
Supervisor Localization ?

Kai Cai a

aDepartment of Electrical and Computer Engineering, Osaka City University

8 June 2019

Abstract

In this article, we formulate a distributed control problem for multi-agent discrete-event systems, and introduce a supervisor

localization approach to solving this problem. The approach defines a control cover on the state set of the supervisor, and

constructs local controllers by merging the states residing in the same cells of the cover. The algorithm for supervisor local-

ization is of polynomial complexity in the state size of the supervisor, and architectural and symbolic methods are explored

to improve the algorithmic efficiency to tackle large-scale multi-agent systems. Further variations of the central concept of

control cover are introduced, which expand the features of local controllers including time, partial observation, communication

delay, and infinite behavior.

Key words: Supervisor localization, distributed control, discrete-event systems, multi-agent systems

Introduction

This article introduces a distributed control problem of multi-agent systems modeled as (finite-state) automata.

Such systems are known as discrete-event systems (DES), whose dynamics is discrete (in time and usually in state

space) and is asynchronous or event-driven (i.e. state transitions are driven by events or instantaneous happenings).

We focus on the type of DES that consists of multiple component agents, interconnected and interacting with one

another to achieve an overall goal. Examples of such multi-agent DES include machines in flexible manufacturing

cells, mobile robots in warehouses, automated guided vehicles in loading docks, communication channels in cognitive

radio networks, and parallel processors in multi-core supercomputers.

The objective of the distributed control problem is to synthesize a local controller for each component agent, and

collectively the local controllers achieve a prescribed global goal. Equipped with these internal controllers, individual

? This work was supported in part by JSPS KAKENHI Grant No. 16K18122.

agents make their own local control decisions, while communicate with peers (ideally nearest neighbors) for necessary

information exchange. This is a purely distributed control architecture, in contrast with other architectures where

external supervisory entities exist.

Problem Formulation

Consider a DES consisting of N(> 1) component agents:

Gk = (Qk,Σk, δk, q0,k, Qm,k), k = 1, . . . , N. (1)

Gk is the (finite-state) automaton model of agent k, where Qk is the set of states, Σk the set of events, δk : Qk×Σk →

Qk the (partial) state transition function (that describes how states transit on occurrences of events), q0,k ∈ Qk the

initial state, and Qm,k ⊆ Qk the set of marker states (i.e. goal states of agent k). The state transition function δk

can be extended to δk : Qk ×Σ∗k → Qk, where Σ∗k is the set of all finite-length strings of events in Σk, including the

empty string ε. We write δk(q, s)! to mean that δk(q, s) is defined, namely string s ∈ Σ∗k can occur at state q ∈ Qk.

The closed behavior of Gk is the language (i.e. set of strings)

L(Gk) := {s ∈ Σ∗k | δk(q0,k, s)!} ⊆ Σ∗k (2)

and the marked behavior is

Lm(Gk) := {s ∈ L(Gk) | δk(q0,k, s) ∈ Qm,k} ⊆ L(Gk). (3)

Language L(Gk) represents the set of all possible strings that can occur in Gk, while Lm(Gk) the subset of ‘desired’

strings that hit a marker state of Gk. The prefix closure of Lm(Gk), written Lm(Gk), is the set of all history strings

of Lm(Gk), namely Lm(Gk) = {s ∈ Σ∗ | (∃t ∈ Σ∗)st ∈ Lm(Gk)}. If Lm(Gk) = L(Gk), i.e. every string generated

by Gk can be completed to reach a marker state of Gk, then Gk is said to be nonblocking.

For control purposes, the event set Σk of Gk is partitioned into a subset Σc,k of controllable events and a subset Σu,k

of uncontrollable events. Controllable events are those that a controller can prohibit from occurring; by contrast,

uncontrollable events cannot be inhibited.

Given the agents’ automata above, the multi-agent DES G is the synchronous product of G1, . . . ,GN , written

G := G1|| · · · ||GN . (4)

G is a DES of which the component automata Gk are free to execute their events independently except for syn-

chronization on events that are shared. In general agents share events, i.e. Σk ∩ Σl 6= ∅ for some k, l ∈ {1, . . . , N};

2

a shared event in Σk ∩ Σl must be either controllable for both agents Gk, Gl or uncontrollable for both. The event

set of G = (Q,Σ, δ, q0, Qm) is Σ = Σ1 ∪ · · · ∪ ΣN , which is partitioned into the controllable Σc = Σc,1 ∪ · · · ∪ Σc,N

and the uncontrollable Σu = Σu,1 ∪ · · · ∪Σu,N . The closed (resp. marked) behavior of G is the synchronous product

of the individual agents’ closed (resp. marked) behaviors:

L(G) = L(G1)|| · · · ||L(GN) (resp. Lm(G) = Lm(G1)|| · · · ||Lm(GN)). (5)

The control requirement on the multi-agent DES G is imposed as a sublanguage K ⊆ Lm(G), namely part of the

desired behavior of G. The prefix closure of K is K = {s ∈ Σ∗ | (∃t ∈ Σ∗)st ∈ K}. A sublanguage K ⊆ Lm(G) is

said to be controllable (with respect to G) provided for every string s ∈ K and every uncontrollable event σ ∈ Σu,

if sσ ∈ L(G) then sσ ∈ K. Succinctly

KΣu ∩ L(G) ⊆ K. (6)

Whether or not K(⊆ Lm(G)) is controllable, bring in the family of sublanguages of K that are controllable (with

respect to G):

C(K) := {K ′ ⊆ K | K ′Σu ∩ L(G) ⊆ K ′}. (7)

This family C(K) is algebraically closed under arbitrary set unions; that is, the union of an arbitrary number of

(controllable) sublanguages in C(K) is controllable and thus belongs again to C(K). As a result, C(K) contains a

unique supremal element

sup C(K) :=
⋃
{K ′ ⊆ K | K ′ ∈ C(K)}. (8)

This supremal controllable sublanguage ofK can be represented by a nonblocking automaton, say SUP = (X,Σ, ξ, x0, Xm),

such that

Lm(SUP) = sup C(K), L(SUP) = Lm(SUP).

This automaton SUP can serve as a centralized supervisor for the multi-agent DES G, by enabling/disabling

(controllable) events of G such that the imposed control requirement K is satisfied in a maximally permissive

manner. Namely, SUP allows the generation by G of the largest possible set of marked strings that are legal (i.e.

sublanguage of K) and controllable. In this sense, SUP is the optimal and nonblocking supervisor for G.

The supervisor SUP provides a performance criterion for the distributed control problem to be formulated. In dis-

tributed control, one aims to design a local controller for each component agent Gk (k ∈ {1, . . . , N}). A (nonblocking)

3

automaton

LOCk = (Yk, Σ̂k, ηk, y0,k, Ym,k), Σ̂k ⊆ Σ (9)

is called a local controller for agent Gk = (Qk,Σk, δk, q0,k, Qm,k) if LOCk can disable controllable events in, and

only in, Σc,k (i.e. local control authority); and the disabling actions are consistent with the centralized supervisor

SUP. The latter means that after a string generated by the multi-agent DES G, a controllable event σ ∈ Σc,k

is disabled by LOCk if and only if σ is disabled by SUP. While the control authority of LOCk is strictly local,

the observation scope need not, and generally will not, be. In particular, the event set Σ̂k of LOCk does not bear

any relation with the event set Σk of Gk, and may generally include some events originated by other agents. Such

events are indeed critical for collaboration among agents necessary to achieve a collective global objective. Think of

nearest-neighbor observation, as for motorists maneuvering through a congested intersection.

Distributed Control Problem (DCP): Consider a multi-agent DES G (consisting of G1, . . . ,GN), and let SUP be an

optimal and nonblocking supervisor for G (that achieves an imposed control requirement). Construct a set of local

controllers {LOCk | k ∈ {1, . . . , N}}, one for each agent Gk, such that

||k∈{1,...,N} L(LOCk)||L(G) = L(SUP)

||k∈{1,...,N} Lm(LOCk)||Lm(G) = Lm(SUP).

This problem requires that the collective behavior of local controllers be identical to the centralized controlled

behavior, and therefore be globally optimal and nonblocking. Namely, no control performance is compromised when

the architecture shifts from centralized to distributed.

For the sake of easy implementation and comprehensibility, it would be desired in practice that the state sizes of local

controllers LOCk be very much less than that of the centralized supervisor SUP. That is, for each k ∈ {1, . . . , N},

the state size |Yk| � |X| where | · | denotes set cardinality. Inasmuch as this property is neither precise to state

nor always achievable, it must needs be omitted from the formal problem statement; in applications, nevertheless,

it should be kept in mind.

Key Concept: Control Cover

To solve DCP, we introduce a top-down approach that decomposes the centralized supervisor SUP into a local

controller LOCk, for each agent Gk in turn. This approach is called supervisor localization. For the decomposition,

a suitable cover (called control cover) is constructed on the state set of SUP; then SUP is reduced by merging the

states in the same cells of the cover.

4

The cover is induced by a binary relation for pairs of states of SUP. We first introduce this binary relation. Recall the

multi-agent DES G = (Q,Σ, δ, q0, Qm) and the centralized supervisor SUP = (X,Σ, ξ, x0, Xm). Fixing an arbitrary

k ∈ {1, . . . , N}, we describe the control information concerning agent Gk’s controllable events in Σc,k. First, for each

state x ∈ X of SUP, let Ek(x) be the subset of Gk’s controllable events that are enabled at x; namely

Ek(x) = {σ ∈ Σc,k | σ is defined at x}

= {σ ∈ Σc,k | ξ(x, σ)!} ⊆ Σc,k. (10)

Next, for each state x ∈ X of SUP, let Dk(x) be the subset of Gk’s controllable events that are disabled at x:

Dk(x) = {σ ∈ Σc,k | σ is not defined at x but is defined at δ(q0, s) for some s that reaches x}

= {σ ∈ Σc,k | ¬ξ(x, σ)! & (∃s ∈ Σ∗)(ξ(x0, s) = x & δ(q0, sσ)!)} ⊆ Σc,k. (11)

In addition to the control information, we describe the marking information. For each state x ∈ X of SUP, let

M(x) = true if and only if x is a marker state in SUP, i.e. x ∈ Xm. Also let T (x) = true if and only if δ(q0, s) is a

marker state in G for some s that reaches x, i.e. (∃s ∈ Σ∗)ξ(x0, s) = x & δ(q0, s) ∈ Qm.

Based on the above control and marking information, we introduce a binary relation Rk on the state set X of SUP.

For arbitrary two states x, x′ ∈ X, the pair (x, x′) belongs to Rk if they are consistent in both control information

and marking information. Consistency in control information means that any controllable events in Σc,k enabled at

x are not disabled at x′, and vice versa; that is

Ek(x) ∩Dk(x′) = ∅ = Ek(x′) ∩Dk(x). (12)

Consistency in marking information means that if x and x′ have corresponding states of the same marking status in

G, then x and x′ have the same marking status in SUP; namely

T (x) = T (x′)⇒M(x) = M(x′). (13)

Satisfying both (12) and (13), the binary relation Rk ⊆ X ×X is called a consistency relation. Note that Rk is not

transitive in general: (x, x′) ∈ Rk and (x′, x′′) ∈ Rk need not imply (x, x′′) ∈ Rk. For example, a controllable event

σ ∈ Σc,k is neither enabled nor disabled at x′, is enabled at x, and is disabled at x′′.

The binary relation Rk ⊆ X ×X induces a special cover Ck (generally nonunique) on the state set X of SUP. A

cover on a set is a collection of nonempty subsets, called cells, whose union is the set itself. A cover generally allows

its cells to share elements. In the special case where the cells are disjoint, a cover is called a partition. For a cover

Ck = {Xi ⊆ X | Xi 6= ∅ & i ∈ Ik} (Ik some index set) induced by Rk, it is first required that for every cell Xi, all

5

the states in Xi be pairwise consistent with respect to Rk:

(∀i ∈ Ik,∀x, x′ ∈ Xi) (x, x′) ∈ Rk. (14)

Moreover, it is required that for every cell Xi and every event σ ∈ Σ, all states that can be reached from any state

in Xi by a one-step transition σ belong to the same cell Xj ; namely

(∀i ∈ Ik,∀σ ∈ Σ)
[(

(∃x ∈ Xi)ξ(x, σ)!
)
⇒
(
(∃j ∈ Ik)(∀x′ ∈ Xi)ξ(x

′, σ)!⇒ ξ(x′, σ) ∈ Xj

)]
. (15)

Inductively, two states x, x′ belong to a common cell of Ck if any two states that can be reached respectively from

x and x′ by some string in Σ∗ are consistent with respect to Rk. Satisfying both (14) and (15), the cover Ck on X

is called a control cover. Based on this control cover Ck, we decompose the centralized supervisor SUP into a local

controller LOCk for agent Gk.

The problem of computing a control cover with the minimum number of cells is known to be NP-hard. Nevertheless, a

polynomial algorithm called supervisor localization algorithm exists that computes a control cover (in fact a partition)

with a small number of cells. The time complexity is O(|X|4). This algorithm is adapted from an existing supervisor

reduction algorithm, and empirical evidence has shown the algorithm’s effectiveness of achieving near-minimum

number of cells.

Local Controllers

Having obtained a control cover Ck = {Xi | i ∈ Ik} on the state set X of SUP, we merge the states in the same cells

to construct a local controller LOCk = (Yk, Σ̂k, ηk, y0,k, Ym,k) for agent Gk.

The state set Yk is just the set of cell indices, i.e. Yk = Ik. The initial state y0,k ∈ Yk is the index of a cell where the

initial state x0 of SUP belongs. However, x0 may be shared by multiple cells; in that case, pick an arbitrary cell

that contains x0, whose index is (say) i0,k, and set y0,k = i0,k. The marker state subset Ym,k ⊆ Yk is the subset of

indices of cells that contain at least one marker state of SUP; namely Ym,k := {i ∈ Ik | Xi ∩Xm 6= ∅}.

To determine the event set Σ̂k ⊆ Σ and the (partial) transition function ηk : Yk × Σ̂k → Yk, first consider the

transition structure among cells involving the whole event set Σ, i.e. ιk : Ik × Σ→ Ik. For a cell labeled i ∈ Ik and

an event σ ∈ Σ, ιk(i, σ)! and ιk(i, σ) = j (for some cell labeled j ∈ Ik) if there exists a state x in cell Xi such that σ

is defined at x and the transition of σ leads x to a state in cell Xj , and moreover all the states in Xi at which σ is

defined transit on occurrence of σ to states in Xj ; that is

[
(∃x ∈ Xi)ξ(x, σ)! & ξ(x, σ) ∈ Xj

]
& (∀x′ ∈ Xi)

[
ξ(x′, σ)!⇒ ξ(x′, σ) ∈ Xj

]
. (16)

6

If i = j, the transition ιk(i, σ) = j is called a selfloop. In the case where an event σ ∈ Σ is a selfloop at whichever cell

it is defined, then σ does not play a role in the local controller LOCk and hence can be excluded. For this reason,

we determine the event set Σ̂k to be the subset of events in Σ such that there exists at least one cell where these

events are not selfloops:

Σ̂k := {σ ∈ Σ | (∃i, j ∈ Ik) i 6= j & ιk(i, σ)! & ιk(i, σ) = j}. (17)

Finally, the transition function ηk is just ιk but only involves events in Σ̂k: for y(i) ∈ Yk that corresponds to the cell

labeled i and for σ ∈ Σ̂k,

ηk(y(i), σ) = y(j) if and only if ιk(i, σ) = j. (18)

The above shows the construction of one local controller LOCk based on a control cover Ck on the state set of SUP.

The multi-agent DES G consists of N agents G1, . . . ,GN ; for each agent in turn, we construct a local controller

based on a corresponding control cover. In total, construct N local controllers LOC1, . . . ,LOCN from N control

covers C1, . . . , CN . The following theorem states that these local controllers provide a solution to DCP.

Theorem 1. The set of local controllers {LOC1, . . . ,LOCN} constructed above is a solution to DCP.

Since the local controllers are derived from control covers on the stat set of SUP, control covers are sufficient for the

solvability of DCP. In fact, control covers are also necessary for solving DCP, as asserted in the following theorem.

Theorem 2. If a set of local controllers {LOC1, . . . ,LOCN} is a solution to DCP, then there exist control covers

C1, . . . , CN on the state set of SUP from which the local controllers are constructed.

Example

The following example, Transfer Line, is an illustration of the supervisor localization approach. As displayed in Fig. 1,

Transfer Line consists of two machines M1, M2 followed by a test unit TU; these three component agents are linked

by two buffers B1, B2 with capacities 3 and 1, respectively. A workpiece entering the system is first processed by M1

and stored in B1, then processed by M2 and stored in B2. A processed workpiece tested by TU may be accepted

or rejected; if accepted, it is released from the system; if rejected, it is returned to B1 for reprocessing by M2. Thus

the structure incorporates a ‘material feedback loop’. The control requirements are to protect the two buffers B1,

B2 against overflow and underflow. Automaton models of the agents and the requirements are also displayed in

Fig. 1. Controllable (resp. uncontrollable) events are odd (resp. even) numbered transitions.

Let G1 := M1, G2 := M2, and G3 := TU. Then the multi-agent DES G is the synchronous product G =

G1||G2||G3. To describe the overall control requirement, form the synchronous product K = B1||B2||G; then the

7

M1 M2 TUB1 B2
1 2 3 4 5 6

8

1

2 4

5

6,8

3

M1 M2 TU

2,8

3

B1

2,8

3

2,8

3

4

5

B2

Fig. 1. Transfer Line

2 2 2

6

1 1 1

2, 8 2, 8 2, 8

333

5

4

2, 8

2, 8

4 5
45

4

5

LOC1 LOC2 LOC3

6 6

Fig. 2. Local Controllers

requirement language is K = Lm(K) ⊆ Lm(G). The supremal controllable sublanguage of K can be represented

by a nonblocking automaton SUP having 28 states and 65 transitions. This SUP is the centralized supervisor

that enforces the control requirement K for the multi-agent DES G in an optimal (i.e. maximally permissive) and

nonblocking manner.

Now constructing suitable control covers on the state set of SUP, we decompose SUP into local controllers LOCk

for agents Gk (k = 1, 2, 3). These controllers are displayed in Fig. 2, having 4, 6, and 2 states respectively. The ratios

of state reduction are 7, 4.7, and 14. Moreover it is verified that the collective behavior of these local controllers is

identical to the centralized controlled behavior:

||k∈{1,2,3} L(LOCk)||L(G) = L(SUP)

||k∈{1,2,3} Lm(LOCk)||Lm(G) = Lm(SUP).

Equipped with these local controllers of reasonably small state sizes, the control logic of each individual agent is

8

transparent. Machine M1 with LOC1, controlling event 1, ensures that no more than three workpieces can be

processed simultaneously in the system; this is to prevent ‘choking’ the material feedback loop. Machine M2 with

LOC2, controlling event 3, simultaneously guarantees the safety of both buffers (against underflow and overflow).

Finally, test unit TU with LOC3, controlling event 5, is responsible only for protecting buffer B2 against underflow

and overflow.

Large-Scale Multi-Agent Systems

To construct local controllers, we first need to compute a centralized supervisor SUP for the multi-agent DES G.

When G consists of a large number of agents, the computation of SUP tends to become infeasible, inasmuch as the

complexity is known to be exponential in the number of agents. Indeed, the computation of G itself as in (4) is the

product of the component agents, and G’s state size tends to be exponential in the number of agents and can easily

become astronomical.

To solve DCP for large-scale multi-agent systems, we need to combine the construction of local controllers with an

efficient supervisory synthesis approach. There are two basic such approaches: architectural and symbolic.

The architectural approach explores decentralized and hierarchical modularization, or in a heterarchical combination.

Consider a multi-agent DES G consisting of N agents G1, . . . ,GN , and suppose that the total control requirement

on G is comprised of M sublanguages K1, . . . ,KM ⊆ Lm(G) (as subrequirement). Each subrequirement is typically

imposed on a subset of agents; thus we synthesize M decentralized supervisors SUP1, . . . ,SUPM each enforcing

a subrequirement for the involved subset of agents. If these supervisors are nonconflicting (in the sense that a

string generated by a supervisor can also be generated by other supervisors), then the synchronous product of

these supervisors is the same as the centralized supervisor SUP. In case the decentralized supervisors do conflict, a

coordinator CO can be designed (by suitable abstraction techniques) to resolve the conflict, which yields

SUP1|| · · · ||SUPM ||CO = SUP. (19)

That is, the family of M decentralized supervisors and the coordinator is collectively identical to the centralized

supervisor. Computing each member in this family is typically more efficient than computing the centralized su-

pervisor. After synthesizing the M decentralized supervisors and the coordinator, we decompose each of them into

local controllers by the same construction introduced above. These local controllers again solve DCP, but can be

computed more efficiently.

The second, symbolic approach explores efficient representation of DES. State tree structure is such an approach

that represents the states and transitions of DES as a tree organization, and stores the organization intensionally

by binary decision diagram encoding. Computation is performed using algorithmic recipes defined specifically for

9

this organization, which avoids explicit enumeration of the plain states and transitions. The central concept for

localization, i.e. control cover, can be introduced for state tree structures, and thereby the computation of local con-

trollers is made efficient by taking advantage of efficient DES representation. The resulting symbolic local controllers

again solve DCP, in the sense that they collectively achieve the same controlled behavior as the centralized symbolic

supervisor.

Extensions

Supervisor localization has been extended in a number of directions, including timed DES, partial observation,

communication delay, and infinite-behavior DES. Invariably in all these extensions, the central concept is control

cover of different variations.

For timed DES, a global clock is introduced and each event has a (countdown) timer. Thus rather than, or at least

in addition to, permanent disablement of a (controllable) event as in the untimed case, the centralized supervisor

needs to force certain events in a timely fashion to meet a temporal requirement. For this reason, a subset of forcible

events is introduced at the supervisor’s disposal, which can be used to preempt the tick of the global clock. As

a result, the controlled behavior of a timed supervisor includes tick-preempting actions (in addition to disabling

actions). The corresponding new feature of supervisor localization is to decompose the tick-preempting actions into

local preemptors for the individual agents; the central concept for this decomposition is a preemption cover, defined

similarly to control cover but accounting for the tick-preempting actions instead.

Partial observation is a well-studied phenomenon for both untimed and timed DES, which refers to the realistic

constraint that not all events can be observed by the supervisor. The necessary and sufficient condition for the

existence of a partial-observation supervisor is observability, in addition to controllability. Unlike controllability,

however, observability is not algebraically closed under set unions, and consequently there generally does not exist a

unique supremal observable sublanguage of a given (control requirement) language. A remedy to observability, but

more conservative, is normality, which more recently is relaxed to relative observability; the latter two are closed

under unions and permit the existence of supremal elements, respectively. In any case, once a partial-observation

supervisor is computed, it can be decomposed into local controllers (and local preemptors in the timed case) for

individual agents. The central concept is partial-observation control cover (and partial-observation preemption cover

in the timed case) which requires those states indistinguishable under partial observation to be consistent (in the

same sense as for the full-observation case).

Equipped with local controllers, agents need to communicate certain events with peers to achieve critical synchro-

nization. Indeed, agent Gk needs to receive events in Σ̂k − Σk (Σ̂k as in (17)) from other agents in order to make

state transitions in its own local controller LOCk. If event communication was perfect, when an agent Gl sends an

10

event σ(∈ Σ̂k −Σk) to agent Gk, Gk receives σ instantaneously. In practice, however, communication goes through

physical channels, which are typically subject to delay. Consequently, Gk can receive the event σ only after some

delay. This communication delay is reflected by a channel model that treats σ as sending the event by Gl, while a

delayed version σ′ as receiving the event by Gk, such that σ′ occurs after σ with unbounded delay (and bounded

delay counted by the global clock in the timed DES case). With the channel model, one may test if the local con-

trollers are robust to communication delay, in the sense that the channeled behavior is sound and complete with

respect to the original, zero delay controlled behavior. Moreover, treating the channels as part of the plant (namely

synchronous product of DES G and the channels), we may synthesize a centralized supervisor tolerant of delay, and

decompose the supervisor into local controllers. Since the local controllers are collectively equivalent to the central-

ized supervisor, they are ensured to tolerate the same delay as the supervisor does. Central to this decomposition is

implicitly a delayed control cover (untimed or timed).

DES with infinite behavior (often modeled by a Büchi automaton of which strings may have infinite length) describes

systems’ behavior in the long run and asymptotic sense. For such DES, one can impose control requirement that

some desired property becomes true eventually, or some behavior holds infinitely often; these are referred to as

liveness specifications, which may be stated using temporal logic formulas. Accordingly, a centralized supervisor

for infinite-behavior DES needs to enforce liveness specifications, although its control decisions must be made at

certain finite times (so that these decisions may be realistically implemented). The centralized supervisor may be

decomposed into local controllers, through defining a liveness control cover on the state set of the supervisor. The

resulting local controllers collectively achieve the same global liveness behavior as the supervisor does.

Conclusions

In this article, we have formulated one distributed control problem for multi-agent DES, and introduced a supervisor

localization approach to solving this problem. The approach defines a control cover on the state set of the supervi-

sor, and constructs local controllers by merging the states residing in the same cells of the cover. The algorithm for

supervisor localization is of polynomial complexity in the state size of the supervisor, and architectural and symbolic

methods are explored to improve the algorithmic efficiency to tackle large-scale multi-agent systems. Further varia-

tions of the central concept of control cover are introduced, which expand the features of local controllers including

time, partial observation, communication delay, and infinite behavior.

At its core, supervisor localization is a structural reduction procedure and the resulting local controllers are the

quotient structures. The takeaway message of supervisor localization is, everything that can be done globally can be

done locally.

Notes and References

11

Supervisor localization was initially proposed in [1], and further developed in [2]. For large-scale systems, the ar-

chitectural approach was introduced in [3] while the symbolic approach in [4]. Extensions to timed DES, partial

observation, communication delay, and infinite behavior were presented in [5], [6], [7-8], and [9] respectively. A

comprehensive treatment of supervisor localization can be found in the monograph [10].

[1] K. Cai and W.M. Wonham, “Supervisor localization: a top-down approach to distributed control of discrete-event

systems”, IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 605-618, Mar. 2010.

[2] K. Cai and W.M. Wonham, “New results on supervisor localization, with case studies”, Discrete Event Dynamic

Systems, vol. 25, no. 1-2, pp. 203-226, Jun. 2015.

[3] K. Cai and W.M. Wonham, “Supervisor localization for large discrete-event systems – case study Production

Cell”, International Journal of Advanced Manufacturing Technology, vol. 50, no. 9-12, pp. 1189-1202, Oct. 2010.

[4] K. Cai and W.M. Wonham, “Supervisor localization of discrete-event systems based on state tree structures”,

IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1329-1335, May 2014.

[5] R. Zhang, K. Cai, Y. Gan, Z. Wang, and W.M. Wonham, “Supervision localization of timed discrete-event

systems”, Automatica, vol. 49, no. 9, pp. 2786-2794, Sep. 2013.

[6] R. Zhang, K. Cai, and W.M. Wonham, “Supervisor localization of discrete-event systems under partial observa-

tion”, Automatica, vol. 81, no. 7, pp. 142-147, Jul. 2017.

[7] R. Zhang, K. Cai, Y. Gan, Z. Wang, and W.M. Wonham, “Distributed supervisory control of discrete-event

systems with communication delay”, Discrete Event Dynamic Systems, vol. 26, no. 2, pp. 263-293, Jun. 2016.

[8] R. Zhang, K. Cai, Y. Gan, and W.M. Wonham, “Delay-robustness in distributed control of timed discrete-event

systems based on supervisor localization”, International Journal of Control, vol. 89, no. 10, pp. 2055-2072, Oct. 2016.

[9] R. Zhang and K. Cai, “Supervisor localization of discrete-event systems with infinite behavior”, in Proceedings

of Workshop on Discrete Event Systems, pp. 372-377, Sorrento, Italy, May 2018.

[10] K. Cai and W.M. Wonham, “Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-

Event Systems”, Lecture Notes in Control and Information Sciences, vol. 459, Springer, 2016.

12

