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In this paper we study multi-agent discrete-event systems where the agents can be divided into
several groups, and within each group the agents have similar or identical state transition structures.
We employ a relabeling map to generate a ‘‘template structure" for each group, and synthesize a
scalable supervisor whose state size and computational process are independent of the number of
agents. This scalability allows the supervisor to remain invariant (no recomputation or reconfiguration
needed) if and when there are agents removed due to failure or added for increasing productivity.
The constant computational effort for synthesizing the scalable supervisor also makes our method
promising for handling large-scale multi-agent systems. Moreover, based on the scalable supervisor
we design scalable local controllers, one for each component agent, to establish a purely distributed
control architecture.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems have found increasing applications in
large-scale engineering practice where tasks are difficult to be
accomplished by a single entity. Examples include multiple ma-
chines in factories, robots in manufacturing cells, and AGVs in
logistic systems (ElMaraghy, 2005; Wu & Zhou, 2007). Although
not always the case, multi-agent systems typically can be divided
into several groups, according to different roles, functions, or ca-
pabilities. For instance, machines are grouped to process different
types of workpieces, robots to manufacture different parts of a
product, AGVs to transport items of distinct sizes, shapes and
weights. Agents in the same group often have similar or even
identical state transition structures, i.e. dynamics. This we shall
refer to as a modular characteristic.
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In this paper we study multi-agent systems with such a mod-
ular characteristic, and consider individual agents modeled by
discrete-event systems (DES). Given a control specification, one
may in principle apply supervisory control theory (Wonham &
Cai, 2019; Wonham & Ramadge, 1987) to synthesize a mono-
lithic (i.e. centralized) supervisor for the entire multi-agent sys-
tem. While the supervisor computed by this method is optimal
(i.e. maximally permissive) and nonblocking, there are two main
problems. First, the state size of the supervisor increases (ex-
ponentially) as the number of agents increases (Gohari & Won-
ham, 2000); consequently, the supervisor synthesis will become
computationally infeasible for large numbers of agents. Second,
whenever the number of agents changes (increases when more
agents are added into the system to enhance productivity or to
improve redundancy for the sake of reliability; or decreases when
some agents malfunction and are removed from the system), the
supervisor must be recomputed or reconfigured (e.g. (Nooruldeen
& Schmidt, 2014)) in order to adapt to the change.

In this paper we solve both problems mentioned above by
exploiting the modular characteristic of multi-agent systems, and
thereby designing a scalable supervisor whose state number and
computational process are independent of the number of agents.
First, owing to similar/identical transition structures of agents
in the same group, we employ a relabeling map to generate
a ‘‘template structure’’ for each group. The template structures
thus generated are independent of the agent numbers. Then
we design a supervisor based on these template structures, and

https://doi.org/10.1016/j.automatica.2019.06.012
0005-1098/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2019.06.012
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2019.06.012&domain=pdf
mailto:liu@c.info.eng.osaka-cu.ac.jp
mailto:kai.cai@eng.osaka-cu.ac.jp
mailto:zhwli@xidian.edu.cn
https://doi.org/10.1016/j.automatica.2019.06.012


2 Y. Liu, K. Cai and Z. Li / Automatica 108 (2019) 108460

prove that it is a scalable supervisor for the multi-agent system
under an easily-checkable condition. The controlled behavior of
the designed scalable supervisor needs not be optimal, but is
nonblocking.

While the designed scalable supervisor serves as a centralized
controller for the multi-agent system, it may sometimes be natu-
ral, and even more desirable, to equip each individual agent with
its own local controller. Hence we move on to design scalable
local controllers whose state numbers and computational process
are invariant with respect to the number of agents; for this
design, we employ the method of supervisor localization (Cai &
Wonham, 2010, 2016). Directly localizing the scalable supervisor
may be computationally expensive, inasmuch as the localiza-
tion method requires computing the overall plant model. To
circumvent this problem, we localize the supervisor based on the
template structures and thereby derive scalable local controllers
without constructing the underlying plant model. It is proved
that the collective controlled behavior of these local controllers
is equivalent to that achieved by the scalable supervisor.

The contributions of our work are threefold. First, our designed
centralized supervisor has scalability with respect to the number
of agents in the system. This scalability is a desired feature of
a supervisor for multi-agent systems, inasmuch as it allows the
supervisor to remain invariant regardless of how many agents
are added to or removed from the system (which may occur
frequently due to productivity/reliability concerns or malfunc-
tion/repair). Second, the local controllers we design for individual
agents have the same scalability feature, and are guaranteed to
collectively achieve identical controlled behavior as the central-
ized supervisor does. With the local controllers ‘built-in’, the
agents become autonomous and make their own local decisions;
this is particularly useful in applications like multi-robot systems.
Finally, the computation of the scalable supervisor and local
controllers is based solely on template structures and is thus in-
dependent of agent numbers as well. As a result, the computation
load remains the same even if the number of agents increases;
this is advantageous as compared to the existing supervisory
synthesis methods.

The work most related to ours is reported in (Jiao et al.,
2017, 2018). Therein the same type of multi-agent systems is
investigated and relabeling maps are used to generate template
structures. Various properties of the relabeling map are pre-
sented which characterize relations between the relabeled system
and the original one. Moreover, a supervisor is designed that is
provably independent of agent numbers, when these numbers
exceed a certain threshold value. The design of the supervisor
is, however, based on first computing the synchronous product
of all agents, which can be computationally expensive. This can
be relieved by using state tree structures (Jiao et al., 2017), but
the computation is still dependent on the agent numbers and
thus the supervisor has to be recomputed or reconfigured when-
ever the number of agents changes. By contrast, our synthesis is
based only on the template structures and thus independent of
the agent numbers; furthermore the state size of our designed
supervisor is always independent of the number of agents, with
no threshold value required.

2. Preliminaries and problem formulation

2.1. Preliminaries

Let the DES plant to be controlled be modeled by a generator
G = (Q , Σ, δ, q0,Qm), where Σ = Σc∪̇Σu is a finite event
set that is partitioned into a controllable event subset and an
uncontrollable subset, Q is the finite state set, q0 ∈ Q the initial
state, Qm ⊆ Q the set of marker states, and δ : Q × Σ → Q

the (partial) transition function. Extend δ in the usual way such
that δ : Q × Σ∗

→ Q . The closed behavior of G is the language
L(G) := {s ∈ Σ∗

| δ(q0, s)!}, where the notation δ(q0, s)! means
that δ(q0, s) is defined. The marked behavior of G is Lm(G) := {s ∈

L(G) | δ(q0, s) ∈ Qm} ⊆ L(G). A string s1 is a prefix of another string
s, written s1 ≤ s, if there exists s2 such that s1s2 = s. The prefix
closure of Lm(G) is Lm(G) := {s1 ∈ Σ∗

| (∃s ∈ Lm(G))s1 ≤ s}. We
say that G is nonblocking if Lm(G) = L(G). A language K ⊆ Lm(G)
is controllable with respect to L(G) provided KΣu ∩ L(G) ⊆ K . Let
E ⊆ Lm(G) be a specification language for G, and define the set
of all sublanguages of E that are controllable with respect to L(G)
by C(E) := {K ⊆ E | KΣu ∩ L(G) ⊆ K }. Then C(E) has a unique
supremal element supC(E) =

⋃
K∈C(E) K (Wonham & Cai, 2019).

For describing a modular structure of plant G, we first intro-
duce a relabeling map. Let T be a set of new events, i.e. Σ∩T = ∅.
Define a relabeling map R : Σ → T such that for every σ ∈ Σ ,
R(σ ) = τ for some τ ∈ T (Jiao et al., 2018). In general R is
surjective but need not be injective. For σ ∈ Σ , let [σ ] be the
set of events in Σ that have the same R-image as σ , i.e. [σ ] :=

{σ ′
∈ Σ |R(σ ′) = R(σ )}. Then Σ = [σ1]∪̇[σ2]∪̇ · · · ∪̇[σk], for some

k ≥ 1, and T can be written as T = {R(σ1), R(σ2), . . . , R(σk)}.
We require that R preserves controllable/uncontrollable status of
events in Σ; namely R(σ ) is a controllable event if and only if
σ ∈ Σc . Thus Tc := {R(σ )|σ ∈ Σc}, Tu := {R(σ )|σ ∈ Σu}, and
T = Tc∪̇Tu.

We extend R such that R : Σ∗
→ T ∗ according to

(i) R(ε) = ε, where ε denotes the empty string;
(ii) R(sσ ) = R(s)R(σ ), σ ∈ Σ and s ∈ Σ∗.
Note that R(s) ̸= ε for all s ∈ Σ∗

\ {ε}. Further extend R for
languages, i.e. R : Pwr(Σ∗) → Pwr(T ∗), and define R(L) = {R(s) ∈

T ∗
|s ∈ L}, L ⊆ Σ∗. The inverse-image function R−1 of R is given

by R−1
: Pwr(T ∗) → Pwr(Σ∗): R−1(H) = {s ∈ Σ∗

|R(s) ∈ H},
H ⊆ T ∗ (Jiao et al., 2018). Note that RR−1(H) = H , H ⊆ T ∗; while
R−1R(L) ⊇ L, L ⊆ Σ∗. We say that L ⊆ Σ∗ is (G, R)-normal if
R−1R(L)∩Lm(G) ⊆ L. Several properties of R and R−1 are presented
in the following lemma.

Lemma 1. For R : Pwr(Σ∗) → Pwr(T ∗) and R−1
: Pwr(T ∗) →

Pwr(Σ∗), the following statements are true.

(i) R(L) = R(L), L ⊆ Σ∗.
(ii) R−1(H) = R−1(H), H ⊆ T ∗.
The proof of Lemma 1 and all subsequent proofs (except for

Theorem 1) are referred to (Liu et al., 2018a).
We now discuss computation of R, R−1 by generators. Let

R : Σ∗
→ T ∗ be a relabeling map and G = (Q , Σ, δ, q0,Qm)

a generator. First, relabel each transition of G to obtain GT =

(Q , T , δT , q0,Qm), where δT : Q × T → Q is defined by

δT (q1, τ ) = q2 iff (∃σ ∈ Σ)R(σ ) = τ & δ(q1, σ ) = q2.

Hence Lm(GT ) = R(Lm(G)) and L(GT ) = R(L(G)). However, GT as
given above may be nondeterministic. Thus apply subset construc-
tion (Wonham & Cai, 2019) to convert GT into a deterministic
generator H = (Z, T , ζ , z0, Zm), with Lm(H) = Lm(GT ) and L(H) =

L(GT ).1

Lemma 2. If G is nonblocking, then the relabeled generator H is
also nonblocking.

1 Subset construction has exponential complexity in the worst case. Never-
theless, in the scalable supervisor synthesis presented in Section 3, there is no
need to compute the overall plant G, nor to relabel G; indeed the generators
that need to be relabeled in this paper have reasonably small state size, and
hence their relabeled models may be feasibly computed.
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Conversely, to inversely relabel H, simply replace each tran-
sition τ (∈ T ) of H by those σ (∈ Σ) with R(σ ) = τ ; thus one
obtains G′

= (Z, Σ, ζ ′, z0, Zm), where ζ ′
: Z × Σ → Z is defined

by

ζ ′(z1, σ ) = z2 iff (∃τ ∈ T )R(σ ) = τ & ζ (z1, τ ) = z2.

It is easily verified that Lm(G′) = R−1Lm(H) and L(G′) = R−1L(H).
Note that G′ as given above is deterministic (since H is), and has
the same number of states as H; namely inverse-relabeling does
not change state numbers. Note that Lm(G′) ⊇ Lm(G) and L(G′) ⊇

L(G). Henceforth we shall write R(G) := H and R−1(H) := G′.

2.2. Problem formulation

Let R : Σ∗
→ T ∗ be a relabeling map, and G = {G1, . . . ,Gk} be

a set of generators. We say that G is a similar set under R if there
is a generator H such that

(∀i ∈ {1, . . . , k})R(Gi) = H. (1)

One may view H as a ‘‘template’’ for G in that each generator Gi
in the set may be relabeled to H.

In this paper, the plant G is divided into l (≥ 1) groups of com-
ponent agents, each group Gi (i ∈ {1, . . . , l}) being a similar set of
generators under a given relabeling map R, i.e. Gi = {Gi1, . . . ,Gi ni}

(ni ≥ 1) and there is a generator Hi such that

(∀j ∈ {1, . . . , ni})R(Gij) = Hi. (2)

Let Gij be defined on Σij and Hi on Ti. Then R(Σij) = Ti for all
j ∈ {1, . . . , ni}.

(A1) All component agents are nonblocking and independent,
i.e. their event sets are pairwise disjoint.2

(A2) The template generators Hi (i ∈ {1, . . . , l}) have pairwise-
disjoint event sets. (This assumption can be regarded as being
imposed on the relabeling map R, since the event set Ti of Hi is
obtained by relabeling those Σij of Gij, j ∈ {1, . . . , ni}.)

As described above, the plant G represents a multi-agent DES
with a modular structure, i.e. containing multiple groups of sim-
ilar and independent agents. Although it would be more general
to consider event sharing among agents, this modular structure
is not uncommon in practical multi-agent systems (e.g. machines
in factories, robots in warehouses, and vehicles at intersections).
One example of this type of modular plant is given in Fig. 1.

Let Σ (= Σc∪̇Σu) be the event set of plant G, and E ⊆ Σ∗ a
specification language that imposes behavioral constraints on G
(thus the specification with respect to the plant is E ∩ Lm(G)). We
make the following assumption.

(A3) The specification language E can be represented by a
(nonblocking) generator E (i.e. Lm(E) = E) that satisfies R−1(R(E))
= E.

This assumption means that the specification is invariant un-
der the composition R−1

◦ R (Jiao et al., 2018). In particular,
Assumption (A3) implies that E is (G, R)-normal, i.e. R−1R(E) ∩

Lm(G) ⊆ E, which is essential in the proof of our main result
below. To check if (A3) holds, first compute R−1(R(E)) as described
in Section 2.1, and then verify if the result is DES isomorphic
(e.g. Cai & Wonham, 2016) to E. Since R−1 does not change state
number, a consequence of (A3) is that R also does not change state
number nor causes nondeterminism.

Now with plant G and specification E, the standard supervisory
control design in Wonham & Cai, 2019 proceeds as follows. First
compute the plant G by synchronous product (Wonham & Cai,
2019) of all component agents:

G =∥i∈{1,...,l} Gi, where Gi =∥j∈{1,...,ni} Gij.

2 Under (A1), Hi (i ∈ {1, . . . , l}) computed from (2) are nonblocking by
Lemma 2.

Fig. 1. Consider a small factory consisting of 3 input machines G11,G12,G13 and
2 output machines G21,G22 , linked by a buffer in the middle. Events 1j1 (j ∈

{1, 2, 3}) and 2j1 (j ∈ {1, 2}) mean that machine Gij starts to work by taking in a
workpiece; events 1j2 and 2j2 mean that Gij finishes work and outputs a work-
piece. Let Σ = Σc ∪̇Σu = {111, 121, 131, 211, 221}∪̇{112, 122, 132, 212, 222},
T = {i1, i2 | i ∈ {1, 2}}, and a relabeling map R : Σ∗

→ T ∗ with R(ij1) = i1 ∈ Tc ,
R(ij2) = i2 ∈ Tu for all i ∈ {1, 2}. Hence, under R, the plant is divided into 2
similar groups {G11,G12,G13} and {G21,G22}, with template generators H1 and
H2 respectively. It is evident that Assumptions (A1) and (A2) hold. Convention:
the initial state of a generator is labeled by a circle with an entering arrow,
while a marker state is labeled by a circle with an exiting arrow. The same
notation will be used in subsequent figures.

Under Assumption (A1), G is nonblocking. Then synthesize a
supervisor SUP (a nonblocking generator) with

Lm(SUP) = sup C(E ∩ Lm(G)).

To rule out the trivial case, we assume the following.
(A4) Lm(SUP) ̸= ∅ for ni = 1, i ∈ {1, . . . , l}. Denote this special

SUP by SUP1 henceforth, which is the supervisor when plant G
contains exactly one agent in each group.

By this synthesis method, the number of states of SUP in-
creases (exponentially) as the number of agents (ni, i ∈ {1, . . . , l})
increases, and consequently the supervisor synthesis becomes
computationally difficult (if not impossible). In addition, when-
ever the number ni of agents changes (e.g. an operating agent
malfunctions and is removed from the system, or a new agent is
added to increase productivity), the supervisor SUP has to be re-
computed or reconfigured. These two problems may be resolved
if one can synthesize a supervisor whose state size, as well as
the computational effort involved in its synthesis, is independent
of the number ni of agents, by exploiting the modular structure
of the plant G. We will call such a supervisor scalable, where
scalability is with respect to the number of agents in the plant.

With this motivation, we formulate the following Scalable
Supervisory Control Synthesis Problem (SSCSP):

Design a scalable supervisor SSUP (a nonblocking generator) such
that

(i) The number of states of SSUP and its computation are inde-
pendent of the number ni of agents for all i ∈ {1, . . . , l};

(ii) Lm(SSUP)∩Lm(G) satisfies ∅ ̸= Lm(SSUP)∩Lm(G) ⊆ Lm(SUP).

Condition (ii) requires that Lm(SSUP) ∩ Lm(G) be nonempty and
controllable with respect to L(G). It would be ideal to have
Lm(SSUP)∩Lm(G) = Lm(SUP). Inasmuch as this requirement might
be too strong to admit any solution to the problem, we shall
consider (ii) above.

3. Scalable supervisory control

In this section we design a scalable supervisor to solve the
Scalable Supervisory Control Synthesis Problem (SSCSP), under
an easily-verifiable condition. Consider the plant G as described
in Section 2.2. Let Σ (= Σc∪̇Σu) be the event set of G, and
R : Σ → T a relabeling map. The procedure of designing a
scalable supervisor is as follows, (P1)-(P4), which involves first
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synthesizing a supervisor for ‘‘relabeled system’’ under R and then
inverse-relabeling the supervisor.

(P1) Let ki ∈ {1, . . . , ni} denote the number of agents in group
i allowed to work in parallel, and compute Mi := R(∥j=1,...,kiGij).
Then compute the relabeled plant M as the synchronous product
of the generators Mi, i.e.

M :=∥i∈{1,...,l} Mi. (3)

We call M the relabeled plant under R; it is nonblocking if As-
sumptions (A1), (A2) hold. The event set of M is T = Tc∪̇Tu,
where Tc = R(Σc) and Tu = R(Σu). For computational efficiency,
one would choose ki to be (much) smaller than ni (the number
of agents in group i). When all ki = 1, we have the special case
addressed in (Liu et al., 2018b). Note that once ki are fixed, the
state sizes of Mi and M are fixed as well, and thus independent
of the number ni of agents in group i.

(P2) Compute F := R(E), where E ⊆ Σ∗ is the specification
imposed on G. We call F ⊆ T ∗ the relabeled specification imposed
on M. If Assumption (A3) holds, then R does not cause nonde-
terminism and no subset construction is needed in computing a
generator to represent F .

(P3) Synthesize a relabeled supervisor RSUP (a nonblocking
generator) such that

Lm(RSUP) = sup C(Lm(M) ∩ F ) ⊆ T ∗.

The number of states of RSUP is independent of the number of
agents, since M’s state size is so.

(P4) Inverse-relabel RSUP to derive SSUP, i.e.

SSUP := R−1(RSUP) (4)

with the marked behavior

Lm(SSUP) = R−1(Lm(RSUP)) ⊆ Σ∗.

By the inverse-relabeling computation introduced in Section 2.1,
SSUP computed in (4) has the same number of states as RSUP. It
then follows that the state size of SSUP is independent of the
number of agents in plant G (although dependent on ki fixed in
(P1)). Moreover, it is easily observed that SSUP is nonblocking
(since RSUP is), and its computation does not depend on the
number ni of agents in each group i (∈ {1, . . . , l}).

Our main result is the following.

Theorem 1. Consider the plant G as described in Section 2.2 and
suppose that Assumptions (A1), (A2), (A3), and (A4) hold. If Lm(M)
is controllable with respect to R(L(G)), then SSUP in (4) is a scalable
supervisor that solves SSCSP.

Theorem 1 provides a sufficient condition under which SSUP
in (4) is a solution to SSCSP. This condition is the controllability
of Lm(M) with respect to R(L(G)), i.e. Lm(M)Σu ∩ R(L(G)) ⊆ Lm(M).
This means that the relabeled plant should be controllable with
respect to the relabeling of the original plant G; in other words,
the relabeling operation should not remove uncontrollable events
that are allowed by G. As we shall see below, this condition is
essential in proving the controllability of Lm(SSUP) ∩ Lm(G) with
respect to L(G).

For the success of our scalable supervisory control synthesis,
it is important to be able to efficiently verify this sufficient condi-
tion. At the appearance, however, this condition seems to require
computing G which would be computationally infeasible for large
systems. Nevertheless, we have the following result.

Proposition 1. Consider the plant G as described in Section 2.2
and suppose that Assumptions (A1), (A2) hold. For each group i ∈

{1, . . . , l} if Lm(Hi) is controllable with respect to R(L(Gi1 ∥ Gi2)),
then Lm(M) is controllable with respect to R(L(G)).

Proposition 1 asserts that the controllability of Lm(M) with
respect to R(L(G)) may be checked in a modular fashion: namely
it is sufficient to check the controllability of Lm(Hi) (Hi in (2))
for each group with respect to only two component agents. As a
result, the computational effort of checking the condition is low.
Note that the condition in Proposition 1, Lm(Hi) being controllable
with respect to R(L(Gi1 ∥ Gi2)), does not always hold. An example
where this condition fails is given in (Liu et al., 2018a).

Thus under the easily checkable-sufficient condition,
Theorem 1 asserts that SSUP in (4) is a valid scalable supervisor
whose state size is independent of the number of agents in the
plant.

To prove Theorem 1 we need to the following lemmas.

Lemma 3. Consider the plant G as described in Section 2.2 and
suppose that Assumptions (A1), (A2) hold. Then M is nonblocking,
and Lm(M) ⊆ R(Lm(G)).

Lemma 4. Consider the plant G as described in Section 2.2 and
suppose that Assumptions (A1), (A2) hold. Then SSUP and G are
nonconflicting, i.e.

Lm(SSUP) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G).

Now we are ready to provide the proof of Theorem 1.

Proof of Theorem 1. That the number of states of SSUP and its
computation are independent of the number ni of agents for all
i ∈ {1, . . . , l} has been asserted following (P4) of designing SSUP.
Hence to prove that SSUP is a scalable supervisor that solves
SSCSP, we will show that ∅ ̸= Lm(SSUP) ∩ Lm(G) ⊆ Lm(SUP).

The fact that Lm(SSUP) ∩ Lm(G) is nonempty follows from As-
sumption (A4). To see this, suppose on the contrary that Lm(SSUP)
∩Lm(G) = ∅, which implies that no behavior of the agents is legal;
then the same implication also holds for the special case where
there is only one agent in each group, namely Lm(SUP1) = ∅. But
this is in contradiction with Assumption (A4).

It remains to show that Lm(SSUP) ∩ Lm(G) ⊆ Lm(SUP) =

sup C(E ∩ Lm(G)). For this we will prove that (i) Lm(SSUP) ∩ Lm(G)
is controllable with respect to L(G), and (ii) Lm(SSUP) ∩ Lm(G) ⊆

E ∩ Lm(G). For (i) let s ∈ Lm(SSUP) ∩ Lm(G), σ ∈ Σu, sσ ∈ L(G).
Then

s ∈ Lm(SSUP) ∩ Lm(G)
⇒(∃t)st ∈ Lm(SSUP)
⇒st ∈ R−1(Lm(RSUP)) (by (P4))
⇒R(st) ∈ Lm(RSUP) ⊆ Lm(M)

⇒R(s) ∈ Lm(RSUP) & R(s) ∈ Lm(M).

Since sσ ∈ L(G), we have R(s)R(σ ) ∈ R(L(G)) where R(σ ) ∈

Tu (since σ ∈ Σu). It then follows from the controllability of
Lm(M) with respect to R(L(G)) that R(s)R(σ ) ∈ Lm(M) = L(M)
(M is nonblocking by Lemma 3). Now use the controllability of
Lm(RSUP) with respect to L(M) to derive R(s)R(σ ) ∈ Lm(RSUP),
and in turn

sσ ∈ R−1R(sσ ) ⊆ R−1Lm(RSUP)

⇒sσ ∈ R−1(Lm(RSUP)) = Lm(SSUP).

In the derivation above, we have used Lemma 1(ii). In addition,
since sσ ∈ L(G) = Lm(G) (G is nonblocking by Assumption
(A1)), we have sσ ∈ Lm(SSUP) ∩ Lm(G). Under Assumptions (A1),
(A2), it follows from Lemma 4 that SSUP and G are noncon-
flicting, i.e. Lm(SSUP) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G). Hence sσ ∈

Lm(SSUP) ∩ Lm(G), which proves (i).
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For (ii) let s ∈ Lm(SSUP) ∩ Lm(G). Then

s ∈ R−1Lm(RSUP) ∩ Lm(G)
⇒s ∈ Lm(G) & R(s) ∈ Lm(RSUP) ⊆ F = R(E)

⇒s ∈ Lm(G) & s ∈ R−1R(s) ⊆ R−1R(E).

Since E is (G, R)-normal (by Assumption (A3)), i.e. R−1R(E) ∩

Lm(G) ⊆ E, we derive s ∈ E ∩ Lm(G), which proves (ii). The proof
is now complete. □

From the proof above, note that if R(Lm(SUP)) ⊆ Lm(RSUP),
then we derive Lm(SUP) ⊆ R−1R(Lm(SUP)) ∩ Lm(G) ⊆ R−1(Lm
(RSUP)) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G). This leads to the following.

Corollary 1. Consider the plant G as described in Section 2.2 and
suppose that Assumptions (A1), (A2), (A3), (A4) hold. If Lm(M) is
controllable with respect to R(L(G)), and R(Lm(SUP)) ⊆ Lm(RSUP),
then SSUP in (3) is the least restrictive scalable supervisor that solves
SSCSP (i.e. Lm(SSUP) ∩ Lm(G) = Lm(SUP)).

Although the least restrictive scalable solution in Corollary 1
is of theoretical interest, the additional condition R(Lm(SUP)) ⊆

Lm(RSUP) may be too strong and its verification requires com-
puting the monolithic supervisor which is infeasible for large
multi-agent systems.

Alternatively, one may explore the threshold thdi of ki (the
number of agents in group i that are allowed to work in parallel)
such that if ki ≥ thdi, then the scalable supervisor SSUP achieves
the least restrictive controlled behavior (i.e. Lm(SSUP) ∩ Lm(G) =

Lm(SUP)). For the small factory example in Fig. 1, the threshold for
each of k1 and k2 is 2, the buffer size. More generally, for a small
factory consisting of n1 input machines, n2 output machines, and
a buffer of size b (≤ n1, n2), the threshold for each of k1 and k2
is b. A thorough study on the threshold of ki that achieves the
least restrictive controlled behavior will be pursued in our future
work.

Remark 1. In Theorem 1, the condition that Lm(M) is controllable
with respect to R(L(G)) rules out the case where agent models
start with an uncontrollable event. To address this case, one
approach is to replace the relabeled plant M in (P1) by M := R(G);
the rest (P2)-(P4) remain the same. Suppose that the specifica-
tion E ⊆ Lm(G) is controllable with respect to L(G). Then it is
verified that R(E) is controllable with respect to R(L(G)) = L(M)
(under Assumptions (A1), (A2)). Hence the resulting Lm(SSUP) =

R−1R(E). Therefore, since E is (G, R)-normal (by Assumption (A3)),
we derive Lm(SSUP) ∩ Lm(G) = R−1R(E) ∩ Lm(G) = E = Lm(SUP).
The above reasoning leads to the following.

Corollary 2. Consider the plant G as described in Section 2.2 and
suppose that Assumptions (A1), (A2), (A3), (A4) hold. Also suppose
that the relabeled plant M in (P1) is M := R(G). If the specification
E ⊆ Lm(G) is controllable with respect to L(G), then SSUP in (3)
solves SSCSP (with Lm(SSUP) ∩ Lm(G) = Lm(SUP)).

Although Corollary 2 allows agents to start with an uncontrol-
lable event, the assumption that M = R(G) requires computing
the plant model G which is infeasible for large multi-agent sys-
tems. A special case where E is controllable with respect to
L(G) is when the specification E = Lm(G). For the more general
case where E is not controllable with respect to L(G), we shall
postpone the investigation to our future work.

4. Scalable distributed control

So far we have synthesized a scalable supervisor SSUP that
effectively controls the entire multi-agent system, i.e. SSUP is a
centralized controller. For the type of system considered in this

paper which consists of many independent agents, however, it
is also natural to design a distributed control architecture where
each individual agent acquires its own local controller (thereby
becoming autonomous).3

Generally speaking, a distributed control architecture is ad-
vantageous in reducing (global) communication load, since local
controllers typically need to interact only with their (nearest)
neighbors. A distributed architecture might also be more fault-
tolerant, as partial failure of local controllers or the corresponding
agents would unlikely to overhaul the whole system.

For these potential benefits, we aim in this section to design
for the multi-agent system a distributed control architecture. In
particular, we aim to design local controllers that have the same
scalability as the centralized SSUP; namely their state sizes and
computation are independent of the number of agents in the
system. Thus when some agents break down and/or new agents
are added in, there is no need of recomputing or reconfiguring
these local controllers.

Let us now formulate the following Scalable Distributed Con-
trol Synthesis Problem (SDCSP):

Design a set of scalable local controllers SLOCij (nonblocking gen-
erators), one for each agent Gij (i ∈ {1, . . . , l}, j ∈ {1, . . . , ni})such
that

(i) The number of states and computation of SLOCij are indepen-
dent of the number ni of agents for all i ∈ {1, . . . , l};

(ii) the set of SLOCij is (collectively) control equivalent to the
scalable supervisor SSUP with respect to plant G:⋂
i∈{1,...,l}
j∈{1,...,ni}

Lm(SLOCij) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G).

To solve SDCSP, we employ a known technique called su-
pervisor localization (Cai & Wonham, 2010, 2016), which works
to decompose an arbitrary supervisor into a set of local con-
trollers whose collective behavior is equivalent to that of super-
visor. Since we have synthesized SSUP, the scalable supervisor, a
straightforward approach would be to apply supervisor localiza-
tion to decompose the associated controlled behavior Lm(SSUP)∩
Lm(G). This approach would require, however, the computation of
G which is infeasible for large systems and causes the resulting
local controllers non-scalable. Instead we propose the following
procedure for designing scalable local controllers SLOCij, for i ∈

{1, . . . , l} and j ∈ {1, . . . , ni}.
(Q1) Apply supervisor localization to decompose the rela-

beled supervisor RSUP into relabeled local controllers RLOCi, i ∈

{1, . . . , l}, such that (by Cai & Wonham, 2010, 2016)⋂
i∈{1,...,l}

Lm(RLOCi) ∩ Lm(M) = Lm(RSUP).

(Q2) Compute trim(RLOCi ∥ Mi), where trim(·) operation
removes blocking states (if any) of the argument generator.

(Q3) Inverse-relabel trim(RLOCi ∥ Mi) to obtain SLOCij (j ∈

{1, . . . , ni}), i.e.

SLOCij := R−1(trim((RLOCi ∥ Mi))). (5)

Notice that the computations involved in the above procedure
are independent of the number ni (i ∈ {1, . . . , l}) of agents. In
(Q1), computing RLOCi by localization requires computing RSUP
and M (in (P3) and (P1) respectively), both of which are indepen-
dent of ni (although dependent on ki fixed in (P1)). In (Q2), for the
synchronous product both RLOCi and Mi are independent of ni,

3 In the centralized architecture, the communication from SSUP to the agents
is typically done via event broadcasting. On the other hand, in a distributed
architecture, the communication between local controllers of the agents is
naturally pairwise.
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Fig. 2. Transfer line: system configuration and component agents. Event 1i1
(i ∈ {1, . . . , n}) means that G1i starts to work by taking in a workpiece, and 1i2
means that G1i finishes work and deposits a workpiece to buffer B1; event 2j1
(j ∈ {1, . . . ,m}) means that G2j starts to work by taking in a workpiece, and
2j2 means that G2j finishes work and deposits a workpiece to buffer B2; event
3l1 (l ∈ {1, . . . , k}) means that G3l starts to work by testing a workpiece, 3l0
means that G3l detects a fault and sends the faulty workpiece back to buffer B1,
and 3l2 means that G3l detects no fault and output the successfully processed
workpiece.

while trim may only reduce some states. Finally in (Q3), inverse-
relabeling does not change the number of states. Therefore the
state number of the resulting scalable local controller SLOCij and
its computation are independent of the number ni of agents.

The synchronous product in (Q2) may produce blocking states;
such an example is provided in Section 5. Thus the trim operation
is needed to ensure that the resulting SLOCij is a nonblocking
generator. In addition, note that SLOCij are the same for all
j ∈ {1, . . . , ni}. This means that every agent Gij in the same
group Gi obtains the same local controller, although each lo-
cal controller will be dedicated to enabling/disabling only the
controllable events originated from its associated agent.

The main result of this section is the following.

Theorem 2. The set of SLOCij (i ∈ {1, . . . , l}, j ∈ {1, . . . , ni}) as in
(5) is a set of scalable local controllers that solves SDCSP.

5. Illustrating example

We present an example of a transfer line system, adapted
from (Wonham & Cai, 2019). As displayed in Fig. 2, transfer line
consists of machines (G11, . . . ,G1n; G21, . . . ,G2m) and test units
(G31, . . . ,G3k), linked by two buffers B1 and B2 both with capac-
ities 1. The generators of the agents are shown in Fig. 2. Based on
their different roles, the machines are divided into 3 groups: G1 =

{G11, . . . ,G1n}, G2 = {G21, . . . ,G2m}, and G3 = {G31, . . . ,G3k}.
Let the relabeling map R be given by R(1i1) = 11, R(1i2) =

12, i ∈ {1, . . . , n}, R(2j1) = 21, R(2j2) = 22, j ∈ {1, . . . ,m}, and
R(3l0) = 30, R(3l1) = 31, R(3l2) = 32, l ∈ {1, . . . , k}, where
odd-number events are controllable and even-number events are
uncontrollable. It is easily observed that Assumptions (A1), (A2)
hold.

The specification is to avoid underflow and overflow of buffers
B1 and B2, which is enforced by the two generators E1 and
E2 in Fig. 3. Thus the overall specification E is E = Lm(E1) ∩

Lm(E2), which can be verified to satisfy Assumption (A3). It is
also verified that Assumption (A4) holds. In addition, it is checked
that Lm(Hi) := Lm(R(Gi1)) (i = 1, 2, 3) is controllable with
respect to R(L(Gi1 ∥ Gi2)). By Proposition 1, we have that Lm(M)
is controllable with respect to R(L(G)). Therefore the sufficient
condition of Theorem 1 is satisfied.

By the procedure (P1)-(P4) with k1 = 2, k2 = 3, k3 = 1,
we design a scalable supervisor SSUP, displayed in Fig. 3. The
state size of SSUP and its computation are independent of the
agent numbers n,m, k. Moreover, the controlled behavior of SSUP

Fig. 3. Transfer line: specification generators E1, E2, and scalable supervisor
SSUP.

Fig. 4. Transfer line: scalable local controllers (SLOC1i for machine G1i , i ∈

{1, . . . , n}; SLOC2i for machine G2j , j ∈ {1, . . . ,m}; SLOC3i for test unit G3l ,
l ∈ {1, . . . , k}).

is in fact equivalent to that of the monolithic supervisor SUP,
i.e. Lm(SSUP) ∩ Lm(G) = Lm(SUP), for arbitrary fixed values of
n,m, k. This is owing to that both buffers have only one slot, and
thus the restriction due to relabeling is already enforced by the
monolithic supervisor in order to satisfy the specification.

Scalable distributed control. Following the procedure (Q1)-
(Q3) in Section 4, we compute the scalable local controllers for
the individual agents. In (Q2), certain synchronous products turn
out to be blocking, as displayed in Fig. 4 (upper part). Hence the
trim operation in (Q2) is important to ensure that the resulting
local controllers are nonblocking. In Fig. 4 (lower part), SLOC1i (6
states) is for the machine G1i, i ∈ {1, . . . , n}; SLOC2j (4 states)
for the machine G2j, j ∈ {1, . . . ,m}; and SLOC3i (6 states) for
the test unit G3l, l ∈ {1, . . . , k}. It is verified that the desired
control equivalence between the set of local controllers and the
supervisor SSUP in Fig. 3 is satisfied, i.e. the condition (ii) of
SDCSP holds.

The control logic of the scalable local controllers is as follows.
First for SLOC1i (i ∈ {1, . . . , n}), which controls only the event 1i1
of machine G1i, observe that event 1i1 is disabled at states 1, 2,
and 4 to protect buffer B1 against overflow, while it is disabled at
state 5 due to the restriction of relabeling. As mentioned above,
relabeling allows parallel operations of two machines in group
one. Next for SLOC2j (j ∈ {1, . . . ,m}), which is responsible only
for event 2j1 of machine G2j, observe that event 2j1 is disabled at
states 0, 2 and 3. This is to protect buffer B1 against underflow
and buffer B2 against overflow. Finally for SLOC3l (l ∈ {1, . . . , k}),
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which is responsible only for event 3l1 of test unit G3l, observe
that event 3l1 is disabled at states 0, 1, 3, 4 and 5. This is to protect
buffer B2 against underflow and buffer B1 against overflow.

6. Conclusions

We have studied multi-agent discrete-event systems that can
be divided into several groups of independent and similar agents.
We have employed a relabeling map to generate template struc-
tures, based on which scalable supervisors are designed whose
state sizes and computational process are independent of the
number of agents. We have presented a sufficient condition for
the validity of the designed scalable supervisors, and shown that
this condition may be verified with low computational effort.
Moreover, based on the scalable supervisor we have designed
scalable local controllers, one for each component agent. An ex-
ample has been provided to illustrate our proposed synthesis
methods.
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