
Online Multi-Agent Supervisory Control for Warehouse Automation:
Prioritized Tasks

Moeto Kasahara and Kai Cai

Abstract— In this paper we consider a problem of controlling
multi-agent discrete-event systems to serve tasks dynamically
appearing in the environment, where the tasks have different
priorities. To address this problem, we propose an effective
online supervisory control approach which uses different queues
to store tasks of different priorities, and assigns agents to serve
tasks in the order of their priorities. Moreover, to prevent lower-
priority tasks from being unserved due to constantly incoming
higher-priority ones, a timer is further associated with each
task; once the timer of a task ticks down to zero, regardless of
the task’s priority, it will be moved to a special queue with the
highest priority to be served next. We then apply this online
control scheme to model and control a warehouse automation
system using multiple mobile robots with prioritized tasks; the
effectiveness of this scheme is demonstrated on a case study.

I. INTRODUCTION

In [1], [2], [3], [4], [5], we have introduced a problem
of controlling multi-agent discrete-event systems (DES) to
serve multiple tasks, and extended supervisory control theory
(SCT) [6], [7] to provide effective solutions. The study of this
problem is motivated by logistic automation systems using a
team of autonomous robots. A prominent application is Kiva
systems in Amazon’s warehouses and distribution centers [8].

The tasks considered in [1], [2], [3] are static: the infor-
mation of the tasks is completely known at the outset, and
no newly added tasks are considered. Moreover, which task
is assigned to which robot is assumed to be given a priori.
For this static setup, [1] shows that the standard SCT may
be adapted to compute a safe and deadlock free solution
for multiple agents to accomplish multiple tasks. To relieve
computational burden, [2], [3] further adapt an online SCT
based on a limited-lookahead strategy [9]. In this online
approach, a supervisor is recomputed at the occurrence of
every event.

In [4], [5], a more realistic setup is considered in which
tasks can appear dynamically; when and where the tasks
appear are unknown at the outset. An extended online
supervisory control approach is proposed that recomputes a
supervisor when (and only when) there are unassigned tasks
and available agents. This online scheme is thus distinct from
that in [2], [3], [9], and allows the recomputed supervisor
to be adaptive to newly appeared tasks. Furthermore, [5]
combines the online approach with optimal task assignment
[10] to improve efficiency of serving dynamic tasks: the sum
of (unweighted) distances from agents to tasks is minimized.

This work was supported in part by JSPS KAKENHI Grant no.
21H04875. The authors are with Department of Electrical and Information
Engineering, Osaka City University. Emails: kasahara@c.info.eng.osaka-
cu.ac.jp (M. Kasahara), kai.cai@eng.osaka-cu.ac.jp (K. Cai)

In this paper, we build on and further extend [5] to
take into account an important realistic aspect of warehouse
automation systems that tasks have different priorities. Think
of a warehouse for an e-commerce platform, where it is
common that there are regular users and prime members.
Prime members paying annual membership fees are promised
to enjoy fast shipping and deliveries. Accordingly, the prod-
ucts ordered by prime members have a higher priority than
those ordered by regular users; hence the tasks of picking
up those prioritized products need to be served sooner.
This issue is dealt with by introducing two task queues,
storing respectively higher-priority and lower-priority tasks;
our strategy is to serve tasks in the lower-priority queue only
when there are available agents and no unserved tasks in
the higher-priority queue. (The situation with more than two
priority levels may be similarly dealt with.)

One potential problem of the above-mentioned strategy is
that if higher-priority tasks keep coming at a rate that con-
stantly exhausts available agents, then lower-priority tasks
may never get served or suffer from significant delays. This
(starvation) situation is undesirable, as regular users also
deserve to be served in a reasonable time frame. To address
this problem, we further introduce timers to tasks, with
higher-priority tasks having shorter timers. Once the timer of
a task becomes zero, the task will be moved to a third queue
with the highest priority to be next served. Both higher-
priority and lower-priority tasks may enter the third queue
as long as their timers tick down to zero. This augmented
strategy effectively resolve the starvation problem.

In the sequel, we present the extended online supervisory
control approach that effectively address the situation where
tasks have different priorities, and illustrate the approach by
a warehouse automation case study.

II. PRELIMINARIES

A. Supervisory control basics

In SCT [6], [7], the plant to be controlled is modeled by
a finite state automaton G := (Q,Σ,δ ,q0,Qm), where Q is
the finite state set, q0 ∈ Q the initial state, Qm ⊆ Q the set
of marker states, Σ the finite event set, and δ : Q×Σ→ Q
the (partial) state transition function. We extend δ such that
δ : Q×Σ∗ → Q, and write δ (q,s)! to mean that δ (q,s) is
defined. The event set Σ is partitioned into a subset Σc of
controllable events and a subset Σu of uncontrollable events;
only controllable events can be enabled or disabled by an
external entity, called supervisor, introduced below.

The closed behavior of G is the set of all strings that can
be generated by G, namely L(G) := {s ∈ Σ∗|δ (q0,s)!} ⊆ Σ∗.

On the other hand, the marked behavior of G is the subset
of strings that can reach a marker state, i.e. Lm(G) := {s ∈
L(G)|δ (q0,s) ∈ Qm} ⊆ L(G). G is nonblocking if L(G) =
Lm(G) (· means prefix closure), namely every string in the
closed behavior may be completed to a string in the marked
behavior.

A language E ⊆ Σ∗ is said to be controllable (with respect
to G) if E Σu∩L(G)⊆ E. Let K ⊆ Lm(G) be a specification
language imposed on the plant G. Denote by C(K) the
family of controllable sublanguages of K, i.e. C(K) := {K′ ⊆
K|K′Σu ∩L(G) ⊆ K′}. Then the supremal controllable sub-
language of K exists and is given by supC(K) = ∪{K′|K′ ∈
C(K)}. Let SUP be a (nonblocking) automaton such that
Lm(SUP) =supC(K). We call SUP the supervisor for plant
G that enforces supC(K). The control action of SUP after an
arbitrary string s∈ L(G) is to enable an event in the following
set

γ(s) := {σ ∈ Σu|sσ ∈ L(G)}∪{σ ∈ Σc|sσ ∈ L(SUP)}. (1)

B. Optimal task assignment

The task assignment problem is an optimization problem
of finding a one-to-one correspondence between an agent and
a task so as to minimize the sum of the costs included in
the assignment. Consider n agents, n tasks, and ci, j for each
pair of i, j ∈ {1, . . . ,n} is the cost when agent i is assigned to
serve task j. Then the task assignment problem is formulated
as follows.

minimize z = ∑
n
i=1 ∑

n
j=1 xi, jci, j

subject to (∀ j ∈ {1, . . . ,n})∑
n
i=1 xi, j = 1 &

(∀i ∈ {1, . . . ,n})∑
n
j=1 xi, j = 1 &

(∀i, j ∈ {1, . . . ,n})xi, j ∈ {0,1}

The (indicator) variable xi, j is equal to 1 when agent i is
assigned to serve task j and 0 otherwise.

To find the optimal task assignment is NP-hard, although
there are many polynomial time algorithms available to
compute approximate solutions. We shall employ the well-
known Hungarian algorithm (or Kuhn-Munkres algorithm)
whose time complexity is O(n3) [10].

Remark 1. While the above formulation of the task as-
signment requires that the number of agents be the same
as the number of tasks, the more general case where the
numbers are different can be easily addressed. If (without
loss of generality) the number of agents is greater than the
number of tasks, we simply need to add ‘dummy’ tasks to
match up the numbers and these ‘dummy’ tasks should have
significantly high costs so that they will never be chosen.

III. ONLINE MULTI-AGENT SUPERVISORY CONTROL FOR
PRIORITIZED TASKS

Consider that tasks are divided into higher-priority ones
and lower-priority ones. We use three queues Q0,Q1,Q2 to
store these tasks, and initialize Q0 to be empty, Q1 the set of
higher-priority tasks, and Q2 the set of lower-priority tasks.
Further, each higher-priority (resp. lower-priority) task is
associated with a timer th (resp. tl); th, tl are positive integers

such that th ≤ tl . The timers decrement by one after every
occurrence of k(≥ 1) events. Tasks in Q1 and Q2 whose
timers become zero will be moved to the highest-priority
queue Q0.

Consider n agents (these may be real agents or virtual ones
due to heterogeneous payloads). We can now present the new
online supervisor control approach that addresses tasks with
different priorities.
(1) Initialize three queues Q0,Q1,Q2 such that Q0 is the
emptyset, Q1 the set of higher-priority tasks, and Q2 the
set of lower-priority tasks. Each task in Q1 has timer th, and
each task in Q2 has timer tl .
(2) Collect the first n tasks from the three queues in the order
Q0,Q1,Q2. As mentioned in Remark 1, it is without loss of
generality to consider that there are at least n tasks. Remove
the collected tasks from the queues.
(3) Use the Hungarian algorithm [10] to compute an optimal
task assignment such that each agent i(∈ {1, . . . ,n}) obtains
one task.
(4) Compute for each agent i(∈ {1, . . . ,n}) the shortest paths
for accomplishing the assigned task.
(5) Create the finite state automata G1, . . . ,Gn based on the
shortest paths of each agent.
(6) Create a control specification model SPEC (also a finite
state automaton) that imposes a behavioral constraint on the
multi-agent system.
(7) Based on the agent models G1, . . . ,Gn and the speci-
fication model SPEC, compute by the standard SCT [7] a
supervisor SUP. This SUP ensures safe (i.e. the specification
is satisfied) and nonblocking controlled behavior.
(8) After every occurrence of k(≥ 1) events, decrement the
timers of all the tasks in Q1 and Q2 by one. If a task’s timer
becomes zero, move the task to Q0 (with zero timer). If a
higher-priority (resp. lower-priority) task newly appears, add
the task to Q1 with timer th (resp. Q2 with timer tl).
(9) Return to (2) whenever there are unassigned tasks (i.e.
at least one queue is nonempty) and available agents for
assignment.

IV. CASE STUDY

We demonstrate how to apply the proposed online multi-
agent supervisory control procedure to model and control
a warehouse logistic system automated by multiple mobile
robots with prioritized tasks.

A. Warehouse Environment

Different warehouses have different configurations. For
a concrete case study, we consider the grid-type layout as
displayed in Fig. 1. Mobile robots are assumed to be initially
waiting for tasks at the top area, items to be picked up stored
on storage shelves in the black-rectangle areas, and item-
delivery destination locations at the bottom.

The occurrence of tasks is uncontrolled: when and where
they occur are completely unknown a priori. We consider
two types of tasks: higher-priority ones and lower-priority
ones, and they are stored in two separate queues Q1 and Q2,
respectively. We assume that the number of higher-priority

Fig. 1. Warehouse grid environment: items to be picked up are stored in
black-rectangle areas

Fig. 2. Warehouse grid assigned with numbers

(resp. lower-priority) tasks never exceeds the capacity of Q1
(resp. Q2), and for simplicity that one robot can be assigned
exactly one task.

All robots initially wait in the top waiting area and only
move when they are assigned a task. Robots are allowed
to enter the storage areas only when they are fetching their
assigned items. After retrieving the items, the robots move
to their designated delivery destination areas at the bottom.

If a robot completes a task, it will be either assigned a new
task (if one has appeared and not yet served) or controlled
to return to the top waiting area.

B. Automata Models of Robots

We start by assigning sequential (state) numbers to the
warehouse as shown in Fig. 2. Specifically, we assign 0 to
the waiting area, and the other areas (or cells) are natural
numbers starting from the top left corner. When a task is
assigned to a robot, one of the delivery areas numbered
61, . . . ,70 will be the marker (or goal) state. In the case where
no task is assigned to a robot (number of tasks is smaller than
number of robots), 0 is the robot’s marker state. Each robot
shall move in one of the four directions: up, down, left and
right. All robots are assumed to be initially located in the
waiting area and eventually return to the waiting area after
finishing all assigned tasks.

Consider n(> 1) robots serving the warehouse. Each of
these n robots has an automaton model Gi (i ∈ {1, . . . ,n}):

Gi = (Qi,Σi,δi,q0,i,Qm,i).

Here Qi is a set of states on the paths of robot i (using the
numbers assigned to the warehouse as in Fig. 2). Σi is a
set of four events, given in Table I. All events are assumed
to be controllable. δi is the state transition function defined

TABLE I
EVENT NUMBERS OF EACH ROBOT i ∈ {1, ...,N}

go up i×10+1
go right i×10+3
go down i×10+5
go left i×10+7

Fig. 3. Initial arrangement of the three robots (discs: red R1, blue R2, green
R3) and the four tasks (yellow squares: items; yellow circles: destinations)

according to the paths of robot i; q0,i is the initial state (i.e.
the starting point of the robot’s paths); and Qm,i is the set of
marker states (i.e. the ending points of the robot’s paths).

The paths needed to obtain the automaton model Gi are
computed as follows. There are two cases.

(Case 1) When robot i is assigned a task, compute (i) the
shortest paths from its current location to the item location;
and (ii) the shortest paths from the item location to the
delivery area. In this case, q0,i is the state number of the
robot’s current location, and Qm,i is the singleton subset of
state numbers 61, . . . ,70, which is the destination area of the
item delivery.

(Case 2) When a robot finishes its assigned task and is
not assigned a new task, compute the shortest paths from
the robot’s current position to the top waiting area. In this
case, q0,i is the state number of the robot’s current location,
and Qm,i is the singleton set {0}.

C. Example of Three Robots

Consider three robots R1,R2,R3 and four tasks
T1,T2,T3,T4. Two tasks T1,T4 are of higher-priority,
while the other two tasks T2,T3 are of lower-priority. The
initial arrangement of the robots and tasks is shown in Fig. 3.
All robots are initially in state 0, the two higher-priority
tasks are located at 13, 59, and the two lower-priority tasks
at 35, 36.

The first step of the proposed online supervisory control
is to initialize three queues:

Q0 = /0, Q1 = {T1,T4}, Q2 = {T2,T3}.

The two higher-priority tasks stored in queue Q1 are assigned
with timer th = 3; whereas the two lower-priority tasks stored
in queue Q2 are assigned with timer tl = 6.

In Step 2, we collect n = 3 tasks, including the two from
Q1 and one from Q2 (say T2). One lower-priority task (T3)
in Q2 is left out from assignment at this time. After this

Fig. 4. Shortest paths of the three robots

selection, the three queues are

Q0 = /0, Q1 = /0, Q2 = {T3}.

In Step 3, we optimally assign the three tasks T1,T2,T4 to
the three robots. For this, we generate the 3×3 cost matrix
C as follows:

C =

 c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

=

 2 6 12
3 7 13
8 8 8


The entries of C are the (unweighted) distances between
the robots and the items (these distances can be weighted
to encourage go-straight movements). Having matrix C, we
apply the Hungarian algorithm to derive

C∗ =

 0 0 6
0 0 6
4 0 0


Observe that in C∗ one can select 0 from each row and
each column without duplication: namely (1,1),(2,2),(3,3).
These 0-entries yield an optimal task assignment: : T1 is
assigned to R1, T2 to R2, and T4 to R3.

In Step 4, we compute the shortest paths for each robot
from its initial location to item location and then from item
location to destination (Fig. 4).

In Step 5, we create automata models for the robots based
on the computed shortest paths. Let the automaton of R1 be
G1, the automaton of R2 be G2, and the automaton of R3 be
G3, respectively.

As the control specification, in Step 6 we impose mutual
exclusion on each cell of the grid so that the robots do not
collide with one another (i.e. safety). One exception is the
waiting area state 0: we assume that this area is large enough
such that multiple robots can be at state 0 at the same time.

In Step 7, we employ the standard SCT to compute a
supervisor that satisfies the safety control specification. The
resulting supervisor is guaranteed to be safe and nonblocking
(the latter ensures all tasks are eventually accomplished).

Fig. 5. Robot R1 (red disc) finishes its assigned task and a new higher-
priority task T5 appears (darker yellow square)

The computed supervisor executes its control decisions
online according to (1); accordingly the robots executes their
events enabled by the supervisor. In Step 8, we decrement
the timer of task T3 in Q2 by one after every occurrence of
3 events (ideally each robot executing one event). Then after
18 events have occurred, the timer of T3 ticks down from 6
to 0, and we move T3 from Q2 to Q0; namely

Q0 = {T3}, Q1 = /0, Q2 = /0.

When robot R1 finishes delivering its assigned item to the
destination, as shown in Fig. 5, it becomes available again to
serve new tasks. Suppose that there have also newly appeared
a higher-priority task T5 (at location 33), so that

Q0 = {T3}, Q1 = {T5}, Q2 = /0.

Although the task T3 was originally of lower-priority, its
timer has become zero meaning that it has to be served next
with the highest priority. Hence, the online procedure will
return to Step 2 and assigns the only available robot R1 to
serve task T3 (instead of T5).

REFERENCES

[1] Y. Tatsumoto, M. Shiraishi, and K. Cai, “Application of supervisory
control theory with warehouse automation case study,” Trans. ISCIE,
vol. 62, no. 6, pp. 203–208, 2018.

[2] M. Shiraishi, Y. Tatsumoto, K. Cai, and Z. Lin, “Online supervisory
control of multi-agent discrete-event systems with warehouse automa-
tion case study,” in Proceedings of the SICE Annual Conference, 2018,
pp. 1059–1062.

[3] Y. Tatsumoto, M. Shiraishi, K. Cai, and Z. Lin, “Application of online
supervisory control of discrete-event systems to multi-robot warehouse
automation,” Control Engineering Practice, vol. 81, pp. 97–104, 2018.

[4] K. Cai, “Warehouse automation by logistic robotic networks – a cyber-
physical control approach,” Frontiers of Information Technology &
Electronic Engineering, vol. 21, pp. 693–704, 2020.

[5] M. Kasahara and K. Cai, “Online supervisory control with optimal
task assignment for efficient and adaptive warehouse automation,” in
Proc. the 63rd Japan Joint Automatic Control Conf., 2020, pp. 90–93.

[6] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206–230, 1987.

[7] W. M. Wonham and K. Cai, “Supervisory Control of Discrete-Event
Systems,” Springer, 2019.

[8] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–19, 2008.

[9] S.-L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete event systems,” IEEE Transactions on
Automatic Control, vol. 37, no. 12, pp. 1921–1935, 1992.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

