
IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024 1

Anytime Multi-Task Multi-Agent Pickup and
Delivery under Energy Constraint

Fumiya Kudo1 and Kai Cai1, Senior Member, IEEE

Abstract—Various Multi-Agent Path Finding (MAPF) and its
extension, Multi-Agent Pickup and Delivery (MAPD) algorithms
have been studied in academia. In the industrial sector, however,
automatic safe control of teams of robots and AGVs on factory
floors and logistic warehouses for pickup and delivery operations
have also been studied intensively. In this paper, we extend our
previous work of online multi-task MAPD to a new problem
where (i) task can be allocated to any vacant agent independent
of the location of that agent — called “anytime task allocation”
in this paper, and (ii) each agent is subject to energy constraint.
The proposed anytime task allocation MAPD algorithm achieves
5−19% shorter makespan paths compared to the baseline multi-
task MAPD in wide range of agent numbers. We also examine
the behavior of the proposed multi-task MAPD algorithm under
various energy constraint, by changing power limits and energy
charge speeds of individual agents. We find that energy charge
speed has a large impact on the makespan when power limit
is small. We also find that small energy charge speed typically
requires a large number of agents in order to achieve the same
makespan. These results demonstrate that our proposed multi-
task MAPD algorithm can be useful in choosing proper agent
numbers in order to achieve prescribed makespans which is more
practical as compared to our previous multi-task MAPD.

Index Terms—Multi-agent path finding, multi-agent pickup
and delivery, energy constraints, anytime task allocation, factory
automation.

I. INTRODUCTION

THERE is a growing need for automation in logistics,
particularly involving multiple moving robots (agents) in

warehouses and factories due to the increasing labor shortage
[1]. To address such a demand, it is crucial to develop
advanced algorithms for planning and controlling multi-agent
systems to handle tasks dynamically arising in complex en-
vironments. In these multi-agent systems, collision-free paths
must be provided to ensure that agents reach their destinations
without collisions, while minimizing the total travel time. This
issue is referred to as Multi-Agent Path-Finding (MAPF),
which has recently garnered significant attention [2]. MAPF is
an optimization problem focused on determining collision-free
paths on a graph for multiple agents with the goal of reducing
the overall task-completion time known as makespan, or an
average number of time steps required to finish all tasks known
as service time.

Manuscript received April 18, 2024; Revised July 12, 2024; Accepted
September 24, 2024. This paper was recommended for publication by Editor
M. Ani Hsieh upon evaluation of the Associate Editor and Reviewers’
comments.

1The authors are with the Department of Core Informatics, Osaka
Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585,
Japan (email: fumiya.kudo.wy@hitachi.com, cai@omu.ac.jp).

Digital Object Identifier (DOI): see top of this page.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
y_col

0

2

4

6

8

10

12

x_
ro
w

Fig. 1. An illustration of MAPF and MAPD application in logistic warehouse.
Agents are depicted by colored circles. The walls and the shelves are depicted
by black and gray squares, respectively. Products are placed at shelves and
current products to be picked up by agents are depicted by dark purple squares.
The dropoff location is depicted by the purple square at the center bottom of
the field.

The extension of MAPF — Multi-Agent Pickup and De-
livery (MAPD) which is the combination of delivery task
allocation with the MAPF problem [3] [4] — has also been
studied intensively. An illustrative application of MAPF and
MAPD in logistic warehouse is shown in Fig. 1. This is a
snapshot of a state, where some of the agents (colored circles)
are at their initial locations while the others are moving in
the field. When picking tasks arrive which request agents to
pick up the target products, agents will be allocated exactly
one task at a time. Then, task-allocated agents will start from
their initial locations and move to the shelves (gray squares)
where target products are stored (dark purple squares). After
picking up target products, agents will bring the products to
the goal location, i.e. dropoff location (purple square at the
center bottom of the field). After finishing the assigned tasks,
agents will return to their initial locations and wait for the next
request.

Various approaches to solving MAPD problem have been
proposed, such as online/offline task arrival settings with cen-
tralized/decentralized and coupled/decoupled approaches [3]
[5] [6] [7] [8] [9]. However, these approaches do not capture
important characteristics of many real-world applications such
as: MAPD allocates only one task at a time for each agent,
payload capacity for each agent is ignored, and pickup &
dropoff operations are assumed to be done immediately. In our
previous work [10], we proposed an online multi-task MAPD
algorithm that effectively solved all the above mentioned
issues. Two key practical aspects still await to be resolved.
One is “anytime task allocation”, by which we mean that a task
should be able to be allocated to any vacant agent independent
of the location of that agent. In [10], the algorithm was limited



2 IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

to allocating a task to a vacant agent only when that agent is at
its initial location. Second, in practice all agents are running on
batteries which need to be periodically charged. Hence MAPD
algorithms should respect the energy constraint. This issue is
not considered in [10].

In this paper, we extend our previous work [10] to a new
problem to address multi-task MAPD with anytime task allo-
cation and under energy constraint. To solve this problem, we
propose a new algorithm which allows a task to be allocated
to any vacant agent regardless of the current location of that
agent. This flexibility of anytime task allocation improves the
makespan as demonstrated through extensive experiments. Re-
alizing anytime task allocation logic is technically challenging
and requires a shift of implementation paradigm from the
previous work [10], as dynamic updates are needed for the
reserved path information which were static in [10]. Moreover,
our new algorithm additionally verifies if a vacant agent has
sufficient energy to complete an allocated task; if not, the
task will be allocated to a different agent. In our setting, we
assume that each agent’s battery is charged when it is in its
initial location. To satisfy the energy constraints is not only
a novel conceptual but also a nontrivial technical departure
from our previous work [10], because violations of energy
constraints can significantly disturb task allocation and impact
the existence of viable paths. These technical challenges are
successfully addressed in this work. The contributions of this
paper are summarized below:

• We tackle an extended version of the multi-task MAPD
problem [10] where (i) task can be allocated to any
vacant agent independent of the location of that agent
(i.e. anytime task allocation), and (ii) each agent is
subject to energy constraint. To our best knowledge,
this extended multi-task MAPD problem is new and no
existing algorithm can be directly applied to solve this
problem.

• We propose a new online algorithm to solve the for-
mulated anytime multi-task MAPD problem with energy
constraint. In this proposed algorithm, collision-free paths
for multiple agents are computed by space-time A* [11]
as in our previous work [10]. The challenge here is: in
the existing space-time A* the collision-free paths are
reserved in advance and the reservation information is
not allowed to be changed. However, since anytime task
allocation requires dynamical allocation of tasks to vacant
agents, the reserved paths must be dynamically updated.
Our proposed algorithm effectively solves the problem
by suitably incorporating a dynamic updating mechanism
into the space-time A*. In addition for energy constraint,
we associate to each agent with an energy level and an
energy charge speed, and our designed algorithm always
checks if enough energy is left for the vacant agent to
handle a task at every instant of task allocation.

• We conduct extensive experiment to compare our new
multi-task MAPD algorithm with the one in [10]. Special
focus is given to two parameters: agent number and task
number. Empirical evidence shows that: with the anytime
task allocation capability, our new algorithm achieves 5−

19% shorter makespan paths compared the one in [10]
for a wide range of agent numbers. We also show that as
the task number increases, the improvement of makespan
increases as well.

• Moreover we change power limit and energy charge speed
for individual agents to evaluate makespan. Experiment
shows that energy charge speed has a large impact on
the makespan when power limit is small. In addition, we
fix power limit to investigate the relation between agent
number and energy charge speed, as well as their impact
on makespan. We find that small energy charge speed
typically requires a large number of agents in order to
achieve the same makespan. This result demonstrates that
our new algorithm can be useful in choosing proper agent
numbers in order to achieve desired makespans.

The remaining sections of this paper are structured as
follows. We first present relevant methods and algorithms for
MAPF and MAPD (Section 2). Then, we present our problem
setting: online multi-task MAPD with anytime task alloca-
tion capability under energy constraint (Section 3). Next, we
describe our proposed online algorithm for solving the multi-
task MAPD in detail (Section 4). We then conduct extensive
experiment in which we apply our proposed algorithm with
various parameters (Section 5). Finally, we conclude the paper
(Section 6).

II. RELATED WORK

We present and compare various methods and algorithms
for MAPF, MAPD and their related problems. Approaches to
MAPF problems can be classified according to several factors,
such as whether tasks arrive online/offline, the approaches are
centralized/decentralized as well as coupled/decoupled. Online
task arrival means that the problem is a lifelong setting where
tasks can enter the system at any time.1 Consequently, the
allocation of agents to tasks and the planning of paths cannot
be completed beforehand but must be carried out in real-time
during the operation. In contrast, offline means that we know
all the information about arriving tasks a priori. Centralized
approach assumes that all agents know all information of
other agents and the environment. On the other hand in
decentralized approach, each agent searches its own path based
on locally observable information from (typically) neighboring
agents [8]. Coupled approach is a complete MAPF algorithm
which can find optimal solutions [12] [13] [14]. However,
finding an optimal solution is NP-hard, and consequently these
optimal algorithms do not scale in agent numbers. In contrast,
decoupled approach is an incomplete MAPF algorithm that
quickly finds sub-optimal solutions [11]. Conflict-based Search
(CBS) [12] is a representative coupled and centralized MAPF
algorithm based on a two-level MAPF algorithm. CBS is one
of state-of-the-art MAPF algorithms that has many variants
[13] [14]. Cooperative A* (CA*) [11] is a representative
decoupled and centralized MAPF algorithm which uses a
special type of A* called space-time A*. CA* is widely used in

1Here lifelong means that tasks can enter the system at any time step. This
is different from the anytime task allocation considered in this paper, which
means that a task can be allocated to any vacant agent at anytime.



FUMIYA et al.: ANYTIME MULTI-TASK MULTI-AGENT PICKUP AND DELIVERY UNDER ENERGY CONSTRAINT 3

practice due to its small runtime that there are many variants:
Hierarchical Cooperative A* (HCA*), Windowed Hierarchical
Cooperative A* (WHCA*) [11]. Priority inheritance with
backtracking (PIBT) [8] is a representative decoupled and
decentralized MAPF algorithm. ML-MAPF [15] addresses
MAPF based on a machine learning methodology. GA-based
MAPF [16] is a multi-objective variant of MAPF that utilizes
Genetic Algorithms (GA). Multi-Goal MAPF [17] studies the
problem where agents travel multiple destinations. Anytime
MAPF [18] [19] first finds an initial solution fast and then
repeatedly replans the paths of subsets of agents. Anytime
in these works means that a solution is continuously being
improved by MAPF algorithm. In contrast, anytime task
allocation considered in this paper is different and means
that a task can be allocated to any vacant agent at anytime
(independent of the location of that agent).

MAPD is an extension of MAPF, which requires both
the assignment of agents to tasks in a lifelong setting and
the planning of collision-free paths. COBRA [7] is one of
the initial online and complete algorithms for MAPD. Token
Passing (TP) and Token Passing with Time Swaps (TPTS)
[6] are decoupled and centralized approaches based on CA*
[11]. TP and TPTS are incomplete; however, they are widely
used for their speed in real-world online applications. Multi-
Label A* (MLA) [20] is an enhanced version of TPTS. TCBS
[5] is a complete MAPD algorithm based on CBS which
can find optimal solution; however, examined environment is
small (agent number < 10)). M-TA-Prioritized-MAPD [3] is
an offline MAPD which uses TSP for optimizing an order
of task allocation. M-TA-Prioritized-MAPD achieves better
throughput compared to other MAPD approaches (e.g. TPTS);
however, the problem setting is offline and the computation
time for calculating TSP is excluded from the evaluation.
Rolling-Horizon Collision Resolution (RHCR) [9] is one of
state-of-the-art MAPD approaches based on WHCA* [11].

Recently, we studied an MAPD problem which takes into
account several aspects of real-world industrial applications,
including MAPD problem with multiple task allocation, pay-
load capacity constraints, pickup & dropoff constraints [10].
This work extends the conventional single-task MAPD prob-
lem to a multi-task setting. However, the proposed algorithm in
[10] did not address anytime task allocation (in that algorithm
a task can be allocated to an agent only when that agent
is in its initial location, which may be overly conservative),
nor can it address the energy constraint of individual agents.
On the other hand, there are many variants of path planning
algorithms for UAVs (Unmanned Aerial Vehicles) [21] and
UGVs (Unmanned Ground Vehicles) [22] considering energy
constraints. The coverage path planning problem of UAVs
with limited energy is studied in [21]. An integrated path
planning and power management problem for a solar-powered
UGV is examined in [22]. Different types of environments
in MAPF including energy constraints is introduced in [23].
Furthermore, multi-task MAPD with loading capacity which
may be viewed an alternative representation of the energy
constraint is studied in [24]. However, these works do not
consider the multi-task MAPD problem, nor do the solution
algorithms have anytime task allocation capability.

III. PROBLEM SETTING

In this section, we formalize our anytime multi-task MAPD
problem, whose aim is to find collision-free paths for energy-
constrained agents to accomplish tasks arriving in an online
manner that can be allocated to any vacant agents regardless
of their locations.

Consider a graph G = (V,E), whose vertices v ∈ V
correspond to physical locations in the field and whose edges
in E correspond to connections between neighboring locations
along which the agents can move. We assume that the graph G
is bidirected (each edge is bidirectional) and connected (every
vertice can reach every other vertice). Also consider a set of
m agents A = {a1, a2, ..., am} and let vi(t) ∈ V denote the
location of agent ai in discrete timestep t. Agent ai starts
in its initial location vi(0) = viniti . In each timestep t, an
agent either waits in its current location vi(t) or moves to
an adjacent location. Both move and wait actions have unit
duration (i.e. one timestep). Moreover, we consider that each
agent ai has an energy level αi(t) ≥ 0 at timestep t, and a
(constant) power limit ᾱi. We assume that every ᾱi is large
enough for every agent to complete at least one (arbitrary) task
group (introduced below). When it is at its initial location viniti ,
its battery is charged and energy level increases as

αi(t+ 1) =

{
αi(t) + βi if αi(t) + βi < ᾱi

ᾱi if αi(t) + βi ≥ ᾱi
(1)

where βi ≥ 1 is the (constant) charge speed for agent ai. If
agent ai is not at its initial location, i.e. vi(t) ̸= viniti , then
its energy level decreases one unit per timestep (no matter its
action is move or wait):

αi(t+ 1) = αi(t)− 1. (2)

A task s requests an agent to pick up a target product located
at a shelf vs ∈ V . In our multi-task MAPD setting, there are
generally multiple tasks which request to be picked up together
and are gathered in a task group TGl = {sl1, . . . , slnl

}. Agents
are allocated task groups instead of a single task. Note that a
task group has at least one task. Each agent ai has payload
capacity ci (i ∈ [1,m]). We assume that at least one agent
ai exists who has enough payload ci to handle the largest
task group, i.e. (∃i ∈ [1,m])ci ≥ maxl nl. Moreover, we
consider anytime task allocation, meaning that at any timestep
t a task group may be allocated to any agent ai as long as the
agent is vacant (with no task group already allocated and not
yet finished) and has sufficient energy αi(t) to complete the
task group and return to its charging location viniti (i.e. αi(t)
will not decrease to 0 before agent ai returns to viniti ). We
emphasize that anytime task allocation allows allocating a task
group to an agent independent of the location of that agent:
namely the agent may be idle and charging itself at its initial
location, or the agent has finished its previously allocated task
group and on its way to move back to its initial location.

After a task group TGl is assigned to an agent ai, this
agent moves from its current location vi(t) to the requested
shelf locations vl1, . . . , v

l
nl

to pick up the target products, and
then moves to the unique goal location vg ∈ V to drop off
those products. The agent ai will then move back to its initial
location, unless a new task group is allocated to it.



4 IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

Pickup & dropoff actions may take some timesteps in
practice (as the actions move and wait, each of which takes a
unit timestep). Moreover, we consider that this anytime multi-
task MAPD problem is online, i.e. we do not know task group
information a priori, and new task groups can be added to
a task group set TASKLIST randomly at any timestep. We
assume that TASKLIST obeys quasi-FIFO subject to payload
and energy constraints. This means that the allocation of task
groups is tried according to the order of their arrivals; however,
an allocation is confirmed only when a vacant agent has
enough capacity and energy. If no such an agent is currently
available, the task group remains in the queue and keeps its
order (based on its arrival time) to be tried at the next timestep.

In planning paths for the agents, collisions between agents
must be avoided. A collision occurs when two agents ai and aj
occupy the same location at the same timestep (called vertex
conflict [25]), that is, (∃t)vi(t) = vj(t); or traverse the same
edge in opposite directions at the same timestep (called a
swapping conflict [25]), that is, (∃t)vi(t) = vj(t + 1) and
vj(t) = vi(t + 1). A path is a sequence of locations with
associated timesteps, that is, a mapping from an interval of
timesteps to locations.

The objective of our anytime multi-task MAPD problem is
to compute collision-free paths for the agents under energy
constraint to accomplish task groups allocated at anytime to
vacant agents and maximize the throughput, i.e. minimize the
makespan (difference between the first release time and the
last completion time).

IV. PROPOSED ANYTIME MULTI-TASK MAPD
ALGORITHM UNDER ENERGY CONSTRAINT

In this section, we present our proposed algorithm to
solve the anytime multi-task MAPD problem under energy
constraint. Our proposed algorithm is the extension of the TSP-
based online multi-task MAPD proposed in our previous work
[10]. The algorithm in [10] in turn extends the conventional
single-task MAPD [6] to a multi-task setting where each agent
is allocated with multiple tasks, payload capacity of each
agent is considered as a constraint, and pickup & dropoff
times are considered as cost. In multi-task MAPD, we need to
consider a trip order for the agents in order to maximize the
throughput while avoid collision among them. Our previous
work deals this problem by suitably integrating space-time A*-
based MAPF and TSP solver. In this paper, we further improve
our previous algorithm in [10] by implementing anytime task
allocation logic as well as extending the problem setting to
consider energy constraint. The pseudo-code of this algorithm
is presented in Algorithm 1. We color-coded the parts of the
pseudo-code where major changes are made from the prior
algorithm in [10]. Below is key notation used:

• VACANTAGENTS is a list of vacant agents to which a
task group can be allocated. Such agents have no task
group allocated and may be in any location (in particular
need not be in the initial location as required in [10]).

• RESERVE holds reserved paths of already task-allocated
agents for them to complete their tasks and return to their
initial locations. RESERVE is a hash map consisting of
two elements: timesteps and location coordinates.

Now we describe the main ideas for Algorithm 1 to realize
two new functionalities: anytime task allocation and compli-
ance to energy constraint.

Algorithm 1 Anytime Multi-Task MAPD under Energy Con-
straint
Input: graph G, set of agents A = {a1, . . . , am}, initial

locations viniti , initial energy levels αinit
i , power limits ᾱi,

energy charge speeds βi, payload capacities ci (i ∈ [1,m])
Output: RESERVE

1: initialize agent ai ← (viniti , αinit
i , ᾱi, βi, ci)

2: TASKLIST ← ∅
3: VACANTAGENTS ← {a1, a2, . . . , am}
4: RESERVE ← ∅
5: for t = 1 to MAXTIME do
6: TASKLIST ← TASKGROUPGENERATOR()
7: for l = 0 to size(TASKLIST) do
8: A′ = CAPACITY(VACANTAGENTS, TGl)
9: for i = 0 to size(A′) do

10: M = CALCDISTANCEMATRIX(ai, TGl, G)
11: p← SOLVETSP(ai, M )
12: p′ ← RESOLVECOLLISION(p,G, RESERVE)
13: if length(p′) ≤ αi(t) then
14: ALLOCATE(TGl, ai)
15: UPDATE(RESERVE, p′, ai)
16: TASKLIST.delete(TGl)
17: VACANTAGENTS.delete(ai)
18: break
19: end if
20: end for
21: end for
22: MOVEAGENTS(A)
23: ENERGYUPDATE(A)
24: VACANTAGENTUPDATE(A, VACANTAGENTS)
25: end for

Anytime Task Allocation: In our previous work [10],
the next task group is allowed to be allocated to an agent
only when the agent completes the previously allocated task
group and returns to its initial location. On the other hand
in Algorithm 1, the next task group can be allocated to an
agent as soon as the agent completes the previously allocated
task group, i.e. after the agent drops off products at the goal
location (line 24). This logic allows agent to be allocated
with the next task group anytime during the agent en route
to its initial location. Our previous work [10] uses space-
time A* which reserves the paths to avoid collision. The
idea for implementing anytime task allocation logic is to
dynamically update the reservation information by overwriting
the previously reserved paths to the new ones (line 15).

Energy Constraint: In Algorithm 1, to comply with the
energy constraint on each agent, it is checked if there is enough
energy left for an agent to complete a task group (line 13).
By completion of a task group, the agent should be able to
drop off the products at the goal location as well as return
to its initial location for charging. A task group can also be
allocated when agent is being charged at its initial location
as long as the agent has enough energy to complete the task



FUMIYA et al.: ANYTIME MULTI-TASK MULTI-AGENT PICKUP AND DELIVERY UNDER ENERGY CONSTRAINT 5

group. The energy levels of all agents are updated at every
time step (line 23).

The main parts of Algorithm 1 are explained as follows.

1) lines 9-20: For each vacant, capacity-sufficient agent ai,
verify if it has enough energy to complete the task group
TGl and return to its initial location ainiti ; if so, TGl will
be allocated to ai (the first such agent this verification
becomes true). To this end, lines 10-12 first computes
a collision-free path for ai to complete TGl and then
return to ainiti . CALCDISTANCEMATRIX function [11]
calculates the distance matrix between tasks in the same
task group TGl using A* [26]. SOLVETSP function
[27] [28] finds the shortest path p by solving TSP for
the task group TGl including the goal location and the
current location vi(t) of agent ai. RESOLVECOLLISION
function [11] converts (if possible) the shortest path p
to a collision-free path p′ as follows:

a) If p violates RESERVE, space-time A* adds p one
timestep to stay at the same location.

b) If p causes deadlock (including swapping conflict)
which means that no agent can move, space-time
A* quits resolving conflict for the current agent,
i.e. breaks the current for-loop and moves onto the
next vacant, capacity-sufficient agent.

Once a collision-free path p′ is found, line 13 checks if
the length of the p′ is equal to or smaller than agent ai’s
current energy level αi(t). If so (i.e. ai has sufficient
energy to follow path p′ to complete TGl and return
to ainiti ), then task group TGl is allocated to ai by the
ALLOCATE function on line 14. The UPDATE function
on line 15 is the key to achieve anytime task allocation
logic, by suitably updating the RESERVE as follows:

c) If a path of agent ai was already reserved in
RESERVE (i.e. ai has completed its previously
allocated task group but has not yet returned to
its initial location), then that registered path is first
removed and the newly accepted path p′ (computed
on line 12) is added to RESERVE.

d) If there is no path of agent ai in RESERVE (i.e. ai
has returned to its initial location), then the newly
accepted path p′ is added to RESERVE.

This UPDATE function sharply distinguishes from our
previous algorithm in [10] where RESERVE is static
until an agent returns to its initial location.

2) line 22-24: Once the task groups are either all allo-
cated or only partially allocated due to lack of va-
cant agents with sufficient payload capacities or energy
levels, MOVEAGENTS function moves task-allocated
agents one step forward based on the reserved paths in
RESERVE. After the moves, ENERGYUPDATE function
updates energy levels αi(t) of every agent ai according
to (1) and (2). VACANTAGENTUPDATE function updates
the list of vacant agents, namely those that have com-
pleted their allocated task groups after the moves. 2

2We assume that all computation between line 6 and 24 can be completed
in one timestep. This assumption is empirically justified in Section V below.

Remark 1: The complexity of Algorithm 1 is O(N3m2C3),
where N is the total number of tasks (i.e. sum of tasks in all
task groups), m is the number of agents, C is the number
of cells in the field, i.e. number of nodes in the graph G =
(V,E). To see this, observe that the main part contributing to
the complexity is the for-loop of lines 7-20. In particular, the
following lines of computation have high complexity:

• Line 10 (CALCDISTANCEMATRIX): O(N2C2)
The distance matrix has at most N2 entries, and each
entry is obtained by an A* computation of O(C2) [29].

• Line 11 (SOLVETSP): O(N2)
The TSP has at most N tasks to route, for which the 2-opt
algorithm we adopt has the complexity O(N2) [28].

• Line 12 (RESOLVECOLLISION): O(N2mC3)
Each agent has at most N tasks to serve and each task
takes at most C steps; hence the total number of steps
for all agents to finish all tasks is upper bounded by
NmC. Each of such steps may cause a collision, so there
are at most NmC times of wait. For each wait, A*
computation of O(C2) is done at most N times for the
target agent to obtain a new (collision-free) path. Thus
the total complexity of this line is O(N2mC3).

Thus the most time-consuming computation is line 12. Since
the for-loop of lines 7-20 can happen no more than Nm times,
the total complexity of Algorithm 1 is O(N3m2C3). Note that
this complexity is m factor higher than the complexity of our
previous algorithm in [10]. This factor comes from checking
if a vacant agent has enough energy levels for completing the
task group to be allocated and then return to its initial location,
which was not needed in [10] where agents are impractically
assumed to have infinite energies.

Remark 2: We provide a correctness proof for Algorithm 1:
i.e. eventually all task groups are completed and all agents
return to their initial locations. First by the assumption that the
graph G is bidirected and connected, every agent can reach
any location in G, so there is a feasible path for every agent
to complete any task group and return to its initial location.
By the property of the space-time A* algorithm [11], which
we employ for planning paths of multiple agents, no collision
or deadlock will exist (indeed, potential collision/deadlock is
avoided by delaying an agent by a number of timesteps). More-
over, the incoming task groups are stored in TASKLIST that
obeys quasi-FIFO subject to payload and energy constraints.
This implies that earlier-arrival task groups in TASKLIST will
always be tried for allocation to an agent before later-arrival
task groups. Since it is assumed that there exists at least an
agent that has enough payload to handle the largest task group
and every agent’s power limit is enough to complete any one of
the task groups, we conclude that a vacant agent with enough
payload and energy will eventually be available to take any
task group in TASKLIST. Therefore, eventually all task groups
can be completed and all agents return to their initial locations.

V. EXPERIMENTS

In this section, we evaluate our proposed anytime multi-task
MAPD algorithm (anytime MT-MAPD) with respect to a few
key parameters: task group arrival frequency, agent number,



6 IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

task number, energy level, and energy charge speed. The size
of the field is 36 × 22, and the goal (dropoff) location is
(18, 21).

A. Anytime Task Allocation

First, we compare anytime MT-MAPD (Algorithm 1) with
our previous multi-task MAPD algorithm (TSP-based MT-
MAPD) in [10] and PIBT [8], in terms of makespan and
runtime/step. In this experiment we focus on the effect of the
newly implemented anytime task allocation logic, and for this
reason assume that agents always have sufficient energy among
all algorithms. The effect of energy constraint will be studied
in the next experiment below.

We generate a sequence of 1000 tasks by randomly choosing
their pickup locations from the shelves. These tasks are
randomly grouped into task groups. The maximum group size
is set to 5. We set task group arrival frequency from 0.2 to
10. We also vary agent number from 10 to 50.

10 20 30 40 50
agent number

1000

1500

2000

2500

3000

3500

m
ak

es
pa

n

PIBT [8]
TSP-based MT-MAPD [10]
anytime MT-MAPD

Fig. 2. Makespan comparison among anytime MT-MAPD, TSP-based MT-
MAPD [10], and PIBT [8]. Agent number is varied from 10 to 50, while task
group arrival frequency and task number are set to 10 and 1000, respectively.
All experimental settings are performed in 100 instances with initial locations
of agents set randomly. Vertical bars on each plot show standard deviations.
The vertical axis starting from 896 is lower bounded by the shortest makespan
value of all cases in 100 instances. (Note that PIBT is a decentralized MAPF
algorithm that tends to become inefficient in resolving collisions/deadlocks as
the number of agents increases.)

We evaluate makespan [timestep] and runtime/step [ms]
(total runtime [s]). The comparison of the makespan when
task group arrival frequency is 10 is shown in Fig. 2. We can
see that anytime MT-MAPD achieves the shortest makespan
compared to the TSP-based MT-MAPD [10] and PIBT [8]
for a wide range of agent numbers. In specific, anytime MT-
MAPD achieves 5 − 19% shorter makespan compared to the
TSP-based MT-MAPD [10], which shows the benefit of using
anytime task allocation logic. Moreover, for a fixed number
of tasks (1000 in this case), the improvement of makespan is
more substantial when agent number is smaller; this is because
fewer agents means that each agent needs to be allocated
with more tasks, and anytime logic allows such allocation
to happen soon after the agents finish their previous tasks
(and thus save more time without needing to go back to their
initial locations). The detailed results are presented in Table
I. “Makespan” and “(min)” in Table I indicate the average
and the lower bound (calculated by the shortest makespan)
values in 100 instances, respectively. It is verified that anytime

MT-MAPD achieves 8.3% shorter makespan and 14.1% lower
total runtime on average as compared to the TSP-based MT-
MAPD [10] for a wide range of agent numbers and task
group arrival frequencies. Total runtime also becomes shorter
because makespan gets shorter.

0 200 400 600 800 1000
task number

500

1000

1500

2000

2500

3000

3500

m
ak

es
pa

n

PIBT [8]
TSP-based MT-MAPD [10]
anytime MT-MAPD

Fig. 3. Makespan comparison among anytime MT-MAPD, TSP-based MT-
MAPD [10], and PIBT [8]. Task number is varied from 30 to 1000, while agent
number and task group arrival frequency are set both to 10. All experimental
settings are performed in 100 instances with initial locations of agents set
randomly. Vertical bars on each plot show standard deviations. The vertical
axis starting from 107 is lower bounded by the shortest makespan value of
all cases in 100 instances.

In addition, we examine the effect of different task numbers
on the makespan. For this, we set agent number and task
group arrival frequency both to 10, and vary task number
from 30 to 1000. The result is shown in Fig. 3. We can see
that the makespan of anytime MT-MAPD is shorter than the
TSP-based MT-MAPD [10] and PIBT [8] for a wide range of
task numbers, thanks again to anytime task allocation logic.
Observe that the improvement of makespan increases linearly
as task number increases; this is due to a similar reason
to the one explained above: Namely, as the number of task
increases, more tasks need to be allocated to agents, and in
such situations anytime logic allows these allocations to occur
sooner and thereby achieves more efficiency.

To summarize this first experiment, anytime MT-MAPD
with anytime task allocation always achieves better makespan
as compared to the TSP-based MT-MAPD [10]; the effect of
this anytime logic is more substantial when the ratio of task
number to agent number is large.

B. Energy Constraint

In this second experiment, we study the behavior of anytime
MT-MAPD under energy constraint, in particular with respect
to different power limits ᾱi and charge speeds βi.

We set task number to 1000, task group arrival frequency
to 0.5, and agent number to 30. We vary power limit ᾱi

from 300 to 2000 and charge speed βi from 1 to 10. The
experiment result is displayed in Fig. 4. Each curve shows
the makespan (vertical axis) with respect to different com-
bination of power limits (horizontal axis) and charge speeds
(several values shown in the legend). The bottom black line
(makespan= 1209) is the case with no energy constraint (i.e.
ᾱi =∞), displayed here for the purpose of comparison.

It is observed that, compared to the case without energy
constraint, makespan under energy constraint is larger in all



FUMIYA et al.: ANYTIME MULTI-TASK MULTI-AGENT PICKUP AND DELIVERY UNDER ENERGY CONSTRAINT 7

TABLE I
COMPARISON BETWEEN PROPOSED AND CONVENTIONAL MAPD

Task Group Agent TSP-based MT-MAPD [10] anytime MT-MAPD (Proposed) PIBT [8]
Arrival Frequency Number Makespan (min) Runtime/step [ms]([s]) Makespan Runtime/step Makespan Runtime/step

0.2 10 3244 (3103) 62.6ms (203.0s) 2655 (2551) 45.3ms (120.4s) 3034 (2881) 59.9ms (181.7s)
0.2 20 1822 (1716) 15.2ms (27.7s) 1787 (1679) 12.8ms (23.0s) 2381 (2182) 46.0ms (109.8s)
0.2 30 1781 (1665) 14.1ms (25.1s) 1786 (1692) 14.0ms (25.1s) 2418 (2158) 50.9ms (126.5s)
0.2 40 1784 (1660) 14.6ms (26.0s) 1789 (1691) 15.2ms (27.3s) 2754 (2244) 62.4ms (174.6s)
0.2 50 1783 (1694) 15.9ms (28.4s) 1787 (1662) 16.8ms (30.1s) 3245 (2516) 71.8ms (234.6s)
1 10 3229 (3083) 110.8ms (357.8s) 2630 (2535) 104.1ms (273.8s) 2999 (2988) 109.7ms (329.0s)
1 20 1776 (1676) 96.7ms (171.7s) 1551 (1482) 95.3ms (147.9s) 2328 (2056) 114.2ms (266.0s)
1 30 1314 (1243) 90.4ms (118.9s) 1197 (1131) 86.2ms (103.3s) 2328 (2130) 119.6ms (278.4s)
1 40 1118 (1032) 85.9ms (96.0s) 1047 (977) 85.1ms (89.1s) 2743 (2335) 126.5ms (347.0s)
1 50 1027 (952) 87.6ms (90.0s) 969 (913) 83.4ms (80.8s) 3621 (3192) 221.6ms (800.3s)
10 10 3236 (3044) 153.4ms (496.6s) 2633 (2519) 122.5ms (322.5s) 3004 (2970) 192.4ms (578.0s)
10 20 1765 (1665) 155.2ms (273.9s) 1539 (1470) 116.5ms (179.3s) 2319 (2171) 181.4ms (420.5s)
10 30 1307 (1237) 169.3ms (221.2s) 1188 (1123) 114.0ms (135.4s) 2338 (2118) 132.6ms (310.2s)
10 40 1109 (1038) 145.7ms (161.6s) 1037 (971) 114.3ms (118.6s) 2730 (2415) 139.3ms (380.2s)
10 50 1011 (963) 157.2ms (158.9s) 956 (896) 111.7ms (106.8s) 3647 (2893) 262.7ms (960.7s)

combinations of power limits and charge speeds. This is
expected, since energy constraint forces a vacant agent to be
abandoned from task allocation if it does not have enough
energy to complete that task group. Moreover, we can see that
for smaller power limits, charge speed plays a significant role
in affecting makespan. This is because with small power limits,
agents frequently need to go back to their initial locations to
recharge themselves before they can be allocated with a new
task group; then the faster their powers can be charged, the
faster they can be ready for task allocation, which result in
shorter makespan.

In addition, as the power limit increases, not only makespan
becomes smaller but also the influence of charge speed on the
makespan becomes negligible. This is due to the fact that with
large power limits, agents can go on completing many task
groups without recharging, so very few times of recharging
is needed which makes charge speed insignificant. We note
that the smallness/largeness of power limit is relative to the
environment, i.e. field size, agent number, and task number.

To conclude the observations from this second experiment,
we see that if either the power limit or the charge speed is
large (relative to the environment), the makespan tend to be
close to the case without energy constraint.

C. Agent Number

Finally, we investigate the impact of different agent numbers
on makespan under energy constraint. As shown in the pre-
ceding experiment (Fig. 4), energy constraint has more impact
for small power limits, so in this last experiment we focus on
power limit = 300 and several different values of charge speed
(shown in the legend of Fig. 5). We set task number to 1000,
task group arrival frequency to 0.5, and vary agent number
from 5 to 60. The obtained result is displayed in Fig. 5. The
bottom black curve is the case with no energy constraint (i.e.
power limit =∞), displayed for the purpose of comparison.

Similar to Fig. 4, in all cases where energy constraint exist,
makespan is larger than that in the case where no energy
constraint is placed (for the same reason already explained
in the preceding subsection). Nevertheless, it is interesting to
observe that as the agent number increases, makespan reduces

250 500 750 1000 1250 1500 1750 2000
power limit

1200

1300

1400

1500

1600

1700

1800

1900

m
ak

es
pa

n

charge speed=1
charge speed=2
charge speed=4
charge speed=7
charge speed=10
power limit = ∞

Fig. 4. Makespan achieved by anytime MT-MAPD with different values of
power limits and charge speeds. Task number, task group arrival frequency,
and agent number are set to 1000, 0.5, and 30, respectively. All experimental
settings are performed in 10 instances with initial locations of agents set
randomly. Vertical bars on each plot show standard deviations. The vertical
axis starting from 1143 is lower bounded by the shortest makespan value for
the case with no energy constraint (i.e. ᾱi = ∞) in 100 instances.

monotonically to become very close to the makespan achieved
without energy constraint (and the role played by charge speed
also becomes negligible). The reason for this observation is as
follows. First, more agents means that each agent is allocated
with fewer task groups, which in turn means that each agent
needs very few times of recharging, so change speed is less
important. Second, when there are more agents in the field,
the field would become denser which would typically result
in performance saturation. Interestingly, in this case of small
power limit (300), agents cannot be in the field for very long,
which has the effect of reducing the field density. Hence
this balance between agent number and power limit results
in performance under energy constraint converging to that
without energy constraint.

We end this subsection by remarking on a reverse problem:
Suppose that we are given a desired makespan to be achieved,
and our task is to determine the agent number needed to
achieve the given makespan (where agents are subject to
certain level of energy constraint). Such a problem may be
effectively resolved by drawing in Fig. 5 a horizontal line
for the value of the desired makespan, and according to the



8 IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

power limit and charge speed of the available agents, we can
read off the needed number of agents. Such design problem
of agent number may be useful in situations where there are
abundant agents to be used, and for each specific task with
a desired performance, the required number of agents needs
to be determined. As demonstrated in Fig. 5, our proposed
algorithm can be useful for addressing such problems as well.

10 20 30 40 50 60
agent number

2000

4000

6000

8000

10000

m
ak

es
pa

n

charge speed=1
charge speed=2
charge speed=4
charge speed=10
power limit = ∞

Fig. 5. Makespan achieved by anytime MT-MAPD with different values of
agent numbers and energy charge speeds. Task number, task group arrival
frequency and power limit are set to 1000, 0.5, and 300, respectively. All
experimental settings are performed in 10 instances with initial locations of
agents set randomly. Vertical bars on each plot show standard deviations. The
vertical axis starting from 926 is lower bounded by the shortest makespan
value for the case with no energy constraint (i.e. ᾱi = ∞) in 100 instances.

VI. CONCLUSIONS

In this paper, we have developed a new online multi-task
MAPD algorithm which distinguishes itself from the literature
with two novelties: anytime task allocation and under energy
constraint. Extensive experimental evaluations have shown the
effectiveness of our algorithm on improving makespan as
compared to the existing work. Properties and behaviors of the
algorithm with respect to varying numbers of agents, tasks,
power limits, and charge speeds are thoroughly examined.
For future work, we aim to extend our problem setting to
uncertain and dynamic environment where there may exist
many uncontrolled agents, such as humans or human-driven
vehicles.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI magazine, vol. 29,
no. 1, pp. 9–9, 2008.

[2] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate:
a complete multi-agent pathfinding algorithm,” Journal of Artificial
Intelligence Research, vol. 51, pp. 443–492, 2014.

[3] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, 2019.

[4] G. Lodigiani, “State of the art on: Multi-agent path finding and multi-
agent pickup and delivery,” Politecnico di Milano, 2021.

[5] C. Henkel, J. Abbenseth, and M. Toussaint, “An optimal algorithm to
solve the combined task allocation and path finding problem,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 4140–4146.

[6] H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” arXiv preprint
arXiv:1705.10868, 2017.

[7] M. Čáp, J. Vokřı́nek, and A. Kleiner, “Complete decentralized method
for on-line multi-robot trajectory planning in well-formed infrastruc-
tures,” in Proceedings of the international conference on automated
planning and scheduling, vol. 25, 2015, pp. 324–332.

[8] K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority inheri-
tance with backtracking for iterative multi-agent path finding,” Artificial
Intelligence, vol. 310, p. 103752, 2022.

[9] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11 272–11 281.

[10] F. Kudo and K. Cai, “A tsp-based online algorithm for multi-task multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
2023.

[11] D. Silver, “Cooperative pathfinding,” in Proceedings of the aaai con-
ference on artificial intelligence and interactive digital entertainment,
vol. 1, no. 1, 2005, pp. 117–122.

[12] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[13] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou,
“Robust multi-agent path finding,” in Eleventh Annual Symposium on
Combinatorial Search, 2018.

[14] G. Gange, D. Harabor, and P. J. Stuckey, “Lazy cbs: implicit conflict-
based search using lazy clause generation,” in Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, vol. 29,
2019, pp. 155–162.

[15] T. Huang, S. Koenig, and B. Dilkina, “Learning to resolve conflicts for
multi-agent path finding with conflict-based search,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 13, 2021,
pp. 11 246–11 253.

[16] J. Weise, S. Mai, H. Zille, and S. Mostaghim, “On the scalable multi-
objective multi-agent pathfinding problem,” in 2020 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2020, pp. 1–8.

[17] P. Surynek, “Multi-goal multi-agent path finding via decoupled and
integrated goal vertex ordering,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 14, 2021, pp. 12 409–12 417.

[18] K. Vedder and J. Biswas, “X*: Anytime multi-agent path finding
for sparse domains using window-based iterative repairs,” Artificial
Intelligence, vol. 291, p. 103417, 2021.

[19] T. Huang, J. Li, S. Koenig, and B. Dilkina, “Anytime multi-agent path
finding via machine learning-guided large neighborhood search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 9, 2022, pp. 9368–9376.

[20] F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, “A multi-label a* al-
gorithm for multi-agent pathfinding,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 29, 2019, pp.
181–185.

[21] H. Wang, D. Shi, Y. Wu, L. Li, N. Li, and J. Xu, “A balanced shadow-
following coverage path planning approach under energy constraints,” in
2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2021, pp. 1599–1606.

[22] A. Kaplan, N. Kingry, P. Uhing, and R. Dai, “Time-optimal path
planning with power schedules for a solar-powered ground robot,” IEEE
Transactions on Automation Science and Engineering, vol. 14, no. 2, pp.
1235–1244, 2017.

[23] J. Geens, J. Ignoul, W. Lenaerts, and E. Goossens, “Implementing
multi-agent system behaviours for overcoming energy constraints and
obstacles in the packet-world,” in Proceedings Scientific Training in
Multi-Agent Systems Workshop STMAS 2021, 2021, p. 85.

[24] B. Coltin, “Multi-agent pickup and delivery planning with transfers.”
Ph.D. dissertation, Carnegie Mellon University, USA, 2014.

[25] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. S. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in Twelfth Annual Symposium on
Combinatorial Search, 2019.

[26] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[27] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM
(JACM), vol. 7, no. 4, pp. 326–329, 1960.

[28] G. A. Croes, “A method for solving traveling-salesman problems,”
Operations research, vol. 6, no. 6, pp. 791–812, 1958.

[29] B. Korte and J. Vygen, Combinatorial Optimization. Springer, 2006.


