CO 2 (7)

Table 3.2: Local controllers with state sizes

21, 23

22, 24

11, 13

12

34

13

21

23

11, 13

IP 1

WS2 1Z1 1

13 13

13

23 23

23

11
13

23

23

2313

13

11 11 11

11

11

CO 1

Figure 3.3: Local controllers for AGV1
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21, 23

11, 13

13 13

13

23 23

23

11
13

23

23

2313

13

Z1 2

10, 12

21, 23

31, 33

Z2 2

32, 34

41, 43

40, 46

Z3 2

CO 2

21

23

28

42

WS3 2

21, 23

11

13

IP 2

21, 23

∗ ∗∗

∗

∗

(∗ denotes {21, 11})

Figure 3.4: Local controllers for AGV2

21, 23

31, 33

20, 26

Z2 3

32

50

31

WS13 3

12

33

WS2 3

Figure 3.5: Local controllers for AGV3

41, 43

Z3 4

21, 23

18, 28

41, 43

51, 53

50, 52

Z4 4

46

50

43

WS14 4

28

41

WS3 4

Figure 3.6: Local controllers for AGV4

41, 43

51, 53

Z4 5

42, 44

WS13 5 WS14 5

32

51

46

51

Figure 3.7: Local controllers for AGV5
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3.5 Example: Distributed Control of Production Cell

As our second example of distributed control, we consider the following production cell

problem taken from [15].

INPUT

OUTPUT

deposit belt

elevating
rotary table

press

robot

arm2

arm1

feed belt

sensor1

test unit

crane

stock

sensor2

The cell consists of nine individual components: a stock, a feed belt, an elevating

rotary table, a robot, arm 1, arm 2, a press, a deposit belt, and a crane. A work cycle of

this cell is described as follows:

1. the stock inputs blanks to the system on the feed belt;

2. the feed belt forwards the blanks to the elevating rotary table;

3. the table lifts and rotates the blanks to the position where arm1 of the robot picks

them up;

4. arm1 retracts/extends its length and meanwhile the robot rotates to the press, so

that arm1 transfers the blanks to the press;

5. the blanks will be forged by the press;
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6. after being forged, the blanks are picked up by arm2 of the robot;

7. arm2 retracts/extends its length and meanwhile the robot rotates to the deposit

belt, so that arm2 transfers the forged blanks to the deposit belt;

8. the deposit belt forwards the blanks to the end point where a test unit is installed

to measure if the forging is successful;

9. if a blank passes the test, it will be output from the system; otherwise, it will be

picked up by the crane and moved to the feed belt for another forge.

The generator models of plant components and specifications are displayed in Figs. 3.8

and 3.9, respectively; readers are referred to [15, Section 4] for the detailed semantic

description of events. According to the plant models in Fig. 3.8, this problem has state

size at least of order 107. So it is rather computationally expensive even if still possible

to synthesize the monolithic supervisor. Nevertheless, we will see that, by applying the

decomposition-aggregation supervisor localization procedure, the largest state size we

will encounter in computation is only of order 103, and the resulting local controllers as

a whole are guaranteed to realize optimal nonblocking control.
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Figure 3.8: Generators of plant components
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Figure 3.9: Generators of specifications
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Step 1: Plant Model Abstraction

Unlike the previous AGV system, in this production cell model abstraction can ef-

fectively simplify the components’ generators. Take the model of the crane, Cr=Cr V

|| Cr H (Fig. 3.8), for example. Cr is related to the specifications DB1, DB2 via

Cr mOn, and to FB1, FB2 via Cr mOff. One can verify that the event set {Cr mOn,

Cr mOff} defines a natural projection that is OCC and an observer for Cr. Other transi-

tions in Cr are irrelevant to the subsequent control synthesis, and hence can be projected

out. The model abstraction of the crane is the simple generator:

C
r
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O
n


C
r
_
m
O
f
f


Similarly, we compute the model abstractions for other components, and show the

result in Fig. 3.10. For economical display, we use numbers to label events; the correspon-

dences with the original labels are listed in Table 3.5. Also note that three modifications

have been made to the original models: (1) in DB, event DB tau which was uncontrol-

lable is set to be controllable (labeled 63); (2) in A1, event A1 F on the dashed line is

distinguished from that on the solid line, with a new label A1 F ′ (89); (3) in A2, event

A2 F on the dashed line is distinguished from that on the solid line, with a new label

A2 F ′ (99). It will be shown that these moderate alterations make the resulting control

logic more transparent than that in [15].
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Figure 3.10: Model abstractions of plant components

blank add 11 Pr SMf 52 Ro − 90 74
Cr mOn 21 Pr UM 53 Ro S − 90 76
Cr mOff 23 Pr T 54 Ro 50 78
FB Sf 30 Pr D 55 Ro S50 710
FB F 31 Pr MD 56 A1 mOn 81
FB s1On 32 Pr B 58 A1 mOff 83
FB tau 33 Pr SBf 510 A1 B 85
FB s1Off 34 DB Sf 60 A1 37 86
Ta STf 40 DB F 61 A1 F 87
Ta U 41 DB s2On 62 A1 65 88
Ta SBf 42 DB tau 63 A1 F ′ 89
Ta D 43 DB s2Off 64 A2 mOn 91
Ta S50f 44 DB yes 66 A2 mOff 93
Ta R 45 DB no 68 A2 B 95
Ta S0f 46 Ro 35 70 A2 0 96
Ta L 47 Ro L 71 A2 F 97
Pr MU 50 Ro S35 72 A2 80 98
Pr UB 51 Ro R 73 A2 F ′ 99

Table 3.3: Original events vs. relabeled events



Chapter 3. Supervisor Localization of Large-Scale DES 83

Step 2: Decentralized Supervisor Synthesis

First, for each specification we group its event-coupled components, and then compute

a decentralized supervisor for each group. The interconnection structure is displayed as

follows, with solid lines denoting event-coupling.
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The state sizes of these supervisors are listed in the table below.

State # Reduced State # State # Reduced State #
FB1S 28 4 DB3S 14 2
FB2S 18 3 R1S 112 2
Ta1S 21 3 R2S 121 4
Ta2S 35 2 R3S 906 5
Ta3S 21 3 R4S 70 2
Ta4S 35 2 R5S 100 3
Pr1S 70 2 A1PS 495 6
Pr2S 70 2 A2PS 357 5
DB1S 252 3 A1TS 63 2
DB2S 70 2

Step 3: Subsystem Decomposition and Coordination

We have nineteen decentralized supervisors, thus nineteen modules. For this struc-

ture, the control-flow nets approach fails to be applicable. Following [15], we decompose
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the overall system into two subsystems, leaving five decentralized supervisors in between

– DB1S, DB2S, A1TS, Ta2S, and Ta4S.
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We now directly check the nonblocking property for each subsystem. While Sub1 is

nonblocking, Sub2 turns out to be blocking. Thus a coordinator is designed to resolve

the conflict in Sub2.
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State # Reduced State #

CO1 650 3

Step 4: Subsystem Model Abstraction
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We now need to verify the nonconflicting property among the two nonblocking sub-

systems, and the intermediate five decentralized supervisors. First, we determine their

shared event set, denoted by Σsub. While Sub1 and Sub2 do not share events with each

other, they do so with each of the five supervisors 2.

Reduced Supervisors SUB1 SUB2S

DB1C 21, 61, 60, 93
64, 68, 63

DB2C 61, 64 93
Ta2C 43, 40 81
Ta4C 47, 44 81
A1TC 41, 40 70

So

Σsub = {21, 40, 41, 43, 44, 47, 60, 61, 63, 64, 68, 70, 81, 93}

To ensure the OCC property, we add events 45 and 71 to Σsub, since they are the im-

mediately preceding controllable event of events 44 and 70, respectively. Denote the

augmented alphabet

Σ′
sub = {21, 40, 41, 43, 44, 45, 47, 60, 61, 63, 64, 68, 70, 71, 81, 93}

Σ′
sub does not yet define an observer for either subsystem. Using the MX algorithm, we

obtain a reasonable extension by adding events 11, 23, 62, 66, and 97 to Σ′sub. We denote

the extended alphabet again by

Σ′
sub = {11, 21, 23, 40, 41, 43, 44, 45, 47, 60, 61, 62, 63, 64, 66, 68, 70, 71, 81, 93, 97}

whose corresponding natural projection P ′
sub is OCC and an observer for both subsystems.

With P ′
sub, we compute the subsystem model abstractions.

2Here we consider the reduced generators of these five supervisors
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State # 2478 644 650 13

Step 5: Abstracted Subsystem Decomposition and Coordination

We treat Sub1′, Sub2′, and the five reduced supervisors as a single group, and di-

rectly check the nonblocking property. This group turns out to be blocking; a coordinator

then has to be designed to resolve the conflict.

T
a
2
S


T
a
4
S


D
B
2
S


D
B
1
S


A
1
T
S


C
O
1


S
u
b
1
 S
u
b
2


D
B
1
C
,
 
D
B
2
C
,

A
1
T
C
,


T
a
2
C
,
 
T
a
4
C

S
u
b
1
'
 S
u
b
2
'


C
O
2




Chapter 3. Supervisor Localization of Large-Scale DES 87

State # Reduced State #

CO2 6250 15

Step 6: Higher-Level Abstraction

The modular supervisory control design finishes at the last step.

Step 7: Localization

We start with determining the control-coupling relation through looking up the con-

dat tables of each decentralized supervisor and coordinator. We show the result below,

with dashed lines denoting the control-coupling.
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First note that, although A1TS is event-coupled to both TA and Ro, it is control-

coupled only to TA. Also notice that the two coordinators are control-coupled only to

A2 and ST, respectively. Along these dashed lines, we apply the supervisor localization

algorithm. The state sizes of the resultant local controllers are listed in Table 2.4, and the
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ST # FB # TA # PR # DB # CR # RO # A1 # A2 #
FB1S 3 4 3
FB2S 2 3 2
TA1S 3 2
TA2S 2 2
TA3S 3 2
TA4S 2 2
Pr1S 2 2
Pr2S 2 2
DB1S 3 3 3
DB2S 2 2
DB3S 2 2
R1S 2 2
R2S 3 4
R3S 4 4 4
R4S 2 2
R5S 2 3
A1PS 5 6 5
A2PS 5 3 5
A1TS 2
CO1 3
CO2 15

Table 3.4: State sizes of local controllers
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generator models of each controller are displayed in Figs. 3.11–3.19 (for clarity irrelevant

selfloops are omitted), grouped with respect to individual components. Thus we have

established a purely distributed control architecture, wherein each of the component

agents pursues its independent ‘lifestyle’, while being coordinated implicitly with its

fellows through their local shared observable events.

Remark 3.3. The three mild modifications we made in step one enhance the comprehen-

sibility of the resulting control logic. With the original setting, it was pointed out in [15]

that even the reduced supervisors of DB1S, A1PS, and A2PS (of state sizes 7, 9, and

8, respectively) were too complicated to display. After modifying the models, however,

the generators of the local controllers corresponding to the above three supervisors have

state sizes ranging from 3 to 6, and hence they can be displayed readily. Further, with

smaller state sizes, the control logic of these local controllers is more transparent than

that of the corresponding decentralized supervisors in [15]. For example, the control logic

of the local controller DB1 A2 in Fig. 3.19 is simply that arm2 may unload a blank

onto deposit belt (event 93) when there is no blank or only one on the belt.

···

6 7

8 14

11 11

11 11
66 66

63 63

0 1

63 63 63

11,23 11,23

34 34

11,23

32

FB1 ST FB2 ST
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Figure 3.11: Local controllers for stock
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Chapter 4

State-Based Supervisor Localization

4.1 Introduction

So far we have studied supervisor localization in the language-based framework, and a

decomposition-aggregation procedure is proposed therein to solve the distributed control

problem of large-scale DES. In the present chapter we turn to a dual and more con-

ventional viewpoint – the state-based framework – in which the counterpart supervisor

localization concept and distributed control problem will be established; moreover, the

framework of current concern opens up an alternative approach to tackle DES of large

state size.

Specifically, we adopt the state tree structure (STS) ([57] [37]), a formalism that

demonstrably is computationally efficient for monolithic supervisor synthesis. The effi-

ciency is achieved first by modelling DES structurally using Statecharts [21], a graphical

tool which offers economical representation of hierarchical and concurrent structure of

the system state space. Thus a set of system states is organized into a hierarchy, or a

state tree, equipped with holon modules describing system dynamics. In order to carry

out symbolic computation, STS models are then encoded into predicates. The second

feature underlying computational efficiency is exploitation of the binary decision diagram

93
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(BDD) [9], a data structure which offers a compact representation of predicates. With

BDD representation of encoded STS models, the computational complexity of supervisor

synthesis becomes polynomial in the number of BDD nodes (|nodes|), rather than in

the system state size (|states|). The encoding scheme is so designed that in many cases

|nodes| ¿ |states|, thus achieving computational efficiency. As concrete evidence, it is

claimed [37] that, based on the STS formalism, optimal nonblocking supervisory control

design can be performed (in reasonable time and memory) for systems of state size 1024

and higher.

Stimulated by the hope of solving the distributed control problem for DES with the

computational efficiency of STS, we develop the counterpart supervisor localization the-

ory in the STS formalism. As an alternative to the decomposition-aggregation approach,

the same top-down localization procedure as that in Chapter 2 can then be directly

applied to deal with large, complex systems.

The setup of this chapter is the following. In Section 4.2 we provide a concise in-

troduction to the STS formalism. In Sections 4.3 and 4.4, we establish the counterpart

distributed control problem and supervisor localization theory, respectively. In Section

4.5 we present a symbolic localization algorithm, a counterpart to that in Section 2.4,

and finally in Section 4.6 we illustrate the localization theory and algorithm with the

familiar Transfer Line example.

4.2 Preliminaries

4.2.1 STS Modelling

STS models the state space of a DES as a state hierarchy, established by bringing in

‘artificial’ superstates. Let X be a finite state set. For x ∈ X, x is an OR (respectively,

AND) superstate if there exists a nonempty subset Y ⊆ X such that x /∈ Y and x can

be represented by the union (respectively, cartesian product) of the states in Y . We call
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each state in Y an OR (respectively, AND) component of x, and the states in X other

than superstates simple states.

We introduce two useful functions associated with the hierarchical state space X.

Define the type function T : X → {or, and, simple} according to

T (x) :=





or, if x is an OR superstate

and, if x is an AND superstate

simple, if x is a simple state

Define the expansion function E : X → Pwr(X) according to

E(x) :=





Y, if T (x) ∈ {or, and}
∅, if T (x) = simple

Extend E to Ê1 : X → Pwr(X) such that

Ê1(x) := E(x) ∪ {x}

and consider the sequence of functions Ên : X → Pwr(X) given by

Ên(x) :=
⋃
{E(y) ∪ {y}|y ∈ Ên−1(x)}, n > 1

By construction we have Ên(x) ⊆ Ên+1(x) for all x ∈ X (i.e., the sequence is monotone, in

the sense of subset inclusion). Since X is finite, the limit of this sequence, limn→∞ Ên(x),

must exist; we denote this limit by E∗. In addition, we write E+(x) := E∗(x)− {x}, and

call each state in E+(x) a descendant of x and x an ancestor of the states in E+(x).

Definition 4.1. ([37, Definition 2.2])

Consider the 4-tuple ST = (X, x0, T , E), where X is a finite state set with X =

E∗(x0); x0 ∈ X is the root state; T : X → {or, and, simple} is the type function; and
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E : X → Pwr(X) is the expansion function. ST is a state tree if

(1) (terminal case) X = {x0}, or,

(2) (recursive case) (∀y ∈ E(x0)) ST y = (E∗(y), y, T |E∗(y), E|E∗(y)) is also a state tree

such that

• (∀y, y′ ∈ E(x0)) y 6= y′ ⇒ E∗(y) ∩ E∗(y′) = ∅

• ⋃̇{E∗(y)|y ∈ E(x0)} = E+(x0) ♦

Remark 4.1.

1. In the recursive case, ST y is called a child state tree of x0 rooted at y. Also notice

that the set {E∗(y)|y ∈ E(x0)} partitions E+(x0).

2. A state tree ST = (X, x0, T , E) is well-formed if

(∀x, y ∈ X) T (x) = and & y ∈ E(x) ⇒ T (y) 6= simple

That is, no AND component can be a simple state.

Example 4.1.

Consider the Small Factory [63, Example 3.3.4] consisting of two machines M1, M2.

xi0 xi1

αi

βi

Mi

(i = 1, 2)
αi ∈ Σc

βi ∈ Σu

The entire state space of this system can be modelled as the state tree displayed in

Fig. 4.1. Two OR superstates xi (i = 1, 2) are brought in as an index for the set of

simple states {xi0, xi1}, and an AND superstate (also the root state), x0, is introduced to

model the synchronous product of M1 and M2. This state tree is valid because the two

child state trees of x0 (rooted at x1 and x2, respectively) are state trees on their own,



Chapter 4. State-Based Supervisor Localization 97

x10 x11 x20 x21

x1 x2

x0

×

∪̇ ∪̇

ST

Figure 4.1: State tree model for small factory

and the set {E∗(x1), E∗(x2)} partitions E+(x0). Besides, this state tree is well-formed,

since the AND components of x0, namely x1 and x2, are OR superstates. ¨

Let ST = (X, x0, T , E) be a well-formed state tree. A sub-state-tree of ST is also a

well-formed state tree with x0 as the root state, but contains only a nonempty subset of

OR components, for every OR superstate in ST . For example, in Fig. 4.2, ST1 is a sub-

state-tree of ST in Example 4.1, while ST2 is not because it contains no OR components

of x2. We write ST (ST ) as the set of all sub-state-trees of ST .

x10 x20

x1 x2

x0

×

x10 x11

x1 x2

x0

×

∪̇

ST1 ST2

x21∪̇

Figure 4.2: Example: sub-state-tree of ST

In particular, if a sub-state-tree of ST contains exactly a singleton set of OR compo-

nents for every OR superstate, we call it a basic state tree of ST . For example, in Fig.

4.3, b1 and b2 are both basic state trees of ST in Example 4.1. We identify basic state

trees in ST (ST ) because they correspond in turn to the generator states of the whole
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x10 x20

x1 x2

x0

×

x11

x1 x2

x0

×

b1 b2

x21

Figure 4.3: Example: basic state tree of ST

system. Denote by B(ST ) the set of all basic state trees of ST .

Having organized the state space into a state tree, we are left to establish the as-

sociated system dynamics – the transition structure of the state tree. We start with

holon, a local transition structure that describes the inner and boundary dynamics of

OR components.

Definition 4.2. ([37, Definition 2.13])

A holon H is a 5-tuple H = (X, Σ, δ,X0, Xm), where

(1) X, the finite state set, is the disjoint union of the external state set XE and the

internal state set XI .

(2) Σ, the event set, is the disjoint union of the boundary event set ΣB and the internal

event set ΣI .

(3) δ : X × Σ → X (pfn), the local transition function, is the disjoint union 1 of the

internal transition structure δI : XI ×ΣI → XI and the boundary transition struc-

ture δB; the latter is again the disjoint union of the incoming boundary transition

structure δBI : XE × ΣB → XI and the outgoing boundary transition structure

δBO : XI × ΣB → XE.

1Two transition functions δi : X × Σ → X (i = 1, 2) are disjoint if the two sets
{(x, σ, δ1(x, σ))|δ1(x, σ)!} and {(x, σ, δ2(x, σ))|δ2(x, σ)!} are disjoint, i.e., δ1 and δ2 have no transition
in common.
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(4) X0 ⊆ XI , the initial state set, contains those target states of incoming boundary

transitions if δBI is defined. Otherwise, X0 can be selected to be any nonempty

subset of XI .

(5) Xm ⊆ XI , the marked state set, contains those source states of outgoing boundary

transitions if δBO is defined. Otherwise, Xm can be selected to be any nonempty

subset of XI . ♦

Example 4.2.

x5

x4

x2

x0 x1

x6

x3

a

b

c

b

α

β

β

γ

γ

α

A holon H

A typical holon, H = (X, Σ, δ,X0, Xm), is displayed above. We determine its compo-

nents.

(1) The state set X = XI ∪̇XE, where XI = {x0, x1, x2, x3} and XE = {x4, x5, x6}.

(2) The event set Σ = ΣI ∪̇ΣE where ΣI = {a, b, c} and ΣB = {α, β, γ}.

(3) The internal transitions are δI(x0, a) = x1, δI(x0, b) = x3, δI(x2, b) = x3, and

δI(x2, c) = x1; the incoming boundary transitions are δBI(x4, α) = x0, δBI(x4, β) =

x2, and δBI(x5, α) = x0; finally, the outgoing boundary transitions are δBO(x2, γ) =

x5, δBO(x1, γ) = x6, and δBO(x3, α) = x6.

(4) The initial state set X0 = {x0, x2}.
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(5) The marked state set Xm = {x0, x1, x2}. ¨

Now we match holons to their corresponding OR superstates in a state tree. This

operation should respect two constraints – boundary consistency and local coupling [37,

Chapter 2]. Informally, boundary consistency requires compatible inner and boundary

behaviors between any adjacent pair of holons in the vertical direction; local coupling

requires that internal events be shared by only those holons in the horizontal direction

that have a common adjacent AND ancestor.

Also, we extend the local internal transition function δI to δ̄I [37, Definition 2.17] to

handle cases where transitions involve superstates as the source or target states. This

extension allows the construction of global transition structures. Define the global tran-

sition function ∆ : ST (ST )× Σ → ST (ST ) such that for all T ∈ ST (ST ) and σ ∈ Σ,

∆(T, σ) := replace sourceG,σ(T ∧ EligG(σ))

where EligG(σ) ∈ ST (ST ) is the largest sub-state-tree of ST where σ can occur; letting

TE := T ∧ EligG(σ), replace sourceG,σ(TE) replaces all of the argument’s (child) sub-

state-trees T x
E (rooted at x) by δ̄x

I (T x
E, σ), whenever δ̄x

I (T x
E, σ)!.

Finally, we can state

Definition 4.3. (State Tree Structure [37, Definition 2.16])

Consider the 6-tuple G = (ST,H, Σ, ∆,ST0,STm), where ST = (X, x0, T , E) is a

state tree; H = {Ha|T (a) = or & Ha = (Xa, Σa, δa, Xa
0 , Xa

m)} is the set of holons that

are matched to the OR superstates in ST ; Σ =
⋃{Σa

I |Ha ∈ H} is the set of internal

events of H; ∆ : ST (ST )×Σ → ST (ST ) is the global transition function; ST0 ∈ ST (ST )

is the initial state tree; and STm ⊆ ST (ST ) is the set of marker state trees. G is a state

tree structure (STS) if both boundary consistency and local coupling hold when matching

H with ST . ♦
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Remark 4.2. For STS synthesis, a backward global transition function is needed. Fol-

lowing a dual route, we define Γ : ST (ST )×Σ → ST (ST ) such that for all T ∈ ST (ST )

and σ ∈ Σ,

Γ(T, σ) := replace targetG,σ(T ∧ NextG(σ))

where NextG(σ) ∈ ST (ST ) is the largest sub-state-tree of ST that σ targets; letting

TN := T ∧ NextG(σ), replace targetG,σ(TN) replaces all of the argument’s (child) sub-

state-trees T x
N (rooted at x) by T y

N , where T x
N = δ̄x

I (T y
N , σ).

4.2.2 Symbolic Representation of STS

Having discussed the STS modelling for a DES, we are now ready to represent the model

symbolically. This step is fundamental because it is the basis for symbolic computation

on STS. Our particular focus is symbolic computation for supervisory control synthesis.

We begin with encoding state trees. Let ST = (X, x0, T , E) be a state tree. A

predicate P defined on B(ST ) is a function P : B(ST ) → {0, 1}; thus P is the char-

acteristic function of the set BP := {b ∈ B(ST )|P (b) = 1} 2. That is, for b ∈ B(ST ),

b |= P iff b ∈ BP . Similarly, for T ∈ ST (ST ), T |= P iff B(T ) ⊆ BP , and the exten-

sion P : ST (ST ) → {0, 1} follows accordingly. We write Pred(ST ) for the set of all

predicates defined on ST (ST ), and define the propositional connectives ∧,∨, and ¬ in

the usual way. We also introduce a partial order on Pred(ST ): for P1, P2 ∈ Pred(ST )

define P1 ¹ P2 (say P1 is a subpredicate of P2) iff P1 ⇒ P2. With this partial order,

(Pred(ST ),¹) is a complete lattice [37, Section 3.1].

The following function specifies the mechanism that assigns every sub-state-tree T of

ST to the predicate P it satisfies, i.e., T |= P .

Definition 4.4. ([37, Definition 4.1])

Let ST = (X, x0, T , E) be a state tree and T = (Y, x0, T |Y , E|Y ) ∈ ST (ST ). Associate

2The satisfaction relation P (b) = 1 will often be written b |= P .



Chapter 4. State-Based Supervisor Localization 102

to each OR superstate x a state variable vx ranging over E(x). Define Θ : ST (ST ) →
Pred(ST ) recursively by

Θ(T ) :=





∨{(vx0 = y) ∧Θ(T y) | y ∈ E|Y (x0)}, if T (x0) = or

∧{Θ(T y) | y ∈ E|Y (x0)}, if T (x0) = and

1, if T (x0) = simple

where “=” in (vx0 = y) is the assignment operator, and (vx0 = y) returns value 1 iff vx0

is assigned value y. ♦

Remark 4.3.

1. If all of the components of an OR superstate x are on the sub-state-tree T , then

the predicate Θ(T ) is independent of the state variable vx; namely, the following is

a tautology:
( ∨

{vx = y|y ∈ E(x)}) ≡ 1 (4.1)

where “≡” denotes logical equivalence. For example, in Fig. 4.2,

Θ(ST1) := (vx1 = x10) ∧ (vx2 = x20 ∨ vx2 = x21)

≡ (vx1 = x10)

where vx1 , vx2 are the state variables for the OR superstates x1 and x2, respectively.

Notice that the predicate Θ(ST1) is simplified by applying the tautology (4.1) to

vx2 .

2. [37, Definition 4.2] Let vx be a state variable appearing in a predicate P , and for

y ∈ E(x) denote by P [y/vx] the resulting predicate after assigning y to vx. We

define ∃vxP :=
∨{P [y/vx] | y ∈ E(x)}, which adds all of the components of the

OR superstate x back onto the sub-state-tree satisfying P . Hence, it again follows

from the tautology (4.1) that the variable vx will not appear in ∃vxP . Continuing
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the above example,

∃vx1Θ(ST1) := vx1 = x10 ∨ vx1 = x11

≡ 1

Next given an STS G defined over Σ, we encode its backward global transition func-

tion Γ. First we bring in some notation. Associate to every OR superstate x in G a

normal state variable vx (respectively, a prime state variable v′x) if x is a target (respec-

tively, source) state in a transition. Then for a predicate P , we write P (v) to mean

that P is defined over v, a set of normal state variables. Denote by P (v)[v → v′] the

replacement of v by v′ in P (v); the resulting predicate is defined over v′, i.e., P (v′).

For σ ∈ Σ let the triple (S, σ,T) represent the entire set of transitions in G labeled

with σ, where S and T are the predicates of the source sub-state-trees and the target

sub-state-trees, repectively. Denote by vσ,S and vσ,T the set of variables over which S

and T are defined. Then we can derive a predicate Nσ which characterizes the transition

set (S, σ,T) 3; this predicate Nσ is defined over v′σ,S and vσ,T.

Definition 4.5. ([37, Definition 4.3])

Let σ ∈ Σ be an event and P ∈ Pred(ST ) be a predicate. Define Γ̂ : Pred(ST )×Σ →
Pred(ST ) according to

Γ̂(P, σ) := (∃vσ,T(P ∧Nσ))[v′σ,S → vσ,S]

♦

Informally, Γ̂(P, σ) returns a predicate characterizing the largest (source) set of basic

state trees, each of which can reach a basic state tree in BP by a one-step transition σ.

To compute Γ̂(P, σ), we first compute P ∧ Nσ that holds for those transitions in

3For the detailed derivation of Nσ, see [37, Section 4.2.2]
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(S, σ,T) whose target sub-state-trees satisfy P . With P∧Nσ, we quantify out all variables

in vσ,T by the ∃ operator, thus obtaining the source sub-state trees; the resulting predicate

∃vσ,T(P ∧Nσ) is defined only on v′σ,S. Lastly we replace v′σ,S by vσ,S in order to let the

final predicate be defined over normal variables.

4.2.3 Optimal Nonblocking Supervisory Control of STS

Given an STS G = (ST,H, Σ, ∆, P0, Pm) 4 and a predicate P ∈ Pred(ST ) with BP

denoting the set of illegal basic state trees, our objective is to synthesize the largest

subpredicate of ¬P which is (weakly) controllable and nonblocking (as defined below).

We define a state feedback control (SFBC) [63, Chapter 7] for G to be the total

function

f : B(ST ) → Π

where Π := {Σ′ ⊆ Σ|Σu ⊆ Σ′}. Thus f ‘attaches’ to each basic state tree of G a subset

of events that always contains the uncontrollable events. The event σ is enabled at

b ∈ B(ST ) if σ ∈ f(b), and is disabled otherwise. For σ ∈ Σ we define a control function

fσ : B(ST ) → {0, 1} according to fσ(b) = 1 iff σ ∈ f(b). Thus the control actions of f

can be fully distributed to the set {fσ|σ ∈ Σ}. The closed-loop global transition function

induced by f is given by

∆f (b, σ) :=





∆(b, σ), if fσ(b) = 1

∅, if fσ(b) = 0

We write Gf = (ST,H, Σ, ∆f , P f
0 , Pm) for the closed-loop STS formed from G and f ,

with ∆f as above and P f
0 ¹ P0.

Let Q ∈ Pred(ST ) be a predicate. The reachability predicate R(G, Q) is defined to

hold precisely on those basic state trees that can be reached in G from BP0 via basic state

4Here P0 := Θ(ST0) and Pm :=
∨{Θ(STi)|STi ∈ STm}
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trees satisfying Q. For σ ∈ Σ the weakest liberal precondition is the predicate transformer

Mσ : Pred(ST ) → Pred(ST ) defined by

b |= Mσ(Q) iff ∆(b, σ) |= Q, b ∈ B(ST )

We say a predicate Q ∈ Pred(ST ) is weakly controllable (with respect to G) if

(∀σ ∈ Σu) Q ¹ Mσ(Q)

It can then be shown that, if Q ∧ P0 6= false and Q is weakly controllable, there exists

a SFBC f such that R(G, Q) = R(Gf , true) [37, Theorem 3.1].

Now suppose Q is not weakly controllable. Denote by CP(Q) the set of all weakly

controllable subpredicates of Q. Then [37, Proposition 3.2] CP(Q) contains a (unique)

supremal element, denoted by sup CP(Q).

It is left to ensure the nonblocking property. To this end, we introduce the coreacha-

bility predicate CR(G, P ) defined recursively as follows:

1. (bm |= Pm ∧ P ) ⇒ (bm |= CR(G, P ))

2. (b |= CR(G, P ) & σ ∈ Σ & ∆(b′, σ) = b & b′ |= P ) ⇒ (b′ |= CR(G, P ))

We say a predicate Q ∈ Pred(ST ) is coreachable (with respect to G) if

Q ¹ CR(G, Q)

Also, we say a SFBC f for G is nonblocking if

R(Gf , true) ¹ CR(Gf , true)

Then we have the result that, if Q ∧ P0 6= false and Q is weakly controllable and

coreachable, then there exists a nonblocking SFBC f such that R(G, Q) = R(Gf , true)
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[37, Theorem 3.2].

Again suppose Q is either not weakly controllable or not coreachable. Denote by

C2P(Q) the set of all weakly controllable and coreachable subpredicates of Q. Then [37,

Proposition 3.5] C2P(Q) contains a (unique) supremal element, denoted by sup C2P(Q).

To conclude, on returning to the original given STS G and predicate P , we solve the

corresponding supervisory control problem by synthesizing the supremal weakly control-

lable and coreachable subpredicate of ¬P , denoted by sup C2P(¬P ); this we know can

be implemented by a nonblocking SFBC f .

Remark 4.4.

In the language-based framework, a control problem is typically given in terms of a

plant generator P and a specification generator S that imposes a behavioral constraint

on P. We show how to convert this pair (P,S) into an STS model G with a predicate

P specifying the illegal basic state trees.

First, to construct G we bring in an AND (root) superstate and ‘link’ both P and

S to it. To illustrate, continuing Example 4.1 we let the following one-slot buffer be the

specification. Then the STS model is obtained as shown in Fig. 4.4. So it is the entire

y0 y1

β1

α2

BUF

control problem that the STS G models, instead of merely the uncontrolled plant.

Next we need to determine the predicate P specifying those illegal basic state trees

that G is prohibited from visiting. Notice that the control requirement imposed by the

specification generator S is expressed implicitly through its partial transition function. It

is this implicit requirement that helps identify the illegal basic state trees. For example,

the generator BUF above conveys two elementary requirements: disabling event α2 at

state y0 and disabling event β1 at state y1. While the former disablement does not render
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y0

y1

β1α2

BUF(y)
x10

x11

α1β1

M1(x1)
x20

x21

α2β2

M2(x2)

x0

x10 x11 x20 x21

x1 x2

x0

×

∪̇ ∪̇

ST

y0 y1

y

∪̇

×

STS

Figure 4.4: STS model for small factory

any basic state tree illegal because α2 is controllable 5, the latter requirement does make

the basic state tree in Fig. 4.5 illegal since β1 is uncontrollable. Thus P := vx1 =

x11 ∧ vy = y1, where vy is the state variable of the superstate y.

x11 x20 x21

x1 x2

x0

×

∪̇ y1

y×

Figure 4.5: Illegal basic state tree

Finally, it is important to note that the control requirement – disabling event α2

at state y0 – is in fact ‘embedded’ in the STS model owing to the synchronization of

P and S. We call this disablement preliminary control, and thus distinguish it from

5This disablement could cause blocking, which will nevertheless be resolved when achieving a non-
blocking SFBC implementation.
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those control actions obtained from supervisor synthesis. In general, let vS be the set of

state variables of the specification S; and for σ ∈ Σc define the preliminary disablement

predicate PDσ : B(ST ) → {0, 1} according to

PDσ :=
(¬EligG(σ)

) ∧ (∃vmEligG(σ)
)

Thus PDσ is the characteristic function of the set of basic state trees where σ is not

eligible to occur in G, but can occur when considering the uncontrolled plant alone. For

Small Factory with the buffer specification above, we have

¬EligG(α2) = (vx2 = x20 ∧ vy = y0) ∨ (vx2 = x21 ∧ vy = y0) ∨ (vx2 = x21 ∧ vy = y1)

and

∃vyEligG(α2) := ∃vy(vx2 = x20 ∧ vy = y1)

≡ (vx2 = x20 ∧ y0 = y1) ∨ (vx2 = x20 ∧ y1 = y1)

≡ vx2 = x20

Therefore,

PDα2 := ¬EligG(α2) ∧ ∃vyEligG(α2)

≡ (vx2 = x20 ∧ vy = y0) ∨ false ∨ false

≡ vx2 = x20 ∧ vy = y0

By inspection of STS, Fig. 4.4, one can verify that PDα2 is the characteristic function

of the basic state tree where α2 is blocked when synchronizing M2 and BUF.
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4.3 Problem Statement

Given a plant generator P to be controlled, consider the case where P consists of com-

ponent agents Pk defined over pairwise disjoint alphabets Σk (k ∈ K, K an index set):

Σ =
⋃̇
{Σk|k ∈ K}

With Σ = Σc ∪̇ Σu we assign control structure to each agent:

Σk
c = Σk ∩ Σc , Σk

u = Σk ∩ Σu

Also we assume a specification generator S is given that (as usual) imposes a behavioral

constraint on P.

As demonstrated in Remark 4.4, we convert this pair (P,S) into an STS model G

with a predicate P specifying the illegal basic state trees; we then synthesize the supremal

weakly controllable and coreachable subpredicate of ¬P , denoted by sup C2P(¬P ). Let

C := R(G, sup C2P(¬P ))

Thus C is the optimal nonblocking supervisor for the control problem (G, P ). On the

one hand, C is the characteristic function of the subset of basic state trees

BC := {b ∈ B(ST ) | b |= C};

on the other hand, for C there exists a nonblocking SFBC f : B(ST ) → Π, where

Π := {Σ′ ⊆ Σ|Σu ⊆ Σ′}, such that

R(Gf , true) = C

We call BC a (monolithic) state tracker which reports state evolution of the controlled



Chapter 4. State-Based Supervisor Localization 110

system, and call f a (monolithic) decision maker which issues disablement commands

based on the current state BC reports. With BC and f , the control actions of C can

be implemented in a centralized fashion, as displayed below. Therefore, supervisor local-

f

plant P

b ∈ B(ST )

BC
P

1

P
n

·
·
·

(K = {1, ..., n})

state tracker

decision maker

ization in the present STS setting involves localizing both the state tracker BC and the

decision maker f .

The decision maker localization follows immediately from the fact that a SFBC f can

be fully distributed to a set of control functions {fσ|σ ∈ Σ}, where fσ : B(ST ) → {0, 1}
is defined according to fσ(b) = 1 iff σ ∈ f(b). Since fσ(b) always holds for σ ∈ Σu, we

will consider only the set {fσ|σ ∈ Σc}. Let σ ∈ Σc, and recall that NextG(σ) denotes

the largest sub-state-tree of ST in G that is targeted by σ. Following [37, Section 4.4],

we first divide the predicate Θ(NextG(σ)) into the following two subpredicates:

Ngood := Θ(NextG(σ)) ∧ C

the legal subpredicate of Θ(NextG(σ)), and

Nbad := Θ(NextG(σ)) ∧ ¬C

the illegal subpredicate of Θ(NextG(σ)). Then we define the control function fσ :

B(ST ) → {0, 1} by

fσ := Γ̂(Ngood, σ);
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namely, for every basic state tree b ∈ B(ST )

fσ(b) =





1, if ∆(b, σ) |= Ngood

0, if either ∆(b, σ) |= Nbad or ∆(b, σ) = ∅

With this set of localized decision makers {fσ|σ ∈ Σc} and the monolithic state tracker

BC , the supervisory control can now be implemented as follows.

∀fσ, σ ∈ Σn
c

plant P

b ∈ B(ST )
BC

P
1

P
n

·
·
·

(K = {1, ..., n})

state tracker

local decision makers

∀fσ, σ ∈ Σ1
c

·
·
·

We still need to localize the state tracker BC . In analogy to the approach in Chapter

2, for each k ∈ K we will establish a control cover on BC , denoted by

Ck := {Bk
ik ⊆ BC |ik ∈ Ik}

where Bk
ik

is a cell of Ck labeled ik, and Ik is an index set. Thus BC with Ck can be

viewed as another state tracker, written Bk
C , that reports system state evolution in terms

of cells (subsets) of basic state trees in G, rather than just singleton basic state trees; to

put it another way, Bk
C can distinguish only different cells of Ck, but not different basic

state trees in the same cell.

To be compatible with this state tracker Bk
C , the foregoing local decision makers

fσ must be extended to handle subsets of basic state trees. Such an extension makes

sense only when it is defined over those subsets of basic state trees whose elements have

consistent control information. With this in mind, for σ ∈ Σc we define the extended
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control function f̂σ : Pwr(B(ST )) → {0, 1} (pfn) such that for all B ∈ Pwr(B(ST ))

f̂σ(B) :=





1, if
[
(∀b ∈ B)b |= fσ ∨ ¬EligG(σ)

]
&

[
(∃b′ ∈ B)b′ |= fσ

]

0, if (∀b ∈ B)b |= ¬fσ

undefined, otherwise, i.e.,
[
(∃b ∈ B)b |= fσ

]
&

[
(∃b′ ∈ B)b′ |= EligG(σ) ∧ ¬fσ

]

Thus f̂σ is not defined for any B having two elements (b and b′), at one of which σ

must be enabled (b |= fσ) while at the other σ must be disabled (b′ |= EligG(σ) ∧ ¬fσ).

Otherwise f̂σ is defined: B is evaluated to be false if all of its members fail to satisfy fσ

(b |= ¬fσ); B is evaluated to be true if all of its members satisfy fσ (b |= fσ.) In addition,

we know that if σ is not eligible at a basic state tree b (i.e. b |= ¬EligG(σ)), then b can be

regarded as having consistent control information with any other basic state tree. Thus

we also declare f̂σ(B) = 1 in case B contains a nonempty subset of elements that satisfy

fσ, and at the remaining elements of B, σ is not eligible.

Subsequently, we say Bk
C is a local state tracker for agent Pk if for all σ ∈ Σk

c , f̂σ is

defined for every cell of Ck; namely,

(∀σ ∈ Σk
c ,∀ik ∈ Ik) f̂σ(Bk

ik) is defined

So with a set of local state trackers {Bk
C |k ∈ K} and the set of extended local deci-

sion makers {f̂σ|σ ∈ Σc}, the supervisory control can be implemented in the following

distributed manner.

plant P

i1 ∈ I1

B1
C

P
1

·
·
·

(K = {1, ..., n})

local state tracker

(extended) local∀f̂σ, σ ∈ Σ1
c

···

in ∈ In

Bn
C

P
n

∀f̂σ, σ ∈ Σn
c

decision makers
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Of central importance for this distributed implementation is to preserve the optimality

and nonblocking properties of the monolithic supervisory control. Let k ∈ K and σ ∈ Σk
c .

Suppose the controlled system is currently visiting a basic state tree b ∈ BC ; thus there

must exist a cell Bk
ik

of the cover Ck to which b belongs. As displayed in Fig. 4.6, on

the one hand, the monolithic state tracker reports b to fσ which then makes the control

decision fσ(b); on the other hand, a local state tracker reports the whole cell Bk
ik

to f̂σ

which then makes the control decision f̂σ(Bk
ik

). We say these two pairs (BC , fσ) and

Bk
C

Bk
ik

b ∈ BC

b ∈ Bk
ik
, ik ∈ Ik

BC
b

monolithic state tracker

local state tracker

local decision maker

fσ

extended local decision maker

f̂σ

fσ(b)

f̂σ(Bk
ik
)

Figure 4.6: Control equivalence in STS framework

(Bk
C , f̂σ) are control equivalent whenever the following holds:

∆(b, σ) 6= ∅ ⇒ fσ(b) = 1 iff f̂σ(Bk
ik

) = 1

Now we can formulate the Distributed Optimal Nonblocking Control Problem (>):

Given a (plant, specification) pair (P,S), obtain its STS counterpart (G, P )

and the corresponding optimal nonblocking supervisory predicate C (imple-

mented by BC and {fσ|σ ∈ Σc}). Construct a set of local state trackers

{Bk
C |k ∈ K} with a corresponding set of (extended) local decision makers

{f̂σ|σ ∈ Σc} such that for all k ∈ K and all σ ∈ Σk
c , the two pairs (BC , fσ)

and (Bk
C , f̂σ) are control equivalent.
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4.4 Supervisor Localization

We solve (>) by developing a supervisor localization procedure closely analogous to that

in Chapter 2.

It follows from Σ =
⋃̇{Σk|k ∈ K} that the set {Σk

c ⊆ Σc|k ∈ K} forms a partition

on Σc. Fix an element k ∈ K. We first establish a control cover on BC based only on

control information pertaining to Σk
c , as captured by the following two functions. Let

σ ∈ Σk
c . First define Eσ : BC → {0, 1} by

Eσ := Γ̂(Ngood, σ) ∧ C

Thus Eσ is the characteristic function of the set of basic state trees in BC where σ is

enabled. Notice that Eσ is actually the restriction of the control function fσ from B(ST )

to BC . Next define Dσ : BC → {0, 1} by

Dσ :=
[
PDσ ∨ Γ̂(Nbad, σ)

] ∧ C

That is, Dσ is the characteristic function of the set of basic state trees in BC where

σ must be disabled, either by preliminary disablement in the STS model G or by the

supervisory control of C.

Definition 4.6.

We define a binary relation Rk on BC as follows. Let b, b′ ∈ BC . We say b and b′ are

control consistent (with respect to Σk
c ), and write (b, b′) ∈ Rk, if

(∀σ ∈ Σk
c ) Eσ(b) ∧Dσ(b′) ≡ false ≡ Eσ(b′) ∧Dσ(b)

♦

Informally, a pair of basic state trees (b, b′) is in Rk if there is no event in Σk that is
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enabled at b but is disabled at b′, or vice versa.

Like its counterpart definition in the language-based framework, Rk is a tolerance

relation on BC , namely it is reflexive and symmetric but in general need not be transi-

tive. Thus, Rk is generally not an equivalence relation. This fact leads to the following

definition of control cover (with respect to Σk
c ).

Definition 4.7.

Let Ik be some index set, and Ck = {Bk
ik
⊆ BC |ik ∈ Ik} be a cover on BC . Ck is a

control cover on BC (with respect to Σk
c ) if

(i) (∀ik ∈ Ik,∀b, b′ ∈ Bk
ik

) (b, b′) ∈ Rk

(ii) (∀ik ∈ Ik,∀σ ∈ Σ)
[
(∃jk ∈ Ik)(∀b ∈ Bk

ik
)∆(b, σ) 6= ∅ & ∆(b, σ) ∈ BC ⇒ ∆(b, σ) ∈

Bk
jk

]
♦

Informally, a control cover Ck groups basic state trees in BC into (possibly overlapping)

cells Bk
ik

(ik ∈ Ik). According to (i) all basic state trees that reside in a cell Bk
ik

have to

be pairwise control consistent; and (ii) for each event σ ∈ Σ, all basic state trees that can

be reached from any basic state trees in Bk
ik

by a one-step transition σ have to be covered

by a certain cell Bk
jk . Recursively, two basic state trees b, b′ belong to a common cell in

Ck if and only if (1) b and b′ are control consistent; and (2) two future states that can

be reached from b and b′, respectively, by the same string are again control consistent.

In addition we say that a control cover Ck is a control congruence if Ck happens to be a

partition on BC .

Thus BC with a control cover Ck can be viewed as a state tracker, written Bk
C ,

that reports system state evolution in terms of cells (subsets) of basic state trees. We

proceed to derive the dynamics of Bk
C through constructing the induced generator Bk

C =

(Ik, Σ, κk, ik0, I
k
m) from BC and Ck as follows:

(i) ik0 ∈ Ik such that b0 ∈ Bk
ik0



Chapter 4. State-Based Supervisor Localization 116

(ii) Ik
m = {ik ∈ Ik|Bk

ik
∩ B(STm) 6= ∅}

(iii) κk : Ik × Σ → Ik(pfn) with κk(ik, σ) = jk if

(∃b ∈ Bk
ik

)∆(b, σ) ∈ Bk
jk &

(∀b′ ∈ Bk
ik

)
[
∆(b′, σ) 6= ∅ & ∆(b′, σ) ∈ BC ⇒ ∆(b′, σ) ∈ Bk

jk

]

Here b0 is the initial basic state tree, and B(STm) is the set of marked basic state trees.

Note that, owing to overlapping, the choices of ik0 and κk may not be unique, and conse-

quently Bk
C may not be unique. In that case we pick an arbitrary instance of Bk

C . Clearly

if Ck happens to be a control congruence, then Bk
C is unique.

Recall that an extended local decision maker f̂σ is a partial function defined on

Pwr(B(ST )). Our first result shows that for all σ ∈ Σk
c , f̂σ is defined for every cell

of Ck, namely Bk
C is a local state tracker for agent Pk.

Proposition 4.1.

Let Bk
C = (Ik, Σ, κk, ik0, I

k
m) be induced from BC and Ck. Then for all σ ∈ Σk

c and all

ik ∈ Ik, f̂σ(Bk
ik

) is defined.

Proof.

Let σ ∈ Σk and ik ∈ Ik. We suppose f̂σ(Bk
ik

) is not defined. Then by the (structural)

definition of f̂σ, there exist b, b′ ∈ Bk
ik

such that

b |= fσ and b′ |= EligG(σ) ∧ ¬fσ

i.e.,

b |= Γ̂(Ngood, σ) and b′ |= Γ̂(Nbad, σ)

It follows from b, b′ ∈ Bk
ik
⊆ BC that

b |= Γ̂(Ngood, σ) ∧ C and b′ |= Γ̂(Nbad, σ) ∧ C
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Hence Eσ(b) = 1 and Dσ(b′) = 1. So Eσ(b) ∧Dσ(b′) ≡ true, which implies (b, b′) /∈ Rk.

This contradicts that b, b′ ∈ Bk
ik

, and therefore f̂σ(Bk
ik

) is defined after all.

Now let {Bk
C |k ∈ K} be a set of local state trackers for the partition {Σk

c ⊆ Σc|k ∈ K}.
Then {Bk

C |k ∈ K} with a corresponding set of extended local decision makers {f̂σ|σ ∈ Σc}
solves (>).

Proposition 4.2.

For all k ∈ K and all σ ∈ Σk
c , the two pairs (BC , fσ) and (Bk

C , f̂σ) are control

equivalent.

Proof.

Let k ∈ K and σ ∈ Σk
c . Pick a basic state tree b ∈ BC such that ∆(b, σ) 6= ∅; then

there must exist a cell Bk
ik

in a control cover Ck on BC (with respect to Σk
c ) such that

b ∈ Bk
ik

. It will be shown that

fσ(b) = 1 iff f̂σ(Bk
ik

) = 1

(if) Assume f̂σ(Bk
ik

) = 1. Then by the definition of f̂σ, there must exist b′ ∈ Bk
ik

such

that b′ |= fσ, which implies that Eσ(b′) = 1. Since b is also in Bk
ik

, (b, b′) ∈ Rk. Then it

follows from Eσ(b′) ∧Dσ(b) ≡ false that Dσ(b) = 0, i.e.,

b |= ¬
((

PDσ ∨ Γ̂(Nbad,σ)
) ∧ C

)

|= (¬PDσ ∧ ¬Γ̂(Nbad,σ)
) ∨ ¬C

We have that b is in BC (i.e. b |= C); so

b |= ¬PDσ ∧ ¬Γ̂(Nbad,σ)
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Besides, it follows from the definition of fσ that

¬Γ̂(Ngood, σ) ≡ Γ̂(Nbad, σ) ∨ ¬EligG(σ)

Equivalently,

Γ̂(Nbad, σ) ≡ ¬Γ̂(Ngood, σ) ∧ EligG(σ)

Hence,

b |= ¬PDσ ∧ ¬
(¬Γ̂(Ngood, σ) ∧ EligG(σ)

)

|= ¬PDσ ∧
(
Γ̂(Ngood, σ) ∨ ¬EligG(σ)

)

We know from the hypothesis ∆(b, σ) 6= ∅ that σ is not preliminarily disabled at b (b |=
¬PDσ), and σ is actually defined at b (i.e. b |= EligG(σ)). Therefore b |= Γ̂(Ngood, σ);

namely fσ(b) = 1.

(only if) Assume fσ(b) = 1 (i.e. b |= Γ̂(Ngood, σ)). If follows from b |= C that

Eσ(b) = 1. Let b′ be an arbitrary element in Bk
ik

that is distinct from b. Then (b, b′) ∈ Rk

and Eσ(b) ∧Dσ(b′) ≡ false. So Dσ(b′) = 0, and as above,

b′ |= ¬PDσ ∧
(
Γ̂(Ngood, σ) ∨ ¬EligG(σ)

)

Thus in this cell Bk
ik

, we have b |= fσ and all other elements b′ |= Γ̂(Ngood, σ)∨¬EligG(σ)

(they are not preliminarily disabled). By the definition of f̂σ, we conclude that f̂σ(Bk
ik

) =

1.

Next we investigate whether or not the converse is true: for k ∈ K and σ ∈ Σk
c , if

a pair (Bk
C , f̂σ) is control equivalent to the pair (BC , fσ), can the local state tracker Bk

C

always be induced from a suitable control cover on BC? In response, we bring in the

notion of normality.
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Definition 4.8.

A local state tracker Bk
C = (Ik, Σ, κk, ik0, I

k
m) is normal (with respect to BC) if

(i) {Bk
ik
|ik ∈ Ik} is a cover on BC

(ii) ik0 ∈ Ik such that b0 ∈ Bk
ik0

(iii) Ik
m = {ik ∈ Ik|Bk

ik
∩ B(STm) 6= ∅}

(iv) κk : Ik × Σ → Ik(pfn) with κk(ik, σ) = jk if

(∃b ∈ Bk
ik

)∆(b, σ) ∈ Bk
jk &

(∀b′ ∈ Bk
ik

)
[
∆(b′, σ) 6= ∅ & ∆(b′, σ) ∈ BC ⇒ ∆(b′, σ) ∈ Bk

jk

]

Here b0 is the initial basic state tree and B(STm) is the set of marked basic state trees.

♦

Informally, a local state tracker will be normal (with respect to BC) whenever it

is induced from some cover on BC . Under normality, we have the following result in

response to the converse question posed above.

Theorem 4.1.

Suppose that, for all k ∈ K and σ ∈ Σk
c , a normal local state tracker Bk

C =

(Ik, Σ, κk, ik0, I
k
m) with a corresponding extended local decision maker f̂σ is control equiv-

alent to the pair (BC , fσ). Then there exists a control cover on BC from which Bk
C can

be induced.

Proof.

Let k ∈ K and σ ∈ Σk
c . By normality, Bk

C is induced from a cover Ck = {Bk
ik
|ik ∈ Ik}

on BC . It will be shown that Ck is a control cover.

First, we prove the second condition in the definition of control cover. Let ik ∈ Ik,

and b ∈ BC with ∆(b, σ) 6= ∅ and ∆(b, σ) ∈ BC . So by (iv) of normality, the transition

κk(ik, σ) is defined, and there exists jk ∈ Ik such that ∆(b, σ) ∈ Bk
jk .
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We are left to show that (b, b′) ∈ Rk whenever b, b′ ∈ Bk
ik

(ik ∈ Ik). If σ is not defined

at either b or b′, or both of them, then they are trivially control consistent. Otherwise

(i.e. ∆(b, σ) 6= ∅ and ∆(b′, σ) 6= ∅), by the assumption that (BC , fσ) and (Bk
C , f̂σ) are

control equivalent, we derive that fσ(b) = 1 iff f̂σ(ik) = 1 and fσ(b′) = 1 iff f̂σ(ik) = 1.

Hence fσ(b) = 1 iff fσ(b′) = 1, which implies that Eσ(b) = 1 iff Eσ(b′) = 1. It then

follows that Eσ(b)∧Dσ(b′) ≡ false ≡ Eσ(b′)∧Dσ(b), i.e., (b, b′) ∈ Rk. We conclude that

Ck is a control cover.

To summarize, every set of control covers generates a solution to (>) (Proposition

4.2); and every solution to (>) can be induced from some set of control covers (Theorem

4.1). In particular, a set of state-minimal local state trackers can be induced from a set

of suitable control covers. In agreement with the conclusion in Chapter 2, however, such

a set is in general not unique, and the problem of finding such a set is NP-hard.
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4.5 Symbolic Localization Algorithm

Following the idea of the localization algorithm presented in Section 2.4, we propose

another polynomial-time algorithm in the present STS setting that can accomplish state

tracker localization.

Let (G, P ) be the STS counterpart of a given control problem (P,S), and assume

that G is defined over Σ = Σc∪̇Σu. For σ ∈ Σc let PDσ be the preliminary disablement

predicate; and let C be the monolithic supervisory predicate synthesized from P , with

BC = {b0, b1, ..., bn−1} the corresponding monolithic state tracker. Then our objective

is to localize this BC : for every agent k ∈ K with controllable event set Σk
c , generate a

control cover (a control congruence in our algorithm) on BC with respect to the control

information pertaining to Σk
c .

Recall that Rk is the control consistency binary relation (with respect to Σk
c ) on BC ;

for b1, b2 ∈ BC , (b1, b2) ∈ Rk if for all σ ∈ Σk
c ,

Eσ(b1) ∧Dσ(b2) ≡ false ≡ Eσ(b2) ∧Dσ(b1)

where

Eσ = Γ̂(Ngood, σ) ∧ C

= Γ̂(Θ(NextG(σ)) ∧ C, σ) ∧ C

and

Dσ =
[
PDσ ∨ Γ̂(Nbad, σ)

] ∧ C

=
[
PDσ ∨ Γ̂(Θ(NextG(σ)) ∧ ¬C, σ)

] ∧ C

Next we define a predicate Rk : Pwr(BC) → {0, 1} such that for all B ∈ Pwr(BC),

Rk(B) = 1 iff (∀b, b′ ∈ B)(b1, b2) ∈ Rk. We symbolically implement Rk instead of Rk
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(see lines 11-13 in the pseudocode below); thus a subset of basic state trees can be tested

for control consistency in a single predicate evaluation.

Notation: wl is a list of subsets of basic state trees whose mergibility is pending.

Symbolic Localization Algorithm (SLA)

int main()1

Ck = {c0, c1, ..., cn−1} (initialize Ck with cl = bl for l ∈ [0, n− 1])2

for i : 0 to |Ck| − 2 do3

for j : i + 1 to |Ck| − 1 do4

cell = ci ∨ cj;5

wl = ∅;6

if Check Mergibility(cell, wl, i, Ck) = true then7

Ck =
(Ck ∪ wl

) − {x|(∃y ∈ wl)x ≺ y};
end8

end9

bool Check Mergibility(cell, wl, i, Ck)10

for each pair of basic state trees b1, b2 ∈ {b ∈ BC |b |= cell} do11

if (b1, b2) /∈ Rk then return false12

end13

wl =
(
wl ∪ {cell}) − {x|x ≺ cell} ;14

for each σ ∈ Σ with ∆(cell, σ) ∧ C 6= 0 do15

if (∆(cell, σ) ∧ C) ¹ x for some x ∈ Ck ∪ wl then continue;16

if (∆(cell, σ) ∧ C) ∧ xr 6= 0 for some r < i then return false;17

new cell =
(
∆(cell, σ) ∧ C

) ∨ ( ∨
x∈(Ck∪wl) & x∧(∆(cell,σ)∧C) 6=0 x

)
;18

if Check Mergibility(new cell, wl, i, Ck) = false then return false;19

end20

return true;21

Proposition 4.3.

SLA terminates and the resulting Ck is a control congruence.

Proof. Lines 6, 14 and 18 guarantee that each cell of wl is the union of cells of Ck. So

whenever two cells of Ck can be merged together, the size of the updated Ck is nonin-

creasing (see line 7). Hence, the algorithm must terminate.

It is left to show that the resulting Ck is a control congruence. Initially, Ck is the set

of singleton basic state trees of BC , thus is trivially a control congruence. Notice that Ck
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is updated only at line 7 if the function Check Mergibility returns true. In that case, wl

must have the following properties:

1. By lines 11 and 12 every cell of wl satisfies the predicate Rk.

2. By line 16 every cell’s downstream cell (∆(cell, σ) ∧ C) must reside in a cell either

of Ck or of wl.

3. By lines 14 and 18 every two cells of wl must be disjoint.

4. Again by lines 14 and 18 every cell of wl is the union of some cells of Ck.

Thus, properties 1 and 2 ensure that the updated Ck is a control cover; properties 3 and 4

ensure that every two cells of the updated Ck must be disjoint. Therefore, Ck is a control

congruence.

Remark 4.5. The size of the initial Ck is n. In the worst case 1
2
n(n−1) calls can be made

to the function Check Mergibility, which can then make n−2 calls to itself. Therefore SLA

has the time complexity O(n3), slightly more efficient than the localization algorithm in

Section 2.4 which is O(n4). This improvement is due to the fact that by the symbolic

approach we can check the mergibility directly for a pair of cells, rather than just a pair

of singleton basic state trees.

Example 4.3.

β

α

BC = {b0, b1, b2, b3}

α

b0

b1

b2

b3

α is disabled at b3

Σk
c = {α}

γ

γ

fα(bn) :=







0, if n = 0, 1
1, if n = 2, 3

To illustrate SLA, we again use Example 2.4, but in the STS setting.
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(0) Initially, Ck
init = {c0, c1, c2, c3} with cl = bl for l ∈ [0, 3]. Thus at line 3, the index i

ranges from 0 to |Ck
init| − 2, i.e., from 0 to 2.

(1) (c0, c1) cannot be merged: they pass lines 11 and 12 because c0∨c1 |= Rk, but they

fail at line 19 since

c0 ∨ c1 ∨∆(c0, α) ∨∆(c1, α) ≡ c0 ∨ c1 ∨ c2 2 Rk;

(c0, c2) can be merged: they pass lines 11 and 12 because c0 ∨ c2 |= Rk, and they

trivially pass line 15 since there is no common event defined on them, so that no

further control consistency needs to be verified; (c0, c3) cannot be merged: they fail

at line 12, for c0 ∨ c2 2 Rk. So Ck
1 = {c′0, c′1, c′2} with c′0 := c0 ∨ c2, c

′
1 := c1, and

c′2 := c3. Now at line 3, the index i ranges from 1 to |Ck
init| − 2, i.e., just 1.

(2) (c′1, c
′
2) cannot be merged: they failed at line 12, since c′1 ∨ c′2 2 Rk. Thus the final

cover is Ck
2 = Ck

1 = {b0 ∨ b2, b1, b3}, as displayed below.

Bloc
C = {c′

0
, c′

1
, c′

2
}

α αc′

1

c′

2

β

γ

γ
c′

0

= {b0 ∨ b2, b1, b3}
f̂α(c′n) :=







0, if n = 2
1, if n = 0, 1

This result is the same as that of Example 2.4, being achieved with one less call to

Check Mergibility than with the algorithm in the language-based framework. ¨

4.6 Example: Transfer Line

Let us revisit the transfer line system we discussed in Chapter 2, with one difference that

here we let B1 be a one-slot buffer. The STS model of this control problem is displayed
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M1 M2B1 B2 TU

1 2 3 4 5 6

8

10 4 56, 8 2,83 453

M1 M2 B1 B2TU

0 0 0 0 0

1 1 1 1 1

TL

STS Model G

above. In the present state-based framework, the distributed control objective is to design

for each component – M1, M2, and TU – a local state tracker with a corresponding

(extended) local decision maker.

By the centralized symbolic synthesis [37], we first obtain the optimal nonblocking

supervisory predicate C = R(G, sup C2P(¬P )), where P is the illegal predicate. The

BDD representation of C is the following.

M2M2

M1

TU TU

B1 B1

B2

1 0

at state 0

at state 1

The monolithic supervisor C can be implemented by the monolithic state tracker BC

and (simplified) local decision makers [37, Section 4.5.2], as shown in Figs. 4.7 and 4.8.

Now we employ the symbolic localization algorithm to compute for each agent a local
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0 1 0 1

M1 M2

TL

×

∪̇ ∪̇

Thus BC := {b ∈ B(ST ) | b |= C}

0 1 0 1

TU B1 ×

∪̇ ∪̇ 0 1

B2

∪̇

× ×

ST

Figure 4.7: Monolithic state tracker

M2

TU

B1

B2

10

B1

10

B2

10

f1 f3 f5

Figure 4.8: Local decision makers
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state tracker from the global one. The resultant state trackers with their corresponding

extended local decision makers are displayed in Fig. 4.9. Thus we have built a purely

distributed control architecture, wherein every agent tracks system state evolution locally

and makes corresponding decisions. Notice that, with the local state tracker B1
C , the

control logic of f̂1 is much simpler than that of f1.

B3

C

10

f̂1

1010

0 1

2

6

B1

C

f̂3 f̂5

0 1

2, 8

3

B2

C

0 1

4

5

B3

C

B2

CB1

C

For M1 For M2 For TU

Figure 4.9: Local state trackers and extended local decision makers
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Conclusion

5.1 Thesis Summary

This thesis has initiated the study of distributed control design for DES in the SCT frame-

work, DES that consist of independent agents whose coupling is due solely to imposed

specifications. The central problem investigated is how to synthesize local controllers for

individual agents such that these local controllers collectively realize controlled behav-

ior identical to that achieved by an external (monolithic or modular) supervisor. The

investigation has been carried out in both language- and state-based models.

In the language-based setting, a supervisor localization algorithm has been established

that solves the problem in a top-down fashion: first compute the monolithic optimal

nonblocking supervisor, and then decompose it into local controllers while preserving op-

timality and nonblockingness. Our localization algorithm generalizes a known supervisor

reduction algorithm, with the new feature that it is conducted based solely on local con-

trol information. Furthermore, to tackle the case of large-scale DES where the monolithic

supervisor is in general not feasibly computable owing to state explosion, we have pro-

posed combining the (language-based) localization algorithm with an efficient modular

control theory. This combination led us to a language-based decomposition-aggregation

128
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procedure that systematically solves the large-system problem in an alternative top-down

manner: first, design an organization of modular supervisors that achieves optimal non-

blocking control, then decompose each of these modular supervisors into local controllers

for the relevant agents.

Finally, the large-system problem was addressed in a state-based setting, specifically

the state tree structure (STS), a formalism that is already known to be efficient for mono-

lithic supervisor synthesis. In the thesis, a state-based counterpart to our language-based,

top-down solution was obtained in the form of an STS-based supervisor localization al-

gorithm.

5.2 Future Research

We suggest a few topics for future research arising from this thesis.

In Chapter 2 we developed a supervisor localization algorithm that not only preserves

the optimality and nonblocking properties of monolithic control, but aims also to mini-

mize the state size of the resulting local controllers in an effort to make their logic more

comprehensible. Minimizing state size does not, however, directly address perhaps more

intriguing issues regarding the observation scope of individual agents, namely identify-

ing quantitative tradeoffs between information and control. Of particular interest would

be to find the minimal amount of information (in some sense) necessary for individual

agents collectively to achieve optimal nonblocking control. One approach could be to de-

sign an alternative supervisor localization algorithm that aimed to minimize the number

of events observed by the resulting local controllers.

In Chapter 3 we proposed a systematic decomposition-aggregation procedure to tackle

distributed control design for large-scale DES. A shortcoming of this procedure is that the

decomposition steps rely heavily on heuristic analysis of the components’ interconnection

structure, and different ways of decomposition may well affect the efficiency of the ap-
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proach. So it is desirable, both as a practical matter and as one of theoretical interests,

to develop an effective decomposition method that can handle a rather general type of

interconnection structure, thereby automating the decomposition-aggregation procedure

as a whole.

In Chapter 4 we studied distributed control design in the state tree structure (STS)

framework, in the hope of endowing our solution with STS’s computational power. We

established a counterpart supervisor localization algorithm that solves the distributed

control problem in the same top-down fashion as that in Chapter 2. While monolithic

supervisor synthesis can be performed very efficiently (even for systems of state size

1024 or more), the localization algorithm itself has time complexity O(n3), where n is

the state size of the supervisor. This fact renders our solution inefficient when faced

with large-scale DES. One direction of future work could be to design a localization

algorithm that is polynomial in the number of BDD nodes of the monolithic supervisor,

rather than in the number of its (flat) states. An alternative could be to adapt the

decomposition-aggregation procedure directly to the STS formalism, thus tackling large

problems systematically from the ground up.

Finally, our investigation on distributed control design for DES has added “purely

distributed” architecture to the family consisting of “monolithic” and “modular” archi-

tectures. What are the advantages of our distributed architecture over the other two that

could serve to motivate our efforts? As already remarked in the Introduction, it would

be more convincing if we rigorously validated those intuitively envisaged benefits. To

put it more generally, given a specific system with a particular task, we need to analyze

quantitatively the tradeoffs among these three architectures, in such a way that we could

soundly infer which one was the best suited to the task at hand. Such a “theory of

architecture” would seem to be an ultimate objective of SCT.
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