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Abstract— This paper studies the problem of data-driven
analysis and control design for model-unknown discrete-
event systems with forcible events. Using data, i.e., a
subset of possible event sequences generated by the
model-unknown plant and a subset of impossible be-
haviors of the system based on pre-established knowl-
edge, we leverage the event-forcing mechanism to verify
an extended concept of controllability, namely forcible-
controllability, and develop data-driven control strategies
to enforce a given specification. In particular, a new
property is proposed for the given data, called forcible-
informativity, which represents a criterion for determining
forcible-controllability of the specification based on the
data. If this property holds, data-driven forcing supervisory
control is designed accordingly. Moreover, for data that
fail to satisfy forcible-informativity, we introduce the novel
notion of forcible-informatizability, which evaluates the po-
tential of the data in identifying forcible-controllability of a
smaller (but non-empty) specification. For the verification
of forcible-informatizability, a new concept called barrier
language is introduced. Based on barrier languages, a nec-
essary and sufficient condition that characterizes forcible-
informatizability is provided, and a corresponding verifica-
tion algorithm is developed.

Index Terms— Discrete-event system, supervisory con-
trol, data-driven control, forcible event.

I. INTRODUCTION

D ISCRETE-event systems (DES) are event-driven systems
with discrete state space. The traditional approach to

analyzing and controlling DES relies on model-based methods
[1], [2]. While these methods have been successful in various
applications, they are ineffective if DES models are unknown.
Recently, data-driven methods have emerged as promising
alternatives to potentially address model-unknown DES [3]–
[5].

Data-driven analysis and control [6] involves utilizing data
sets obtained from system observations or event logs to gain
insights into system behavior, identify patterns, and develop
effective control strategies. The concept of data informativ-
ity, proposed in [7] for data-driven analysis and control of
continuous-time systems, extends and complements previous
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work in system identification [8], [9]. In data-driven analysis,
informativity is essential to infer system properties from data.
For data-driven control, meeting informativity criteria enables
controller design using data alone. The authors in [10] develop
a counterpart of this concept in the DES setting.

The study in [10] introduces a method for verifying the
controllability of a given specification imposed on a model-
unknown DES. This method is data-driven, as it only assumes
two sets of data available. The first set D is a subset of
possible behaviors generated by the model-unknown plant.
The second set D− is a subset of impossible behaviors of the
system (either in contradiction to physical principles or based
on preliminary knowledge). For instance, in a manufacturing
system, an operation cannot begin before it has been initiated;
a final product cannot be synthesized without first using its
essential raw materials; a robot cannot take an item before
it reaches an item supply location. Furthermore, the concept
of data informativity is introduced from a DES perspective
to evaluate whether the data sets D and D− are sufficient
to verify the controllability of the given specification. The
data provided may not always be sufficiently informative for
the given specification. To address this, the concept of data
informatizability is introduced in [11] as a key property of the
data sets D and D− in determining the controllability of a
smaller but non-empty specification.

Still, data informativity in [10], [11] can impose strict
requirements on the quality of the data sets D and D−,
especially when dealing with systems with many uncon-
trollable events; roughly speaking, much information about
uncontrollable events needs to be included in either D or
D−. A concrete example to illustrate this point is provided in
Section III below. If neither informativity nor informatizability
is satisfied, it is infeasible [10], [11] to design a valid data-
driven supervisor whose control actions are (the conventional)
enablement and disablement of controllable events. In view
of this, we are motivated to ask the following question: Can
we augment new control actions/mechanisms to the supervisor,
so that without changing the available data sets a valid data-
driven supervisor can be designed? More specifically, in this
paper we consider augmenting the conventional supervisor
with event-forcing actions (in additional to enabling/disabling
actions), and thereby investigate new properties of the data
sets under which a valid data-driven supervisor can be feasibly
designed.

Forcible events and event-forcing mechanism have been
well studied in the literature of model-based supervisory con-
trol. The event-forcing mechanism allows certain prescribed
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forcible events to preempt the occurrence of other events;
namely these events can be forced to occur before other events.
Consider, for example, controlling a robot to cross a road
while a car is approaching (the latter being uncontrollable
from the perspective of the robot). In this situation, a forcible
event can be performed to quickly maneuver the robot to
move either forward or backward in order to avoid collision
with the approaching car (i.e., outpacing the car and thereby
achieving safety). Event-forcing mechanism has typically been
used in the supervisory control of timed DES [12]–[17] and is
typically used to preempt the tick event. Event-forcing mech-
anism has also been introduced and studied in supervisory
control of untimed DES [2], [18]–[23]. A recent work [24]
introduces a key property called forcible-controllability, which
characterizes the existence of a valid supervisor to enforce
an imposed specification. This concept extends traditional
controllability by emphasizing the relationship between the
controllability of a supervisor and uncontrollable events in
the event-forcing setting. In this paper we aim to paradigm-
shift this forcible-controllability to the data-driven (model-
unknown) supervisory control, and thereby develop effec-
tive new properties and methods for data-driven supervisory
control design by harnessing the power of the event-forcing
mechanism. The contributions of this paper are stated below.

First, for the given data sets D,D− and the specification
language E, by integrating the event-forcing mechanism, we
introduce a new property of forcible-informativity, which is
more general than informativity in [10]. Forcible-informativity
provides a criterion of the data quality for determining the
forcible-controllability of the specification E with respect
to all plants consistent with the data, i.e., plants that can
generate all behaviors in D but cannot generate any behaviors
in D−. Therefore whenever the provided data pair (D,D−)
is forcibly-informative for the specification E, a data-driven
supervisor can be designed to enforce the specification.

Second, we propose a new necessary and sufficient con-
dition that characterizes forcible-informativity. This condition
also extends the counterpart condition in [10] to the event-
forcing setting. We further develop an algorithm using a
structure, called data-driven automaton, to algorithmically
verify forcible-informativity. In addition, a data-driven super-
visory control strategy with event-forcing actions is designed
whenever this property is verified to hold.

Third, if the data pair (D,D−) is not forcibly-informative,
we introduce the new notion of forcible-informatizability to
describe the ability to determine forcible-controllability for
some smaller (but non-empty) sublanguage of the specification
(with respect to all plants consistent with the data pair). This
concept of forcible-informatizability generalizes informatiz-
ability in [11] to the event-forcing setting.

Finally, to characterize forcible-informatizability, it turns out
to be technically challenging and there is no existing method
in the literature (model-based or model-unknown) for this
purpose. To overcome the challenge, we introduce a novel
concept called barrier language. Roughly speaking, the barrier
language defines a “safe region” that can be kept forcibly
informative by using appropriate forcible events. Thus, the
“boundary of this region” is as if having barriers so that all

system evolutions inside the region will remain inside. Based
on the barrier language, a necessary and sufficient condition
for characterizing forcible-informatizability is presented, along
with an algorithm for verification of the condition.

A preliminary result on forcible-informativity was re-
ported in the conference precursor [25]. This paper substan-
tially extends [25] by introducing new concepts of forcible-
informatizability, barrier languages, as well as presenting
necessary and sufficient conditions that characterize forcible-
informatizability (which is both conceptually and technically
novel). Based on these conditions, moreover, a verification
algorithm is developed to determine forcible-informatizability.
In addition, compared to [25], we have substantially enhanced
the presentation by including motivating examples, graphical
illustrations, and new examples.

The rest of this paper is organized as follows. Section II re-
views the preliminaries used throughout the paper. Section III
introduces the data-driven setting of DES, distinguishing it
from the model-based setting, and presents the motivation
of the paper. Section IV defines forcible-informativity, while
Section V introduces forcible-informatizability. Necessary and
sufficient conditions are given, as well as algorithms for veri-
fying these two properties. Conclusions are drawn in Section
VI.

II. PRELIMINARIES

A. Basics of supervisory control theory
A finite-state automaton is a five-tuple G =

(Q,Σ, δ, q0, Qm), where Q is the finite state set, Σ is
the finite event set, δ : Q × Σ → Q is the partial state
transition function1, q0 ∈ Q is the initial state, and Qm ⊆ Q
is the marker state set. A string s on Σ is a finite sequence of
events from Σ. Let ϵ be the empty string and Σ∗ be the set of
all strings on Σ along with ϵ. Extend the transition function
as δ : Q × Σ∗ → Q and write δ(q, s)! to mean that s ∈ Σ∗

is defined at q ∈ Q. L(G) = {s ∈ Σ∗ | δ(q0, s)!}
is defined as the language generated by G, while
Lm(G) = {s ∈ L(G) | δ(q0, s) ∈ Qm} is the marked
language of G. For simplicity, in this paper we assume that
in G all states are marked, i.e., L(G) = Lm(G) holds. Given
two languages L1, L2 ∈ Σ∗, the language concatenation of
L1 and L2, is denoted and defined as

L1 · L2 = {s ∈ Σ∗ | s = s1 · s2, s1 ∈ L1, s2 ∈ L2}.

String s′ is a prefix of string s, written s′ ∈ s, if there exists
s′′ ∈ Σ∗ such that s′s′′ = s. The prefix closure of a language L
is denoted and defined as L = {s ∈ Σ∗ | (∃s′ ∈ Σ∗)ss′ ∈ L}.
The length |s| of a string s ∈ Σ∗ is defined according to
|ϵ| = 0; |s| = k, if s = σ1 · · ·σk. Define max len(L) = {|s| |
s ∈ L∧ [(∄s′ ∈ L)|s′| > |s|]} as the maximal length of strings
in L.

For control, the event set Σ of G is partitioned as Σ =
Σc∪̇Σu, where Σc and Σu are the sets of controllable and
uncontrollable events, respectively. A supervisor (i.e., a control
agent) can only enable/disable controllable events in Σc.

1Alternatively, δ can also be characterized as set δ = {(q1, σ) → q2 |
(σ ∈ Σ) ∧ (q1, q2 ∈ Q)}.
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A supervisory control V for G is a mapping V : L(G) →
Γ, where Γ = {γ | Σu ⊆ γ ⊆ Γ} is the set of all control
patterns. That is to say, for any string s ∈ L(G), V associates
s with a control pattern V (s) ∈ Γ. Physically, all (controllable)
events not in V (s) will be disabled by the supervisory control
V . Write V/G for the closed-loop system, representing that
G is under the control of V . The language of the closed-loop
system L(V/G) is defined as follows:

• ϵ ∈ L(V/G);
• if s ∈ L(V/G), σ ∈ V (s), and sσ ∈ L(G), then sσ ∈

L(V/G);
• no other strings belong to L(V/G).

From the above, L(V/G) ⊆ L(G) holds, which includes all
strings in L(G) that are not disabled under supervisory control
V . A control specification K ⊆ L(G) is a language (normally
non-empty) that we intend to impose on G in order to achieve
a specific control goal.

Definition 1 [controllability] Let G = (Q,Σ, δ, q0, Qm) be
a plant and K ⊆ L(G) be a specification language. K is
controllable if KΣuc ∩ L(G) ⊆ K, i.e., (∀s ∈ Σ∗)(∀σ ∈
Σ)s ∈ K,σ ∈ Σu, sσ ∈ L(G) ⇒ sσ ∈ K. □

As a basic concept, the controllability of a given speci-
fication characterizes the existence of a supervisory control
synthesizing the specification, as shown in the following
proposition.

Proposition 1 There exists a supervisory control V for en-
forcing specification K ⊆ L(G) on plant G, i.e., L(V/G) =
K, if and only if K is controllable with respect to G. □

For a controllable specification K ⊆ L(G), the supervisory
control V : L(G) → 2Σ (here 2Σ denotes the power set of Σ)
such that L(V/G) = K can be defined as follows:

V (s) :=

{
Σu ∪ {σ ∈ Σc | sσ ∈ K}, if s ∈ K;

Σu, if s ∈ L(G) \K.

Write C(K) for the family of all controllable sublanguages
of the specification K ⊆ L(G), i.e.,

C(K) = {K ′ ⊆ K | K ′Σu ∩ L(G) ⊆ K ′}.

C(K) is closed under set union, so it contains a unique
supremal element

supC(K) =
⋃

K′∈C(K)

K ′.

If supC(K) ̸= ∅, there exists a non-empty maximally permis-
sive supervisor to enforce supC(K), which can be synthesized
as detailed in [2, section 3].

B. Event-forcing mechanism

Given a set of forcible events Σfor ⊆ Σ, a forcible event
f ∈ Σfor, if it occurs, preempts the occurrence of other events.
The concept of forcible-controllability is introduced in [24],
which extends controllability, showing as follows.

Definition 2 [forcible-controllability] Consider a plant G
with Σ = Σc∪̇Σu and Σfor ⊆ Σ. A control specification
K ⊆ L(G) is forcibly-controllable with respect to G if:

(∀s ∈ K,∀σ ∈ Σu) sσ ∈ L(G) ⇒ [sσ ∈ K]∨

[((∃f ∈ Σfor)sf ∈ K) ∧ ((∀σ′ ∈ Σ \ Σfor)sσ
′ /∈ K)]. □

By Definition 2, forcible-controllability implies that either
the specification K is controllable or there exists a forcible
event f ∈ Σfor that preempts the occurrence of all non-
forcible events (which violates controllability) in order to keep
K invariant. If a specification is controllable, it is also forcibly-
controllable. Controllability involves only the ability to disable
events, whereas forcible-controllability includes both disabling
and forcing. In other words, forcible-controllability allows
potential violations of controllability to be preempted by the
use of appropriate forcible events.

Proposition 2 There exists a supervisory control Vfor for
enforcing specification K ⊆ L(G) on plant G, i.e.,
L(Vfor/G) = K if and only if K is forcibly-controllable.
□

Proposition 2 shows that the forcible-controllability of K
ensures the existence of a supervisory control for enforcing
K. Meanwhile, the work in [24] provides a detailed charac-
terization of the supervisory control Vfor : L(G) → 2Σ, which
is shown below:

Vfor(s) :=



Σu ∪ {σ ∈ Σc | sσ ∈ K},
if (∀σ ∈ Σu) sσ ∈ L(G) ⇒ [sσ ∈ K];

{f ∈ Σfor | sf ∈ K},
if [(∃f ∈ Σfor)sf ∈ K] ∧
[(∃σ′ ∈ Σu) sσ

′ ∈ L(G) ∧ sσ′ /∈ K].

In particular, if controllability is already satisfied, no event-
forcing is necessary. However, if controllability is violated,
certain forcible events are used to preempt events that violate
controllability.

Further, the set of forcibly-controllable sublanguages for
the specification K is denoted as F(K) = {K ′ ⊆
K | K ′ is forcibly-controllable with respect to G}. In [24],
forcible-controllability is proved to be closed under union and
thus the set F(K) contains a unique supremal element

supF(K) =
⋃

K′∈F(K)

K ′.

If supF(K) ̸= ∅, there exists a non-empty maximally permis-
sive supervisor to enforce supF(K), which can be synthesized
as detailed in [24, Algorithm 1].

III. DATA-DRIVEN DES: FRAMEWORK AND MOTIVATION

This section introduces the data-driven framework for DES,
reviews related work, and presents our problem statement
for data-driven DES with event-forcing mechanism. First, we
present the following assumption.

Assumption 1 Consider a plant G = (Q,Σ, δ, q0, Qm) with
Σ = Σc∪̇Σu and a specification (regular) language E ⊆ Σ∗.
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Assume that the dynamic structure of G is unknown, but: 1)
part of G’s behavior is known, which is denoted as a finite
data set D ⊆ L(G); 2) another (possibly infinite and regular)
data set D− ⊆ Σ∗ is also known, consisting of strings that can
never happen in G, i.e., D− ⊆ Σ∗ \ L(G); 3) Σ = Σc∪̇Σu

is known. □

The data set D can be collected through logging or observ-
ing the unknown plant, while D− can be identified in practical
scenarios based on prior knowledge, such as sequences that
contradict physical laws or specified requirements. Both data
sets are considered fixed. Note that from D ⊆ L(G) and
D− ⊆ Σ∗ \ L(G), we have that D ∩ D− = ∅. Compared
with the data-driven setting in [10], Assumption 1 is the same
except in 2) D− is allowed to be infinite, whereas only finite
D− is considered in [10].

The data sets D,D− may correspond to multiple plant
models that can generate the behaviors in D and no behavior
in D−. On this basis, the concept of consistency is proposed
in [10], i.e., a plant G is consistent with the data pair (D,D−)
if D ⊆ L(G) and D− ∩ L(G) = ∅. For a given pair of data
(D,D−), there can be infinitely many plant models consistent
with the data pair; the true (but unknown) plant G is one
among them. In addition, the specification with regard to the
data is denoted as

DE = D ∩ E. (1)

In [10], under Assumption 1 (but only for finite D−), a
key property called informativity is introduced. Specifically,
a finite data pair (D,D−) is informative for a specification
E if DE in (1) is non-empty and controllable with respect
to all plants consistent with (D,D−). Data informativity
determines whether a supervisor (with only disabling/enabling
mechanism) exists to enforce DE for all plants consistent with
the data, including the unknown true plant. However, ensuring
informativity by only disabling/enabling controllable events
can impose stringent requirements on the quality of the data
pair (D,D−), as illustrated by the example below.

Example 1 Consider a model-unknown plant G that rep-
resents a robot navigation scenario. The task of the robot
is to explore an unknown environment and collect data of
interest. Let Σ = {a, b, c, d, e, f} where each event represents
a movement of the robot. Consider Σc = {a, b, d, e, f} and
Σu = {c}. Here controllable events a, b, d, e, f are intended
movements of the robot, while uncontrollable event c is an
unintended movements caused possibly by disturbances in the
unknown environment. Suppose we observe a string dfcd,
which corresponds to a trajectory of movement for the robot
from the initial state to a target state. Thus, we have D =
{dfcd}. Additionally, suppose that we have prior knowledge
of the plant that: 1) the robot cannot initiate movement a
from the initial state; and 2) it is impossible for the robot
to initiate movements b or c immediately after completing a
sequence that leads to a target state. Accordingly, we define
the set D− = {a, dfcdb, dfcdc}. Note that there are infinitely
many plants consistent with the data (D,D−); two of these
plants, denoted as G1 and G2, are shown in Figs. 1 and 2.

Suppose the specification E = {dfcd, dfd}, defining two

desired navigation routes to target states. We have from (1)
that DE = D∩E = {dfcd}. Next, we verify the informativity
of the data (D,D−) for E. Consider a string ϵ ∈ DE and
an uncontrollable event c ∈ Σu. Since ϵ · c = c /∈ DE

and it is uncertain whether c ∈ L(G) (as c /∈ D−), there
is no guarantee, by Definition 1, that DE is controllable
for any plant consistent with (D,D−). For instance, DE

is not controllable for plant G2 in Fig. 2, as c ∈ L(G2).
Therefore, (D,D−) is not informative for the specification E.
The same conclusion can be drawn by analyzing the strings
d, dfc ∈ DE .

This lack of informativity is caused by insufficient data
(either D or D−) about the possible behavior caused by the
uncontrollable event c. Worse, if there exist many uncontrol-
lable events, the requirement on the data D and D− become
more stringent, causing the property of informativity more
difficult to be satisfied. □

Since data informativity is not satisfied in the above ex-
ample, it is impossible to synthesize a supervisory control—
based on the conventional enablement and disablement of
controllable events—to enforce the non-empty specification
DE for the model-unknown plant using only the provided
data. If the available data (D,D−) cannot be changed, one
may consider introducing additional control mechanisms to
possibly alleviates the stringent requirement on data quality.
One promising such candidate is the event-forcing mechanism,
which allows the supervisor to preempt (any number of)
uncontrollable events by forcing appropriate forcible events.
In view of this, information about possibility or impossibility
of occurrences of these uncontrollable events is not needed,
thereby alleviating demands on data.

Example 2 [Example 1 ext.] Consider again the robot navi-
gation scenario in Example 1. Now assume that event-forcing
mechanism is available and the set of forcible events is
Σfor = {d, f}. Consider again the string ϵ ∈ DE . Since
ϵ·d = d ∈ DE and for any event σ ∈ Σ\Σfor, ϵ·σ = σ /∈ DE ,
the forcible event d can be used to preempt the (potential)

Fig. 1: A plant G1 consistent the data (D,D−).

Fig. 2: A plant G2 consistent the data (D,D−).
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occurrence of any such σ (including the uncontrollable event
c) in order to keep DE invariant (as seen in plants G1 and
G2). A similar argument applies to the strings d and dfc.
However, for the strings df and dfcd, since dfc ∈ DE and
dfcdc ∈ D− (implying dfcdc /∈ L(G)), controllability is not
violated. Consequently, by Definition 2, we can infer that DE

is forcible-controllable for any plant consistent with (D,D−),
thanks to the introduced event-forcing mechanism. □

As shown in Example 2, even if a data pair is not informa-
tive [10], forcible events can be employed to ensure forcible-
controllability (Definition 2) of the specification for any plant
consistent with the data. This in turn can enable (data-driven)
supervisor synthesis with event-forcing mechanism. Motivated
by the above described potential usefulness of forcible events,
we now present the following problem formulation.

Problem 1 Consider a model-unknown plant G with a set of
forcible events Σfor ⊆ Σ. Assume that DE = D ∩E in (1) is
nonempty and Assumption 1 holds. Synthesize (if possible) a
(data-driven) supervisory control VD,for : D → 2Σ such that
L(VD,for/G) = DE . □

Problem 1 involves a subset of forcible events Σfor ⊆ Σ,
and focuses on the challenge of determining and constructing
(if possible) a data-driven supervisory control using event-
forcing mechanism. Unlike the assumptions in [10], [11],
which require both data sets D and D− to be finite, As-
sumption 1 in Problem 1 allows D− to be infinite based on
prior knowledge of the unknown plant model. This setting
is practically relevant. For instance, in the robot navigation
scenario from Example 1, suppose we know that the robot
cannot initiate sequences consisting solely of consecutive f
movements due to energy constraints. As a result, strings like
ff, fff, ffff . . . (denoted as fn for n ∈ {2, 3, 4 . . .}) should
be included in D−, making D− infinite. We will find a solution
to Problem 1 in Section IV by introducing a new notion,
namely forcible-informativity.

IV. FORCIBLE-INFORMATIVITY AND DATA-DRIVEN
SUPERVISORY CONTROL

To solve Problem 1, we propose a new concept of forcible-
informativity, which refers to the ability to synthesize a forcing
supervisory control that enforces the specification using only
the available data. We then propose a structure, namely a data-
driven automaton, which is built based on the data and is used
to verify the forcible-informativity. If this property is satisfied,
a data-driven supervisory control is designed to enforce the
specification.

A. Forcible-informativity
In this part, we introduce forcible-informativity and give a

necessary and sufficient condition for its characterization.

Definition 3 Consider an event set Σ = Σc∪̇Σu with Σfor ⊆
Σ and a specification language E ⊆ Σ∗. Given data sets
D,D− ⊆ Σ∗, the pair (D,D−) is said to be forcibly-
informative for E if the non-empty specification DE is
forcibly-controllable with respect to all plants G consistent

with (D,D−), i.e., there exists a supervisory control for G to
enforce DE . □

Since forcible-controllability (see Definition 2) is a weaker
property than controllability, forcible-informativity is also
weaker than informativity [10]. Specifically, while informativ-
ity implies forcible-informativity, the reverse does not hold.
The forcible-informativity of a data pair (D,D−) for the
specification E is closely linked to the forcible-controllability
of the specification DE . Forcible-informativity indicates that a
supervisory control can be synthesized using an event-forcing
mechanism to enforce the non-empty specification DE for any
plant consistent with (D,D−), relying solely on the available
data. A characterization condition for this property is provided
below.

Proposition 3 Consider an event set Σ = Σc∪̇Σu with
Σfor ⊆ Σ and a specification language E ⊆ Σ∗. Given
D,D− ⊆ Σ∗ with DE = D∩E, the pair (D,D−) is forcibly-
informative for specification E if and only if the following
holds:

(∀s ∈ DE ,∀σ ∈ Σu)

[sσ ∈ DE ∪D−] ∨ [((∃f ∈ Σfor)sf ∈ DE)∧

((∀σ′ ∈ Σ \ Σfor)sσ
′ /∈ DE)].

Proof: (if) Consider an arbitrary plant G consistent
with (D,D−). Given an arbitrary string s ∈ DE , for any
uncontrollable event σ ∈ Σu, if sσ ∈ DE , then the following
holds:

sσ ∈ L(G) ⇒ sσ ∈ E.

If sσ ∈ D−, sσ /∈ L(G) can be derived. Otherwise, if sσ /∈
DE ∪D−, there are two cases:

1) sσ ∈ L(G): there exists a forcible event f ∈ Σfor such
that sf ∈ DE holds (hence sf ∈ L(G) ∩ DE holds);
also, for all events σ′ ∈ Σ \ Σfor, sσ′ /∈ DE holds
(hence sσ′ /∈ L(G) ∩DE holds);

2) sσ /∈ L(G): same situation as sσ ∈ D−.
Hence, by Definition 2, DE is forcibly-controllable with
respect to G; therefore (D,D−) is forcibly-informative.

(only if) Since (D,D−) is forcibly-informative, the speci-
fication DE is forcibly-controllable with respect to any plant
consistent with (D,D−). Consider a plant G that is consistent
with (D,D−), where D ⊆ L(G) and D− = Σ∗ \ L(G).
Therefore, the following holds:

(∀s ∈ DE ,∀σ ∈ Σu)sσ ∈ L(G) ⇒ [sσ ∈ DE ] ∨ [((∃f ∈
Σfor)sf ∈ DE) ∧ ((∀σ′ ∈ Σ \ Σfor)sσ

′ /∈ DE)].

If the string sσ /∈ L(G), then sσ ∈ D− holds; otherwise, the
following applies:

[sσ ∈ DE ] ∨ [((∃f ∈ Σfor)sf ∈ DE)∧

((∀σ′ ∈ Σ \ Σfor)sσ
′ /∈ DE)].

Hence, the necessary part holds, which concludes the proof.
■

Proposition 3 suggests that forcible-informativity can be
verified by examining all strings s in the specification DE

and all uncontrollable events σ ∈ Σu. In this context, the
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data set D− is essential for resolving ambiguity when sσ /∈
DE . Specifically, if sσ ∈ D−, it indicates that sσ cannot
be generated by any plant G (including the true, unknown
model) consistent with (D,D−), since D− ∩ L(G) = ∅.
Comparing Proposition 3 with [10, Theorem 1] (the criterion
for informativity), with the event-forcing mechanism, forcible-
informativity allows more flexibility in using the data to
devise a data-driven supervisory control that enforces the
specification. Even if informativity does not hold, the spec-
ification can still be enforced through appropriate preemption
of uncontrollable events. An illustrative example is provided
below.

Example 3 Consider again the model-unknown robot
navigation in Example 1 with a subset of forcible
events Σfor = {d, f}. Consider a pair of data
(D,D−) where D = {e, dfbf, dfcd} and D− =
{a, dcc, dfbfb, dfbfc, dfcdb, dfcdc, fm} (m ∈ {2, 3, 4, . . .}).
Let E = {dca, dfd, dfcd, dfbfn} where n ∈ {1, 2, · · · }. We
have DE = D∩E = {dfbf, dfcd}. According to the criterion
for informativity [10, Theorem 1], the data pair (D,D−) is
not informative for the specification E because for the strings
ϵ, d, dfb, dfc ∈ DE and the uncontrollable event c ∈ Σu, it
holds that ϵ · c /∈ DE ∪D−, dc /∈ DE ∪D−, dfbc /∈ DE ∪D−,
and dfcc /∈ DE ∪ D−, respectively. With event-forcing, on
the other hand, for string ϵ ∈ DE , the following holds:

(∃d ∈ Σfor)[ϵ · d ∈ DE ] ∧ [(∀σ′ ∈ Σ \ Σfor)ϵ · σ′ /∈ DE ].

This means that forcible event d is available to “drive” the
empty string ϵ within DE , thereby “rescuing” the lack of
information ϵ · c /∈ DE ∪ D−. This is similar for strings
d, dfb, dfc ∈ DE with suitable forcible events. For the strings
df, dfbf , and dfcd, it holds that dfc ∈ DE , dfbfc ∈ D−,
and dfcdc ∈ D−, respectively. By Proposition 3, (D,D−)
is verified to be forcibly-informative with respect to E; hence,
DE is forcibly-controllable with respect to all plants consistent
with (D,D−). □

As demonstrated in Example 3, compared to the control
mechanism that simply enables and disables events, event-
forcing has the advantage of reducing data quality require-
ments. While this approach requires the supervisor to be
equipped with the forcing mechanism, the ability to force
specific events allows it to bypass uncertainties from un-
controllable events (as seen with the strings ϵ, d, dfb, dfc in
Example 3), thereby ensuring enforcement of the desired
specifications.

B. Verification of forcible-informativity
This subsection presents an algorithm for verifying forcible-

informativity by defining a data-driven automaton. We first
construct a finite-state automaton to represent D− ⊆ Σ∗ (this
is always possible since by Assumption 1 D− is a regular lan-
guage) [2]. Specifically, the finite-state automaton representing
D− is defined as GD− = (QD− ,Σ, δD− , q0D− , Qm

D−), where
• QD− is the finite state set and Σ is the finite event set,
• δD− : QD− × Σ → QD− is the partial state transition

function, which can be extended to δD− : QD− × Σ∗ →
QD− ,

• q0D− ∈ QD− is the initial state,
• Qm

D− = {δD−(q0D− , s) | s ∈ D−} ⊆ QD− is the marker
state set.

Note that L(GD−) = D− and Lm(GD−) = D−. Building
on GD− , the definition of a data-driven automaton is presented
below.

Definition 4 Consider an event set Σ, a specification E ⊆
Σ∗, and two data sets D,D− ⊆ Σ∗ with an automaton
GD− representing D−. A data-driven automaton is defined
as Ĝ(Σ, E,D,D−) = (Q̂,Σ, δ̂, q̂0, Q̂m), where

• Q̂ = QD−∪{q̂s | s ∈ D} is the state set where q̂ϵ = q0D− ,
• δ̂ = δ̂D− ∪ {(q̂s, σ) → q̂sσ | (σ ∈ Σ) ∧ (s, sσ ∈ D)} is

the partial state transition function,
• q̂0 = q0D− is the initial state,
• Q̂m = Qm

D− is the marker state set.
□

In short, a data-driven automaton Ĝ(Σ, E,D,D−) is a
finite-state automaton where L(Ĝ(Σ, E,D,D−)) = D ∪D−

and Lm(Ĝ(Σ, E,D,D−)) = D−. For the transition function
δ̂: 1) all existing transitions from δD− are included; 2) for all
strings s ∈ D and events σ ∈ Σ, if sσ ∈ D and δD−(q̂s, σ)
is not defined, a transition is added from state q̂s to q̂sσ via
event σ; 3) δ̂ can be extended to δ̂ = {(q̂1, s) → q̂2 | (s ∈
Σ∗)∧(q̂1, q̂2 ∈ Q̂)}. The concept of data-driven automaton was
first proposed in [10] but only for finite D−. We generalize
this concept to accommodate possibly infinite D−. A detailed
comparison is given in Remark 1 below.

For the data-driven automaton Ĝ(Σ, E,D,D−), we define
the set Q̂DE

= {q̂ ∈ Q̂ | (s ∈ DE) ∧ (q̂0, s) → q̂} as the
subset of states in Q̂ that are associated with strings in DE .
The specification DE can be computed following a finite-state
automaton generated by the specification E, as E is a regular
language by Assumption 1. Furthermore, since it is assumed
that D ∩ D− = ∅ (hence DE ∩ D− = ∅), we also have
Q̂DE

∩ Q̂m = ∅.

Remark 1 The data-driven automaton defined in Definition 4
differs from and is more general than the one proposed in [10].
Specifically, the automaton in Definition 4 is built based on
the finite-state automaton GD− , derived from the potentially
infinite set D−. For any string in D that is not in D−, a
corresponding additional state is introduced in GD− , along
with a new transition relation. In contrast, the data-driven
automaton in [10] represents a prefix-tree automaton, created
by unfolding the strings in D ∪D−, where both D and D−

are required to be finite. As a result, the data-driven automaton
in [10] is alwasy loop-free, whereas in our case it may contain
loops. The following example demonstrates this construction
for an infinite D−. □

Example 4 Consider again Example 3. We construct the
data-driven automaton Ĝ(Σ, E,D,D−) and compute the set
Q̂DE

. First, based on the specification language E, we
conclude that DE = {dfbf, dfcd}. Based on the infinite
(but regular) data D−, a finite-state automaton GD− =
(QD− ,Σ, δD− , q0D− , Qm

D−) is constructed, as shown in Fig. 3,
where Lm(GD−) = D−. Next, a data-driven automaton
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Ĝ(Σ, E,D,D−) is constructed based on GD− and is shown
in Fig. 4, which has 17 states. The state set Q̂DE

is also
derived based on the language DE; the states in Q̂DE

are
color-coded in light blue (states q̂0 . . . q̂6). For clarity of
display, only the states in Q̂DE

are numbered in the data-
driven automaton throughout the remainder of the paper. □

Based on the constructed data-driven automaton, we now
present an algorithm (Algorithm 1 below) to verify the
forcible-informativity of a given data pair (D,D−). Specif-
ically, all states in Q̂DE

and all uncontrollable events σ ∈ Σu

are required to be examined. Consider a state q ∈ Q̂DE
,

corresponding to a string s ∈ DE , and an uncontrollable event
σ ∈ Σu. In line 4, if δ̂(q, σ) /∈ Q̂DE

∪ Q̂m or ¬δ̂(q, σ)! holds,
it implies that sσ /∈ DE ∪ D−, indicating that informativity
[10] does not hold.

Further, in line 5, if no forcible event f ∈ Σfor satisfies
δ̂(q, f) ∈ Q̂DE

, then no forcible event can preempt the
uncontrollable event σ at string s, resulting in the violation of
forcible-informativity. Conversely, if a corresponding forcible
event exists, but a non-forcible event σ′ also occurs such
that δ̂(q, σ′) ∈ Q̂DE

, the event σ′ will still be preempted.
This leads to the omission of the string sσ′ ∈ DE , thereby
also failing to satisfy forcible-informativity. At this point, the
algorithm terminates; otherwise, it continues the examining
process. The termination of Algorithm 1 is guaranteed, since
the sets Q̂DE

and Σu are finite.
Comparing with [10, Algorithm 1] (which checks informa-

tivity), there are three main differences: 1) it requires a subset
of forcible events Σfor ⊆ Σ as input; 2) the construction of
the data-driven automaton can address possibly infinite D−;
and 3) an additional criterion (from Proposition 3) must be
checked at line 5 if informativity does not hold after the check
at line 4. The correctness of Algorithm 1 is established below.

Proposition 4 A pair (D,D−) is forcibly-informative for the
given specification E if and only if Algorithm 1 returns “Yes”.

Proof: (if) If Algorithm 1 outputs “Yes”, then for all
q ∈ Q̂DE

and σ ∈ Σu, the following holds:

[δ̂(q, σ) ∈ Q̂DE
∪ Q̂m] ∨ [((∃f ∈ Σfor)δ̂(q, f) ∈ Q̂DE

)∧

((∀σ′ ∈ Σ \ Σfor)δ̂(q, σ
′) /∈ Q̂DE

)],

Fig. 3: An automaton GD− = (QD− ,Σ, δD− , q0D− , Qm
D−).

Fig. 4: A data-driven automaton Ĝ(Σ, E,D,D−).

Algorithm 1: Verification of forcible-informativity
Input: Σ = Σc∪̇Σu,Σfor ⊆ Σ, the specification

E ⊆ Σ∗, D ⊆ Σ∗ and D− ⊆ Σ∗

Output: Yes ((D,D−) is forcibly-informative for E)
or No ((D,D−) is not forcibly-informative
for E)

1 Construct a data-driven automaton
Ĝ(Σ, E,D,D−) = (Q̂,Σ, δ̂, q̂0, Q̂m) with Q̂DE

⊆ Q̂;
2 for q ∈ Q̂DE

, do
3 for σ ∈ Σu, do
4 if [δ̂(q, σ) /∈ Q̂DE

∪ Q̂m] ∨ [¬δ̂(q, σ)!], then
5 if [(∄f ∈ Σfor) δ̂(q, f) ∈ Q̂DE

] ∨ [(∃σ′ ∈
Σ \ Σfor) δ̂(q, σ

′) ∈ Q̂DE
], then

6 return “No”;

7 return “Yes”;

which implies the forcible-informativity of (D,D−) by its
criteria given in Proposition 3.

(only if) The forcible-informativity of (D,D−) with respect
to E implies the following:

(∀s ∈ DE ,∀σ ∈ Σu)

[sσ ∈ DE ∪D−] ∨ [((∃f ∈ Σfor) sf ∈ DE)∧

((∀σ′ ∈ Σ \ Σfor)sσ
′ /∈ DE)].

Based on the definition of data-driven automaton
Ĝ(Σ, E,D,D−), for all q ∈ Q̂DE

and for all σ ∈ Σu,
the two conditions shown in lines 4 and 5 will never be
satisfied, so the algorithm will never break in line 6. Since
set D is finite, set DE is also finite; hence Q̂DE

is finite,
suggesting that Algorithm 1 will terminate and eventually
return “Yes”. ■

Remark 2 The complexity of Algorithm 1 is analyzed as
follows. Line 1 builds a data-driven automaton represent-
ing the language D ∪D−, with the worst-case complexity
O(|D| ·max len(D)+ |QD− |). If D− is finite, this simplifies to
O(|D∪D−|·max len(D∪D−)). For lines 2–11, the worst-case
complexity is:
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• iterating over all elements in the state set Q̂DE
and the

event set Σu, yielding complexity O(|D| · |Σ|);
• in line 5, each forcible event in Σfor and each non-

forcible event in Σ \ Σfor are checked, which has com-
plexity O(|Σ|).

Thus, the overall complexity of Algorithm 1 is O(|D| ·
max len(D) + |QD− | + |D| · |Σ|2). When D− is finite, this
complexity becomes O(|D∪D−|·max len(D∪D−)+|D|·|Σ|2).
□

Example 5 Consider Example 3 again. We verify the forcible-
informativity for the given (regular) specification language E.
Following Example 4, DE = {dfbf, dfcd}, and the corre-
sponding data-driven automaton Ĝ(Σ, E,D,D−) is shown
in Fig. 4. Consider a state q̂0 ∈ Q̂DE

in the data-driven
automaton and the only uncontrollable event c ∈ Σu. Since
δ̂(q̂0, c) /∈ Q̂DE

∪ Q̂m, the data (D,D−) can be verified
to be not informative [10]. However, since there exists a
forcible event d ∈ Σfor such that δ̂(q, d) ∈ Q̂DE

and for any
non-forcible event σ′ ∈ Σ \ Σfor, δ̂(q̂0, σ

′) /∈ Q̂DE
holds.

The forcible event d can preempt the potential occurrence
of the uncontrollable event c, maintaining the specification
DE . Similarly, this argument applies to states q̂1, q̂3, q̂4. For
states q̂2, q̂5, and q̂6, with the uncontrollable event c ∈ Σu,
we have δ̂(q̂2, c) ∈ Q̂m, δ̂(q̂5, c) ∈ Q̂m, and δ̂(q̂6, c) ∈
Q̂m. Consequently, based on Algorithm 1, we conclude that
(D,D−) is forcibly-informative for the specification E. □

C. Data-driven supervisory control with forcible events

By Definition 3, if the pair (D,D−) is forcibly-informative
for E, the specification DE is confirmed to be forcibly-
controllable for all plants consistent with (D,D−). This en-
ables the synthesis of a supervisor to enforce the specification
DE . As a solution to Problem 1, for any plant G (including the
model-unknown true plant) consistent with (D,D−), a data-
driven supervisory control VD,for : D → 2Σ can be designed
such that L(VD,for/G) = DE , according to

VD,for(s) :=



Σu∪̇{t ∈ Σc | st ∈ DE},
if [s ∈ DE ] ∧ [(∀σ ∈ Σu) sσ ∈ DE ∪D−];

{f ∈ Σfor | sf ∈ DE},
if [s ∈ DE ] ∧ [(∃σ′ ∈ Σu) sσ

′ /∈ DE ∪D−];

Σ, if s ∈ D \DE .

The correctness of this data-driven supervisory control fol-
lows from Proposition 3 and the model-based supervisor in
Proposition 2. When (D,D−) is forcibly-informative, there
are three supervisory control scenarios for any given string
s ∈ D, as listed below.

• If the string s ∈ DE and the occurrence of uncontrollable
events does not violate the controllability of DE , the
supervisor will only disable all controllable events t
where st /∈ DE ;

• If the string s ∈ DE and the occurrence of an un-
controllable event violates the controllability of DE ,
the supervisor will employ event-forcing, using forcible
events f where sf ∈ DE . This preemption will not fail

to enforce any sublanguage sσ′ where σ′ ∈ Σ \Σfor, as
sσ′ /∈ DE ;

• In other scenarios (s ∈ D \ DE), the supervisor will
not disable any controllable events or force any forcible
events.

Example 6 Consider again Examples 3 and 5. For the spec-
ification E, the given pair (D,D−) has been verified to
be forcibly-informative. Consequently, for any plant G (in-
clude the model-unknown true plant) consistent with (D,D−),
the supervisory control VD,for : D → 2Σ such that
L(VD,for/G) = DE is detailed in the following:

VD,for(ϵ) = {d};
VD,for(d) = {f};
VD,for(df) = {b, c};
VD,for(dfb) = {f};
VD,for(dfc) = {d};
VD,for(dfbf) = {c};
VD,for(dfcd) = {c};
VD,for(s) = Σ,where s ∈ D \DE .

□

V. FORCIBLE-INFORMATIZABILITY

What if a given data pair (D,D−) fails to be forcibly-
informative for a specification E? According to Definition 3,
synthesizing a data-driven supervisor to enforce the non-
empty specification DE is impossible. In this case, we wish
to explore the possibility of enforcing a smaller non-empty
specification, which leads us to a new concept called forcible-
informatizability. To verify this concept, we introduce a novel
barrier language, which consists of a set of suffixes of a
given string restricted by the data, providing local forcible-
informativity. Using the barrier language, we establish a nec-
essary and sufficient condition for forcible-informatizability
and propose a data-driven automaton based algorithm for its
verification.

A. Motivation
Consider a model-unknown plant G that satisfies Assump-

tion 1 with Σfor ⊆ Σ, two data sets D and D−, and a
specification language E. Suppose that DE = D ∩ E is non-
empty. Fig. 5 shows a Venn diagram illustrating the case where
(D,D−) is neither informative nor forcibly-informative for E.
The green-filled area represents DE while the blue-filled area
represents D−. Within the set DE · Σu (outlined in red), the
red-filled regions indicate strings in DE ·Σu that do not belong
to either DE or D−. These regions of strings prevent the
pair (D,D−) from achieving informativity [10]. For example,
consider strings s, s′ ∈ DE as shown in Fig. 5. Suppose there
exist uncontrollable events σu, σ

′
u ∈ Σu such that sσu and

s′σ′
u are not contained in DE ∪D−. By [10, Theorem 1] (the

criterion for informativity), informativity fails.
Regarding forcible-informativity, for the string s′, no

forcible event is available to preempt the uncontrollable event
σ′
u. Suppose there is only one forcible event f ∈ Σfor and
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an event σ ∈ Σ \ Σfor such that sf, sσ ∈ DE . Although
this forcible event f could preempt σu at string s, it may
also inadvertently preempt the legitimate behavior sσ due to
the forcing mechanism [24]. By Proposition 3, the data pair
(D,D−) also fails to be forcibly-informative for E.

In this situation, one may consider a smaller specification
language than DE , and test if the data pair (D,D−) can
be forcibly-informative for the smaller specification. This
amounts to shrinking the red-filled regions DE · Σu \ (DE ∪
D−), thereby reducing associated uncertainties.

Without event-forcing, the concept of informatizability was
introduced in [11]. Specifically, a data pair (D,D−) is in-
formatizable if there exists a non-empty sublanguage K ⊆
DE such that K is controllable with respect to any plant
consistent with (D,D−). Informatizability means that even
if informativity fails, there exists a supervisor that can enforce
a smaller, non-empty specification K for any plant consistent
with (D,D−), including the true, unknown plant. However,
informatizability can impose strict requirement on data in a
similar way to informativity, as shown in the example below.

Example 7 Consider Example 3 with the modified dataset
D′ = {e, dfbf, dfcd, dca} (meaning a new string dca is
observed). We find D′

E = D′ ∩ E = {dca, dfbf, dfcd}.
The corresponding data-driven automaton Ĝ(Σ, E,D′, D−)
is shown in Fig. 6, where all states in Q̂D′

E
are color-coded

in blue. Following Algorithm 1, the presence of state q̂8 (cor-
responding to the string dca ∈ D′

E) indicates that (D′, D−)
is not forcibly-informative (thus not informative). According
to the criterion for informatizability in [11, Theorem 2],
(D′, D−) is not informatizable for E; namely there does not
exist any non-empty sublanguage K ⊆ D′

E such that (D′, D−)
is informative for K. With event-forcing mechanism, on the
other hand, consider a sublanguage K ′ = {dc} ⊆ D′

E . By
Proposition 3, (D′, D−) is verified to be forcibly-informative
for K ′. □

As shown in Example 7, similar to informativity, informa-
tizability [11] often cannot be achieved due to stringent data
quality requirements. However, incorporating forcible events

Fig. 5: A Venn diagram.

allows us to enforce a non-empty sublanguage specification
where forcible-informativity holds. This motivates us to in-
vestigate the concept of forcible-informatizability.

B. Forcible-informatizability
Definition 5 [forcible-informatizability] Consider an event
set Σ = Σc∪̇Σu with Σfor ⊆ Σ. Given a pair (D,D−) and
a specification language E ⊆ Σ∗ with DE = D ∩ E, the
pair (D,D−) is said to be forcibly-informatizable for E if
there exists a non-empty language K ⊆ DE such that K is
forcibly-controllable with respect to every plant G consistent
with (D,D−), i.e., there exists a supervisory control for G to
enforce K. □

The concept of forcible-informatizability shows that even
when the data pair (D,D−) is not forcibly-informative for E,
a data-driven forcing supervisor can still be designed to en-
force a smaller non-empty sublanguage K ⊆ DE . Compared
to informatizability [11], both concepts indicate the possibility
of enforcing a smaller specification sublanguage K ⊆ DE .
However, forcible-informatizability specifically involves the
existence of a data-driven forcing supervisor with the event-
forcing mechanism. Just as forcible-informativity is weaker
than informativity, forcible-informatizability is also weaker
than informatizability.

Example 8 Consider again Example 7. Since there exists a
non-empty sublanguage K ′ = {dc} ⊆ D′

E such that (D′, D−)
is forcibly-informative for K ′, we conclude that (D′, D−) is
forcibly-informatizable for E. □

From Example 8, we have the following corollary.

Corollary 1 A data pair (D,D−) is forcibly-informatizable
for a specification E if and only if there exists a non-empty
specification language K ⊆ DE such that (D,D−) is forcibly-
informative for K.

Proof: (if) Since K ⊆ DE = D ∩ E ⊆ D∩E, it follows
that D∩K = K. Therefore, if (D,D−) is forcibly-informative
for K, then the non-empty specification D ∩ K = K is
forcibly-controllable for any plant consistent with (D,D−).
By Definition 5, (D,D−) is forcibly-informatizable.

Fig. 6: A data-driven automaton Ĝ(Σ, E,D′, D−).
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(only if) If (D,D−) is forcibly-informatizable for E, then
there exists a non-empty language K ⊆ DE such that K is
forcibly-controllable for any plant consistent with (D,D−).
This implies the forcible-informativity of (D,D−) for K,
since D ∩K = K. ■

Corollary 1 illustrates the relationship between forcible-
informatizability and forcible-informativity with respect to the
specification sublanguage K ⊆ DE . This result will be applied
in the following sections to verify forcible-informatizability.

C. Barrier language
To verify forcible-informatizability, this subsection intro-

duces a novel concept of barrier language. The barrier lan-
guage defines a “safe region” that remains forcibly-informative
through appropriate forcible events. The boundary of this
region acts as a barrier, ensuring that system evolutions
within it will stay within. Based on this barrier language,
we propose a necessary and sufficient condition for verifying
forcible-informatizability in the next subsection. We begin by
introducing a preliminary concept.

Definition 6 Given an event set Σ, a language L ⊆ Σ∗ and
a string s ∈ Σ∗, we define ΣL(s) = {s′ ∈ Σ∗ | ss′ ∈ L}.

Definition 6 indicates that the set ΣL(s) contains all suffixes
of the string s that complete s to a member of the language
L. Based on this, the concept of a barrier language is defined
as follows.

Definition 7 Consider a data pair (D,D−) and a specifica-
tion E ⊆ Σ∗. Given a string s ∈ DE , we define

B(s) = {B ⊆ΣDE
(s) | B ̸= ∅ ∧ (ΣDE

(s),ΣD−(s)) (2)

is forcibly-informative for B}

as the set of barrier languages for s. The language B in B(s)
is called a barrier language for s.

Note that ΣD−(s) = {s′ ∈ Σ∗ | ss′ ∈ D−} and ΣDE
(s) =

{s′′ ∈ Σ∗ | ss′′ ∈ DE}. Two Venn diagrams in Fig. 7 illustrate
the concept of a barrier language B ∈ B(s). In plain terms,
for a string s ∈ DE , shown in the upper Venn diagram, its
barrier language B is a non-empty sublanguage containing
a set of suffix strings of s with respect to DE such that
(ΣDE

(s),ΣD−(s)) is forcibly-informative for B (as shown in
the lower Venn diagram). This means that the language B is
forcibly-controllable with respect to all plants consistent with
(ΣDE

(s),ΣD−(s)). For a string s ∈ DE , its barrier language
B ∈ B(s) can be seen as a “safe area”, maintaining its own
invariance in terms of forcible-controllability. See the example
below for illustration.

Example 9 Consider again Example 7 with a corre-
sponding data-driven automaton Ĝ(Σ, E,D′, D−) shown
in Fig. 8. Take a string d ∈ D′

E for which we
want to determine a barrier language. First, we calculate
ΣD′

E
(d) = {ϵ, c, ca, f, fb, fc, fbf, fcd} and ΣD−(d) =

{cc, fbfb, fbfc, fcdb, fcdc}. Now, consider the sublanguage
B = {c} ⊆ ΣD′

E
(d). We find that ΣD′

E
(d) ∩ B = {c}. For

Fig. 7: Venn diagram for a barrier language B ∈ B(s).

ϵ, c ∈ {c} and considering the uncontrollable event c ∈ Σu,
we have ϵ · c = c ∈ {c}, and cc ∈ ΣD−(d) also holds.

Applying Proposition 3, we conclude that the pair
(ΣD′

E
(d),ΣD−(d)) is forcibly-informative for B. Therefore,

B = {c} is a barrier language for the string d, as illustrated
by the red dotted box in Fig. 8. □

Fig. 8: A data-driven automaton with illustration of a barrier
language B = {c} ∈ B(d).

For a string s ∈ DE , there generally exist multiple barrier
languages for s, so the set of barrier languages B(s) can
have multiple elements. Based on this, a property of barrier
languages is shown below.
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Proposition 5 Consider a string s ∈ DE with two barrier
languages B1 ∈ B(s) and B2 ∈ B(s). Then it holds that
B1 ∪B2 ∈ B(s), i.e., B1 ∪B2 is also a barrier language for
the string s.

Proof: For string s, we have (ΣDE
(s),ΣD−(s)) is

forcibly-informative for B1 and B2 where B1, B2 ⊆ ΣDE
(s).

Therefore, the following holds:

(∀s ∈ B1,∀σ ∈ Σu)[sσ ∈ B1 ∪D−]∨

[(∃f ∈ Σfor) sf ∈ B1) ∧ ((∀σ′ ∈ Σ \ Σfor)sσ
′ /∈ B1].

A similar result can be obtained by replacing B1 with B2 in
the equation above. Consequently, the following holds:

(∀t ∈ B1 ∪B2,∀σ′ ∈ Σu)[tσ
′ ∈ B1 ∪B2 ∪D−]∨

[(∃f ′ ∈ Σfor) tf
′ ∈ B1 ∪B2∧

((∀σ′′ ∈ Σ \ Σfor)tσ
′′ /∈ B1 ∪B2]],

which implies that (ΣDE
(s),ΣD−(s)) is also forcibly-

informative for B1 ∪B2. ■
Proposition 5 implies that barrier languages are closed under

set unions. Therefore, for a string s ∈ DE , if B(s) ̸= ∅,
there exists a non-empty supremal barrier language defined
as supB(s) =

⋃
B∈B(s) B. An example is provided below for

illustration.

Example 10 Revisit Example 7 with the data-driven automa-
ton Ĝ(Σ, E,D′, D−) depicted in Fig. 9. For the string d ∈
D′

E , as shown in Example 9, the sublanguage B = {c} ⊆
ΣDE

(d) is a barrier language for d, highlighted by the red
dotted box in Fig. 9. Similarly, we can identify that the
sublanguage B′ = {fbf, fcd} ∈ B(d), marked with a blue
dotted line in the same figure, is also a barrier language for
d. According to Proposition 5, the union B′′ = B ∪ B′ =
{c, fbf, fcd} also belongs to B(d), meaning that B′′ is a
barrier language for d. By inspection, in this example, the
supremal barrier language, supB(d), is indeed B′′. □

Fig. 9: A data-driven automaton with illustration of barrier
languages B,B′ ∈ B(d).

D. Verification of forcible-informatizability

This subsection studies the verification of forcible-
informatizability using barrier languages. To start, Theorem 1
provides a necessary and sufficient condition for this verifica-
tion.

Theorem 1 [N&S condition] A pair (D,D−) is forcibly-
informatizable for a specification E if and only if:

(∀s ∈ DE ∩ Σ∗
u,∀σ ∈ Σu) [sσ ∈ DE ∪D−]∨

[(∃s′ ∈ s,∃f ∈ Σfor)s
′f ∈ DE ∧ B(s′f) ̸= ∅.

□

The proof of Theorem 1 is given in Section V-F below. Here
we make several remarks in order. Theorem 1 is different from
the verification criterion for informatizability [11, Theorem 2].
In the latter, informatizability fails, if there exists a string
s ∈ DE ∩ Σ∗

u and an uncontrollable event σ ∈ Σu such that
sσ /∈ DE ∪D−. Theorem 1, however, shows that even when
informatizability fails for a string s ∈ DE ∩ Σ∗

u due to an
uncontrollable event σ ∈ Σu, forcible-informatizability can
still be achieved if the following two conditions are both met:

• prefix condition: there exists a prefix s′ ∈ s and a
forcible event f ∈ Σfor such that s′f ∈ DE , allowing f
to prevent the occurrence of sσ.

• suffix condition: there is at least one barrier language
B ∈ B(s′f) associated with the string s′f .

Together, these conditions make it possible to relax the data
requirements necessary for forcible-informatizability. An ex-
ample illustrating this result is provided below, followed by a
corollary derived from Theorem 1.

Example 11 Consider again Example 7. We verify the
forcible-informatizability of the data (D′, D−) for the spec-
ification E. From the data-driven automaton in Fig. 6, for
the empty string ϵ ∈ D′

E ∩ Σ∗
u, there exists an uncontrollable

event c ∈ Σu such that ϵ · c /∈ D′
E ∪D−. Nonetheless, there

exist ϵ ∈ ϵ and d ∈ Σfor such that ϵ · d ∈ D′
E . Next, we

determine whether there exists a barrier language for ϵ·d = d,
i.e., whether B(d) ̸= ∅. To this end, following Definition 7,
we first compute ΣDE

(d) = {ϵ, c, ca, f, fb, fc, fbf, fcd} and
ΣD−(d) = {cc, fbfb.fbfc, fcdb, fcdc}.

By Example 10, B = {c} ⊆ ΣDE
(d) and B′ =

{fbf, fcd} ⊆ ΣDE
(d) are two barrier languages for the

string d, as shown in Fig. 9. In other words, B(d) ̸= ∅, which
confirms the forcible-informatizability of (D,D−) for E. □

Corollary 2 [sufficient condition] A pair (D,D−) is forcibly-
informatizable for a specification E if:

(∀s ∈ DE ∩ Σ∗
u,∀σ ∈ Σu) [sσ ∈ DE ∪D−]∨

[(∃s′ ∈ s,∃f ∈ Σfor)s
′f ∈ DE ∧ (ΣDE

(s′f),ΣD−(s′f))

is forcibly-informative for the specification ΣDE
(s′f)].

Proof: According to Definition 5, for the speci-
fication language ΣDE

(s′f), the forcibly-informativity of
(ΣDE

(s′f),ΣD−(s′f)) implies that ΣDE
(s′f) ∈ B(s′f) ̸= ∅.
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In other words, ΣDE
(s′f) is a barrier language for the string

s′f . Thus, by Theorem 1, this statement holds. ■
Corollary 2 provides a sufficient condition that requires

checking forcible-informativity directly, rather than examining
the barrier language for the string s′f . This approach can
leverage the results from Section IV. To check the necessary
and sufficient condition in Theorem 1 for verifying forcible-
informatizability, we introduce an algorithm in the following
subsection.

E. Verification algorithm for forcible-informatizability
Based on Theorem 1, we introduce an algorithm in this

subsection to verify forcible-informatizability for a given data
pair (D,D−) with respect to a specification E. In Theorem 1,
the main point is to check, when needed, whether a barrier
language exists for specific strings. Below, we demonstrate
how this can be achieved algorithmically using a data-driven
automaton. By Definition 7, verifying that the set of barrier
languages B(s) ̸= ∅ for a string s ∈ DE is equivalent to
checking whether there is a non-empty language B ⊆ ΣDE

(s)
such that (ΣDE

(s),ΣD−(s)) is forcibly-informative for B.
Now, consider the specification language ΣDE

(s). Since B ⊆
ΣDE

(s) = ΣDE
(s) (this can be derived by Definition 6),

it follows from Corollary 1 that this verification amounts
to checking the forcible-informatizability of the data pair
(ΣDE

(s),ΣD−(s)) for the specification ΣDE
(s).

From this perspective, verifying forcible-informatizability
can be approached as a recursive divide and conquer problem.
This process is illustrated with two Venn diagrams in Fig. 10.
In the upper part of Fig. 10, consider a data pair (D,D−)
and a specification E. For a string s ∈ DE ∩ Σ∗

u and an
uncontrollable event σ ∈ Σu, since sσ /∈ DE ∪ D−, further
checking is required, as indicated by Theorem 1.

Suppose that there exist a prefix s′ ∈ s and a forcible event
f ∈ Σfor such that s′f ∈ DE . According to Theorem 1,
to verify the forcible-informatizability of (D,D−) for E, the
task shifts to verifying B(s′f) ̸= ∅. This can be reduced to a
sub-problem: checking forcible-informatizability for the pair
(ΣDE

(s′f),ΣD−(s′f)) with respect to ΣDE
(s′f).

This checking process is illustrated in the lower part of
the Venn diagram in Fig. 10. Again, we apply Theorem 1.
For example, consider a string t ∈ ΣDE

(s′f) ∩ Σ∗
u and an

uncontrollable event σ′ ∈ Σu such that tσ′ /∈ ΣDE
(s′f) ∪

ΣD−(s′f). By Theorem 1, further checking is needed. Sup-
pose that there exist a prefix t′ ∈ t and a forcible event
f ′ ∈ Σfor such that t′f ′ ∈ ΣDE

(s′f). To find a barrier
language for the string t′f ′, this can again be reduced to
another sub-problem: checking forcible-informatizability for
the pair (ΣΣDE

(s′f)(t
′f ′),ΣΣD− (s′f)(t

′f ′)) with respect to
ΣΣDE

(s′f)(t
′f ′). By iterating through this process and check-

ing all strings in DE ∩ Σ∗
u, we can determine the forcible-

informatizability of (D,D−) for the specification E.
Based on the above discussion, we present Algorithm 2 for

verifying forcible-informatizability. In Algorithm 2, function
Check FI (a subroutine used recursively) takes as input an
automaton and a specified set of states within that automaton.
The data-driven automaton Ĝ(Σ, E,D,D−) and the set Q̂DE

Fig. 10: A Venn diagram describing the recursive process.

(representing the states related to the specification DE) are
computed in line 1. In line 2, the function is called as
Check FI(Ĝ(Σ, E,D,D−), Q̂DE

), where the initial inputs
are the data-driven automaton Ĝ(Σ, E,D,D−) and the set
Q̂DE

. In line 3, three variables are initialized:
• Qnew: this variable stores the newly checked set of states

within DE∩Σ∗
u, focusing on states that have not yet been

verified;
• Qu: this set holds states associated with each event-wise

exploration within DE∩Σ∗
u, starting from the initial state.

It guides the step-by-step verification of uncontrollable
transitions;

• Qu,all: this set accumulates all historical states related to
DE ∩Σ∗

u, which is essential for maintaining a record of
past states to allow comprehensive prefix testing when-
ever necessary.

For a string s ∈ DE ∩ Σ∗
u (corresponding to q ∈ Qu in

line 5), if there exists an uncontrollable event σ ∈ Σu such
that sσ /∈ DE ∪ D− and no prefix s′ ∈ s (corresponding to
q′ ∈ Qu,all in line 10) and forcible event f ∈ Σfor exist
such that s′f ∈ DE , then, by Theorem 1, the pair (D,D−) is
not forcibly-informatizable. In this scenario, Algorithm 2 will
return ”No” at line 16.

Otherwise, it becomes necessary to check whether
B(s′f) ̸= ∅, which corresponds to verifying the forcible-
informatizability of the new pair (ΣDE

(s′f),ΣD−(s′f)) with
respect to the new specification ΣDE

(s′f). To perform this
verification, Algorithm 2 will proceed to line 14, calling the
function Check FI recursively with updated inputs:
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Algorithm 2: Verification of forcible-informatizability
Input: Σ = Σc∪̇Σu,Σfor ⊆ Σ, the specification

E ⊆ Σ∗, D ⊆ Σ∗ and D− ⊆ Σ∗

Output: Yes ((D,D−) is forcibly-informatizable)/No
((D,D−) is not forcibly-informatizable)

1 Construct a data-driven automaton
Ĝ(Σ, E,D,D−) = (Q̂,Σ, δ̂, q̂0, Q̂m) with Q̂DE

⊆ Q̂;
2 function Check FI(Ĝ(Σ, E,D,D−), Q̂DE

)
3 Qu,all := {q̂0};Qu := {q̂0};Qnew := ∅;
4 while Qu ̸= ∅ do
5 for q ∈ Qu, do
6 for σ ∈ Σu do
7 if δ̂(q, σ) ∈ Q̂DE

, then
8 Qnew = Qnew ∪ {δ̂(q, σ)};

9 else if [δ̂(q, σ) ∈ Q̂ \ Q̂m] ∨ [¬δ̂(q, σ)!],
then

10 for q′ ∈ Qu,all do
11 for f ∈ Σfor do
12 if δ̂(q′, f) ∈ Q̂DE

, then
13 Obtain

Ĝ′ = (Q̂′,Σ′, δ̂′, q̂′0, Q̂
′
m) ⊑

Ĝ(Σ, E,D,D−) with
q̂′0 = δ̂(q′, f);

14 if Check FI(Ĝ′, Q̂′ ∩ Q̂DE
)

returns “Yes”, then
15 goto line 5;

16 return “No”;

17 else
18 continue;

19 Qu,all = Qu,all ∪Qnew;Qu = Qnew;Qnew = ∅;

20 return “Yes”;
21 end function

• automaton Ĝ′ = (Q̂′,Σ′, δ̂′, q̂′0, Q̂
′
m): this is a

subautomaton2 of the original data-driven automaton
Ĝ(Σ, E,D,D−), where q̂′0 = δ̂(q′, f) is the updated
initial state (corresponding to the state relates to the
string s′f in the original data-driven automaton), and
L(Ĝ′) = ΣDE

(s′f) ∪ ΣD−(s′f);
• state set Q̂′ ∩ Q̂DE

: this is the subset of states within Q̂′

that are relevant to the original specification DE .
If Check FI(Ĝ′, Q̂′ ∩ Q̂DE

) returns “Yes”, then B(s′f) ̸=
∅ holds, and the algorithm proceeds to line 5 to continue
checking the remaining string (if any) in the same manner. If,
however, no prefix s′ ∈ s and no forcible event f ∈ Σfor

exist such that B(s′f) ̸= ∅, Algorithm 2 terminates and
returns “No”. The correctness of Algorithm 2 is asserted in
Proposition 6.

2For a finite-state automaton G = (Q,Σ, δ, q0, Qm), a subautomaton G′

is defined as a five-tuple G′ = (Q′,Σ′, δ′, q′0, Q
′
m), where Q′ ⊆ Q,Σ′ ⊆

Σ, δ′ = δ|Q′×Σ′ (meaning δ′ is the restriction of δ to Q′ × Σ′), q′0 ∈ Q′,
and Q′

m ⊆ Q′ ∩Qm. Subautomaton is denoted by G′ ⊑ G.

Proposition 6 Algorithm 2 returns “Yes” if and only if
(D,D−) is forcibly-informatizable.

Proof: (only if) We analyze the scenario where Algo-
rithm 2 returns “Yes”. First, for all q ∈ Qu and σ ∈ Σu, if
δ̂(q, σ) ∈ Q̂DE

∪ Q̂m holds all the time, eventually any string
in Σ∗

u will be tested with the following holds:

(∀s ∈ DE ∩ Σ∗
u,∀σ ∈ Σu)sσ ∈ DE ∪D−,

which implies the forcible-informatizability of (D,D−). Sec-
ond, if there exist q ∈ Qu and σ ∈ Σu such that δ̂(q, σ) /∈
Q̂DE

∪ Q̂m holds, then δ̂(q′, f) ∈ Q̂DE
and the updated

data-driven automaton with the initial state δ̂(q′, f) as the
input for function Check FI returns “Yes”, which implies
the following

(∃s′ ∈ s,∃f ∈ Σfor)[s
′f ∈ DE ] ∧ [B(s′f) ̸= ∅].

Therefore, by Theorem 1, (D,D−) is verified to be forcibly-
informatizable.

(if) By contrapositive, assume that Algorithm 2 returns
“No”. Therefore, first, there exist q ∈ Qu and σ ∈ Σu such
that δ̂(q, σ) /∈ Q̂DE

∪ Q̂m holds, which implies the following

(∃s ∈ DE ∩ Σ∗
u,∃σ ∈ Σu)sσ /∈ DE ∪D−.

Then, for any q′ ∈ Qu,all and f ∈ Σfor, either δ̂(q′, f) /∈
Q̂DE

, or δ̂(q′, f) ∈ Q̂DE
but the updated data-driven automa-

ton with the initial state δ̂(q′, f) as the input for function
Check FI returns “No”. From the above, the following
statement can be made:

[(∄s′ ∈ s,∄f ∈ Σfor)s
′f ∈ DE ]∨

[(∃s′ ∈ s,∃f ∈ Σfor)s
′f ∈ DE) ∧ B(s′f) = ∅],

which implies that (D,D−) is not forcibly-informatizable. ■
An example illustrating Algorithm 2 is given below.

Example 12 Reconsider Example 7. We verify the forcible-
informatizability of the data (D′, D−) for the specifica-
tion E using Algorithm 2. The data-driven automaton
Ĝ(Σ, E,D′, D−) is shown in Fig. 6, where Q̂D′

E
=

{q̂0, q̂1, q̂2, q̂3, q̂4, q̂5, q̂6, q̂7, q̂8}. First, we call the func-
tion Check FI(Ĝ(Σ, E,D′, D−), Q̂D′

E
). Let Qu,all =

{q̂0}, Qu = {q̂0}, and Qnew = ∅. For the state q̂0 ∈ Qu

(corresponding to the empty string ϵ), we examine the only
uncontrollable event c ∈ Σu. Since δ̂(q̂0, c) /∈ Q̂D′

E
and

¬δ̂(q̂0, c)!, we check the historical state set Qu,all = {q̂0}.
Because there exists a forcible event d ∈ Σfor such that
δ̂(q̂0, d) = q̂1 ∈ Q̂D′

E
, we obtain a subautomaton Ĝ′ =

(Q̂′,Σ′, δ̂′, q̂′0, Q̂
′
m) ⊑ Ĝ(Σ, E,D,D−) with q̂′0 = δ̂(q̂0, d) =

q̂1, as shown in Fig. 11.
Next, we recursively call the function Check FI with up-

dated inputs Ĝ′ and Q̂′∩Q̂D′
E
= {q̂1, q̂2, q̂3, q̂4, q̂5, q̂6, q̂7, q̂8}.

Reinitialize the variables as Qu,all = {q̂1}, Qu = {q̂1}, and
Qnew = ∅. For q̂1 ∈ Qu and c ∈ Σu, since δ̂(q̂1, c) = q̂7 ∈
Q̂′ ∩ Q̂D′

E
, we update Qnew = {q̂7}. In line 19, the variables

are updated as follows: Qu,all = {q̂0, q̂7}, Qu = {q̂7}, and
Qnew = ∅.

Back in the while loop in line 4. For q̂7 ∈ Qu, and c ∈ Σu,
since δ̂′(q̂7, c) ∈ Q̂′

m, the function Check FI will not be
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called recursively. In line 19, the variables are re-updated as
follows: Qu,all = {q̂0, q̂7}, Qu = ∅, and Qnew = ∅. Since the
while loop is terminated, the function Check FI(Ĝ′, Q̂′ ∩
Q̂D′

E
) returns “Yes”. We then proceed to line 5 to complete

the function Check FI(Ĝ(Σ, E,D′, D−), Q̂D′
E
). For func-

tion Check FI(Ĝ(Σ, E,D′, D−), Q̂D′
E
), since Qu = {q̂0}

and state q̂0 has already been checked, the variables are
updated to: Qu,all = {q̂0}, Qu = ∅, and Qnew = ∅.
Finally, the function Check FI(Ĝ(Σ, E,D′, D−), Q̂D′

E
) re-

turns “Yes”, confirming that the data pair (D,D−) is forcibly-
informatizable for the specification E. □

Fig. 11: A subautomaton Ĝ′ = (Q̂′,Σ′, δ̂′, q̂′0, Q̂
′
m) with q̂′0 =

q̂1.

Remark 3 The complexity of Algorithm 2 partly de-
pends on the construction of the data-driven automaton
Ĝ(Σ, E,D,D−) = (Q̂,Σ, δ̂, q̂0, Q̂m). According to Remark 2,
constructing this automaton has a complexity of O(|D| ·
max len(D) + |QD− |). When D− is finite, this complexity
becomes O(|D ∪D−| · max len(D ∪D−)).

Now, we analyze the complexity for the function Check FI
in detail. First, if line 14 does not require calling Check FI
recursively, the complexity is O(|Q̂|2 · |Σu| · |Σfor|) = O(|Q̂|2 ·
|Σ|2), where |Q̂| is the number of states of the data-driven
automaton, |Σ| is the size of the event set. Second, If the
function Check FI requires recursive calls at line 14, it can
be called at most |Q̂| times, yielding a total complexity of:
O(|Q̂|2 · |Σ|2 · |Q̂|) = O(|Q̂|3 · |Σ|2). Given the complexity of
constructing the data-driven automaton, the overall complexity
is O((|D| ·(max len(D))+ |QD− |)3 · |Σ|2+ |D| ·max len(D)+
|QD− |). When D− is finite, this complexity is O(|D ∪D−|3 ·
(max len(D ∪D−))3 · |Σ|2 + |D ∪D−| · max len(D ∪D−)).
□

F. Proof of Theorem 1
Proof: (if) We prove that there exists K ⊆ DE such

that K is forcibly-controllable with respect to any plant G
consistent with (D,D−). First, assume the following holds:

(∀s ∈ DE ∩ Σ∗
u,∀σ ∈ Σu) sσ ∈ DE ∪D−.

By [11], it can be inferred that (D,D−) is informatizable,
which further implies (D,D−) is also forcibly-informatizable.

Second, if the statement mentioned above does not hold, we
define a sublanguage KF = {s ∈ DE ∩ Σ∗

u | [(∃f ∈
Σfor)sf ∈ DE ] ∧ B(sf) ̸= ∅]}.

The sublanguage KF comprises all strings in DE∩Σ∗
u such

that: 1) there exists a forcible event f satisfying sf ∈ DE ; 2)
for the string sf , B(sf) ̸= ∅ implies that there exists a barrier
suffix language B ⊆ ΣDE

(sf), i.e., (ΣDE
(sf),ΣD−(sf)) is

forcibly-informative for B. Additionally, we define a corre-
sponding sublanguage KF,min = {s ∈ KF | (∄s′ ∈ KF )s

′ ∈
s\{s}}, which represents the set of all minimal-length strings
within KF . Furthermore, based on the data set KF,min, we
define another sublanguage

Kbasic = {s ∈ DE ∩ Σ∗
u | (∄s′ ∈ KF,min)s

′ ∈ s \ {s}}.

Kbasic contains all strings in DE ∩Σ∗
u that never exceed any

string in KF,min in the sense of prefix inclusion. Finally, we
define a set

K = Kbasic ∪ [
⋃

s∈KF,min

{sf} ·B],

where f ∈ Σfor is an arbitrary forcible event with respect
to s ∈ KF,min such that sf ∈ DE and B ∈ B(sf) is an
arbitrary barrier language for sf , i.e., (ΣDE

(sf),ΣD−(sf))
is forcibly-informative for B.

Now, we prove that K is forcibly-controllable with respect
to any plant G consistent with (D,D−). Note that since
KF,min ⊆

⋃
s∈KF,min

{sf}, we have KF,min ⊆ K. First,

regarding the sets Kbasic and KF,min, the following holds:

(∀s ∈ Kbasic ∪KF,min),∀σ ∈ Σu)

[sσ ∈ Kbasic ∪KF,min ∪D− ⊆ K ∪D−]

∨[((∃f ∈ Σfor)sf ∈
⋃

s∈KF,min

sf)∧((∄σ′ ∈ Σ\Σfor)sσ
′ ∈ K)].

Next, for the set
⋃

s∈KF,min

{sf} · B where B ∈ B(sf), by

Proposition 3, the following holds:

(∀s′ ∈ B, ∀σ′ ∈ Σu)[s
′σ′′ ∈ B ∪ ΣD−(sf)]∨

[((∃f ′ ∈ Σfor)s
′f ′ ∈ B ∧ ((∀σ′′ ∈ Σ \ Σfor)s

′σ′′ /∈ B)].

From the above, the following can be derived:

(∀s′′ ∈ {sf} ·B, ∀σ′′ ∈ Σu)[s
′′σ′′ ∈ {sf} · (B ∪ΣD−(sf))]∨

[((∃f ′′ ∈ Σfor)s
′′f ′′ ∈ {sf} ·B)∧

((∀σ′′′ ∈ Σ \ Σfor)s
′′σ′′′ /∈ {sf} ·B)],

where 1) s′′σ′′′ /∈ sf holds since f ∈ Σc and B ̸= ∅ by
Definition 7; 2) s′′σ′′′ /∈ Dbasic holds since Dbasic is defined
over Σ∗

u. Analogously, we have

(∀ŝ ∈
⋃

s∈DF,min

{sf} ·B, ∀σ̂ ∈ Σu)

[ŝσ̂ ∈
⋃

s∈DF,min

{sf} · (B ∪ ΣD−(sf))]∨

[((∃f̂ ∈ Σfor)ŝf̂ ∈
⋃

s∈DF,min

{sf} ·B)∧
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((∀σ̂′ ∈ Σ \ Σfor)ŝσ̂
′ /∈

⋃
s∈DF,min

{sf} ·B)],

where s′′σ′′′ /∈ s′f and ŝσ̂′ /∈ Dbasic also holds. Hence, the
following holds:

(∀t ∈ K,∀σt ∈ Σu)[tσt ∈ K ∪D−]∨

[(∃ft ∈ Σfor)(tft ∈ K) ∧ ((∀σ′
t ∈ Σ \ Σfor)tσ

′
t /∈ K)],

which implies that (D,D−) is forcibly-informative for K,
where K ⊆ DE .

(only if) By contraposition, we prove that (D,D−) is not
forcibly-informatizable, i.e., there does not exist a sublanguage
K ⊆ DE such that (K,D−) is forcibly-informative for K, if
the following statement holds:

(∃s ∈ DE ∩ Σ∗
u,∃σ ∈ Σu) [sσ /∈ DE ∪D−]∧

[(∀s′ ∈ s,∀f ∈ Σfor)s
′f /∈ DE ∨ B(s′f) = ∅].

For s′f ∈ DE , recall that B(s′f) = {B ⊆ ΣDE
(s′f) | B ̸=

∅ ∧ (ΣDE
(s′f),ΣD−(s′f)) is forcibly-informative for B}

where ΣDE
(s′f) = ΣDE

(s′f){s′′ ∈ Σ∗ | s′fs′′ ∈ DE} and
ΣD−(s′f) = {s′′′ ∈ Σ∗ | s′fs′′′ ∈ D−}. Consider the string
sσ /∈ DE ∪ D−. Two cases are separately analyzed below.
For the first case, consider

(∀s′ ∈ s)(∄f ∈ Σfor)s
′f ∈ DE .

In this case, string sσ will exceed DE ∪ D− while no
event-forcing mechanism can be exploited to achieve forcible-
controllability (and forcible-informativity); hence there is
no sublanguage K ⊆ D such that (K,D−) is forcibly-
informative for K.

For the second case, consider

(∃s′ ∈ s)(∃f ∈ Σfor)s
′f ∈ DE ∧ B(s′f) = ∅.

By Proposition 3, for string s′f and an arbitrary barrier
language B ∈ B(s′f), the following holds:

(∃t ∈ B, ∃σu ∈ Σu)[tσu /∈ B ∪ ΣD−(s′f)]∧

[(∀t′ ∈ t, ∀f ′ ∈ Σfor)[t
′f ′ /∈ B]∨(∃σ′

u ∈ Σ\Σfor)t
′σ′

u ∈ B].

It follows that either the string s′ft will eventually exceed
DE ∪D−, or the string s′f ′t′σ′

u ∈ s′f ·B will eventually be
preempted by the forcible event f ′ thus forcible-informativity
is not valid.

Therefore, no non-empty sublanguage of DE can be proved
forcibly-controllable, which implies that there does not exist
a non-empty language K ⊆ DE such that data pair (D,D−)
is forcibly-informative for K. Consequently, (D,D−) is not
informatizable for E. This concludes the proof. ■

VI. CONCLUSION

In this paper, we have studied data-driven analysis and
supervisory control for DESs using the event-forcing mecha-
nism and introduced two key concepts: forcible-informativity
and forcible-informatizability. Forcible-informativity refers to
the adequacy of the given data to determine the forcible-
controllability of the specification, and is thus related to the

existence of a data-driven forcing supervisory control. More-
over, forcible-informatizability allows for the enforcement of a
smaller (but non-empty) specification for cases where forcible-
informativity does not hold. The novel concept of barrier
language is proposed for verifying forcible-informatizability.
Necessary and sufficient conditions for both properties are
given, together with verification algorithms of polynomial
complexity with respect to the data D and D−.

In future work, we aim to develop algorithms to synthesize
the least restrictive data-driven event-forcing supervisor (if it
exists) when the given data pair (D,D−) is verified to be
forcibly-informatizable. We also aim to extensively test the
developed concepts and algorithms on benchmark examples. It
is moreover of practical interest to consider a dynamic setting
where data are collected not just one-shot but incrementally,
and extend our current static solutions to adapt to newly
collected data.
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