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Averaging Over General Random Networks

Kai Cai

Abstract—This technical note studies the distributed averaging problem
over general random networks, by means of augmenting state space. A
general iterative scheme (with a certain structure) is proposed that is dis-
crete-time, linear, and stochastic; its generality compared to the literature
lies in that the weight matrices corresponding to the networks need not be
column-stochastic, and the random process generating the update matrices
need not be ergodic or i.i.d. It is then justified that the scheme achieves av-
erage consensus in the mean-square sense, which, in a special case, also
implies averaging with probability one. A key technique to the justification
is a matrix perturbation result, which describes the behavior of eigenvalues
perturbed simultaneously by multiple parameters.

Index Terms—Distributed averaging, distributed consensus, matrix
perturbation theory, mean-square analysis, random networks/graphs,
stationary stochastic systems.

I. INTRODUCTION

Distributed consensus and averaging problems have been exten-
sively studied for their potential applications in motion coordination,
information fusion, load balancing, to name a few [1]–[3]. Recently
much attention has been paid to the stochastic, discrete-time, linear
iterative scheme: , where is the state
vector at time and are the row-stochastic weight
matrices with positive diagonal entries generated by some random
process. References [4]–[8] considered the i.i.d. case of ; in partic-
ular [8] proved that every entry of asymptotically converges to a
common value (i.e. consensus) almost surely if and only if the second
largest eigenvalue of the expected weight matrix satisfies

. This characterization was later extended to the ergodic
stationary case of in [9]. For almost sure averaging (i.e. consensus
value , ) it is found that, in addition to the
above condition for consensus, need to be column-stochastic with
probability one [8], [10]; the latter condition ensures that the state sum

be an invariant. It might sometimes be desirable, however, not
to require almost sure column-stochasticity of ; in that case, new
iterative schemes have been proposed to achieve averaging by means
of augmenting state space with an extra vector . [11], [12]
designed a protocol involving the element-wise division ;
and when are from an ergodic stationary process, [12] proved that

asymptotically tends to the initial average almost surely.
References [13], [14], and developed the linear update algorithm

(1)

Manuscript received November 20, 2011; revised January 17, 2012; accepted
April 19, 2012. Date of publication May 14, 2012; date of current version
November 21, 2012. This work was supported in part by the Leave a Nest
Grant. Recommended by Associate Editor L. Schenato.
The author is with the Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: kai.cai@scg.
utoronto.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2012.2199181

0018-9286/$31.00 © 2012 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 12, DECEMBER 2012 3187

here are nonnegative,1 column-stochastic whose nonzero
entries are at the same locations as , and finally is a real scalar. It
is well to note that are not nonnegative, for (at least) are
not. The matrices , , and studied in [13], have special forms
corresponding, respectively, to the broadcast gossip [7] and the pair-
wise gossip [10]; and when are i.i.d. and is sufficiently small,
justified mean-square averaging of .
This technical note studies the averaging problem, the main pur-

pose being to bring forward the linear iterative scheme (1) to greater
(theoretic) generality. The generalizations can offer more flexibility
in algorithm implementation, as we shall remark in detail in the next
section (after the notion of distributed iteration over digraphs is in-
troduced). First, more general forms of and than gossip (pair-
wise or broadcast) are considered, and the requirement that nonzero
entries of these matrices be at the same locations is dropped. Second,
the term is extended to that depends linearly on a real vector

, rather than on a scalar. Third (and notably), we
suppose the sequence is generated by a general sta-
tionary random process, which does not require ergodicity and sub-
sumes the i.i.d. case (as compared to [4]–[12]). It is under all these gen-
eralizations that we establish, again, that when is positive and small,

asymptotically converges to the initial average in mean-square. As
a direct consequence, our results contain those of [13], as special cases.
Also, contrasted with [4]–[10], our averaging scheme (with a specific
structure) does not impose the column-stochastic condition on any ,
however at the price of doubling the size of state space. Choosing one
scheme over the other may depend probably on specific applications
at hand; nevertheless, with the tradeoff identified, our approach can be
a helpful alternative to the standard . Finally, we
employ matrix perturbation theory to establish convergence, as , but in
a more general form to handle a vector of parameters.

II. ITERATIVE SCHEME

Let us begin with the discrete-time linear iterative equation
, where is the state vector and

the weight matrix at time . For a fixed , there is
a natural way to define the corresponding digraph on nodes:
an edge from node to node exists in if and only if
the -th entry of is nonzero. As so defined, the equation

represents a distributed update scheme over the
nodes of : the state depends solely on those in the set

. We say is irreducible if the
digraph is strongly connected; that is, there exists a sequence of
directed edges connecting every pair of nodes [3, Appendix C].
Now augment state space with an additional vector , and

consider the following discrete-time, linear iterative scheme:

(2)

where are linear in a real parameter vector .
From , we see that the second vector

through influences the update of . Also observe

thus is updated through on one hand, and records the change of
on the other. For the scheme (2), we shall make several assump-

tions, below.

1A matrix is nonnegative if every of its entry is a nonnegative real number;
and throughout the technical note, by nonnegative matrices we exclude the 0
matrix, i.e. there exists at least one positive entry.

(A1) are row-stochastic (i.e. nonnegative and ), and
with positive diagonal entries.
(A2) are column-stochastic (i.e. nonnegative and

), and with positive diagonal entries.
By (A1) the update of through is to achieve
consensus; the sum , however, need not be invariant.
On the other hand, by (A2) the update of through
preserves the sum . Then, according to (2) one derives

, and it follows that the total sum
is a constant—this is the essential idea of

using the extra to backup every shift of for the
purpose of averaging. It should now be stressed that (A2)
requires each node to know its out-degree. In addition, it is not
required that the nonzero entries of and be at the same
locations (contrast with (1) studied in [13], ). This is originally
motivated by reducing the communication effort of (which
may frequently be a practical need) when the digraph has
only a (proper) subset of the digraph ’s edges. It then turns
out that, as long as (A1) and (A2) hold, and can have
arbitrarily different topologies, i.e. the connection structures of
the components of and .
(A3) The parameter vector , where is a nonnegative
scalar and a positive vector.
Thus or ; and if and only if . Allowing
a vector of parameter values may offer more flexibility in a
distributed implementation of the scheme (2) over the digraphs
nodes, inasmuch as individual nodes may independently choose
different values for these local parameters. This may also provide
some robustness of the scheme (2) with respect to parameter
variations.
(A4) ; and the derivatives , , are
constant (free of ) nonnegative matrices.
The term is more general than in (1) from two aspects:
for one, it depends on a vector of parameters rather than a scalar;
for the other, can be arbitrary nonnegative matrices
whereas are specific to the gossip type [13], .
(A5) .
The justification for this is: as observed above records the
change , but there is no change of at the
initial time 0.
Finally, let us consider the matrices in (2), , are
generated by a random process. Let be a measurable
space, where

(3)

and the Borel -algebra on . Define a product space
by and ,
and consider a probability measure so that forms
a probability space. Thus, a sequence of can be defined by

, . We say a
random sequence is stationary if the families

and have the
same joint distribution for all and .
(A6) The sequence is a stationary random
process.
Thus have the same (finite-dimensional) distribution for
all . We stress that stationarity is the only statistical property
we assume for the sequence , which is more
general than [4]–[12] in that neither ergodicity nor i.i.d. is
required. This implies that in real networks, we may deal with
cases where strong correlations exist in the sample of network
topologies, as well as long-term samples are not regular enough
to deduce the statistical properties of networks.
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(A7) The expected matrices and are irreducible.2

For , besides irreducibility (A7), it is also row-stochastic
with positive diagonal entries owing to (A1). Thus by the
Perron-Frobenius and Gershgorin Theorems (e.g. [15]), its
second largest eigenvalue . The same conclusion
holds for , i.e. .

III. CONVERGENCE RESULT

Our main result is that the iterative scheme (2) achieves average con-
sensus of in mean-square.
Theorem 1: Suppose that the assumptions (A1)–(A7) hold. Then

there exists such that the iterative scheme (2) achieves mean-
square average consensus, i.e. for every there holds

and as .
We postpone the proof to the next section, and discuss here the en-

tailed comparisons and implications.
First, Theorem 1 contains the main results of [13], as special cases,

inasmuch as the scheme (2) extends (1) in a number of respects. Con-
cretely, in (A1)–(A4), the matrices , , and take more general
forms than the gossip type (pairwise or broadcast), and depends
on a vector of parameters rather than a single scalar; in (A6), the sta-
tionary sequence is a much broader class of random
processes than the i.i.d. Technically (as will be seen in the section
below), our extension centers around a more general matrix perturba-
tion result, which describes the behavior of certain eigenvalues per-
turbed simultaneously by multiple parameters.
Second, we comment on the assumption that is irreducible in

(A7), which means that the corresponding digraph is strongly
connected. From [4]–[9] that studied the iteration ,
this assumption is not a necessary condition for consensus; and in fact,
a necessary condition is weaker: the digraph contains a span-
ning tree. On the other hand, for the averaging of using the scheme
(1), proved that the irreducibility of is, indeed, necessary. Now for
our scheme (2) to achieve averaging, it is well to emphasize that a nec-
essary condition is that the matrix is irreducible. This
condition is weaker than , for in the scheme (2) more general forms of

are allowed. In addition, this condition permits even that the di-
graph has no spanning tree, insofar as is chosen so that

is strongly connected.
Corollary 1: If the iterative scheme (2) achieves (mean-square) av-

erage consensus, then the matrix is irreducible.
Proof: Suppose on the contrary that is not irre-

ducible; or equivalently, the digraph is not strongly
connected. From graph theory, the latter implies that there exists a
proper subset of nodes to which the rest of

nodes are not connected; namely, no information flow, neither
through nor through , is from the nodes in to the

nodes in . Thus, if an initial is such that the nodes in all
have the same value and the nodes in all have , then
no update of or can ever occur in . But the initial average is

. Consequently, the iterative
scheme (2) cannot achieve average consensus in the mean, let alone in
mean-square.
The third remark is on the types of convergence, in particular mean-

square (Theorem 1, [10], ) and with probability one ([4], [6]–[9],
[12]). In general, there is no implication between these two conver-
gence notions. However, in the special case where the set of ma-
trices in (3) is finite, as well as under our linear, stationary setting,
mean-square convergence is stronger than with probability one [16,
Corollary 3.46].

2Owing to (A6), these expectations and are invariant over time.

Corollary 2: Let the assumptions of Theorem 1 hold, and suppose
the set in (3) is finite. Then the iterative scheme (2) achieves almost
sure average consensus.
Lastly, we should point out two open questions: how large may the

parameter be, and how fast do and converge under the
scheme (2). These questions induce two corresponding problems: one
is to derive an upper bound for the parameter which ensures average
consensus; the other is to find an optimal value of which maximizes
convergence speed. Systematic inquiries into these problems, however,
would seem to require a complete, analytic characterization of the per-
turbed eigenvalue trajectories in terms of the vector , which is itself,
yet, an unsolved problem in matrix perturbation theory, and thus be-
yond the scope of the present technical note. Nevertheless, we shall
shed some light on these raised issues by simulation in Section V,
below.

IV. PROOF TECHNIQUE

We present the proof of Theorem 1, which is organized into three
steps.3 Throughout this section we suppose that the assumptions
(A1)–(A7) hold.
In the first step, we derive a matrix spectral condition that charac-

terizes mean-square average consensus. Let stand for the Kronecker
product, and consider the matrix . Since the
matrices , , are stationary (A6), so are and
we simplify by the notation . Below is a nec-
essary and sufficient condition in terms of the spectrum of
for mean-square average consensus; the proof is standard, and can be
found in, e.g., [10], .
Lemma 1: The scheme (2) achieves mean-square average consensus

if and only if has a simple eigenvalue 1, and all the other
eigenvalues with moduli smaller than one.
Directly analyzing the spectrum of the (large) matrix is,

however, not a straightforward task. Nevertheless, owing to the block
structure of , we propose a similarity transformation on
that generates a manageable structure. Let us write ,
where

(4)

Then . Now
let and . Consider the
following permutation , which is to permute the columns of :

Denote by the corresponding permutation matrix (which is or-
thogonal); we obtain

(5)

where are defined, respectively, in (6) and (7), as shown at the
bottom of the following page. Note that the parameter vector is only
in , not in . As the above is a similarity transformation, the spectrum
of is the same as . Therefore, we have proved the following
result.

3The approach used here is essentially the same as , however with the gen-
eralization of employing a multidimensional matrix perturbation theory to deal
with a vector of parameters. There are also other extensions along the proof,
due to that the scheme (2) is more general than (1) in several respects. For a
reasonably self-contained presentation, we shall include necessary derivations.
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Proposition 1: The scheme (2) achieves mean-square average con-
sensus if and only if in (5) has a simple eigenvalue 1, and all the other
eigenvalues with moduli smaller than one.
The remaining two steps in the proof will together establish the de-

sired spectral property of in (5), using an eigenvalue perturbation
result with the vector viewed as the perturbing parameter. Step 2 in-
vestigates the spectrum of in (6) (without ), thereby laying an im-
portant basis for applying the perturbation result.
Proposition 2: The spectrum of the matrix in (6) satisfies

(8)

Moreover, the eigenvalue 1 is semi-simple, i.e., its geometric multi-
plicity equals 4.
To justify Proposition 2 the fact below is needed. It is an easy corol-

lary of the Perron-Frobenius Theorem (cf. [15, Ch. XIII]), but rarely
used in the consensus literature.
Lemma 2: Let be a nonnegative and irreducible matrix, and be

an eigenvalue of . If there is a positive vector such that
or , then , the spectral radius of .
Proof of Proposition 2: First, we show (8). Since in (6) is (block)

lower-triangular, it suffices to prove that each of the four diagonal block
matrices

(9)

has a simple eigenvalue 1 and all the other eigenvalues with moduli
smaller than one. From (A1) and (A2), we obtain that these four
matrices are all nonnegative and with positive diagonal entries; also,

and for every . On the other hand, it follows
from (A7) and the Perron-Frobenius Theorem (e.g. [15]) that there
exist positive vectors and such that

(10)

(11)

Then a short calculation yields

These equations imply that 1 is an eigenvalue of each matrix in (9), and
has a positive right or left eigenvector. Further we claim that all the four
matrices are irreducible. Hence, by the Perron-Frobenius Theorem, as
well as Lemma 2, the eigenvalue 1 is simple and the spectral radius of
each matrix in (9). Lastly it follows from the Gershgorin Theorem (e.g.

[15]) that all the other eigenvalues of each matrix in (9) have moduli
smaller than one.
Now we prove the claim. We shall justify in detail that

is irreducible; and for the other three matrices in (9), the justification
follows virtually the same. Denote by the digraph cor-
responding to . It will be shown that is strongly con-
nected. Let be the node sets respectively of and (in
general with different topologies). Then

, and make the arrangement , where
for every . Now consider the edge

set . For a fixed , every nonzero -th entry of corre-
sponds to an edge from a node in to a node in , and
every nonzero -th entry of corresponds to an edge from to

in each , . Based on these two correspondences, the
assumption that is irreducible implies that the sets
are strongly connected; and that is irreducible implies that the
nodes in are strongly connected for every . Therefore,
there exists a sequence of directed edges from to for every

, i.e., is strongly connected.
It is left to show that the eigenvalue 1 is semi-simple. By a straight-

forward calculation one derives rank , which implies
that the geometric multiplicity of the eigenvalue 1 equals four, the same
as its algebraic multiplicity.
The third and last step in the proof employs a perturbation result,

viewing the matrix in (7) with the parameter as a perturbing term
to the spectrum of in (6). Below is the perturbation result, borrowed
from [17, Ch. 2]. This result is the multidimensional generalization of
the one used in , which handles parametric perturbation simultaneously
from multiple directions.
Lemma 3: Consider an matrix which depends smoothly

on a real parameter vector . Suppose , where
and ; so if and only if ,

in which case . Fix ; let be
a semi-simple eigenvalue of , with (linearly independent) right
eigenvectors and left eigenvectors such that

... (12)

Consider a small , and denote by the eigenvalues of
corresponding to , . Then the derivatives
are the eigenvalues of the following matrix:

...
...

(13)

(6)

(7)



3190 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 12, DECEMBER 2012

Here comes the promised desired spectral property of the matrix
in (5).
Proposition 3: 4 If the parameter vector is small, then the

matrix in (5) has a simple eigenvalue 1, and all the other
eigenvalues with moduli smaller than one.

Proof: The matrix in (6) is free of the parameter vector ; and
according to Proposition 2, has a semi-simple eigenvalue 1 of mul-
tiplicity four. To apply Lemma 3, we find the corresponding (linearly
independent) right and left eigenvectors in (14), as shown at the bottom
of the page. Here, are from (10) and (11); and one checks that
the normalization condition (12) is satisfied.
Now with the parameter , the matrix in (7) is added to to

form . Denote the resulting eigenvalues by , , cor-
responding to those in (8); we study their (instantaneous) behavior.
Since is small, let be small and by (A3) .
Also, from (5)–(7) and that are linear in , it follows that de-
pends smoothly on . Thus, the conditions of Lemma 3 are all satis-
fied, and therefore the derivatives , , are the
eigenvalues of the matrix in (13). By and
constant (A4) one computes the matrix (13) in (15), where

. Hence

Since every has positive entries (A4), , and
are positive vectors, we derive , 2, 3, 4.

The above implies that when is small, equivalently small
(A3), stays put while , 2, 3, 4, move to the left along
the real axis. So by continuity, there exists a (small) positive vector
such that and , 2, 3, 4. On the other

hand, since eigenvalues are continuous functions of matrix entries [17],
thus continuous of , there exists a (small) positive vector such that

4Compared to , here all derivatives involved in the proof are partial deriva-
tives, with respect to each direction of parametric perturbation.

Fig. 1. Random networks of ten nodes that may stochastically switch among
three different digraphs.

for all , where the corresponding by
(8). Take a small positive such that (i.e., is positive),
where for every ; then and

for all —the desired spectral property of .
Finally, our conclusion on mean-square average consensus in The-

orem 1 follows immediately from Propositions 2 and 3.

V. NUMERICAL STUDY ON PARAMETER

This section aims to illustrate, through a numerical study, the issue
of how the values of the parameter vector affect the convergence, as
well as convergence speed, of and under the iterative scheme
(2). By Lemma 1, we know that this amounts to studying the effect of
on the second largest eigenvalue of the matrix . Let us denote
this special eigenvalue by ; and we will display the trajectories
of with respect to the values of .
Consider the three digraphs , , 2, 3, in Fig. 1, each having

10 nodes but with different topologies. Construct the corresponding
row-stochastic matrices : the -th off-diagonal entry equals
1/10 if and only if the edge exists in ; and the values of the
diagonals are determined to make each row sum 1. Likewise, construct
the column-stochastic matrices from the same digraphs. As a result,
the positive entries of and appear at the same locations. Now
consider the parameter vector , where . Let

, 2, 3. Further, suppose the matrices , , are
i.i.d., with the probability for every .
All these simplifications (compared to the generality undertaken in the
foregoing sections) are to provide ease of computing the eigenvalues of

, especially the second largest one ; and considering

(14)

(15)
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Fig. 2. Surface of with respect to parameter vector .

Fig. 3. Trends of bounds with respect to number of nodes for directed cyclic,
bidirectional ring, complete, and random geometric (radius 0.5) graphs. Each
plotted point is the average over 100 computations by the 3-step procedure.

just two parameters is to be able to visualize their influence on
. In Fig. 2 we display the trajectories of with respect to the

values of for this example.
Observe that as both increase, the surface first sinks

down (quickly), then rises up (slowly), and eventually grows over 1
where convergence would fail. Let us recall from the proof of Propo-
sition 3 that (when is small) certain eigenvalues move into the unit
circle from 1, and some other eigenvalues move out from inside of the
unit circle. When these two groups of eigenvalues meet (with equal
moduli), that very moment is highly likely to produce the turning point
from sink to rise of the surface; the turning point corresponds to
the minimum value of (that is, the fastest convergence speed),
and the corresponding vector is in this sense optimal.
Now for a valid upper bound on the vector which guarantees con-

vergence, we would need to analyze the behavior of when its
modulus is close to 1. To analytically characterize a tight bound for
is, however, very challenging, inasmuch as it seems to require the

knowledge of detailed behavior of when need not be small.
Numerically, one may use the following procedure to derive a valid
value: Suppose an arbitrary positive vector is chosen (locally by in-
dividual nodes), and to be designed such that . Also
suppose are given together with their stationary probability distri-
bution. Then:
Step 1) Set , an initial positive value.
Step 2) Compute , the second largest eigenvalue of the matrix

.

Step 3) If , terminate, and output . Otherwise, set
, constant, and go to Step 2.

We apply this (naive) procedure to study numerical bounds for dif-
ferent network topologies, by letting be an -dimensional unit
vector generated at random, , , and .
For simplicity, networks are assumed i.i.d. and their edges uniformly
weighted. Computed results are displayed in Fig. 3, for directed cyclic,
bidirectional ring, complete, and random geometric (radius 0.5) graphs.
Observe that bounds decrease (quickly) in cyclic digraphs as the node
number becomes larger, whereas they increase (slowly) in the other
three types which are undirected graphs. Also, comparing the bounds
among the latter three types might suggest that they could be related to
the node degrees (it is seen here that the lower the degrees, the larger
the bounds). Future research will aim to justify the above observa-
tions by analyzing bounds for these special topologies.

VI. CONCLUSIONS

We have justified that the iterative scheme (2) achieves average con-
sensus under several generalizations compared to the literature: no-
tably, the weight matrices need not be column-stochastic, and the
random process need not be ergodic or i.i.d.. A key
technique to the justification is themulti-parameter perturbation theory.
Yet open problems include deriving an upper bound for the parameter
vector which ensures averaging, as well as an optimal value of
which maximizes convergence speed.
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