Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 693

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Tutorial:

Warehouse automation by logistic robotic networks:

a cyber-physical control approach”

Kai CAI
Department of Electrical and Information Engineering, Osaka City University, Osaka 558-8585, Japan

E-mail: kai.cai@eng.osaka-cu.ac.jp

Received Apr. 7, 2020; Revision accepted Apr. 19, 2020; Crosschecked Apr. 27, 2020

Abstract: In this paper we provide a tutorial on the background of warehouse automation using robotic networks

and survey relevant work in the literature. We present a new cyber-physical control method that achieves safe,

deadlock-free, efficient, and adaptive behavior of multiple robots serving the goods-to-man logistic operations. A

central piece of this method is the incremental supervisory control design algorithm, which is computationally scalable

with respect to the number of robots. Finally, we provide a case study on 30 robots with changing conditions to

demonstrate the effectiveness of the proposed method.

Key words: Discrete-event systems; Cyber-physical systems; Robotic networks; Warehouse automation; Logistics

https://doi.org/10.1631/FITEE.2000156

1 Introduction

The rapid growth of e-commerce, constantly
rising labor cost, and increasingly demanding ex-
pectation of customers have prompted warehouses
worldwide to be equipped with newer and more
advanced automation technologies. This has been
manifested, over the past decade, by such emergent
trends as omni-channel retailing, frequent/complex
ordering, same-day shipping, and last-mile delivery.
To meet the demanding goals of these trends, it
is critical that warehouse automation technologies
be unprecedentedly efficient, adaptive, scalable, and
fault-tolerant.

Among many recent warehouse automation
technologies, the goods-to-man approach has re-
ceived significant interest from the logistics indus-
try. According to Westernacher Knowledge Series
(2017), as of 2016 more than 10% of warehouses
in the U.S. have implemented this technology. The
" Project supported by JSPS KAKENHI (No. JP16K18122)

ORCID: Kai CAI https://orcid.org/0000-0002-8784-0728

(©) Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2020

CLC number: TP27

goods-to-man technology has game-changed several
key operations in warehouses, replacing traditional
manual picking and transporting items from storage
locations by automatic operations using self-driving
robots. A landmark of this technology is the Kiva
system (Wurman et al., 2008), which dispatches a
large number of mobile robots to serve the logistic
operations in Amazon’s distribution centers. This
goods-to-man approach has drastically improved op-
erational efficiency, reduced labor cost, mitigated er-
rors, as well as created ergonomic working environ-
ment. Given these benefits, the trend of employ-
ing this technology is currently accelerating, as the
number of robots in warehouses is predicted to reach
620 000 by the end of 2021, 15 times the number in
2016 (Tractica, 2017).

With more mobile robots being operated in
warehouses, a systematic control framework is in-
dispensable to ensure that their operations are
not only efficient and adaptive, but also safe and
fault-tolerant. A warehouse is typically cluttered
with storage shelves, which extensively constrain
the space in which robots can maneuver. When

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

694 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

there are a large number of robots simultaneously
moving in such constrained space, it is particularly
challenging but important to guarantee that there is
no collision among the robots, nor deadlock where
two or more robots block one another in, e.g., nar-
row passages created by storage shelves. Once these
safety properties are ensured, the control frame-
work should also optimize the total traveling time
of all robots such that the overall logistic opera-
tions are efficient. Moreover, the warehouse envi-
ronment is dynamic: there are orders made by cus-
tomers at unpredictable times, and these orders come
as new tasks for which new robots need to be dis-
patched. In addition, robots during operation may
malfunction, or boxes may fall from storage shelves
that block a path. The control framework is ex-
pected to be adaptive to deal with these changing
contingencies.

In our previous work (Tatsumoto et al., 2018b),
we applied a formal method, supervisory control
theory of discrete-event systems (Cai and Wonham,
2016, 2020; Wonham et al., 2018; Wonham and Cai,
2019), to design supervisory controllers that by con-
struction ensure collision- and deadlock-free behav-
ior for multi-robot maneuvering in constrained space.
Supervisory control theory was first proposed by Ra-
madge and Wonham (1987, 1989) and Wonham and
Ramadge (1987), with the aim to formalize general
(high-level) control strategies for a wide range of ap-
plication domains. In this theory, discrete-event sys-
tems are modeled as finite-state automata, and their
behaviors represented by regular languages. The
control feature is that certain events (or state tran-
sitions) can be disabled by an external supervisor
This feature leads
to the fundamental concept of language controllabil-
ity, which determines the existence of a supervisor
that suitably disables a series of events in order to
satisfy an imposed control specification. Although
the controllers designed by the supervisory control
theory are correct by construction, there is a well-
known computational bottleneck (Gohari and Won-
ham, 2000); that is, the complexity of computing a
supervisory controller is exponential in the number
of robots. Hence, the supervisory controller design
is not scalable.

to enforce a desired behavior.

To tackle the issue of computational complexity,
in our more recent work (Tatsumoto et al., 2018a),
we proposed an online supervisory control method.

This method generates at the current state of each
robot a limited-step-ahead projection of its behavior,
and determines based on the joint projected behav-
ior of all robots the next control action to satisfy an
imposed control specification. In this way for each
computation of an ounline controller only (typically
small) part of the system behavior in a limited-step-
ahead window needs to be considered, thereby mit-
igating the computational effort. A new projection
is generated afresh after each execution of a control
action (i.e., occurrence of an event), so as a side
benefit, time-varying changes in the system can be
taken into account in this scheme to enable adaptive
behaviors. Online supervisory control based on lim-
ited lookahead policy was extensively studied in the
1990s (Chung et al., 1992, 1993, 1994; Hadj-Alouane
et al., 1996; Kumar et al., 1998). A key difference
in Tatsumoto et al. (2018a) is that a limited-step-
ahead projection is produced for each robot which
can be efficiently computed, rather than a projec-
tion on the joint behavior of all robots (which is
often infeasible to compute due again to the above-
mentioned exponential complexity). In this way the
approach in Tatsumoto et al. (2018a) gains compu-
tational efficiency. However, there are also a few
drawbacks. First, since the online approach consid-
ers only a (small) part of the entire system behavior,
it may fail to avoid deadlocks that lie further “down
the road.” Second, the recomputation of an online
controller after each occurrence of the event may not
be necessary if no change has occurred, which re-
sults in frequent waste of computational resources.
Third, although the online method was experimen-
tally demonstrated with real mobile robots, it was
not explained in Tatsumoto et al. (2018a) how the
discrete-event supervisory control decisions were im-
plemented through real-time continuous controllers
for the individual agents. Finally, in Tatsumoto
(2018a, 2018b), only the shortest paths of
individual robots were taken into account. However,
shortest paths may be very different from shortest
time that the team of all robots spends to finish
their tasks; thus, the issue of time efficiency was not
addressed.

et al.

In this study, we propose a new cyber-physical
control method that handles all the drawbacks men-
tioned above. On the cyber level, we design a learn-
ing approach that incrementally constructs a con-
troller that is guaranteed to achieve collision- and

Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 695

deadlock-free behavior. This learning approach at
each iteration selects (whenever possible) an event
from each robot in a random order, and tests if the
trajectory consisting of the selected events satisfies
an imposed specification. If so, the trajectory will
be added to form a new part of the controller; other-
wise, a different trajectory will be selected and tested
alike. This process is repeated until the goal state
where all robots accomplish their tasks is reached.
Since the computational complexity at each itera-
tion is linear with respect to the number of robots,
this learning approach is scalable. Moreover, since
the approach selects as many robots as possible to
move at each iteration, it addresses the issue of time
efficiency in combination with shortest paths of indi-
vidual robots.

On the physical level, at each iteration the
cyber-level control decisions, or “command signals”
(given in terms of the events of individual robots),
are converted to a stabilization problem for each
robot to move from the current location to the next
waypoint location. To solve this stabilization prob-
lem, standard state-feedback control by pole place-
ment is employed. Once each robot reaches (the
proximity of) its next waypoint, a “report signal” is
sent back to the cyber level for the high-level con-
troller to update its state accordingly. This feed-
back of command and report between the cyber and
physical levels integrates the discrete and continuous
controls.

Finally, to achieve adaptive behaviors in re-
sponse to environment changes, we employ an online
reconfiguration-recomputation approach. Specifi-
cally, whenever a change occurs (and is detected),
models of the relevant robots will be updated ac-
cording to the change. For example, if a fallen box
blocks a path, the robots scheduled to use that path
will update their models by recomputing shortest
paths while treating the path as an obstacle. Or, if a
robot is added (resp. removed due to malfunction),
simply add (resp. remove) the robot model. Once
the robot models are updated, the learning approach
will be used to recompute a new online controller
that adapts to the new situation. Different from the
online approach in Tatsumoto et al. (2018a), recom-
putation is done only when a change occurs, thereby
avoiding possibly unnecessary use of computational
resources.

2 Related work

The goods-to-man warehouse automation based
on robotic networks is broadly a multi-robot path
planning and motion scheduling problem. Such a
problem has been extensively studied in the litera-
ture. In this section, we review the work most related
to the method we propose in this study. The listed
references are by no means complete, but organized
in the following three categories.

2.1 Symbolic motion planning and formal
methods

Symbolic motion planning for multi-robot sys-
tems is the problem of automatic synthesis of motion
control algorithms for multiple robots from a given
high-level specification.
this problem by constructing a high-level supervisor
(modeled as finite-state automata) that satisfies the

Formal methods address

given specification (described using temporal logic
formulas). Subsequently, the high-level supervisor
is implemented using continuous-time algorithms on
the physical level of the individual robots. Rely-
ing on a key concept of bisimulation, the physical-
level implementation maintains the achieved high-
level correctness. Commonly used temporal logic in-
cludes linear temporal logic, computation tree logic,
and more recently interval temporal logic, real-time
temporal logic (Manna and Pnueli, 1992; Kroger and
Merz, 2010; Goranko and Galton, 2015). Finite-state
automata used in this context are typically Biichi
and Rabin automata, which accept infinite-length
inputs (Grédel et al., 2002).

Much recent work has been done for multi-
robot symbolic motion planning using formal meth-
ods (Belta et al., 2007, 2017; Kloetzer and Belta,
2008; Kress-Gazit et al., 2009; Chen et al., 2012).
The strength of formal methods lies in guarantee-
ing correctness (thus safety) by construction, on
both the cyber level and the physical level owing to
bisimulation. As a result, continuous-time dynamics
of robots can be dealt with, and robustness issues
addressed.

The same as the supervisory control theory,
however, the computational complexity using formal
methods (involving finite-state automata) is expo-
nential in the number of robots. Consequently, the
computation of a high-level supervisor is not scal-
able. Moreover, the issue of ensuring deadlock-free

696 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

behaviors is usually not studied using formal meth-
ods, but it is critical in the goods-to-man warehouse
automation.

2.2 Dynamic vehicle routing

Dynamic vehicle routing deals with the prob-
lem of assigning dynamically appearing tasks to un-
manned vehicles or mobile robots, and planning cor-
responding routes for these vehicles/robots. The
problem is typically formulated under a stochastic
framework, which assumes that tasks arrive with
a certain probability distribution. Performance of
designed routing algorithms is also evaluated using
suitable stochastic criteria.

Extensive studies have been conducted on the
dynamic vehicle routing problem (Bertsimas and
van Ryzin, 1991, 1993; Arsie et al., 2009; Smith
et al., 2010; Bullo et al., 2011). Various interest-
ing issues have been addressed, including time con-
straints of task completion, task queueing and stabil-
ity, tasks with different priorities, tasks requiring dif-
ferent types of vehicles (providing different services),
vehicle team forming, and continuous-time dynamics
of vehicles. With ingenious heuristics, a number of
routing algorithms have been reported that achieve
highly efficient and adaptive behaviors.

However, most work on dynamic vehicle routing
focused on free space, and consequently the issues of
collision and deadlock were typically not considered.
These issues, on the other hand, cannot be ignored
and are among the most important in warehouse au-
tomation since the space in warehouses is severely
constrained.

2.3 Path planning and motion scheduling

In robotics and operations research, path plan-
ning and motion scheduling for multi-robot systems
have been widely studied (LaValle, 2006; Standley,
2010; Karaman et al., 2011; Pinedo, 2012; Cép et al.,
2015). Specifically, path planning is concerned with
assigning non-interacting paths to multiple robots
such that no collision occurs among robots and the
total length of all paths is minimum. Motion schedul-
ing, on the other hand, brings in time and tackles
the problem of designing paths along which multiple
robots can complete their maneuvers in minimum
time.

Both problems are combinatorial optimization

problems, and in their generality suffer from in-
tractable computational complexity as the number
of robots increases (just as formal methods and su-
pervisory control theory). Inventing smart heuris-
tics, a number of well-known algorithms have been
proposed, including A* and its many variants, in-
dependence detection, operator decomposition, and
rapidly-exploring random tree (Hart et al., 1968;
LaValle and Kuffner, 2001; Standley and Korf, 2011).

However, the algorithms developed for path
planning and motion scheduling often focus on high-
level path design and do not take continuous-time
dynamics or continuous-time control design into
account.

In the next section, we present a new cyber-
physical control approach that complements the
above reviewed literature by addressing issues of
continuous-time control, collision avoidance, dead-
lock free, computational scalability, as well as adap-
tivity to changes. Owing to the tutorial nature of this
paper, we focus on providing an intuitive account of
the proposed approach, and leave out technical de-
tails including proofs.

3 Cyber-physical control approach

Different warehouses have different configura-
tions. In this study we adopt the grid-type layout
as displayed in Fig. 1, and consider the goods-to-
man scenario using a team of self-driving robots.
Other warehouse layouts can in principle be handled

Waiting area for robots

Iltem-delivery destinations

Fig. 1 Warehouse grid layout: items to be picked
up are stored in black-rectangle areas. Reprinted
from Tatsumoto et al. (2018a), Copyright 2018, with
permission from Elsevier

Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 697

similarly. The top area is where mobile robots are
waiting for tasks, the black-rectangle areas are where
items to be picked up are stored, and the bottom area
is the item-delivery destination (where a handful of
human workers are operating).

When a robot is assigned a task, three locations
are given: (1) start location, which is a cell immedi-
ately below the top waiting area; (2) item location,
which is a cell in one of the black-rectangle areas; (3)
goal location, which is a cell immediately above the
bottom item-delivery destination.

Once being assigned a task, a robot should
travel first to the item location, picking up the item,
and then transport the item to the goal location.

While navigating in the warehouse, each robot
must always avoid collisions with the item-storage ar-
eas (black-rectangles), except when it needs to enter
such an area where its assigned item is stored. It is
assumed that a robot can turn left, turn right, move
forward, but never move backward. The following is-
sues are of particular interest, when multiple robots
are concurrently serving the warehouse for goods-
to-man logistic operations. These issues are: (1)
safety—every robot should never collide with static
item-storage areas nor with other moving robots;
(2) deadlock-free—robots should never block one an-
other (in aisles between item-storage areas as shown
in Fig. 2) such that none can accomplish its item
pickup or delivery; (3) efficiency—the total time of
all robots finishing their assigned item delivery tasks
should be minimum; (4) adaptivity—robots should
adjust their maneuvers to cope with task and envi-
ronment changes.

>

Fig. 2 Deadlock (or blocking): neither robots can
move forward and no robot can finish its delivery.
Reprinted from Tatsumoto et al. (2018a), Copyright
2018, with permission from Elsevier

In the sequel, we present a cyber-physical con-
trol framework that addresses all the above issues.

3.1 Cyber level
3.1.1 Modeling of mobile robots

Consider n (n > 1) robots concurrently serving
the warehouse for goods-to-man logistics. On the cy-
ber level, we propose the following automaton model
for each robot. Sequentially, for each cell of the grid,
we assign natural numbers which will be used as state
numbers. The top waiting area is assigned qg, which
is the initial state for each robot. On the other hand,
the bottom item-delivery destination is assigned goo,
which is the only goal state for each robot.

In the grid a robot may move to the north, to the
south, to the west, or to the east (however, based on
the direction of maneuver, it can only turn left, turn
right, or move forward). Thus, each robot is associ-
ated with four events, one for each direction of move.
In Table 1, we designate robot k& € {1,2,...,n}
its four events correspondingly with four numbers.
Write X = {k1,k3,k5,k7} for the event set of
robot k. For this particular application, it is rea-
sonable to assume that all events are controllable;
that is, an external supervisor may enable or disable
all the robots’ events.

When robot k is assigned a task, represented by
astart location gy, start, an item location gy, jtem, and a
goal location g goa1, We calculate the following short-
est paths (measured by the number of events): (1)
compute all shortest paths between the start location
Gk start and the cell immediately above g item (Y,
denoted by q,;item); (2) compute all shortest paths
between the cell immediately below gy item (s2y, de-
noted by q,tmm) and the goal location g, goal.

These shortest paths contribute in part to the
previously mentioned efficiency issue.

Denote by Qrsp the set of all states included in
the computed shortest paths. Thus, the total state
set Qi of robot k is

Qk = Qk,sp U {q07 Joos qk,itcm}- (1)
Table 1 Event numbers of each robot k € {1,2,...,n}
Event Event Event Event
numbers numbers
Move north kx10+1 Move south kx10+5
Move east kx10+3 Move west kx10+7

698 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

Moreover, denote by 6y «p all the state transi-
tions included in the shortest paths; thus, the total
transition function of robot & is given by

5k ::5k,sp U {[q(b k57 qk,start]7 [q;itemv k57 qk,itcm]7

[Qk,itcmv k57 qt,itemL [qk,goah k57 qOO] } . (2)

In summary, the automaton model of an arbi-
trary robot k € {1,2,...,n} is the five-tuple:

Gk = (Qk72k75k7q07q00)' (3>

Note that while X%, qo, and go, are fixed, Qp
and ¢ depend on the start, item, and goal locations
assigned to robot k. Also, note that in our setup, goo
is reachable from qp.

3.1.2 Learning-based incremental supervisory con-
trol design

With individual robots’ automaton models Gy,
in the standard supervisory control theory (Won-
ham and Cai, 2019) the “synchronous product” of
G|, is first computed, and then all “bad” states (those
where collision and/or deadlock occur) are algorith-
mically removed. A brief summary of the standard
supervisory control design is provided in the ap-
pendix. However, the computation of synchronous
product is known to have complexity exponential in
the number of robots; thus, the computation quickly
becomes infeasible as the number of robots increases
(Tatsumoto et al., 2018b).
(2018a), though the presented online method was
more efficient in that it computed the synchronous
product of projected versions of Gy, the issue of
deadlock-free was not guaranteed (as a tradeoff to
achieved efficiency).

In Tatsumoto et al.

In this subsection we propose a new learning-
based design
method, which avoids computing any synchronous
product. Instead, this method tries one event per
robot (based on Gy), and tests after each event
whether or not collision occurs. If collision occurs,

incremental supervisory control

discard the selected event and choose a different one
(whenever possible) from the same robot. Other-
wise (i.e., there is no collision), record the event and
the next state reached by the one-step transition as
incremental expansion of the supervisor being built.
Repeat the operations on the next new state (by way

of recursion). In this manner, collision-free behavior
is ensured. If every robot is at its goal state ¢, then
the algorithm terminates.

If, at some state, all possible events of all robots
result in collision, then no event can occur at this
state; i.e., the state is a deadlock. In this case, the
operations at this state are all done, and by the re-
cursive mechanism computation backtracks to the
previous state and continues to search other trajec-
tories (potentially leading to the goal). Finally, when
the algorithm terminates, it first trims the obtained
automaton by removing all deadlock states as well as
those states that can transit only to a deadlock, and
then outputs the trimmed automaton as the result-
ing supervisor. In this way, deadlock-free behavior is
also guaranteed.

Moreover, the proposed method tackles the
time-efficiency issue that was not addressed in Tat-
sumoto et al. (2018a, 2018b). This issue is tackled
by means of incorporating a mechanism of choosing
as many robots as possible in each round, such that
the corresponding events can be executed simulta-
neously on multiple robots on the physical level (see
Section 3.2). Since all routes of all robots are short-
est paths, and as many robots as possible simultane-
ously execute their maneuvers, the time for the team
to reach the goal is minimized.

In the following, we present the learning-based
incremental supervisory control algorithm. In Algo-
rithm 1, trim(-) computes an automaton by removing
all deadlock states and those states that can transit
only to a deadlock, and dx(qk,o)! means that the
transition 0 by event o is defined at state gy.

In the incremental supervisory control (iSup-
Con) algorithm, lines 1-5 initiate the supervisor to
be incrementally built. Line 6 initiates a set R to
be used for choosing as many robots as possible in
one round. Line 7 initiates an integer D to be used
for detecting deadlock states. Lines 8 and 9 call the
function isupcon with gy as the argument.

In the isupcon function, lines 10-15 choose a
robot and remove it from the set R for the next se-
lection (unless it is the last robot, in which case R is
reset to the full set); in this way, as many robots as
possible may be selected in a round. Lines 17-33 try
to choose an event from the selected robot that does
not cause collision. If a collision is confirmed by the
chosen event, then choose a different possible event
from the same robot (lines 17-21). If no collision

Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 699

Algorithm 1 Incremental
(iSupCon) algorithm
Input: Gi = (Qk, Xk, 0k,90,G0), K =1,2,...,n
Output: SUP = (Q, X, 4, do, o)
X =31UXU... UM,
: @ = (90,90, 0)
(oo = (q007q007-~~:q00)
Q = {0, 7}
=0
R={1,2,...,n}
D=0
q=qo
: isupcon(q = (q1, ¢z, - - -
Choose a robot k € R
: if R\ {k} = @ then
R={1,2,...,n}
else
R =R\ {k}
end if
D=D+1
while Xy (i) := {0 € Xk | 6x(qr,0)!} # @ do
Choose an event o € Xi(qr)
Yi(ar) = Zi(ar) \ {ox}
if 0k (qr, 0k) =: @, = q; for some i # k then

supervisory control

© P T w

7qn))

I el e e e

continue

NN
o

else

D=0

¢ = (g, Q- -

Q=QUuU{d}

6 =0U{[q,onq'T}

if ¢ = goo then
Output trim(SUP = (Q, X, §, Go, o))

else

I

7qn)

W o N N NN

isupcon(q’)
end if
end if
: end while
: if D < n then
go to line 10
. end if

W W W w w w

occurs, then update the supervisor SUP by adding
the new state reached by the chosen event and the
corresponding transition (lines 22-26). In case the
newly reached state is the goal state ¢, then output
the trimmed SUP as the final result (lines 27 and
28). Otherwise, call the function isupcon with the
new state as the argument (lines 29 and 30); in this
manner the algorithm is recursive. Finally, lines 16,
23, and 34-36 of operations on the integer D deter-
mine if a state is a deadlock. If line 16 is executed
n times (without ever being reset by line 23), then

no robot can execute any event without causing col-
lision; i.e., the current state is a deadlock. In this
case, line 35 will not be executed, and the isupcon
function terminates. By recursion the algorithm re-
turns to the previous isupcon function on a previous
state.

The iSupCon algorithm terminates
in a finite number of steps, and the resulting super-
visor SUP = (Q, X, 4, §o, G~) ensures collision- and
deadlock-free behavior.

Proof Since in each robot Gy the goal state oo
is reachable from the initial state qg, and all event
sets X are disjoint, g is reachable from ¢y in the
synchronous product of all Gy. Further, owing to
the check of line 34, the algorithm will always ex-
plore new transitions (unless g is reached). Hence,
it follows that the condition of line 27 will eventually
be met; i.e., the algorithm terminates. Since there
are finite numbers of states and transitions, the ter-

Theorem 1

mination occurs in a finite number of steps.

It is left to show that the resulting supervisor
SUP ensures collision- and deadlock-free behavior.
Owing to the check of line 20, an event that causes
a collision will never be added to SUP; thereby,
collision-free behavior is guaranteed. Moreover, the
trim operation on line 28 when outputting SUP en-
sures deadlock-free behavior.

3.2 Physical level

Once a supervisor SUP = (Q, X, 9, §o, Goo) On
the cyber level is computed by the iSupCon algo-
rithm, it will send supervisory control signals to the
physical level, in terms of which events to be exe-
cuted by which robots. At each round, the supervisor
SUP sends an event to each robot that is selected to
move, and disables maneuvers of those robots that
are not selected (to avoid a collision or deadlock).
Specifically, suppose that the supervisor SUP is at
state ¢ € Q and let X (q) := {0 € X | §(¢,0)!} be the
subset of events defined at q. Namely, the events in
XY(q) are enabled by SUP (and those not in X'(g) are
disabled). Let k be such that X N X (z) # @, i.e.,
there exists an event of robot k£ that is enabled by the
supervisor. Then SUP selects o, € X N X(x) and
sends oy, to robot k for the corresponding maneuver.

When robot k&
{k1,k3,k5,k7}, it needs a continuous-time con-
troller to carry out the corresponding maneuver.
For simplicity, we assume that each robot k is a

receives event o S

700 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

point mass moving on the two-dimensional (2D)
plane, i.e.,

T = Up, Tk, U € R2.

At time t, the coordinates of robot k are zj(t) (in
the global coordinate frame). Based on oy, one may
obtain the coordinates of the next waypoint (say)
z}. Then the maneuver is a stabilization problem of
driving robot k from x(t) to x}.

Suppose that the state z(t) of robot k is mea-
surable for all time ¢ (say, by an indoor camera po-
sitioning system). Then a standard state-feedback
control

up = Fi(z), — zi(t))
solves the stabilization problem (asymptotically),
where F, € R?*2 is a diagonal matrix with posi-
tive diagonal entries.

We point out that there are a number of issues
to consider for practical applications. First, for finite
convergence to the next waypoint zj, one needs to
impose a stop condition:

|k (t) — il < d,

where d is a small positive number. This means that
if the position of robot k is sufficiently close to z, one
may terminate the continuous-time controller. Sec-
ond, since real robots have nonzero sizes, one needs
to first obtain “configuration space” (e.g., LaValle
(2006)) for robots’ maneuvers, and consider control
under state constraints. Third, real robots also have
constraints on their inputs, which can be dealt with
by, e.g., anti-windup control strategies. Finally, it
might be more accurate to use double-integrator or
unicycle models for mobile robots to take velocity
and orientation into account. More advanced control
techniques are needed for these dynamic models.

When robot k finishes the commanded maneu-
ver, it sends a report signal back to the supervisor
SUP to indicate its status of completion. Recall
that SUP is at state ¢ € Q. Once SUP receives the
report signal from robot k, it updates its state by
executing the event oy; that is, SUP on the cyber
level transits to the new state ¢’ := (g, 0x). Then
the cycle of command and report repeats (until all
robots reach their goal states o).

3.3 Online reconfiguration-recomputation

To make the presented cyber-physical con-
trol method adapt to unpredictable changes such

as new tasks, malfunctioned robots, and fallen
boxes, we further propose an online reconfiguration-
recomputation strategy.

Specifically, when a change is detected, we re-
configure the automaton models of the robots that
are affected by the change. For example, if a fallen
box blocks a path that is to be used by some robots,
then we recompute the shortest paths for these
robots by treating the blocked paths as obstacles.
As another example, if a malfunctioned robot is de-
tected by another robot that passes by, then a new
robot needs to be dispatched to take out the failed
robot. In this case, we remove the model of the failed
robot, add the model of the newly dispatched robot
that treats the failed robot as an item to pick up, and
recompute the shortest paths of those robots whose
previous paths include the location occupied by the
failed robot.

Once the automaton models of the relevant
robots are reconfigured, we apply the iSupCon al-
gorithm to recompute a new supervisor. In this way,
the new supervisor adapts to the new scenario, thus
achieving adaptive behavior.

4 Case study

In this section we consider a case study of goods-
to-man logistics using multiple robots, and apply
the proposed cyber-physical control method for con-
troller design.

Specifically, consider the warehouse layout dis-
played in Fig. 3. Assign natural numbers to each cell

1 12 13| 14 | 15 | 16 | 17 18 | 19 | 20
[] [] [] []
[] [] [] []
[] [] [] []

61 62 63 64 65 66 67 68 69 70

71

Fig. 3 Case study: warehouse layout. Reprinted
from Tatsumoto et al. (2018a), Copyright 2018, with
permission from Elsevier

Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 701

of the grid; these will be used as state numbers. The
waiting area for robots at the top is assigned “0,”
which is the initial state for all robots, i.e., g = 0.
On the other hand, the item-delivery destination at
the bottom, assigned in this case “71,” is the goal
state for each robot, i.e., ¢ = 71.

We consider 30 robots serving the warehouse,
and 30 tasks assigned in three batches (10 tasks
per batch). The following sequence of scenarios is
considered:

1. Initially 10 robots are dispatched to serve the
first batch of 10 tasks.

2. Next 10 more robots are dispatched to serve
the second batch of 10 tasks.

3. Subsequently 10 more robots are dispatched
to serve the third batch of 10 tasks.

4. A while later, a fallen box occupies the
cell numbered “54,” thus blocking the corresponding
aisle.

Each robot is assigned a task, given by three
locations (start, item, and goal). We obtain for each
robot an automaton model by computing the corre-
sponding shortest paths. As an example, in Fig. 4,
a robot is assigned a start location “7,” item location
“32,” and goal location “70.” As shown in Fig. 5, first
find all shortest paths from “7” (start) to “22” (loca-
tion just above item), and then from “42” (location
just below item) to “70” (goal).

To deal with the sequence of four scenarios, the
online reconfiguration-recomputation strategy is em-

Q Startlocation [] Item location @ Goal location

Fig. 4 Case study:
assigned to a particular robot. Reprinted from Tat-
sumoto et al. (2018a), Copyright 2018, with permis-
sion from Elsevier

start, item, and goal locations

ployed. Initially, for the first 10 robots with their
automaton models, we apply the iSupCon algorithm
to compute a supervisor that achieves collision-free,
deadlock-free, and time-efficient behavior.

To physically implement the computed super-
visor, we consider the 10 robots each being a point
mass moving on the 2D plane:

Ty = U, i, ukERQ,k:LZ...,lO.

At each round, the supervisor sends one event to
each robot that is selected to move; those robots that
do not receive an event from the supervisor will stay
put. The robots that receive an event simultaneously
solve a stabilization problem from the current coor-
dinates to the next waypoint coordinates. Let xy(t)
denote the coordinates of robot k at time ¢, and x},
the coordinates of the next waypoint for robot k.
Then the following state-feedback controller

u, =z — ()

drives zx(t) to x} exponentially fast.
condition:

Set a stop

||k (t) — 25| <O0.1.

When the condition is satisfied, robot k sends
a report back to the supervisor. When all robots
that receive events report back to the supervisor, the
supervisor makes the corresponding state transitions
on the cyber level.

When the second batch of 10 tasks arrives, 10
more robots are dispatched. To address this change,

-— O =«

54 57 60
64— 65—>66—>67 > 686970
|

\
71
|

v

Fig. 5 Case study: automaton model of the robot
in Fig. 4. Reprinted from Tatsumoto et al. (2018a),
Copyright 2018, with permission from Elsevier

702 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

we first obtain the automaton models of the 10 new
robots, while keeping the first 10 invariant, and then
apply the iSupCon algorithm with all 20 robot mod-
els as input to compute a new supervisor for the
changed situation. The implementation of the new
supervisor on the physical level is similar to the
above.

When the third batch of 10 tasks arrives, the fi-
nal 10 robots are dispatched. To address this change,
similar to the above we first obtain the automaton
models of the 10 new robots, while keeping the exist-
ing 20 invariant, and then apply the iSupCon algo-
rithm with all 30 robot models as input to compute
a new supervisor for the changed situation. The im-
plementation of the new supervisor on the physical
level is the same as before.

Finally, we consider the case where a fallen box
occupies the cell numbered “54.” Such a change may
be detected by a robot traveling to cell “44,” one
cell above “54.” In such a case, we reconfigure all
those automaton models of the robots that contain
“H4” as a state. For these robots, we recompute their
shortest paths by treating “54” as an obstacle. We
keep the rest robot models invariant, and apply the
iSupCon algorithm with respect to the (partially)
reconfigured models of all 30 robots. The implemen-
tation of the new supervisor on the physical level is
the same as before.

To conclude, our proposed cyber-physical con-
trol method successfully achieves safe, deadlock-free,
time-efficient, and adaptive behavior for multiple
robots serving goods-to-man logistics. We note that
in each of the four computations by the iSupCon al-
gorithm, the computation time is less than 1 s. In
contrast, for the size of 30 robots, neither the stan-
dard supervisory control theory used in Tatsumoto
et al. (2018b), nor the online method in Tatsumoto
et al. (2018a) can feasibly compute a supervisor due
to the exponential complexity of the synchronous
product computation.

5 Conclusions

In this study we have considered warehouse au-
tomation, in particular the goods-to-man logistic op-
eration using multiple self-driving robots. We have
introduced the background of this technology and
reviewed the literature on related problems. A new
cyber-physical control method has been presented

that achieves safe, deadlock-free, efficient, and adap-
tive behavior of the multi-robot team. Moreover, the
incremental supervisory control design algorithm is
computationally scalable with respect to the number
of robots. Finally, a case study on 30 robots with
changing conditions has been provided to demon-
strate the effectiveness of the proposed method.
Our ongoing work includes experimentally
implementing and testing the performance of the
proposed method. In addition,
logistic data to help further improve the operational

exploring big
efficiency is an important target of future research.

Acknowledgements

The iSupCon algorithm was originated in Yuta TAT-
SUMOTO’s Master’s thesis “A Semi-Model-Free Approach
for Efficient Supervisory Control Synthesis” (Osaka City
University, 2019).

Compliance with ethics guidelines
Kai CAI declares that he has no conflict of interest.

References

Arsie A, Savla K, Frazzoli E, 2009. Efficient routing algo-
rithms for multiple vehicles with no explicit communi-
cations. IEEE Trans Autom Contr, 54(10):2302-2317.
https://doi.org/10.1109/TAC.2009.2028954

Belta C, Bicchi A, Egerstedt M, et al., 2007. Symbolic
planning and control of robot motion [grand challenges
of robotics|. IEEE Robot Autom Mag, 14(1):61-70.
https://doi.org/10.1109/MRA.2007.339624

Belta C, Yordanov B, Gol EA, 2017. Formal Methods for
Discrete-Time Dynamical Systems.
Switzerland.

Springer, Cham,

Bertsimas DJ, van Ryzin G, 1991. A stochastic and dynamic
vehicle routing problem in the Euclidean plane. Oper
Res, 39(4):601-615.
https://doi.org/10.1287 /opre.39.4.601

Bertsimas DJ, van Ryzin G, 1993. Stochastic and dynamic
vehicle routing in the Euclidean plane with multiple
capacitated vehicles. Oper Res, 41(1):60-76.
https://doi.org/10.1287 /opre.41.1.60

Bullo F, Frazzoli E, Pavone M, et al., 2011. Dynamic vehicle
routing for robotic systems. Proc IEEE, 99(9):1482-
1504. https://doi.org/10.1109/JPROC.2011.2158181

Cai K, Wonham WM, 2016. Supervisor Localization: a
Top-Down Approach to Distributed Control of Discrete-
Event Systems. Springer, Cham, Switzerland.

Cai K, Wonham WM, 2020. Supervisory control of discrete-
event systems. In: Baillieul J, Samad T (Eds.), En-
cyclopedia of Systems and Control. Springer, London,
UK. https://doi.org/10.1007/978-1-4471-5102-9 54-1

Cép M, Novak P, Kleiner A, et al., 2015. Prioritized planning
algorithms for trajectory coordination of multiple mo-
bile robots. IEEE Trans Autom Sci Eng, 12(3):835-849.
https://doi.org/10.1109/TASE.2015.2445780

Cai / Front Inform Technol Electron Eng 2020 21(5):693-704 703

Chen YS, Ding XC, Stefanescu A, et al., 2012. Formal ap-
proach to the deployment of distributed robotic teams.
IEEE Trans Robot, 28(1):158-171.
https://doi.org/10.1109/TRO.2011.2163434

Chung SL, Lafortune S, Lin F, 1992. Limited lookahead
policies in supervisory control of discrete event systems.
IEEE Trans Autom Contr, 37(12):1921-1935.
https://doi.org/10.1109/9.182478

Chung SL, Lafortune S, Lin F, 1993. Recursive computation
of limited lookahead supervisory controls for discrete
event systems. Discr Event Dynam Syst, 3(1):71-100.
https://doi.org/10.1007/BF01439177

Chung SL, Lafortune S, Lin F, 1994. Supervisory control
using variable lookahead policies.
Syst, 4(3):237-268.
https://doi.org/10.1007/BF01438709

Gohari P, Wonham WM, 2000. On the complexity of su-
pervisory control design in the RW framework. IEEE
Trans Syst Man Cybern, 30(5):643-652.
https://doi.org/10.1109/3477.875441

Goranko V, Galton A, 2015. Temporal Logic. Metaphysics
Research Lab, Stanford University, USA.

Gréadel E, Thomas W, Wilke T, 2002.
and Infinite Games. Springer, Germany.

Hadj-Alouane NB, Lafortune S, Lin F, 1996. Centralized and
distributed algorithms for on-line synthesis of maximal
control policies under partial observation. Discr Event
Dynam Syst, 6(4):379-427.
https://doi.org/10.1007/BF01797138

Hart PE, Nilsson NJ, Raphael B, 1968. A formal basis for the

Discr Event Dynam

Automata, Logics,

heuristic determination of minimum cost paths. IEEE
Trans Syst Sci Cybern, 4(2):100-107.
https://doi.org/10.1109/TSSC.1968.300136

Karaman S, Walter MR, Perez A, et al., 2011. Anytime

motion planning using the RRT. Proc IEEE Int Conf
on Robotics and Automation, p.1478-1483.
https://doi.org/10.1109/ICRA.2011.5980479

Kloetzer M, Belta C, 2008. A fully automated framework
for control of linear systems from temporal logic speci-
fications. IEEE Trans Autom Contr, 53(1):287-297.
https://doi.org/10.1109/TAC.2007.914952

Kress-Gazit H, Fainekos GE, Pappas GJ, 2009. Temporal-
logic-based reactive mission and motion planning. I[EEE
Trans Robot, 25(6):1370-1381.
https://doi.org/10.1109/TRO.2009.2030225

Kroger F, Merz S, 2010. Temporal Logic and State Systems.
Springer, New York, USA.

Kumar R, Cheung HM, Marcus SI, 1998. Extension based
limited lookahead supervision of discrete event systems.
Automatica, 34(11):1327-1344.
https://doi.org/10.1016,/S0005-1098(98)00077-6

LaValle SM, 2006. Planning Algorithms. Cambridge Uni-
versity Press, New York, USA.

LaValle SM, Kuffner JJJr, 2001. Randomized kinodynamic
planning. Int J Robot Res, 20(5):378-400.
https://doi.org/10.1177,/02783640122067453

Manna Z, Pnueli A, 1992. The Temporal Logic of Reactive
and Concurrent Systems. Springer, New York, USA.

Pinedo ML, 2012. Scheduling: Theory, Algorithms, and
Systems (4*P Ed.). Springer, New York, USA.

Ramadge PJ, Wonham WM, 1987. Supervisory control of a
class of discrete event processes. SIAM J Contr Optim,
25(1):206-230. https://doi.org/10.1137/0325013

Ramadge PJ, Wonham WM, 1989. The control of discrete
event systems. Proc IEEE, 77(1):81-98.
https://doi.org/10.1109/5.21072

Smith SL, Pavone M, Bullo F, et al., 2010. Dynamic vehi-
cle routing with priority classes of stochastic demands.
SIAM J Contr Optim, 48(5):3224-3245.
https://doi.org/10.1137,/090749347

Standley T, 2010. Finding optimal solutions to coopera-
tive pathfinding problems. Proc 24" AAAI Conf on
Artificial Intelligence, p.173-178.

Standley T, Korf R, 2011. Complete algorithms for cooper-
ative pathfinding problems. Proc 22"4 Int Joint Conf
on Artificial Intelligence, p.668-673.

Tatsumoto Y, Shiraishi M, Cai K, et al., 2018a. Application
of online supervisory control of discrete-event systems to
multi-robot warehouse automation. Contr Eng Pract,
81:97-104.
https://doi.org/10.1016 /j.conengprac.2018.09.003

Tatsumoto Y, Shiraishi M, Cai K, 2018b. Application of
supervisory control theory with warehouse automation
case study. Syst Contr Inform, 62(6):203-208.

Tractica, 2017. Warehousing and Logistics Robots: Global
Market Analysis and Forecasts.
https://www.tractica.com/research /warehousing-and-
logistics-robots

Westernacher Knowledge Series, 2017. The Trend Towards
Warehouse Automation. https://westernacher-consulting.
com/wp-content/uploads/2017/11/Whitepaper Trend
to_Automation FINAL s.pdf

Wonham WM, Cai K, 2019. Supervisory Control of Discrete-
Event Systems. Springer, Cham, Switzerland.

Wonham WM, Ramadge PJ, 1987. On the supremal control-
lable sublanguage of a given language. SIAM J Contr
Optim, 25(3):637-659.
https://doi.org/10.1137/0325036

Wonham WM, Cai K, Rudie K, 2018. Supervisory control of
discrete-event systems: a brief history. Ann Rev Contr,
45:250-256.
https://doi.org/10.1016/j.arcontrol.2018.03.002

Wurman PR, D’Andrea R, Mountz M, 2008. Coordinating
hundreds of cooperative, autonomous vehicles in ware-
houses. AI Mag, 29(1):9-19.
https://doi.org/10.1609/aimag.v29i1.2082

Appendix:
trol theory

Standard supervisory con-

Consider an automaton G := (Q, X, 0, qo, @m)-
The closed behavior of G is the language

L(G) = {S S | 6(q078>'}7
and the marked behavior of G is the sublanguage
Lin(G) :={s € L(G) | 6(qo, s) € Qu} C L(G).

G is nonblocking if L,,(G) = L(G); namely, ev-
ery string in the closed behavior may be completed
to a string in the marked behavior. Since G may be

704 Cai / Front Inform Technol Electron Eng 2020 21(5):693-704

viewed as generating its closed and marked behav-
iors, it is also referred to as a generator.

Let G = (Qrs ks ks 90,k Quk) (K = 1,2)
be two generators. Their synchronous product
G1||G2 = G = (Q,X,0,q0,Qm) is defined accord-
ing to

Q=Q1 xQ2, X =231UXLy,

90 =(90,1:90,2); Qm = Qm,1 X Qm 2,
(V(q1,q2) € Q1 X Q2,Yo € X1 U Xs)
5((q1,q2),0)

(51((]1,0’),QQ), ifoe 21 \ 22,51((]1,0’)!,
(q1,02(g2,0)), if o € X\ X1, 02(g2,0)!,
= (61(q1,0),02(q2,0)),
ifoeXin Eg,él(ql,a)!,éz(qg,a)!,
not defined, otherwise.

The closed behavior of the synchronous product
G is L(G) = L(G1)||L(G2), and the marked behav-
ior is Liy(G) = Lw(G1)||Lm(G2). For more than
two generators, their synchronous product may be
defined similarly.

Let G = ||}_, G\ be the plant model that com-
prises n components. For control purposes, let
X} be partitioned into a subset X. of controllable
events and a subset X, of uncontrollable events, i.e.,
Y = X.UX,. Let I denote the set of all event subsets
that always include Xy, ie., I':={y C X | v 2D Xy };
each v € I'is called a control pattern. A supervisory
control V for G is any map V : L(G) — I, associat-
ing a control pattern to each string in L(G). Write
V/G for the closed-loop system where G is under the
control of V. The closed language L(V/G) C L(G)
is defined as follows:

(1) e € L(V/G);

(2)if s € L(V/G), 0 € V(s), and so € L(G),
then so € L(V/G);

(3) no other strings belong to L(V/G).

Now let M C Ly(G); we say that V' is a mark-
ing supervisory control for (M,G) if L,(V/G) =
L(V/G) n M. In addition, V is nonblocking if
Ln(V/G) = L(V/G).

Let K C Ly(G) be a specification language
which represents constraints on the behavior of plant
G. The goal of supervisory control is to synthesize
V such that L,,(V/G) = K. For this, controllability

turns out to be key. We say that K is controllable
with respect to G if

KX,NL(G) C K.

The following is the main result of the supervi-
sory control theory:
Theorem Al Let K C L,,(G) and suppose K #
@. Then there exists a marking nonblocking super-
visory control V for (K,G) such that L,,(V/G) = K
if and only if K is controllable.

Whether or not a specification language K is
controllable, let C(K) denote the family of all con-
trollable sublanguages of K; namely,

C(K):={K' C K| K'is controllable}.

Since the empty language @ is trivially control-
lable, C(K) is nonempty. Moreover, controllability
is closed under arbitrary set union: if K; is control-
lable for all ¢’s in some index set I, then the union
U{K; | i € I} is also controllable. Hence, C(K)
contains a (unique) supremal element

supC(K) := U{K'|K' € C(K)}.

Theorem A2 Let K C Ly(G) and Kgyp =
supC(K). If Ky, # @, then there exists a mark-
ing nonblocking supervisory control V' for (Kgup, G)
such that Ly,(V/G) = Kaup.

Standard (polynomial) algorithms and software,
based on automata, are available for computing the
supremal sublanguage Kg,p: a generator SUP is
computed with L,,(SUP) = Ky, and L(SUP) =
Kqup. The generator SUP is called the optimal (i.e.,
maximally permissive) and nonblocking monolithic
supervisor for the pair (G, K).

	Introduction
	Related work
	Symbolic motion planning and formal methods
	Dynamic vehicle routing
	Path planning and motion scheduling

	Cyber-physical control approach
	Cyber level
	Modeling of mobile robots
	Learning-based incremental supervisory control design

	Physical level
	Online reconfiguration-recomputation

	Case study
	Conclusions

