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Abstract

We study a continuous-time surplus-based algorithm
for multi-agent average consensus, and derive a tight
upper bound on the key parameter included in this
algorithm that ensures convergence over strongly
connected and balanced digraphs. We specialize the
upper bound result to undirected (connected) graphs
and unweighted cyclic digraphs; in particular, for
undirected graphs the algorithm converges for arbi-
trary positive values of the parameter, and for cyclic
digraphs the upper bound on the parameter depends
only on the number of agents and may be easily cal-
culated. Moreover, it is suggested through extensive
simulation that, for the same number of agents, the
upper bound for cyclic digraphs be smaller than that
for other strongly connected and possibly unbalanced
digraphs; this implies that as long as the parameter
satisfies the upper bound for cyclic digraphs, this pa-
rameter can work for other digraphs.

1 INTRODUCTION

The problem of multi-agent average consensus has
attracted significant attention in the systems and
control community (Jadbabaie, Lin, & Morse, 2003;
Olfati-Saber & Murray, 2004; Xiao & Boyd, 2004;
Boyd, Ghosh, Prabhakar, & Shah, 2006; Bénézit,
Blondel, Thiran, Tsitsiklis, & Vetterli, 2010). In
this problem, a network of interconnected agents
aims to reach an agreement on the average value of
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their initial states, through only local communica-
tions among neighbors. The inter-agent communi-
cation topology is modeled by a directed graph (or
digraph). Average consensus has found applications
in multi-vehicle cooperation, distributed estimation,
load balancing, and distributed optimization (Cao,
Yu, Ren, & Chen, 2013; Qin, Ma, Shi, & Wang,
2017).

In (Olfati-Saber & Murray, 2004) a basic con-
sensus algorithm was introduced but the consensus
value depends on the communication topology and
the agents’ initial states. By contrast, in (Cai &
Ishii, 2012) a “surplus-based” algorithm was pro-
posed which provably achieves average consensus
on arbitrary strongly connected (time-invariant) di-
graphs. In this algorithm, a variable called “surplus”
is augmented to each agent, which tracks the state
changes of the associated agent; collectively these
surplus variables keep the information of state sum
shift, thereby achieving average consensus even if the
digraph is not balanced (the latter requires that each
agent maintains the same amount of incoming and
outgoing information). The surplus-based algorithm
has been extended to address average consensus on
random networks (Cai, 2012), time-varying networks
(Cai & Ishii, 2014), and to solve a distributed opti-
mization problem with state constraints (Xu et al.,
2017) (these works have mainly been on discrete-time
algorithms).

Despite many developments of the surplus-based
algorithm, a fundamental issue remains unsolved.
There is a parameter in the algorithm, whose amount
must be “sufficiently small” in order to ensure the
convergence of the algorithm. An explicit and tight
bound on the parameter is yet unknown. For the
discrete-time surplus-based algorithm, Cai and Ishii
(2012) presented an explicit, but highly conservative
upper bound based on a matrix perturbation result.
Even for several special digraphs (balanced, cyclic,
and undirected), the bounds reported in (Cai & Ishii,
2012) are not tight. For the continuous-time version
in (Cai, 2011), there has not been any bound result
reported.
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In this paper, we study upper bounds for the pa-
rameter in the continuous-time surplus-based algo-
rithm. In order to derive tight bounds, we focus on
balanced digraphs and directly analyze the eigenval-
ues of the multi-agent system as functions of the pa-
rameter. Our contributions are threefold:

1. We derive a tight upper bound for the parameter
for strongly connected and balanced digraphs,
which is explicit in terms of the real and imagi-
nary parts of the graph Laplacian’s eigenvalues.

2. For undirected (connected) graphs we show
that the continuous-time surplus-based algo-
rithm converges for any positive value of the pa-
rameter. This is in contrast with the parameter
bound for the discrete-time algorithm (Cai &
Ishii, 2012), which is dependent on the number
of agents in the network.

3. For cyclic digraphs we derive an explicit and
tight bound that depends only on the number
of agents and is easily calculatable. This is an
improved result as compared to the conserva-
tive bound given in (Cai & Ishii, 2012) for the
discrete-time algorithm.

In addition, we show by simulation that, for the
same number of agents, the bound for cyclic digraphs
is plausibly smaller than that for any other strongly
connected and unbalanced digraphs; this means that
as long as the parameter satisfies the (tight) bound
for cyclic digraphs (which is explicitly known), the
surplus-based algorithm with this parameter value
may work for other possibly unbalanced digraphs.
The rest of this paper is organized as follows.

Section 2 introduces communication graphs and the
continuous-time surplus-based average consensus al-
gorithm. Sections 3 and 4 present the main results;
tight upper bounds on the parameter are derived for
balanced, undirected, and cyclic digraphs. Section 5
provides illustrative simulation examples, and finally
Section 6 states our conclusions.

2 PRELIMINARIES

In this paper, we will use the following notation. De-
note R+ as the set of positive real numbers, In the
n×n identity matrix, On the n×n zero matrix, j (ro-
man) the imaginary unit, i.e. j :=

√
−1. Also define

0n := [0 · · · 0]⊤ ∈ Rn and 1n := [1 · · · 1]⊤ ∈ Rn.

2.1 Communication graphs

Given a multi-agent system, we represent the multi-
agent system and the interactions between the agents

by a communication graph G = (V, E), with node set
V = {v1, . . . , vn} and directed edge set E ⊆ V × V.
The graph is assumed to be directed, unweighted,
and time-invariant. The node vi ∈ V represents the
ith agent. The ith agent receives information from
the jth agent if and only if (vj , vi) ∈ E . We define
the set of “in-neighbors” of the ith agent by N I

i :=
{vk|(vk, vi) ∈ E} and the set of “out-neighbors” by
NO

i := {vk|(vi, vk) ∈ E}. For i, j = 1, . . . , n, define
receiving weight aij and sending weight bij by

aij :=

{
1, vj ∈ N I

i

0, vj /∈ N I
i

, bij :=

{
1, vj ∈ NO

i

0, vj /∈ NO
i

respectively. It is evident that aij = bji for i, j =
1, . . . , n.
The in-Laplacian matrix LI := [lIij ] ∈ Rn×n and

the out-Laplacian matrix LO := [lOij ] ∈ Rn×n are de-
fined according to

lIij :=

{ ∑n
k=1 aik, j = i

−aij , j ̸= i
, lOij :=

{ ∑n
k=1 bik, j = i

−bij , j ̸= i

respectively. We say that there exists a directed path
from vj ∈ V to vi ∈ V if there are directed edges, i.e.{
(vj , vm1

), (vm1
, vm2

), . . . , (vmq−1
, vmq

), (vmq
, vi)

}
⊂ E

for all 1 ≤ m1, . . . ,mq ≤ n.
Below are two graphical conditions we shall use

later.

Definition 1. The digraph G is strongly connected
if there exists a directed path from any vi to any vj
(i, j = 1, . . . , n, i ̸= j).

Definition 2. The digraph G is said to be balanced
if lIii = lOii for every i = 1, · · · , n, i.e. the number
of in-neighbors of each agent and the number of its
out-neighbors are the same.

Note that if G is the balanced digraph, LI = L⊤
O,

LI1n = 0n and 1⊤
nLI = 0⊤

n .

2.2 Average consensus by surplus-
based algorithm

Let xi(t) ∈ R (i = 1, . . . , n) be the state variable of
the ith agent, and xi(0) = xi0 the initial value. The
average consensus problem requires the state of each
agent to converge to the average of the initial values,
i.e. xi(t) → (1/n)

∑n
i=1 xi0 as t → ∞ for all i.

In the case where a digraph is balanced, the stan-
dard algorithm (cf. Olfati-Saber & Murray, 2004))

ẋi(t) =

n∑
j=1

aij (xj(t)− xi(t))
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is available for the average consensus problem.
To achieve average consensus on arbitrary strongly

connected digraphs (not necessarily balanced), Cai
and Ishii (2012) proposed a discrete-time surplus-
based algorithm. The continuous-time counterpart
is as follows:

ẋi(t) =

n∑
j=1

aij (xj(t)− xi(t)) + ϵsi(t)

ṡi(t) = −
n∑

j=1

aij (xj(t)− xi(t))− ϵsi(t)

+

n∑
j=1

(bjisj(t)− bijsi(t))

xi(0) = xi0 ∈ R, si(0) = 0 (1)

where si(t) ∈ R is called the surplus variable of the
ith agent and ϵ > 0 is a parameter which specifies
the amount of surplus used in the xi update, and
is the parameter of interest as discussed in the in-
troduction. To write (1) in the matrix form, de-
fine x(t) := [x1(t) · · ·xn(t)]

⊤, x0 := [x10 · · ·xn0]
⊤,

s(t) := [s1(t) · · · sn(t)]⊤, and hence[
ẋ(t)
ṡ(t)

]
= M

[
x(t)
s(t)

]
,

[
x(0)
s(0)

]
=

[
x0

0n

]
where M =

[
−LI ϵIn
LI −L⊤

O − ϵIn

]
∈ R2n×2n.

(2)

Depending on the digraph, the state xi(t) may di-
verge when the parameter ϵ is too large. This is
caused by instability of M assocated with larger ϵ.
So we need to know whether there is an upper bound
on ϵ, and how large its concrete value is if there is
the upper bound.
Observe that the column sums of matrix M are

zero; thus 1⊤
n (ẋ(t) + ṡ(t)) = 0, i.e. 1⊤

n (x(t) + s(t)) is
a constant. A convergence result of the surplus-based
algorithm (2) is the following.

Lemma 1. Consider the algorithm (2) and suppose
that the digraph G is strongly connected. If the pa-
rameter ϵ > 0 is sufficiently small, then the agents
achieve average consensus.

The proof of Lemma 1 can be found in (Cai, 2011,
Corollary 3.2, p. 33). For completeness we present
the proof below.

Proof of Lemma 1. Let

M0 =

[
−LI On

LI −L⊤
O

]
, Me =

[
On In
On −In

]
.

Then M = M0 + ϵMe; and for strongly connected
digraphs the eigenvalues of M0 satisfy 0 = λ1(M0) =
λ2(M0) > Re{λ3(M0)} ≥ · · · ≥ Re{λ2n(M0)}.
Now we qualify the changes of the semi-simple

eigenvalue λ1 = λ2 = 0 of M0 under a small pertur-
bation ϵMe. We do this by computing the derivatives
dλ1(ϵ)/dϵ and dλ2(ϵ)/dϵ using (Cai & Ishii, 2012,
Lemma 7); here λ1(ϵ) and λ2(ϵ) are the eigenvalues
of M corresponding respectively to λ1 and λ2. To
that end, choose the right eigenvectors y1, y2 and left
eigenvectors z1, z2 of the semi-simple eigenvalue 0 as
follows:

Y := [y1 y2] =

[
0n 1n

v2 −nv2

]
,

Z :=

[
z⊤1
z⊤2

]
=

[
1⊤
n 1⊤

n

v⊤1 0⊤
n

]
.

Here v1 satisfies v⊤1 LI = 0⊤
n and v⊤1 1n = 1; and v2

satisfies L⊤
Ov2 = 0n and 1⊤

n v2 = 1. The fact that
positive eigenvectors v1 and v2 exist follows from the
Perron-Frobenius Theorem (Horn & Johnson, 1990,
Chapter 8). With this choice, one can readily verify
that ZY = I2. Since dM/dϵ|ϵ=0 = Me, the deriva-
tives dλ1(ϵ)/dϵ|ϵ=0 and dλ2(ϵ)/dϵ|ϵ=0 are the eigen-
values of[

z⊤1 Mey1 z⊤1 Mey2
z⊤2 Mey1 z⊤2 Mey2

]
=

[
0 0

v⊤1 v2 −nv⊤1 v2

]
In particular, dλ1(ϵ)/dϵ|ϵ=0 = 0 and dλ2(ϵ)/dϵ|ϵ=0 =
−nv⊤1 v2. This implies that when ϵ is small, λ1(ϵ)
stays equal to zero while λ2(ϵ) moves to the left along
the real axis. Then by continuity, there must exist
a positive δ1 such that λ1(δ1) = 0 and λ2(δ1) < 0.
On the other hand, since eigenvalues are continuous
functions of its matrix entries, there must also exist
a positive δ2 such that Re{λi(δ2)} < 0 continues to
hold for all i ∈ {3, . . . , 2n}. Thus for any sufficiently
small ϵ ∈ (0,min{δ1, δ2}), the matrixM has a simple
eigenvalue 0 and all other eigenvalues have negative
real part.

Moreover, corresponding to the simple eigenvalue
0, a right eigenvector is y1 = [1⊤

n 0⊤
n ]

⊤ and a left
eigenvector z1 = (1/n)[1⊤

n 1⊤
n ]

⊤. These eigenvectors
satisfy z⊤1 y1 = 1. Therefore[

x(t)
s(t)

]
= etM

[
x(0)
s(0)

]
→ y1z

⊤
1

[
x(0)
s(0)

]
=

[
1
n1n1

⊤
n x(0)

0n

]
,

as t → ∞. That is, average consensus is achieved.
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In the proof above, observe that by algorithm (2)
the multi-agent system achieves average consensus if
the matrix M has a simple eigenvalue 0 and all the
other eigenvalues have negative real parts. That is,

0 = λ1(M) > Re{λ2(M)} ≥ · · · ≥ Re{λ2n(M)}

⇒ lim
t→∞

[
x(t)
s(t)

]
=

1n
⊤x0

n

[
1n

0n

]
. (3)

By Lemma 1, we know that there always exists a
positive ϵ that ensures convergence to average con-
sensus. A similar result exists for the discrete-time
surplus algorithm, and is explored in (Cai & Ishii,
2012). In particular, provided several results on up-
per bounds for ϵ to ensure average consensus, but
even for special topologies such as balanced, cyclic,
and undirected, the provided bounds are fairly con-
servative. On the other hand, there is no known
bound result for ϵ for the continuous-time algorithm
(2). We fill this gap in this paper, by deriving tight
upper bounds on ϵ that guarantee average consensus
over balanced digraphs using algorithm (2).

3 MAIN RESULT

Our main result states a tight upper bound on ϵ for
ensuring convergence of algorithm (2) in the case of
strongly connected and balanced digraphs.

Theorem 1. Consider the algorithm (2) with the
positive parameter ϵ, and suppose that G is a strongly
connected and balanced digraph. Let µi = pi + jqi
(i = 1, . . . , n) be the eigenvalues of LI. Then

(i) when there exists at least one eigenvalue of LI

such that pi < |qi|, the agents achieve average
consensus if and only if the parameter ϵ in M
satisfies the following inequality

0 < ϵ < min
i∈S

2p2i
|qi| − pi

(4)

where S := {k ∈ [1, n] | pk < |qk|};

(ii) when pi ≥ |qi| for all i = 1, . . . , n, i.e. S is
empty, the agents achieve average consensus if
and only if ϵ > 0.

Theorem 1 states a tight upper bound on ϵ for al-
gorithm (2) to achieve average consensus on strongly
connected and balanced digraphs. This bound is in
fact needed only when pi < |qi| holds for some eigen-
value of the in-Laplacian matrix LI, i.e. that eigen-
value lies in the shaded area in Fig. 1.

Re

Im

45º

-45º

Figure 1: Illustration of condition in Theorem 1

Compared to the counterpart result in (Cai & Ishii,
2012) for the discrete-time algorithm on balanced di-
graphs, the bound in Theorem 1 is tight. This is
because, as will be seen below, this bound is proved
by directly analyzing the eigenvalues of the matrix
M , whereas in (Cai & Ishii, 2012), certain approx-
imation methods were used. Moreover, case (ii) of
Theorem 1 where any positive ϵ works is unique for
the continuous-time algorithm; this is not the case
for the discrete-time algorithm.

The reason why we can directly analyze the eigen-
values of M is due to the assumption that G is a bal-
anced digraph and thus LI = L⊤

O. We note in passing
that the approach of directly analyzing eigenvalues
to derive bounds for parameters used in algorithms
has been reported in the literature, in particular for
consensus problems of agents with second-order dy-
namics (Ren, 2008; Yu, Chen, & Cao, 2010).
To prove Theorem 1, we need the following two

lemmas. The first lemma provides an expression of
eigenvalues of M in terms of those of LI.

Lemma 2. Suppose that G is a strongly connected
and balanced digraph. Let µi := λi(LI) (i =
1, . . . , n) be the eigenvalues of LI. Then the eigen-
values of M in algorithm (2) are given as

λ±
i (M) =

− (2µi + ϵ)±
√
ϵ2 + 4µiϵ

2
(5)

for i = 1, . . . , n.

apppp. Let λ and u = [u⊤
1 u⊤

2 ]
⊤ be an eigenvalue and

its associated (right) eigenvector of M , respectively.
Since G is a balanced digraph, LI = L⊤

O holds and we
derive the following:

Mu = λu

⇔
[

−LI ϵIn
LI −LI − ϵIn

] [
u1

u2

]
= λ

[
u1

u2

]
⇔

{
−LIu1 + ϵu2 = λu1

LIu1 − LIu2 − ϵu2 = λu2

⇔

 u2 =
1

ϵ
(λIn + LI)u1

LIu1 = [(λ+ ϵ) In + LI]u2.
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From the final two equalities above, we thus obtain

−
(
L2
I + 2λLI

)
u1 =

(
λ2 + λϵ

)
u1.

This means that λ2 + λϵ is an eigenvalue of −(L2
I +

2λLI) with an associated eigenvector u1. On the
other hand, it follows from spectral mapping theo-
rem that −(L2

I + 2λLI) has n eigenvalues

−(µ2
1 + 2λµ1), . . . ,−(µ2

n + 2λµn) (6)

where µ1, . . . , µn are the eigenvalues of LI. Hence
λ2 + λϵ must be equal to one of the eigenvalues in
(6), i.e.

λ2 + λϵ = −(µ2
i + 2λµi),

for some i ∈ {1, . . . , n}. This quadratic equation has
two roots. By solving the equation for λ and denoting
the two roots as λ±

i , we obtain (5).

In the sequel we shall use the notation λ+
i (M)

and λ−
i (M), where λ+

i (M) is the ‘+’ side of ±, and
λ−
i (M) is the ‘−’ side. The second lemma states a

useful expression for the real part of the square root
of a complex number.

Lemma 3. Let v1, v2 be any real numbers. Then

Re
{
±
√

v1 + jv2

}
= ±

√
v1 +

√
v21 + v22
2

. (7)

Proof. Let w1, w2 be real numbers satisfying
±
√
v1 + jv2 = ±(w1+jw2). Then the square of both

sides of the above equation is v1 +jv2 = (w2
1 −w2

2)+
j2w1w2 and we derive the following:

{
v1 = w2

1 − w2
2

v2 = 2w1w2
⇔


w2

1 = v1 + w2
2

w2 =
v2

2w1

⇔ w2
1 = v1 +

v22
4w2

1

⇔ 4(w2
1)

2 − 4v1w
2
1 − v22 = 0

⇔ w2
1 =

v1 ±
√

v21 + v22
2

.

Since w2
1 in the last equation above cannot be

negative, w2
1 =

(
v1 +

√
v21 + v22

)
/2. From

Re
{
±
√
v1 + jv2

}
= w1 we obtain (7).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Since µi = pi+jqi are the eigen-
values of LI, which is associated with a strongly con-
nected digraph, we can order µi such that pi and qi
satisfy 0 = p1 < p2 ≤ · · · ≤ pn and q1 = 0, respec-
tively (Mesbahi & Egerstedt, 2010). By substituting
µi = pi + jqi in equation (5) of Lemma 2, we derive

λ±
i (M) =

−[(2pi + ϵ) + j2qi]±
√
ϵri + j4qiϵ

2

where ri = ϵ+ 4pi. When i = 1,

λ±
1 (M) =

−ϵ± ϵ

2
⇒

{
λ+
1 (M) = 0

λ−
1 (M) = −ϵ < 0.

Thus M has at least one 0 eigenvalue.
Using Lemma 3, we obtain

Re{λ±
i (M)} =

− (2pi + ϵ)±

√
ϵri + ϵ

√
r2i + 16q2i
2

2
.

(8)

Since M has at least one 0 eigenvalue, it is left to find
an upper bound of ϵ > 0 to ensure Re{λ±

i (M)} < 0
for i = 2, . . . , n (owing to (3)). From (8), we see that
Re{λ−

i (M)} < 0 holds for i = 2, . . . , n regardless the
value of ϵ. Thus it suffices to derive an upper bound
of ϵ which guarantees Re{λ+

i (M)} < 0 and towards
this end we derive the following:

−(2pi + ϵ) +

√
ϵri + ϵ

√
r2i + 16q2i
2

< 0

⇔ ϵri + ϵ
√
r2i + 16q2i < 2(2pi + ϵ)2

⇔ ϵ2r2i + 16q2i ϵ
2 <

(
2 (2pi + ϵ)

2 − ϵri

)2

⇔ 16p2i ϵ
2 + 16q2i ϵ

2 < 32p2i ϵ
2 + 64p3i ϵ+ 64p4i

⇔ (p2i − q2i )ϵ
2 + 4p3i ϵ+ 4p4i > 0 (9)

for all i = 2, . . . , n. Then we have the following cases.

a) When pi = |qi|, it is clear that inequality (9)
holds if and only if ϵ > 0.

b) When pi > |qi|, the solution of (9) is

ϵ <
−2p2i

pi − |qi|
, ϵ >

−2p2i
pi + |qi|

.

This means that inequality (9) holds if and only
if ϵ > 0.

c) When pi < |qi|, the solution of (9) is

− 2p2i
|qi|+ pi

< ϵ <
2p2i

|qi| − pi
.
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Since ϵ > 0, inequality (9) holds if and only if

0 < ϵ < min
i

2p2i
|qi| − pi

.

By a) and b), condition ii) of Theorem 1 is proved
and by c), condition i) of Theorem 1 is proved.

4 SPECIAL TOPOLOGIES

We investigate the following special graphs using
Theorem 1, to obtain specialized results. In doing
so, we obtain insight into possible requirements of ϵ
for general strongly connected digraphs.

4.1 Connected undirected graph

A connected undirected graph has bidirectional edges
and there is a (bidirectional) path between any pair
of nodes. The in-Laplacian matrix LI associated with
this graph is a symmetric matrix, so all of its eigen-
values are real.

Proposition 1. Consider algorithm (2) with the
positive parameter ϵ, and suppose that G is a con-
nected undirected graph. Then the agents achieve
average consensus if and only if ϵ > 0.

Proposition 1 asserts that algorithm (2) achieves
average consensus on undirected graphs regardless
of the value of parameter ϵ(> 0). This is in sharp
contrast with the counterpart bound result given in
(Cai & Ishii, 2012) for the discrete-time algorithm
which cannot be arbitrary and is dependent on the
number n of agents.
The proof of Proposition 1 is as follows.

Proof of Proposition 1. Since all eigenvalues of LI

are real, all the imagnary part are zero and thus S
defined in (4) is empty. This condition matches case
(ii) of Theorem 1, hence the agents achieve average
consensus if and only if ϵ > 0.

4.2 Cyclic digraph

An (unweighted) cyclic digraph is one of the sim-
plest strongly connected digraphs. This digraph G
has a node set V = {v1, . . . , vn} and an edge set
E = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. Moreover
LI is a circulant matrix, so the eigenvalues µi of LI

satisfy

µi = 1− cos
2(i− 1)

n
π − j sin

2(i− 1)

n
π

Re

Im
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Figure 2: Illustration of eigenvalue distribution for
in-Laplacian matrix of cyclic digraph

for i = 1, · · · , n (cf. Agaev & Chebotarev, 2010,
Theorem 1)). Fig. 2 shows the spectrum of LI of n
nodes uniformly distributed on a circle centered at 1.
Number the eigenvalues µ1, . . . , µn counterclockwise,
beginning with µ1 = 0 and define θn ∈ [0, 2π) , n ≥ 2
to be the angle between the line going through µ1

and µn and the real axis. From Fig. 2, θn satisfies

2θn +
2π

n
= π

⇒θn =

(
1

2
− 1

n

)
π. (10)

If some eigenvalue µi = pi + jqi is on the dotted arc
as shown in Fig. 2, then µi is such that pi < |qi| (i.e.
case (i) of Theorem 1).

Proposition 2. Consider algorithm (2) with the
positive parameter ϵ, and suppose that G is a cyclic
digraph. Then

(i) when 2 ≤ n ≤ 4, the agents achieve average
consensus if and only if ϵ > 0;

(ii) when n ≥ 5, the agents achieve average consen-
sus if and only if the parameter ϵ in M satisfies
the following inequality

0 < ϵ <
4

tan3 θn − tan2 θn + tan θn − 1
(11)

where θn is defined in (10).

Proposition 2 states a tight upper bound on ϵ for
algorithm (2) to achieve average consensus over cyclic
digraphs with n ≥ 5 agents (when 2 ≤ n ≤ 4 any pos-
itive ϵ works). By contrast, the counterpart bound
result in (Cai & Ishii, 2012) for the discrete-time al-
gorithm is not tight, because it is derived based on a
matrix perturbation result with approximations. In
addition, there is no case (including n = 2, 3, 4) in
(Cai & Ishii, 2012) where ϵ can be unbounded.
Note that the specialized bound in (11) is de-

termined by just one parameter, θn in (10), which

6



makes this bound easier to calculate than the gen-
eral bound in (4). More significantly, we conjecture
in Section 5.3, using extensive simulations as evi-
dence, that the bound in (11) for cyclic digraphs is
likely to be the ‘worst-case’ bound, in the sense that
if this bound is satisfied by parameter ϵ, algorithm
(2) might achieve average consensus over arbitrary
strongly connected digraphs including non-balanced
ones.

The proof of Proposition 2 is as follows.

Proof of Proposition 2. Let µi = pi + jqi for i =
1, . . . , n be eigenvalues of LI. When 2 ≤ n ≤ 4,
since pi ≥ |qi| for all i = 1, . . . , n, therefore by The-
orem 1 the agents achieve average consensus if and
only if ϵ > 0. When n ≥ 5, the set S in (4) is not
empty. We define a quantity θi for the angle (in polar
coordinates) of the complex number µi (see Fig. 2),
i.e.

θi := arg µi = tan−1

(
Im(µi)

Re(µi)

)
, i ∈ S. (12)

Then π/4 < |θi| < π/2 holds for any i ∈ S. Because
all the eigenvalues are on a circular arc, the following
are derived using (12):

pi = 2 cos2 θi, qi = 2 sin θi cos θi, i ∈ S. (13)

By substituting (13) into equation (4) and simplify-
ing the equation, we obtain the upper bound ϵ̄ on
parameter ϵ:

ϵ̄ = min
i∈S

8 cos4 θi
2| sin θi cos θi| − 2 cos2 θi

= min
i∈S

4 cos2 θi
| tan θi| − 1

= min
i∈S

4

(| tan θi| − 1)
(
tan2 θi + 1

) (14)

Here | tan θi| > 1 for all i ∈ S. To minimize (14), the
denominator needs to be maximized. Because i ∈ S,
it is observed that the angle |θi| which is closest to
π/2 maximizes | tan θi| and thus the denominator.
Based on how the eigenvalues are numbered (counter-
clockwise from µ1 = 0), such an angle is θn and θn
minimizes (14). Therefore we derive (11).

5 NUMERICAL EXAMPLES

We illustrate by simulations the derived bound re-
sults, as well as the extension to unbalanced strongly
connected digraphs.

1 2 3 4

57 68

Figure 3: A balanced digraph
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Figure 4: Convergence results on the balanced di-
graph (Fig. 3): (a) ϵ = ϵ̄ − 0.0001 and (b) ϵ =
ϵ̄+ 0.0001

5.1 Balanced digraph

As an example of a balanced digraph, we use the di-
graph in Fig. 3 consisting of 8 nodes. The eigenvalues
of LI in algorithm (2) associated with this digraph
are

0,0.5331± 0.6588j, 1.1574± 0.8487j,

1.7439± 0.6429j, 3.1311
(15)

and there exist eigenvalues satisfying pi < |qi|; in
particular S = {0.5331 ± 0.6588j}. Then the upper
bound of ϵ is ϵ̄ = 4.5231 by Theorem 1.

We show the convergence result with ϵ = ϵ̄ −
0.0001 = 4.5230 and ϵ = ϵ̄ + 0.0001 = 4.5232 in
Fig. 4 (a) and (b), respectively. The initial states of
each agents are xi0 = 2(i − 1), i = 1, . . . , 8. When
ϵ = 4.5230, the states of all agents approach to the
average of the initial states which is (1/8)1⊤

8 x0 = 7,
but they diverge when ϵ = 4.5232. This demon-
strates the tightness of the bound we derived for ϵ.

5.2 Cyclic digraphs

We deal with cyclic digraphs in which the number
of nodes are n = 3, . . . , 8. Table 1 shows θn in (10)
and the upper bound ϵ̄ calculated from Proposition 2.
Observe that ϵ̄ decreases as n increases. Define ρ as
the maximum real part of the eigenvalues of M , and
Fig. 5 (a) and (b) show ρ in algorithm (2) as ϵ is
varied, except for ρ = 0 with n = 4 and n = 6,
respectively. If ρ < 0, average consensus is achieved
by algorithm (2). Observe that ρ < 0 holds even if ϵ
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Table 1: Upper bound of ϵ on cyclic digraphs with n
nodes

n 3 4 5 6 7 8
θn (1/6)π (1/4)π (3/10)π (1/3)π (5/14)π (3/8)π
ϵ̄ ∞ ∞ 3.6717 1.3660 0.6995 0.4142

ǫ

(a)

0 50 100

ρ

-0.6

-0.4

-0.2

0

ǫ

(b)

0 1 1.366 2

ρ

-0.3

-0.2

-0.1

0

0.1

Figure 5: Maximum real part ρ of the eigenvalues of
M except for the 0 eigenvalue on cyclic digraphs: (a)
n = 4 and (b) n = 6

increases to 100 for n = 4 (case (i) of Proposition 2),
while ρ > 0 from ϵ ≥ 1.3660 for n = 6 (case (ii) of
Proposition 2).

5.3 Unbalanced strongly connected
digraphs

Consider a cyclic digraph of 8 nodes, and we now
randomly add some directed edges. There are in to-
tal 48 (= 8 × 7 − 8) directed edges that are candi-
dates to be added. From these 48 candidates, select
m(∈ {1, . . . , 48}) edges uniformly at random and add
them to the cyclic digraph. Then numerically com-
pute the upper bound ϵm, which is the maximal value
of ϵ such that the maximum real part ρ of eigenval-
ues of M (expect for the 0 eigenvalue) satisfies ρ < 0.
If ϵm > 40 then set ϵm = 40, because this value is
already much larger than 0.4142(=: ϵ0) computed
in the preceding subsection as the upper bound for
a cyclic digraph of 8 nodes. Repeat the above 200
times for the same m, and calculate ϵmax as the max-
imum of ϵm, ϵmin as the minimum and ϵave as the
average for each m.

In Fig. 6 we plot the differences ϵmax−ϵ0, ϵmin−ϵ0
and ϵave − ϵ0 for different number m of edges added.
For m > 10 the differences are all larger than 40,
and thus omitted from the figure. The fact that
ϵmin − ϵ0 > 0 means that average consensus is
achieved for all simulated digraphs if ϵ0 is used.

The number of added edges m
0 5 10

ǫ
m
−
ǫ
0

0

10

20

30

40
n = 8

ǫmax

ǫmin

ǫave

Figure 6: Upper bound comparison between unbal-
anced digraphs and cyclic digraphs (n = 8)

(a) (b)

Figure 7: Unbalanced digraphs with one edge added.
(a) generates the maximum ϵmax (see Fig. 6 for m =
1); (b) generates the minimum ϵmin (see Fig. 6 for
m = 1)

In other words, the upper bounds on parameter ϵ
for the randomly generated digraphs (strongly con-
nected and possibly unbalanced) are larger than the
bound for cyclic digraphs, and indeed, the more edges
are added the larger the bound on ϵ becomes.
We have performed the same simulation as above

for initially cyclic digraphs of 9 and 10 nodes (with
directed edges randomly added), and similar results
are observed. This suggests that cyclic digraphs
might be the ‘worst-case’ for convergence of the
surplus-based algorithm, in the sense that as long as
the parameter satisfies the (tight) bound for cyclic
digraphs, this parameter can work for other possibly
unbalanced digraphs.
Another interesting observation is that the ‘longer

distance’ of two nodes between which a directed edge
is added, the larger ϵm is. Here distance of two nodes
refers to the minimal number of directed edges from
one node to the other on the initial cyclic digraph.
Fig. 7 shows two unbalanced digraphs obtained from
a cyclic digraph of 8 nodes with one edge added; the
dotted arrows are edges of the initial cyclic digraph,
while the solid arrow is the added edge. In Fig. 7 (a)
the distance of two nodes where the edge is added is
4, and in this case the maximum ϵmax (see Fig. 6 for
m = 1) is generated. By contrast, in Fig. 7 (b) the
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(a) (b)

Figure 8: Unbalanced digraphs with four edges
added. (a) generates the maximum ϵmax (see Fig. 6
for m = 4); (b) generates the minimum ϵmin (see
Fig. 6 for m = 4)

distance is 1 and the minimum ϵmin (see Fig. 6 for
m = 1) is generated.
As another example confirming the same obser-

vation, Fig. 8 shows two unbalanced digraphs with
four edges added. The maximum ϵmax (see Fig. 6
for m = 4) is generated by the digraph in Fig. 8 (a)
with the average distance 3 of two nodes where an
edge is added, whereas the minimum ϵmin (see Fig. 6
for m = 4) is generated by the digraph in Fig. 8 (b)
with the average distance 1.75. The above observa-
tions suggest that the edges added between nodes of
longer distance can generate a larger upper bound on
the parameter ϵ.

6 CONCLUSIONS

We have studied the continuous-time surplus-based
algorithm, and derived a tight upper bound on the
parameter included in this algorithm over strongly
connected and balanced digraphs. The result guar-
antees that the states of all agents in the network
converge to the average of their initial states when
the parameter is smaller than the upper bound. Fur-
thermore, we have specialized the upper bound re-
sult for undirected graphs and cyclic digraphs. In
particular, for undirected graphs, any ϵ > 0 ensures
convergence and for cyclic digraphs, the upper bound
on ϵ depends only on the number of agents.
In future work, we are interested in deriving upper

bounds on parameter ϵ for general strongly connected
digraphs (possibly unbalanced); in particular we aim
to prove the observation, made using simulations, in
Section 5.3. We also aim to characterize the relation
between parameter ϵ and the convergence speed of
algorithm (2).
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