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Abstract 

In this paper, we study the algebraic connectivity of directed complex networks with scale-free 
property. Algebraic connectivity of a directed graph is the eigenvalue of its Laplacian matrix whose real 
part is the second smallest. This is known as an important measure for the diffusion speed of many 
diffusion processes over networks (e.g. consensus, information spreading, epidemics). We propose an 
algorithm, extending that of Barabasi and Albert, to generate directed scale-free networks, and show by 
simulations the relations between algebraic connectivity and network size, exponents of in/out-degree 
distributions, and minimum in/out degrees. The results are moreover compared to directed small-world 
networks, and demonstrated on a specific diffusion process, reaching consensus. 
© 2018 Published by Elsevier Ltd on behalf of The Franklin Institute. 
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. Introduction 

Recently the scale of many real networks has grown larger and their topologies become
ore complex. In response, many network models have been proposed to analyze the topo-

ogical property of real networks [1–9] . Watts and Strogatz [3] presented a network model
hat generates a small-world network, from a regular network by rewiring some edges with
 fixed probabilities. This network has a property that any two nodes in the network can
e linked within a few steps even if the network is large, while nodes are still highly clus-
ered. After this model, Barabasi and Albert [5] introduced the model of scale-free network,
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in which there are many nodes with low degrees, while a few nodes called hubs have very
high degrees. In this model, the network gradually grows and an added node is linked to an
existing node based on preferential attachment : the added node is more probable to connect
to an existing node of high degree. It was shown in [5] that the degree distribution of the
network generated from this model follows a power law with an exponent. 

Analyzing the spectral properties of complex networks has attracted much attention, in 

particular the second smallest eigenvalue of the associated Laplacian matrices [7,10–16] . 
This special eigenvalue is referred to as the algebraic connectivity of networks [17–20] , 
and is known as an important measure for the diffusion speed of many diffusion processes
over networks (e.g. consensus, synchronization, information/innovation spreading, epidemics) 
[15,19] . In [10] it was demonstrated that undirected small-world networks have much higher
algebraic connectivity than regular networks. A similar observation was reported in [14] for 
directed small-world networks. On the other hand, algebraic connectivity of undirected scale- 
free networks, specifically on the correlations among the exponent of degree distribution, the 
minimum degree of the network, and the algebraic connectivity. It was found that algebraic 
connectivity increases as the exponent or the minimum degree increases. 

In many real, scale-free networks such as social networking service (SNS) and World Wide
Web (WWW), however, the edges may not be bidirectional. For example, in Twitter, we can
follow some (popular) people, but they do not necessarily follow us; in WWW, a webpage
can have links to some (well-known) pages, which may not have links back to that webpage.
These have motivated us to study the algebraic connectivity of directed scale-free networks. 

In this paper, we first propose a new algorithm that provably generates directed scale-
free networks. This algorithm is a natural extension of the Barabasi and Albert (BA) model
[5] from undirected to directed networks: starting from an initial directed network, one node 
is added at a time with m in in-edges from, and m out out-edges to, the existing nodes by
preferential attachment. Thus when the algorithm stops and a network is generated, it is easy
to calculate the number of nodes and in/out-edges of the network. Moreover, we show that
the exponents of in-degree and out-degree distributions are determined only by m in and m out ,
respectively. 

Using this algorithm, we investigate by simulations the impacts of structural properties of 
directed scale-free networks (size, exponents of in/out-degree distributions, minimum in/out- 
degrees) on the algebraic connectivity. Specifically, it is found that algebraic connectivity 

(i) stays roughly the same in spite of increase of network size (here measured by number
of nodes); (ii) increases (resp. decreases) as the exponent of in-degree (resp. out-degree) 
distribution increases; (iii) increases (resp. decreases) as the minimum in-degree (resp. out- 
degree) increases. Moreover, we compare directed scale-free networks with directed small- 
world networks, and demonstrate that for the same number of nodes and comparable number 
of edges, directed scale-free networks have larger algebraic connectivity. This means that the 
speed of diffusion over directed scale-free networks is faster than that over directed small-
world networks, as illustrated by studying the consensus problem (a representative example 
of diffusion processes over networks). 

We note that several previous works also reported algorithms for generating directed scale- 
free networks [21–24] . However, the algebraic connectivity of the generated networks was not
studied. Moreover, by the algorithms reported in [21–23] , the generated scale-free networks 
have power-law only for in-degree distribution; by contrast, our algorithm generates directed 

scale-free networks which have power-law for both in-degree and out-degree distributions 
and the exponents of in/out-degree distributions may be specified. On the other hand, the
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lgorithm in [24] can construct directed scale-free networks which have power-law in and
ut-degree distributions. However, at each iteration of the algorithm in [24] , it may happen
with probability) that a new node is not added but a new edge is added (to a pair of existing
odes); thus the number of nodes and the number of edges are not deterministic for each
enerated network (they are indeed random variables). By contrast, our algorithm, extending
he BA model to the directed case, generates scale-free networks with easily calculatable
deterministic) numbers of nodes/edges; this is particularly useful when we compare the al-
ebraic connectivity of these networks to directed small-world ones with the same number of
odes and comparable number of edges. 

The outline of the rest of this paper is as follows. In Section 2 , we introduce preliminaries
n algebraic graph theory and directed scale-free networks. In Section 3 , we present an
lgorithm and prove that it generates directed scale-free networks. In Section 4 , we provide
imulation results on the relations between the structural properties of directed scale-free
etworks and algebraic connectivity. Finally, our conclusions are stated in Section 5 . 

. Preliminaries 

Consider a directed graph D = (V, E ) with N nodes. Here V = { 1 , 2, . . . , N } and E ⊆V ×V
epresent the set of nodes and the set of edges of D, respectively. Then the adjacency matrix
 (D) is defined as 

 i j (D) = 

{
1 ( if (i, j) ∈ E ) 

0 ( otherwise ) . 

ote that ( i , j ) ∈ E need not imply ( j , i ) ∈ E ; hence A (D) is asymmetric in general. For node
 , an edge ( j , i ) ∈ E is called an in-edge while ( i , j ) ∈ E an out-edge . Let k i , in be the in-degree
f node i , which is the number of in-edges to node i . Then the degree matrix D(D) , which
s a diagonal matrix consisting of the in-degree of each node, is given by 

(D) := diag (k 1 ,in , k 2,in , . . . , k N,in ) . 

he Laplacian matrix associated with the directed graph D, denoted as L(D) , is defined by 

(D) := D(D) − A (D) . 

Generally speaking, in a directed graph, the adjacency matrix A (D) is asymmetric. Thus
he Laplacian matrix L(D) is also asymmetric, and the eigenvalues of L(D) are generally
omplex. Of particular importance is the eigenvalue whose real part is the second smallest;
e refer to the real part of this eigenvalue as the algebraic connectivity . 1 It is well-known

hat the algebraic connectivity determines the diffusion speed of many diffusion processes
ver networks. 2 

Moreover, a digraph D contains a spanning tree if it has a node that can reach to all other
odes (via directed paths). It is known that D contains a spanning tree if and only if its
aplacian matrix L(D) has a simple eigenvalue 0. 
1 Algebraic connectivity is originally defined for undirected graphs and refers to the second smallest eigenvalue of 
he corresponding Laplacian matrix [17] . 

2 We note that a distinct definition of algebraic connectivity for directed graphs is reported in [25] , which is shown 
o provide a lower bound on the amount of coupling needed to synchronize an array of chaotic systems. However, 
he definition in [25] seems unrelated to the speed of diffusions over networks (the subject of study in this paper). 
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Next, we introduce the scale-free property, which is found to be a common feature in many
real networks [5] . This property means roughly that many nodes are connected with only a
handful of other nodes, while some (hub) nodes with a large number of nodes. Scale-free
property can be represented in a mathematical way. Let k in (resp. k out ) be the in-degree (resp.
out-degree) of a node, namely the number of in-edges (resp. out-edges) of that node. Also let
P ( k in ), P ( k out ) be the in-degree distribution and the out-degree distribution, respectively; these
are the ratios of the number of nodes with in-degree k in or out-degree k out with respect to the
total number of nodes in the network. The scale-free property of directed networks refers to
that P ( k in ), P ( k out ) follow the power laws [26] : 

P (k in ) ∼ k in 
−γin , 

P (k out ) ∼ k out 
−γout , 

where ∼ means “proportional to” and γ in , γ out are called the exponents of the in-degree 
distribution and the out-degree distribution, respectively. As an example, the in/out-degree 
distributions of WWW follow power laws with γ in � 2.1, γ out � 2.7 [26] . 

In [5] Barabasi and Albert introduced an algorithm to generate undirected scale-free net- 
works. This algorithm has two essential ingredients: “growth” and “preferential attachment”. 
First, the network grows by adding one new node at each iteration. Second, the probability
that the new node is connected to an existing node is proportional to the latter’s degree. It
was shown [5] that the degree distribution of undirected scale-free networks generated by the
BA Algorithm follows a power law. 

In this paper we study directed scale-free networks and their algebraic connectivity. For 
this, we shall design an algorithm to generate directed scale-free networks, by extending 

the BA Algorithm but maintaining the two main ingredients – “growth” and “preferential 
attachment”. 

3. Algorithm for generating directed scale-free networks 

First, we present an algorithm to generate directed scale-free (DSF) networks, by extending 

the BA Algorithm. 
Algorithm DSF : 

1. Initially let D 0 be a directed graph with m 0 ( > 1) nodes that contains a spanning tree. 
2. At each iteration t ( ≥1), add a new node with m in ∈ [1, m 0 ] in-edges from and m out ∈ [1,

m 0 ] out-edges to the existing nodes. The probability �i , in (resp. �i , out ) that an existing
node i with in-degree k i , in (resp. out-degree k i , out ) establishes an in-edge from (resp.
out-edge to) the existing node is 

�i,in = 

k i,in ∑ 

j k j,in 
, (1) 

resp. �i,out = 

k i,out ∑ 

j k j,out 
. (2) 

The above summations are over all the existing nodes. No self-loop edges or multiple
edges are allowed. 
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3. If t = N − m 0 − 1 , stop. Otherwise advance t to t + 1 and go to Step 2). 

When the DSF Algorithm stops, the generated network has N nodes. Let K 0 be the number
f edges of the initial network D 0 . Then the number of edges of the generated network,
enoted by K SF , is 

 SF := K 0 + (m in + m out )(N − m 0 − 1) . 

ince K 0 and m 0 are typically small constants, for large N we can ignore them and write 

 SF � (m in + m out ) N. (3)

n Step 2) of the DSF Algorithm, the network grows with one new node at each iteration,
nd the probabilities �i , in , �i , out in Eqs. (1), (2) mean preferential attachment : the higher
n-degree (resp. out-degree) an existing node has, the more likely it establishes an in-edge
rom (resp. out-edge to) the newly added node. Although the DSF Algorithm has twice the
umber of probability calculations of the BA Algorithm, for the (asymptotic) computational
omplexity in terms of the number N of nodes, our DSF Algorithm and the BA Algorithm
re the same: O ( N 

2 ). 
The growth and preferential attachment features lead to that the network generated by the

SF Algorithm has scale-free property, as asserted by the following theorem. 

heorem 1. The network generated by the DSF Algorithm has scale-free property, i.e. 

P (k in ) ∼ k in 
−γin 

 (k out ) ∼ k out 
−γout 

here γin = 2 + 

m in 
m out 

, γout = 2 + 

m out 
m in 

. Moreover, the generated network contains a spanning
ree. 

Theorem 1 asserts that the directed networks generated by the DSF Algorithm have power-
aw distributions for both in-degree and out-degree, with exponents γ in , γ out determined solely
y the number m in of in-edges and the number m out of out-edges of the newly added nodes.
his is in contrast with the scale-free networks generated by the BA Algorithm, whose edges
re undirected and there is only a single power-law degree distribution with a single exponent.

In Fig. 1 , a directed scale-free network generated by the DSF Algorithm is displayed. The
olor of the circles represents the value of the nodes’ in-degree approaches to yellow as the
orresponding in-degree becomes higher. Thus a handful of nodes close to the center are hub
odes with high in-degrees. Note that for directed scale-free networks, the hubs with high
n-degrees need not also have high out-degrees. For the network in Fig. 1 (d), we display its
n-degree and out-degree distributions in Fig. 2 . This figure indicates that in the network,
any nodes have low in/out-degrees, while a few hub nodes with very hight in/out-degrees

xist. 
Note that in [24] , an algorithm was designed and proved to also generate directed scale-free

etworks. It is, however, difficult to calculate the number of nodes and the number of edges
or the generated networks, because at each iteration of the algorithm it may happen (with
robability) that a new node is not added but a new edge is added (to a pair of existing nodes).
y contrast, the scale-free networks generated by our designed DSF Algorithm have N nodes
nd edge number as in Eq. (3) . This is useful for our study on the algebraic connectivity
f these networks, particularly when making comparisons with other networks with the same
umber of nodes and comparable number of edges. 
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Fig. 1. The process of growth in a directed scale-free network generated by the DSF Algorithm with parameters 
m 0 = 2, m in = m out = 2. The color of each circle represents the in-degree of each node and approaches to yellow as 
the corresponding in-degree becomes higher. 

Fig. 2. In/out-degree distributions of the directed scale-free network in Fig. 1 (d). 

 

 

 

 

 

 

 

 

 

 

 

Now we provide the proof of Theorem 1 . 
Proof of Theorem 1: First, we show that the DSF Algorithm generates a directed scale-free

network. In Step 1), there are initially m 0 nodes in the network, and in Step 2) a new node
is added to the network at each iteration. Let node i be the node that is newly added at
iteration t i , and we focus on how its in-degree and out-degree change with respect to t ( ≥ t i ).
Let k i , in ( t ) and k i , out ( t ) be in-degree and out-degree of node i at iteration t ( ≥ t i ), respectively.
Since the newly added node has m in in-edges and m out out-edges, initially we have 

k i,in (t i ) = m in , (4) 

k i,out (t i ) = m out . 

At each iteration t > t i , a new node is added to the network and establishes an in-edge from
m in distinct nodes and an out-edge to m out distinct nodes. The probability �i , in that the new
node establishes an edge from node i and the probability �i , out that the new node establishes
an edge to node i are expressed in Eqs. (1) and (2) , respectively. Hence, at each step the
expectation of the increase of the in-degree (resp. out-degree) of node i is m out �i , in (resp.
m in �i , out ). When t is large, i.e. t − t i � 0, one may regard t as a continuous variable. With
this approximation, the temporal variations of k i , in and k i , out are represented as 

dk i,in 
dt 

= m out �i,in = 

m out k i,in ∑ 

j k j,in 
, (5) 

dk i,out 

dt 
= m in �i,out = 

m in k i,out ∑ 

j k j,out 
. (6) 
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n the following we focus on the derivation of the in-degree distribution based on Eq. (5) ;
he out-degree distribution based on Eq. (6) is analogous. 

The denominator of the right side of Eq. (5) stands for the summation of the in-degrees
f all nodes in the network at t . Since at each iteration, the network is added with m in + m out 

irected edges, we have 
 

j 

k j,in = K 0 + (m in + m out ) t . 

or t � t i , the constant K 0 can be ignored and we obtain 

∑ 

j k j,in = (m in + m out ) t . Hence the

robability �i,in = 

k i,in 
(m in + m out ) t 

and Eq. (5) becomes 

dk i,in 
dt 

= 

m out k i,in 
(m in + m out ) t 

. (7)

y solving this differential equation, we have 

 i,in (t ) = At 
m out 

m in + m out , 

here A denotes an integration constant. Using the initial condition Eq. (4) , we obtain 

 = 

m in 

t i 
m out 

m in + m out 

. 

ence the solution of Eq. (7) is 

 i,in (t ) = m in 

( 

t 

t i 

) 

m out 
m in + m out 

. 

y fixing k i , in ( t ) � k in and replacing t i by t k in , we have 

 k in = 

( 

m in 

k in 

) 1+ 

m in 
m out 

t . 

This equation represents the time when the node with in-degree k in at t is added to the
etwork. Let N <k in be the number of nodes whose in-degrees are lower than k in at time t ;
hen this number is equal to the number of nodes which is added after the time t k in and is
epresented as 

 <k in = t −
( 

m in 

k in 

) 1+ 

m in 
m out 

t . 

n the other hand, let P (k ′ in ) be the in-degree distribution; then P (k ′ in ) represents the ratio of
odes with in-degree k in . Thus N <k in also has the form 

 <k in = N (t ) 
∫ k in 

m in 

P (k ′ in ) dk ′ in , 

here N ( t ) denotes the number of nodes. If t �m 0 , we can ignore m 0 , so we have N (t ) =
 0 + t ≈ t . Thus we obtain 

 

∫ k in 

m in 

P (k ′ in ) dk ′ in = t −
( 

m in 

k in 

) 1+ 

m in 
m out 

t . 
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Dividing both sides by t , we have 

∫ k in 

m in 

P (k ′ in ) dk ′ in = 1 −
( 

m in 

k in 

) 1+ 

m in 
m out 

. (8) 

Thus we can obtain the power distribution by differentiating Eq. (8) with respect to k in : 

P (k in ) ∼
(

1 + 

m in 

m out 

)
m 

(1+ 

m in 
m out 

) 

in k in 
−

(
2+ 

m in 
m out 

)

∼ k −γin 
in (9) 

where the exponent γin = 2 + 

m in 
m out 

. In a similar fashion, we derive that the out-degree distri-
bution follows the power law: 

P (k out ) ∼
(

1 + 

m out 

m in 

)
m 

(1+ 

m out 
m in 

) 

out k out 
−

(
2+ 

m out 
m in 

)

∼ k −γout 
out (10) 

where the exponent γout = 2 + 

m out 
m in 

. Therefore, it follows that the generated networks have
the scale-free property. 

It is left to show that the generated network contains a spanning tree. To prove this, we
use mathematical induction. By the setup of Step 1) in the algorithm, the initial network D 0 

contains a spanning tree. We assume that the network D t contains a spanning tree S at iteration
t ( ≥1). At iteration t + 1 , a new node establishes m in in-edges from the existing nodes. Thus
the new node is reachable from the root of S , and therefore D t+1 also contains a spanning
tree. By induction we conclude that generated network contains a spanning tree. �

4. Algebraic connectivity of directed scale-free networks 

In this section, we show simulation results on the algebraic connectivity of the directed 

scale-free networks generated by the DSF Algorithm in Section 3 . 

4.1. Topological impacts on algebraic connectivity 

We illustrate the impacts of topological properties of directed scale-free networks on the 
algebraic connectivity. We shall focus on three factors: size, exponents of in/out-degree dis- 
tributions, minimum in/out-degree. 

First (size), a ring graph of m 0 = 4 nodes is set as the initial network and let m in =
m out = 3 . Vary N from 100 to 1000 and compute the corresponding algebraic connectivity.
This investigation is important because growth is one of the two main features of scale-free
networks. 

In Fig. 3 (with parameters specified in Table 1 ) each plotted point is an average of 100
simulation runs. Observe that algebraic connectivity stays roughly the same as N increases. 
This means diffusion rate does not drop as the network expands, which makes directed scale-
free networks an ideal model for scalable (fast) diffusion. 

In a very special case, directed scale-free networks generated by the DSF Algorithm has
a constant algebraic connectivity. 
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Table 1 
Parameter settings for Fig. 3 . 

γ in γ out m in , m out 

2.5 4 m in = 2, m out = 4
3 3 m in = m out = 3 
4 2.5 m in = 4, m out = 2

Fig. 3. The impacts of network size and exponents of in/out-degree distributions on algebraic connectivity Re λ2 

(averaged over 100 simulation runs). 
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heorem 2. In the DSF Algorithm, assume that m in = m, m out = 0. Then the algebraic con-
ectivity of generated networks D is constant and determined by 

e λ2 (L(D)) = min { Re λ2 (L(D 0 ) , m} . 
roof. If m in = m, m out = 0, a newly added node will give no edges to the existing nodes
ut only receive m edges from them. Thus the Laplacian matrix of network D is represented
s 

(D) = 

(
L(D 0 ) O 

∗ mI 

)
, 

here L(D 0 ) ∈ R 

m 0 ×m 0 is the graph Laplacian matrix of the initial network D 0 , O ∈
 

(m 0 ) ×(N−m 0 ) the zero matrix, ∗ ∈ R 

(N−m 0 ) ×m 0 the matrix consisting of 0 or −1 , and I ∈
 

(N−m 0 ) ×(N−m 0 ) the identity matrix. Hence the eigenvalues of L(D) consist of the eigenval-
es of L(D 0 ) and mI . Since mI is a diagonal matrix, all of its eigenvalues are equal to m .
herefore, the algebraic connectivity of D is determined the smaller value of Re λ2 (L(D 0 ))

nd m . �

We note that setting m in = m, m out = 0 results in γin = ∞ , γout = 2 (by Theorem 1 ). We
onsider this choice of m in , m out only in Theorem 2 , with the purpose to show that this special
hoice leads to constant algebraic connectivity of the generated networks. 

Theorem 2 may be generalized to the case where the number m in ( t ) of in-edges of the new
ode added at iteration t is in the range [1 , m 0 + t − 1] , i.e. 1 ≤ m in (t ) ≤ m 0 + t − 1 . 

heorem 3. In the DSF algorithm, assume that m in ( t ) is in the range [1 , m 0 + t − 1] , m out =
. Then the algebraic connectivity of generated networks D is determined by 

e λ2 (L(D)) = min { Re λ2 (L(D 0 ) , m in (1) , . . . , m in (N − m 0 ) } , 
here m in ( t ) is the number of in-edges of the new node added at iteration t ∈ [1 , N − m 0 ] . 
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Fig. 4. The impacts of minimum (a) in-degree and (b) out-degree on algebraic connectivity Re λ2 (averaged over 
100 simulation runs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Similar to the proof of Theorem 2 , it is clear that the Laplacian matrix L(D) is
represented as 

L(D) = 

(
L(D 0 ) O 

∗ �

)
, 

where � = diag (m in (1) , . . . , m in (N − m 0 )) is a diagonal matrix and its eigenvalues are
m in (1) , . . . , m in (N − m 0 ) . Therefore, the algebraic connectivity of D is determined by the
smallest value among Re λ2 (L(D 0 )) , m in (1) , . . . , m in (N − m 0 ) . �

Second (exponents of in/out-degree distributions), we consider the same initial network 

as above, but change m in , m out to obtain different γ in , γ out (see Table 1 ). γ in , γ out reflect
‘degrees’ of preferential attachment, the second main feature of scale-free networks. 

In Fig. 3 each plotted point is an average of 100 simulation runs. Observe that algebraic
connectivity increases (resp. decreases) as the exponent of in-degree (resp. out-degree) dis- 
tribution increases, consistently for different network sizes. This impact of the exponent of 
in-degree distribution on the algebraic connectivity is the same as that of the exponent of
degree distribution in the undirected case [7] . What is interesting in the current directed net-
works is that the impact of the exponent of out-degree distribution is in the reverse direction.
Hence for fast diffusion, it is desired to have high exponent of in-degree distribution and low
exponent of out-degree distribution. 

Third (minimum in/out-degree), we study the impact of minimum in/out-degree on alge- 
braic connectivity; this is for comparison with [7] on the undirected scale-free case. For this
study we set the complete graph with m 0 = 21 as the initial graph and increase m in with the
constraint m in + m out = 21 . 

In Fig. 4 each plotted point is an average of 100 simulation runs. Observe that algebraic
connectivity increases (resp. decreases) as the minimum in-degree (resp. minimum out-degree) 
increases. The impact of the minimum in-degree on algebraic connectivity is the same as that
of the minimum degree in the undirected case [7] , while that of the minimum out-degree is
in the reverse direction. 

Remark 1 (Topological impacts on λn ). In [7] , the relation is studied between the minimum
degree and the maximum eigenvalue λn , which measures the robustness against time delay in
the undirected scale-free case. While it is obscure whether λn also determines the robustness 
against time delay in the directed scale-free case, we investigate the relation between the
minimum in/out degree and the maximum real part of the eigenvalues, i.e. Re λn , for com-
parison with the results in [7] . As shown in Fig. 5 (b), we observe that Re λn (averaged over
100 simulation runs) increases as the minimum out-degree increases, which corresponds to 
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Fig. 5. The impacts of minimum (a) in-degree and (b) out-degree on the maximum real part of the eigenvalues Re λn 

(averaged over 100 simulation runs). 
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he impact of the minimum degree in the undirected case [7] . In contrast, the impact of the
inimum in-degree is in the reverse direction (see Fig. 5 (a)). 

.2. Directed scale-free versus directed small-world 

We compare the directed scale-free networks generated by the DSF Algorithm with an-
ther well-known model, directed small-world networks, which has been shown to have high
lgebraic connectivity [14] . 

To generate directed small-world networks, we use the following procedure (cf. [14] ): 

1. Let the initial network be a (regular) ring graph of N nodes, where each node has k 
2 ( k

an even integer) nearest neighbors on both sides. 
2. With probability p each edge is rewired to another node. No self-loop edges or multiple

edges are allowed. 

The number of edges in the generated small-world networks is constantly Nk . Recall from
q. (3) that the number of edges in the scale-free networks generated by our DSF Algorithm

s approximately N (m in + m out ) . Hence in the comparison simulation below, we choose m in =
 out = 5 and k = 10, such that the number of edges of the two types of networks are roughly

he same. 
Moreover, for small-world networks we choose the rewiring probability p = 0. 1 (which

esults in most evident small-world characteristic), and for scale-free network we choose the
nitial graph to be a ring graph with m 0 = 4 nodes. 

The simulation result is displayed in Fig. 6 ; each plotted point is an average of 100
imulation runs. As we can see, the algebraic connectivity of directed small-world networks
ecreases faster as the number of nodes increases, as compared to directed scale-free networks.
urther, for roughly the same number of edges, directed scale-free networks have higher
lgebraic connectivity than directed small-world networks. These together suggest that scale-
ree networks be a better model than small-world networks for scalable, faster diffusion. 

.3. Convergence speed of reaching consensus 

Finally we use a concrete diffusion process, the consensus problem, to illustrate that higher
lgebraic connectivity leads to faster diffusion speed. 

Consider a network of N agents with inter-agent communication topology D = (V, E ) .
enote the state of each agent at time t by x i ( t ), i ∈ [1, N ]; the consensus problem is for every
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Fig. 6. Comparison between scale-free networks and small-world networks on their algebraic connectivity Re λ2 

(averaged over 100 simulation runs). 

Table 2 
Parameter settings for Fig. 6 . 

Network Parameters 
Scale-free m 0 = 5 , m in = 5 , m out = 5 
Small-world p = 0. 1 , k = 10

 

 

 

 

 

 

 

 

 

 

 

 

 

x i ( t ) to asymptotically converge to a common (consensus) value, say x ∗. In other words, the
consensus value x ∗ diffuses across the network. 

It is well-known that the standard consensus protocol is written as [10] 

˙ x (t ) = −L (D) x (t ) (11) 

where x ( t ) := [ x 1 ( t ) ���x N 

( t )] 
 and L(D) is the Laplacian matrix of the network D. By Eq. (11) ,
consensus is achieved if and only if the network D contains a spanning tree [27] . When con-
sensus is achieved, the convergence speed to consensus is determined by Re λ2 (L(D)) , i.e. the
algebraic connectivity. In particular, the higher algebraic connectivity, the faster convergence 
speed. 

For the same setting of Section 4 -B above and choosing the same initial conditions x (0)
that are drawn uniformly at random from the interval [ −1 , 1] , we calculate by simulation
the convergence time of Eq. (11) for directed scale-free networks and directed small-world 

networks. We consider the network reaches consensus if the disagreement variable e (t ) =
x (t ) T L (D) x (t ) becomes less than 1. For comparison we also include a regular graph with the
number of neighbors k = 10 (this can be obtained from the small-world procedure by setting
p = 0). 

The simulation result is displayed in Fig. 7 ; each plotted point is an average of 100 sim-
ulation runs. Observe that the convergence time of directed scale-free networks and directed 

small-world networks are both (roughly) O (log N ), which is much faster than the regular
networks whose convergence time is known to be O ( N 

2 ) [28] . Consistent with the algebraic
connectivity comparison presented in Section 4 -B above, the directed scale-free networks have 
faster convergence speed than directed small-world networks. 

5. Conclusions 

We have proposed an algorithm, extending that of Barabasi and Albert [5] , to generate
directed scale-free networks. Using this algorithm, we have investigated by simulations the 
impacts of structural properties of directed scale-free networks (size, exponents of in/out- 
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Fig. 7. Convergence speed comparison: directed scale-free, directed small-world, and regular networks. The horizontal 
axis (number of nodes) is in the logarithmic scale. 
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[  
egree distributions, minimum in/out-degree) on the algebraic connectivity. Moreover, we have
ompared directed scale-free networks with directed small-world networks, and demonstrated
hat for the same number of nodes and comparable number of edges, directed scale-free
etworks have larger algebraic connectivity. Finally we have studied a representative example
f diffusion processes over networks, the consensus problem, to illustrate that the speed
f diffusion over directed scale-free networks is faster than that over directed small-world
etworks and regular networks. 

In future work, we aim to investigate the algebraic connectivity of hierarchical networks [9] ,
hich have both scale-free and small-world property. In addition, we aim to derive theoretical

esults on algebraic connectivity of scale-free networks, following an approach to bounding
lgebraic connectivity by network diameter [20] . 
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