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Multi-Agent Pickup and Delivery

Fumiya Kudo and Kai Cai , Senior Member, IEEE

Abstract—The Multi-Agent Path Finding (MAPF) and its ex-
tension, Multi-Agent Pickup and Delivery (MAPD), have received
much attention in academia. In industry, on the other hand, auto-
matic control of teams of robots and AGVs on factory floors and
logistic warehouses for pickup and delivery operations have also
been studied intensively. Currently, MAPD problem formulation
does not fully capture important aspects of many real-world indus-
trial applications, e.g., MAPD allocates only one task at a time for
each agent, payload capacity for each agent is ignored, and pickup
& dropoff operations are assumed to be done immediately. In this
letter, we extend MAPD problem to a multi-task setting where each
agent is allocated multiple tasks considering payload capacity as
well as pickup & dropoff cost. We propose an online multi-task
MAPD algorithm which is a combination of MAPF and Traveling
Salesman Problem (TSP) algorithm. Comparisons between the
proposed and conventional MAPD show that the proposed MAPD
is able to achieve 18%−38% shorter makespan paths in wide
range of agent numbers. We also examine the behavior of the
proposed online multi-task MAPD by changing payload capacity
distribution and pickup & dropoff cost. Simulation results indicate
that increase of pickup cost can largely increase the makespan
when agent number is small; on the other hand, increase of dropoff
cost tend to increase the makespan when agent number is large.
Our empirical study also demonstrates that the proposed online
multi-task MAPD is applicable to large scale environment (e.g.,
agent number = 300) in an online manner.

Index Terms—Discrete event system, multi-agent path finding,
multi-agent pickup and delivery, traveling salesman problem,
warehouse automation.

I. INTRODUCTION

THERE is large demand for logistic automation by multiple
moving robots (agents) in warehouses and factories due

to increasing labor shortage [1]. To meet such demand, it is
essential to develop sophisticated algorithms for planning and
controlling multi-agent systems to serve tasks dynamically ap-
pearing in complex environment. In such multi-agent systems,
collision-free paths must be provided to ensure that agents
reach their destinations without collisions, while minimizing
the sum of their travel times. This problem is known as Multi-
Agent Path-Finding (MAPF), which has recently received a lot
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Fig. 1. Illustration of MAPF and MAPD application in logistic warehouse.
Agents are depicted by colored circle at their initial locations. The walls and
the shelves are depicted by black and gray squares, respectively. Products to be
picked up are placed at shelves. The dropoff location is depicted by the purple
square at the center bottom of the field.

of attention [2]. A prominent application is Kiva systems in
Amazon’s warehouse and distribution centers [1]. MAPF is an
optimization problem that aims to find collision-free paths on
a graph for multiple agents with the objective of minimizing a
task-completion time called makespan, or an average number of
time steps to complete all tasks called service time.

There have been several extensions of MAPF: Multi-Agent
Pickup and Delivery (MAPD), Task-Allocation and Path Find-
ing (TAPF), and Lifelong MAPF. These extensions are different
combinations of delivery task allocation with the MAPF prob-
lem [3], [4]. An illustrative application of MAPF and MAPD in
logistic warehouse is shown in Fig. 1. This is a snapshot of the
initial state, where all agents (colored circles) are at their initial
locations in the field. When picking tasks arrive which request
agents to pickup the target products, agents will be allocated
exactly one task at a time. Then, task allocated agents will
start from their initial locations and move to the shelves (gray
squares) where target products are stored. After picking up target
products, agents will be requested to bring the products to the
goal location, i.e., dropoff location (purple square at the center
bottom of the field). After finishing the assigned tasks, agents
will return to their initial locations and wait for the next request.

Various approaches to solving MAPD problem have been
proposed, such as coupled / decoupled, centralized / decen-
tralized MAPF approaches in online / offline setting [3], [5],
[6], [7], [8], [9]. However, these approaches do not capture
important characteristics of many real-world applications such
as: MAPD allocates only one task at a time for each agent,
payload capacity for each agent is ignored, and pickup & dropoff
operations are assumed to be done immediately. The MAPD
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problem with multiple tasks assignment (multi-task MAPD)
appears for example, in the printed circuit board manufacturing
plant. In this case, agents are requested to pickup hundreds of
required chips from the shelves. Each printed board requires
different combination of chips, so each agent is assigned to pick
all the different chips required for one target printed board. Then,
printed boards and corresponding chips are sent together to the
next assembly process. For such an application, we need to take
into account the following aspects at the same time: 1. shortest
paths for each agent’s trip to the destination, 2. efficient task
execution order, and 3. avoid collision among all agents.

In this letter, we formulate a multi-task MAPD and propose
an efficient online solution algorithm. The contributions of this
letter are as follows:
� We extend the conventional single-task MAPD problem

to a multi-task setting where i) each agent is allocated
with multiple tasks in an online manner; ii) payload ca-
pacity of each agent is considered as a constraint; and
iii) pickup & dropoff times are considered as cost. To
our best knowledge, this extended MAPD is new and no
existing algorithm can be directly applied to solve this
extended problem.

� We propose an online algorithm to solve the formulated
multi-task MAPD problem which is the combination of
MAPF and travelling salesman problem (TSP) algorithms.
The challenge is that we cannot solve the path planning
problem and TSP separately since path planning and TSP
are dependent on each other. In order to find optimal short-
est paths, we need to recalculate collision-free paths every
time when searching TSP paths, which is time consuming
for online use in the real-world. Our proposed algorithm
effectively deals with this challenge and achieves sufficient
efficiency for online use.

� We conduct extensive experiment to compare our proposed
MAPD solution with the existing algorithms. Special focus
has been given to three parameters: task group arrival fre-
quency, maximum task group size, and agent number. Em-
pirial evidence shows that: our proposed online algorithm
achieves 18%−38% shorter makespan paths compared to
the conventional MAPD algorithms (i.e., Token Passing)
in wide range of task group arrival frequency, maximum
task group size, and agent numbers. We also show that the
proposed online multi-task MAPD can be applied to large
scale environment (e.g., agent number = 300) in an online
manner.

� Moreover we change payload capacity distribution and
pickup & dropoff cost to evaluate makespan and runtime.
We find by simulation that: increase of pickup cost can
largely increase the makespan when agent number is small;
on the other hand, increase of dropoff cost tend to increase
the makespan when agent number is large.

The remaining parts of this letter are organized as follows: We
first introduce related approaches and algorithms for MAPF and
MAPD (Section II). Then, we present our problem setting: multi-
task MAPD (Section III). Next, we describe our proposed online
algorithm for solving multi-task MAPD in detail (Section IV).
After that, we conduct extensive experiment in which we apply

our proposed online multi-task MAPD with various parameters
(Section V). Finally, we conclude the letter (Section VI).

II. RELATED WORK

We introduce and compare existing approaches and algirithms
for MAPF, MAPD and other related problems. MAPF problems
and approaches can be categorized based on different aspects,
e.g., online / offline task arrival setting, centralized / decentral-
ized and coupled / decoupled approaches. Online task arrival
means that the problem is a lifelong setting where tasks can
enter the system at any time. Therefore, assigning agents to tasks
and planning paths accordingly cannot be done in advance but
rather need to be done during execution in real-time. In contrast,
offline means that we know all the information about arriving
tasks a priori. Coupled approach is a complete MAPF algorithm
which can find optimal solutions [10], [11], [12]. However,
finding an optimal solution is NP-hard, and consequently these
optimal algorithms do not scale in the number of agents. In
contrast, decoupled approach is an incomplete MAPF algo-
rithm which finds sub-optimal solutions fast [13]. Centralized
approach assumes that all agents know all information of other
agents and the environment. On the other hand in decentralized
approach, each agent searches its own path based on locally
observable information from (typically) neighboring agents [8].
We introduce three representative MAPF algorithms.

Conflict-based Search (CBS) [10] is a coupled and centralized
MAPF algorithm. CBS is based on a two-level MAPF algorithm.
At the high level, CBS calculates a shortest path for each agent
ignoring collisions with other agents. Then, CBS chooses and
resolves a collision by generating two child nodes, each with an
additional constraint that prohibits one of the agents involved in
the collision from being at the collision location and timestep.
Then, the low level replans the paths of the agents with the new
constraints. CBS is one of state-of-the-art MAPF algorithms that
has many variants [11], [12].

Cooperative A* (CA*) [13] is a decoupled and centralized
MAPF algorithm. CA* uses a special type of A* called space-
time A*. Space-time A* uses a reservation table which is a map
consisting of two elements: timestep t, and location coordinates
(x, y). CA* is based on a simple prioritized-planning scheme:
Each agent computes, in the given priority order, greedily by
searching for a goal, avoiding reserved states in the reserva-
tion table. Then, mark each agent’s route in the reservation
table. There are variants of cooperative A*: Hierarchical Co-
operative A* (HCA*), Windowed Hierarchical Cooperative A*
(WHCA*) [13]. CA* is widely used in practice due to its small
runtime. Note that CA* is sub-optimal since it runs by predefined
priority order.

Priority inheritance with backtracking (PIBT) [8] is a decou-
pled and decentralized MAPF algorithm. PIBT is one of the
prioritized planning and is based on WHCA* [13] with a window
size of one. PIBT resolves collisions by assigning one of the
agents involved in the collisions a higher priority than the other
agents. PIBT is scalable and can be applied to online setting
since it is fully decentralized. However, PIBT may have chance
to fail resolving collision since it is a decentralized approach.
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In addition to the above three representative algorithms, there
are many other variants of MAPF problems and approaches.
ML-MAPF [14] solves MAPF by a machine learning approach.
x* [15] is a window-based real-time MAPF algorithm which
assumes a sparse environment. GA-based MAPF [16] is a multi-
objective version of MAPF using Genetic Algorithm (GA).
Multi-Goal MAPF [17] studies the problem where agents travel
multiple destinations.

MAPD (also TAPF, lifelong-MAPF) is an extension of MAPF,
which requires both the assignment of agents to tasks in a
lifelong setting and the planning of collision-free paths. CO-
BRA [7] is one of the initial online and complete algotithms
for MAPD. Token Passing (TP) and Token Passing with Time
Swaps (TPTS) [6] are decoupled and centralized approaches
based on CA* [13]. TP and TPTS are incomplete, however
widely applied because they are fast enough for online imple-
mentation in the real-world. Multi-Label A* (MLA) [18] is an
improved algorithm of TPTS. TCBS [5] is a complete MAPD
algorithm based on CBS which can find optimal solution; how-
ever, examined environment is small (map size of 8× 8, agent
size < 10). M-TA-Prioritized-MAPD [3] is an offline MAPD
which uses TSP for optimizing an order of task allocation.
M-TA-Prioritized-MAPD achieves better throughput compared
to other MAPD approaches (e.g., TPTS); however, the problem
setting is offline and the computation time for calculating TSP
is excluded from the evaluation. Rolling-Horison Collision Res-
olution (RHCR) [9] is one of state-of-the-art MAPD approach,
which is based on WHCA* [13] that sets time window for
searching a collision-free path.

Other related problems are Dynamic Vehicle Routing Problem
(DVRP) [19] and TSP. The purpose of VRP is to search for the
shortest routes for multiple agents (e.g., trucks); however VRP
does not consider collision among agents. TSP is a classical
NP-hard optimization problem which is well studied and has
many solvers. There are two types of TSP solvers which are com-
plete and incomplete solvers. One of the representative complete
solver is the integer linear programming model with Miller-
Tucker-Zemlin (MTZ) formulation [20]. On the other hand,
many incomplete solvers have been proposed, e.g., Christofides
algorithm [21], 2-opt method [22], and nearest neighbor
method.

III. PROBLEM SETTING

In this section, we formalize a multi-task MAPD problem that
is to find collision-free paths for multiple agents to accomplish
tasks arriving in an online manner.

Consider an undirected connected grid graph G = (V,E),
whose vertices V correspond to locations v = (x, y) ∈ V and
whose edges E correspond to connections between four lo-
cations, namely north, east, west, and south that the agents
can move along. Also consider a set of m agents A =
{a1, a2, . . ., am} and let vi(t) ∈ V denote the location of agent
ai in discrete timestep t. Agent ai starts in its initial location
vi(0). In each timestep t, an agent either waits in its current
location vi(t) or moves to an adjacent location. Both move and
wait actions have unit duration.

A task s requests an agent to pick up a target product located
at a shelf vs ∈ V . In our multi-task setting, there are generally
multiple tasks which request to be picked up together and are
gathered in a task group TGl = {sl1, . . . , sln}. Agents are allo-
cated task groups instead of a single task. Note that a task group
has at least one task. In this problem, we need to consider a trip
order for the agents in order to maximize the throughput while
avoid collision among them. Each agent i has payload capacity
constraint 1 ≤ ci which sets upper bound for the maximum
number of products agent i can carry. This means that the target
task group can be allocated to agent i only when ci is larger
than or equal to the number of tasks in the task group. When a
task group TGl is assigned to agent i, this agent moves from its
initial location vi(0) to the requested shelf locations vl1, . . . , v

l
n

(n ≤ ci) to pick up the target products, and then moves to the
unique goal locationvg ∈ V to dropoff those products. The agent
moves back to its initial location when the agent finishes the
assigned task group. Note that conventional MAPD is a special
case of multi-task MAPD which considers that every task group
has only one task. A task group can be allocated only to vacant
(idle) agents, i.e., agents staying at their initial location with no
task group assigned. Pickup & dropoff action may take duration
as move and wait. Moreover, we consider that this multi-task
MAPD problem is online, i.e., we do not know task group
information a priori, and new task groups are added to a task
group set T randomly at each timestep. We assume that there is
a task group assigner outside of our MAPD system and a vacant
agent is assigned a task group from T at each timestep when the
agent’s payload capacity is greater or equal to the number of
tasks in the task group.

In planning paths for the agents, collisions between agents
must be avoided. A collision occurs when two agents ai and aj
occupy the same location at the same timestep (called vertex
conflict [23]), that is, (∃t)vi(t) = vj(t); or traverse the same
edge in opposite directions at the same timestep (called a swap-
ping conflict [23]), that is, (∃t)vi(t) = vj(t+ 1) and vj(t) =
vi(t+ 1). A path is a sequence of locations with associated
timesteps, that is, a mapping from an interval of timesteps to
locations. The objective of multi-task MAPD is to compute
collision-free paths for the agents to accomplish task groups
assigned online and maximize the throughput, i.e., minimize
the makespan (difference between first release time and latest
completion time).

IV. PROPOSED TSP-BASED ONLINE MULTI-TASK MAPD

In this section, we present our proposed TSP-based online
multi-task MAPD algorithm. The basic idea of our proposed
algorithm is the combination of space-time A*-based MAPF
and TSP solver. Our algorithm is capable of dealing with online
MAPD (i.e., assigning agents to tasks and path planning need
to be done during executing in real-time) and guarantees to
find collision-free paths for all agents. To this end, we choose
centralized and decoupled MAPF approach.

In multi-task MAPD, task group which consists of multiple
tasks will be assigned so that we need to consider the execution
order of assigned tasks. We use TSP solvers to tackle this
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problem. In order to guarantee solving TSP in real-time, we use
complete TSP solver (e.g., integer programming problem with
Miller-Tucker-Zemlin formulation [20]) for small task group
size whereas use incomplete TSP solver (e.g., 2-opt method [22])
for large group size. On the other hand, for the path planning
part, we use space-time A*. We suitably combine space-time
A* and TSP solvers to construct our online multi-task MAPD
algorithm.

Pseudo-code for the proposed online multi-task MAPD algo-
rithm is shown in Algorithm 1. Here we list the key notation:
� G denotes an undirected connected grid graph.
� A = {a1, a2, . . . , am} denotes all m agents. Agent ai has

its initial location = (xi, yi) and payload capacity = ci.
� TASKLIST contains arrived task groups. A task group
TGl = {sl1, . . . , sln} is consisted of n tasks.

� VACANTAGENTS is a list of agents with no task allocated.
� RESERVE holds reserved paths of previous task allocated

agents. RESERVE is a hush map consisting of two elements:
timestep t, and location coordinate (x, y)

The algorithm executes as follows.
1) lines 1–4: Initialize A, TASKLIST, VACANTAGENTS, and

RESERVE.
2) lines 5–6: TASKGROUPGENERATOR function adds new task

group TGl, if any, to the TASKLIST at each timestep.
3) lines 7–11: If the TASKLIST and the VACANTAGENTS are

not empty, task groups will be allocated to agents. CA-
PACITY function searches agents satisfying capacity con-
straint from VACANTAGENTS. RANDOM function randomly
chooses agent ai from A′. In case there is no agent in
VACANTAGENTS that satisfies the capacity constraint(s)
of the task group(s) in the TASKLIST, task allocation will
not occur and the unassigned task group(s) are kept in the
TASKLIST until the next timestep. On the other hand,
if there are fewer vacant agents in VACANTAGENTS
than the number of task groups in the TASKLIST, then
a subset of task groups will be allocated to vacant agents
that satisfy the respective capacity constraints and the rest
unassigned task groups are kept in the TASKLIST until
the next timestep. In ALLOCATION function, a task group
TGl will be allocated to agent ai if the task group TGl

satisfies agent ai’s payload capacity constraint.
4) lines 12–13: CALCDISTANCEMATRIX function [13] calcu-

lates the distance matrix between tasks in the same task
group TGl using A* [24]. SOLVETSP function [20], [22]
finds the shortest path p by solving TSP for the task group
TGl including the initial and the goal location of the
allocated agent ai.

5) lines 14–16: RESOLVECOLLISION function [13] converts
the shortest path p to a collision free path p′ as follows:
a) If p violates RESERVE, space-time A* adds p one

timestep to stay at the same location.
b) If p causes deadlock (including swapping conflict)

which means that no agent can move, space-time A*
adds one timestep to stay at the initial location of the
agent and restart space-time A*.

c) UPDATE function registers the accepted path p′ to the
RESERVE.

Algorithm 1: Proposed Online Multi-Task MAPD.

Input: graph G, set of agents A = {a1, . . . , am}
Output: RESERVE

1: initialize ai ← (initial location= (xi, yi), capacity= ci)
2: TASK LIST← ∅
3: VACANT AGENTS← {a1, a2, . . . , am}
4: RESERVE← ∅
5: for timestep= 1 to MAXTIME do
6: TASKLIST← TASKGROUPGENERATOR()
7: for l = 0 to size(TASKLIST) do
8: A′ ← CAPACITY(VACANTAGENTS, TGl)
9: if size(A′) > 0 then

10: ai ← RANDOM(A′)
11: ALLOCATION(TGl, ai)
12: CALCDISTANCEMATRIX(ai, G)
13: p← SOLVETSP(ai)
14: p′ ← RESOLVECOLLISION(p,G, RESERVE)
15: UPDATE(RESERVE, p′, ai)
16: VACANTAGENTS.delete(ai)
17: end if
18: end for
19: DELETE(TASKLIST)
20: MOVEAGENTS(A)
21: end for

d) VACANTAGENTS.delete function deletes ai from VA-
CANTAGENTS.

6) line 19: DELETE function deletes allocated task groups
from TASKLIST.

7) line 20: MOVEAGENTS function moves task group allo-
cated agents one step forward.

Remark 1: We summarize the key designs that enable
Algorithm 1 to handle multi-task MAPD.
� Since a task group generally contains multiple tasks, it must

be verified if an agent has enough capacity to handle the
number of tasks. This is done in line 8.

� The order of serving multiple tasks is crucial in minimiz-
ing makespan. To optimize the order, a matrix containing
pairwise distances of the tasks needs to be computed —
this is done in line 12.

� With the distance matrix computed in line 12, the order for
a selected agent to serve the multiple tasks is optimized by
a TSP solver in line 13.

Remark 2: The complexity of Algorithm 1 is O(N3mC3),
whereN is the total number of tasks (i.e., sum of tasks in all task
groups), m is the agent number, C is the number of cells in the
map (i.e., number of nodes in the grid graphG = (V,E)). To see
this, observe that the main part contributing to the complexity
is the for-loop of lines 7-18. In particular, the following lines of
computation have high complexity.
� Line 12 (CALCDISTANCEMATRIX): O(N2 C2)

The distance matrix has at most N2 entries, and each entry
is obtained by an A* computation of O(C2) [25].

� Line 13 (SOLVETSP): O(N2)
The TSP has at most N tasks to route, for which the 2-opt
algorithm we adopt has the complexity O(N2) [22].
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TABLE I
COMPARISON BETWEEN PROPOSED AND CONVENTIONAL MAPD (TASK GROUP ARRIVAL FREQUENCY=0.2)

� Line 14 (RESOLVECOLLISION): O(N2mC3)
Each agent has at mostN tasks to serve and each task takes
at most C steps; hence the total number of steps for all
agents to finish all tasks is upper bounded by NmC. Each
of such steps may cause a collision, so there are at most
NmC times of wait. For each wait, A* computation of
O(C2) is done at mostN times for the target agent to obtain
a new (collision-free) path. Thus the total complexity of this
line is O(N2mC3).

Thus the most time-consuming computation is line 14. Since
the for-loop of lines 7–18 can happen no more than N times, the
total complexity of Algorithm 1 is O(N3mC3).

V. EXPERIMENTS

In this section, we evaluate our proposed online multi-task
MAPD algorithm with respect to a few key parameters: task
group arrival frequency, maximum task group size, agent num-
ber, pickup & dropoff costs, and payload capacity distribution.

A. Multi-Task vs. Single-Task MAPD Algorithms

First, we compare our proposed online multi-task MAPD
algorithm with the TP (Token Passing [6]) algorithm, the repre-
sentative conventional MAPD algorithm. TP can only address
single-task MAPD problem, so if it is used for multi-task MAPD,
TP does not have function to optimize the order of picking up
multiple tasks. However, to compare with our proposed algo-
rithm, we apply TP to a multi-task MAPD problem by executing
each task in the allocated task group in a random order. On the
other hand, for our proposed algorithm, we consider using two
types of distance in calculating distance matrix for TSP:
� (Algorithm 1 - Manhattan): use A* to calculate distance

between two locations based on Manhattan distance.
� (Algorithm 1 - Euclidean): use Euclidean distance between

two locations.
The size of the map is 36× 22, the unique goal (dropoff) loca-

tion is (18, 21). For this experiment, we ignore pickup & dropoff
costs (set to 0) and agents’ payload capacity constraint (i.e.,
payload capacity =∞) to all agents. We generate a sequence
of 500 tasks by randomly choosing their pickup locations from
the shelves. These tasks are randomly grouped into task groups.

The maximum group size is set to three patterns: 1 (same as
conventional MAPD problem setting), 10, and 20. We set task
group arrival frequency to three patterns: 0.2, 1, and 10.1 We
also vary agent number from 10 to 50. All experimental settings
are performed in 10 instances with initial positions of agents set
randomly. We evaluate makespan [timestep] and runtime/step
[ms] (total runtime [s]). The results are shown in Tables I, II,
and III. In the sequel we write “Algorithm 1” to mean both
Algorithm 1 (Manhattan) and Algorithm 1 (Euclidean) as in
Tables I, II, and III.

As we see from Tables I, II, and III, regardless of task group
arrival frequency or maximum task group size, the makespan
gets shorter and runtime/step gets larger as agent number in-
creases in all three methods. However in Table I where task
group arrival frequency is low, improvement of the makespan
saturates at agent number = 30, (e.g., makespan in #6–10 of
Algorithm 1) because low task group arrival frequency becomes
the bottle neck of the makespan, i.e., many vacant agents may
have to wait for the task group arrival. Improvement of the
makespan gets larger as task group arrival frequency gets higher,
e.g., makespan in #15, #30, and #45 of Algorithm 1 in Tables I,
II, and III. Let us take a closer look in Table III where task group
arrival frequency is high.

The case where maximum task group size=1 (#31–35) is
the same problem setting as conventional MAPD. In this case,
MAPD algorithms do not need to consider trip order so that
Algorithm 1 and TP do not have significant difference in
makespan. The cases where maximum task group size = 10
and 20 (#36–45), we need to solve trip ordering as well as path
finding. We can see that makespan gets shorter as maximum task
group size increases in Algorithm 1, e.g., makespan in #31, #36,
and #41 of Algorithm 1. Algorithm 1 search for collision-free
paths considering task order by first solving TSP. As the result,
Algorithm 1 achieve 18%−22% shorter makespan compare to
TP when maximum task group size = 10 while there is no
significant difference between Algorithm 1 (Manhattan) and
(Euclidean) (#36-40). Note again that TP uses a random order to

1These task arrival frequencies are lower than the runtime frequency, such that
the computation time is sufficient for handling all newly arrived task groups. We
shall leave the case where task arrival frequency is higher than runtime frequency
to future work.
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TABLE II
COMPARISON BETWEEN PROPOSED AND CONVENTIONAL MAPD (TASK GROUP ARRIVAL FREQUENCY=1)

TABLE III
COMPARISON BETWEEN PROPOSED AND CONVENTIONAL MAPD (TASK GROUP ARRIVAL FREQUENCY=10)

pick up multiple tasks in an assigned task group. The case where
maximum task group size = 20 shows the same trend to that of
maximum task group size = 10 where Algorithm 1 achieved
34%−38% shorter makespan compare to TP (#41–45). Run-
times(/step) for Algorithm 1 are larger than TP. Nevertheless,
these runtimes(/step) are less than 50 [ms] in all agent number
cases which is sufficient for online use (runtime/step in #31-45
of Algorithm 1).

Runtime/step tends to increase when task group arrival fre-
quency, maximum task group size, and agent number increase.
This is because if task group arrival frequency or agent number
increases, collision between agents will be more likely to happen
due to the crowded field, which generally makes path finding
more time consuming. On the other hand, TSP solver needs
more time to solve the problem as maximum task group size
increases.

As a whole, Algorithm 1 shows a similar trend that either
using Manhattan distance or Euclidean distance for calculating
distance matrices does not make a significant difference to the
makespan. Comparison between Algorithm 1 and TP shows
that Algorithm 1 achieves significantly shorter makespan in the
case where the order of picking up multiple tasks needs to be
considered, i.e., maximum task group size> 1. Runtime/step for
Algorithm 1 is larger than TP. Nevertheless runtime/step is still
less than 50 [ms] in all agent number cases which is sufficient
for online use.

TABLE IV
VARIOUS PAYLOAD CAPACITY DISTRIBUTION

B. Agents’ Payload Capacity

Next we evaluate our proposed online multi-task MAPD
algorithm with different payload capacity constraints of the
agents. Table IV shows the evaluation result. We set maximum
task group size to 20, task group arrival frequency to 10, and
agent number to 50. Map size, goal location, generated tasks
are the same as the preceding experiment (in Section V-A). We
use gaussian distribution to set payload capacity values for each
agent. The parameters for the gaussian distribution are μ and
σ. We set σ to 0.25 where μ increases from 0.2 to 1000. For
example, (μ, σ) = (0.2, 0.25)means (μ, σ) = (0.2×maximum
task group size, 0.25× maximum task group size) = (4, 5) that
agents have payload capacity 4 in average and 5 in standard
deviation. Note that we set one agent’s capacity = maximum
task group size in order to guarantee that at least one agent can
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TABLE V
PROPOSED MAPD (10 AGENTS) WITH VARIOUS PICKUP & DROPOFF

TABLE VI
PROPOSED MAPD (50 AGENTS) WITH VARIOUS PICKUP & DROPOFF

be allocated to any task group. We again evaluate makespan and
runtime/step [ms] (total runtime [s]).

We see from Table IV that makespan gets shorter as μ
increases. The buttom row at Table IV shows the case without
payload capacity constraint for comparison purpose, i.e.,
payload capacity =∞. Makespan value gets close to the one
without payload capacity constraint around μ = 0.7. The case
when μ is small (e.g., μ = 0.2), payload capacity for many
agents are likely to be smaller than maximum task group size,
which cannot satisfy capacity constraint for many task groups.
This is similar to the situation where there are small numbers
of agents, and thus the makespan is large. In contrast, the case
when μ is large (e.g., μ = 0.7), most of the agents have payload
capacity larger than arriving task groups, thereby achieving
makespan close to the one without payload capacity constraint.

C. Pickup & Dropoff Costs

We further evaluate our proposed online multi-task MAPD
algorithm with innegligible pickup & dropoff costs. Tables V
and VI show the evaluation results. Maximum task group size
and task group arrival frequency are set to 10, while agent
number is set to 10 (Table V: small case) and 50 (Table VI:
large case). Pickup & dropoff cost are set to three patterns: 0
(no cost, for comparison purpose), 1, and 5. Map size, goal
location, generated tasks are same as the first experiment (in
Section V-A). We again evaluate makespan and runtime/step
[ms] (total runtime [s]).

Both Tables V and VI show that if pickup or dropoff cost in-
creases, makespan increases. Between runtime/step and pickup
& dropoff cost, we can see that: In Table V where agent number
is small, there is no significant difference in runtime/step in all
pickup or dropoff cost cases. On the other hand in Table VI where

Fig. 2. Example of large scale case: 70× 43 field with 200 agents.

TABLE VII
LARGE SCALE CASE

agent number is large, increase of dropoff cost drastically in-
creases runtime/step. This is because agents visiting the dropoff
location can easily get crowded in the case where agent number
is large and cause traffic jam. Between makespan and pickup &
dropoff cost, we can see that: In Table V where agent number is
small, an increase of dropoff cost slightly increases makespan
(less than 10% in all cases) while an increase of pickup cost
increases makespan around 30% when pickup cost = 5. This
is because in the case where there are small number of agents,
increase of pickup cost increases makespan more than dropoff
cost since pickup event occurs more frequently than dropoff
event and only limited number of agents can respond to the
pickup requests. In contrast in Table VI where agent number
is large, an increase of dropoff cost largely increases makespan
(around 40%−70%when dropoff cost= 5) while an increase of
pickup cost increases makespan around10%−30%when pickup
cost= 5. This is because in the case where there are large number
of agents, an increase of dropoff cost can cause much traffic jam
at the dropoff location and therefore has a larger impact on the
makespan.

As a whole, we find that runtime/step tends to increase in
a situation where agent number and dropoff cost are large.
We also find that increase of pickup cost can largely increase
the makespan when agent number is small; on the other hand,
increase of dropoff cost tends to largely increase the makespan
when agent number is large.

D. Large Scale Environment

Finally we evaluate our proposed online multi-task MAPD
algorithm with large-scale environment and large numbers of
agents. Fig. 2 shows an example snapshot and Table VII shows
the evaluation result. We set the size of the map to 70× 43,
maximum task group size to 10, task group arrival frequency to
100, and task number to 2000. We vary the agent number from
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30 to 300, and evaluate makespan and runtime/step [ms] (total
runtime [s]).

We see that makespan decreases as agent number increases;
however, makespan gradually saturates from agent number 200
to 300 because of the high density of agents. Path finding
becomes more difficult and time consuming in the situation
when density of the field is large (i.e., agent number is large)
because high density situation is more likely to cause collisions.
Runtime becomes rather large at agent number 200 and above;
nevertheless, runtime/step is still less than 1 [s]. The reason why
runtime/step gets large above agent number = 200 is due again
to the high density of agents as mentioned above. This problem
occurs regardless of the scale of the problem, i.e., the map size
or an agent number. Nevertheless, we see from the experiment
that the proposed online multi-task MAPD algorithm finds valid
paths in large scale case (e.g., 300 agents) in an online manner
by setting proper agent number in terms of field density.

VI. CONCLUSION

In this letter, we have extended MAPD to a multi-task setting
with consideration of payload capacity and pickup & dropoff
cost in an online manner and proposed an efficient online
multi-task MAPD algorithm. The experiments showed that our
proposed algorithm achieved shorter makespan paths than the
conventional MAPD algorithm, i.e., Token Passing.

For future work, we aim to extend our problem setting/
solution by considering power constraint for agents, assigning
new task groups to non-vacant agents, tasks being grouped
according to the system state, agents being selected based on
their capacities/locations, and multiple dropoff locations.
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