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Relative Coobservability in Decentralized
Supervisory Control of Discrete-Event Systems

Kai Cai, Renyuan Zhang, and W.M. Wonham

Abstract—We study the new concept ofrelative coobservability
in decentralized supervisory control of discrete-event systems
under partial observation. This extends our previous work on
relative observability from a centralized setup to a decentralized
one. A fundamental concept in decentralized supervisory control
is coobservability (and its several variations); this property is
not, however, closed under set union, and hence there generally
does not exist the supremal element. Our proposed relative
coobservability, although stronger than coobservability, is alge-
braically well-behaved, and the supremal relatively coobservable
sublanguage of a given language exists. We present an algorithm
to compute this supremal sublanguage. Moreover, relative coob-
servability is weaker than conormality, which is also closed under
set union; unlike conormality, relative coobservability imposes no
constraint on disabling unobservable controllable events.

Index Terms—Supervisory control, discrete-event systems, de-
centralized supervision, relative coobservability, partial observa-
tion, automata.

I. I NTRODUCTION

Recently we introduced the new concept ofrelative observ-
ability in supervisory control of discrete-event systems (DES)
under partial observation (see [1] and its conference precursor
[2]; also the timed case [3]). Relative observability is stronger
than observability, weaker than normality, and preserved under
set union; hence there exists the supremal relatively observable
sublanguage of a given language, which may be effectively
computed. Relative observability is formulated in a centralized
setup where a monolithic supervisor partially observes and
controls the plant as a whole.

In this paper and its conference precursor [4], we extend rel-
ative observability to adecentralizedsetup where multiple de-
centralized supervisors operate jointly, each of which observes
and controls only part of the plant. Decentralized supervisory
control is an effective means of managing computational
complexity when DES are large-scale (e.g. [5, Chapter 4]).
Our work is motivated by the fact that, in decentralized control
under partial observation, there has so far lacked an effective
concept for which the supremal decentralized supervisors may
be computed, unless normality constraints are imposed which
might be overly conservative.

K. Cai is with Urban Research Plaza, Osaka City University, Japan.
R. Zhang is with Department of Traffic and Control Engineering, North-
western Polytechnical University, China. W.M. Wonham is with Depart-
ment of Electrical and Computer Engineering, University ofToronto,
Canada. Emails: kai.cai@eng.osaka-cu.ac.jp, ryzhang@nwpu.edu.cn, won-
ham@control.utoronto.ca. This work was supported in part by Program to
Disseminate Tenure Tracking System, MEXT, Japan; the National Nature
Science Foundation of China, Grant no. 61403308; the Natural Sciences and
Engineering Research Council, Canada, Grant no. 7399.

The fundamental concept in decentralized supervisory con-
trol is coobservability, identified in [6] (see also [7]): coob-
servability and controllability of a languageK is necessary
and sufficient for the existence ofnonblockingdecentralized
supervisors that synthesizeK. Here the decentralized super-
visors follow a conjunctivedecision fusion rule: an event is
enabled if and only ifall supervisors ‘agree’ to enable that
event. One may also consider alternative fusion rules, e.g.that
of disjunctive, or a mix of conjunctive and disjunctive; these
lead to variations of coobservability studied in [8]. A further
extension called conditional coobservability is reportedin [9].

None of the above various versions of coobservability, how-
ever, is closed under set union; consequently there generally
does not exist the supremal coobservable sublanguage of a
given language. In fact, even the existence of a coobservable
sublanguage is undecidable in general [10]. On the other
hand,conormality(or strong decomposability), being stronger
than coobservability, is proposed in [6]; it is preserved un-
der set union and the supremal conormal sublanguage may
be computed. Conormality, however, imposes the constraint
that no decentralized supervisor can disable its unobservable,
controllable events, and may therefore be overly conservative
in practice. There is a weaker version of conormality studied
in [11], which is also closed under set union; however, no
algorithm is presented to compute the supremal element.

In this paper, we introduce the new concept ofrelative
coobservability, which is a natural extension of relative ob-
servability to the decentralized supervisory control setup. We
prove that relative coobservability is stronger than (any of
the known variations of) coobservability, weaker than (weak)
conormality, and closed under set union. Moreover, we present
an algorithm for computing the supremal relatively coob-
servable (and controllable,Lm(G)-closed) sublanguage of a
given language. This algorithm is so far the only one that
effectively synthesizes nonblocking controlled behaviorthat is
generally more permissive than the conormal counterpart. The
new concept and algorithm are demonstrated with a Guideway
example.

We note that [12] introduced three concepts called strong
conjunctive coobservability, strong disjunctive coobservability,
and strong local observability; the latter two are proved tobe
closed under set union. First, for strong local observability,
we will see that it is in fact a special case of our relative
coobservability. Then for strong disjunctive coobservability,
although weaker than our relative coobservability, there is
no existing finitely convergent algorithm that computes its
supremal element. By contrast, we will present an algorithm
that effectively computes the supremal relatively coobservable

http://arxiv.org/abs/1604.03267v2


conormality, strong decomposability

relative coobservability

coobservability (conjunctive, disjunctive, mixed, conditional)

(Rudie and Wonham, 92)

(Rudie and Wonham, 92) (Yoo and Lafortune, 02, 04)

weak conormality

(Takai et al, 05)

strong local observability

(Takai et al, 05)

strong coobservability (conjunctive, disjunctive)

(Takai et al, 05)

Fig. 1. Observability concepts and their relations in decentralized super-
visory control under partial observation: bottom to top, strong to weak. For
all coobservability concepts weaker than relative coobservability, no effective
algorithm exists that computes the corresponding nonblocking controlled
behavior.

sublanguage. The relations of relative coobservability and
other concepts reported in decentralized supervisory control
are summarized in Fig. 1.

Note also that, for prefix-closed languages, several pro-
cedures are developed to compute maximal decentralized
supervisors, e.g. [13], [14]. Those procedures are not, however,
applicable to non-closed languages, because the resulting
decentralized supervisors may be blocking.

Finally we point out that the supremal relatively coobserv-
able sublanguage of a given languageK may be empty even
if there exists a nonempty coobservable sublanguage ofK
(whether or notK is prefix-closed). Nevertheless, whenever
the supremal relatively coobservable sublanguage is nonempty
(and therefore can be computed by our proposed algorithm),
it is guaranteed to be coobservable, and nonblocking decen-
tralized supervisors may be constructed accordingly [6].

The rest of the paper is organized as follows. In Section II
we introduce the new concept of relative coobservability and
show that it is stronger than coobservability (and its variations)
and weaker than conormality. In Section III we prove that
relative coobservability is closed under set union, and present
an algorithm to compute the supremal relatively coobservable
sublanguage of a given language. The results are demonstrated
with a Guideway example in Section IV. Finally in Section V
we state our conclusions.

II. RELATIVE COOBSERVABILITY

The plant to be controlled is modeled by a generator

G = (Q,Σ, δ, q0, Qm) (1)

whereQ is the finite state set;q0 ∈ Q the initial state;Qm ⊆ Q
the subset of marker states;Σ the finite event set;δ : Q×Σ →
Q the (partial) state transition function. In the usual way,δ is
extended toδ : Q×Σ∗ → Q, and we writeδ(q, s)! to mean that
δ(q, s) is defined. Theclosed behaviorof G is the language

L(G) := {s ∈ Σ∗|δ(q0, s)!} ⊆ Σ∗ (2)

and themarked behavioris

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (3)

A string s1 is a prefix of a strings, written s1 ≤ s, if there
existss2 such thats1s2 = s. The (prefix) closureof Lm(G)
is Lm(G) := {s1 ∈ Σ∗ | (∃s ∈ Lm(G))s1 ≤ s}. In this
paper we assumeLm(G) = L(G); namelyG is nonblocking.
A languageK ⊆ Σ∗ is Lm(G)-closedif K ∩ Lm(G) = K.

For partial observation, let the event setΣ be partitioned into
Σo, the observable event subset, andΣuo, the unobservable
subset (i.e.Σ = Σo∪̇Σuo). Bring in the natural projection
P : Σ∗ → Σ∗

o defined according to

P (ǫ) = ǫ, ǫ is the empty string;

P (σ) =

{

ǫ, if σ /∈ Σo,
σ, if σ ∈ Σo;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(4)

In the usual way,P is extended toP : Pwr(Σ∗) → Pwr(Σ∗
o),

wherePwr(·) denotespowerset. Write P−1 : Pwr(Σ∗
o) →

Pwr(Σ∗) for the inverse-image functionof P .
Let Σo,i ⊆ Σ and the natural projectionsPi : Σ

∗ → Σ∗
o,i,

i ∈ I (I is some index set). Also letΣc,i ⊆ Σ. We consider
decentralized supervisory control where each decentralized
supervisori ∈ I observes events only inΣo,i, and controls
events only inΣc,i. Then letΣc := ∪i∈IΣc,i be the total
controllable event subset, andΣu := Σ\Σc the uncontrollable
subset. A languageK ⊆ Σ∗ is controllablewith respect toG
if

KΣu ∩ L(G) ⊆ K. (5)

For conceptual simplicity let us first consider the case of two
decentralized supervisors, i.e.I = {1, 2}. The (conjunctive)
coobservability is defined as follows [6]. A languageK ⊆
Lm(G) is coobservablewith respect toG, P1, P2, Σc,1, Σc,2

if

(∀s, s′, s′′ ∈ Σ∗) P1(s) = P1(s
′) ∧ P2(s) = P2(s

′′) ⇒

(i) (∀σ ∈ Σc,1 ∩ Σc,2)

(s′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ K)

∨ (s′′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ K) (6)

(ii) (∀σ ∈ Σc,1 \ Σc,2)

s′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ K (7)

(iii) (∀σ ∈ Σc,2 \ Σc,1)

s′′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ K (8)

2



First observe that (ii) (resp. (iii)) above, for a controllable
eventσ belonging only toΣc,1, i.e. σ ∈ Σc,1 \ Σc,2 (resp.
σ ∈ Σc,2\Σc,1), is simply the standard observability condition
[15] with respect toP1 (resp.P2) that is applied. For a shared
controllable eventσ ∈ Σc,1 ∩ Σc,2 in (i) above, on the other
hand, both observationsP1 and P2 are involved, and the
condition (6) is equivalent to

s′σ ∈ K ∧ s′′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ K

namely the decision of enablingσ after strings will be made
if it is first ratified by both supervisors working through their
respective observation channels.

Coobservability, together with controllability andLm(G)-
closedness, of a languageK is shown to be necessary and
sufficient for the existence of two decentralized supervisors
conjunctivelysynthesizingK [6]. Coobservability, however,
is not closed under set union, and consequently the supremal
coobservable sublanguage ofK need not exist in general.
This fact motivates us to propose the new concept,relative
coobservability, which (as we will show) is algebraically better
behaved.

Definition 1. Let C ⊆ Lm(G) be a fixedambientsublan-
guage. A sublanguageK ⊆ C is relatively coobservable, or
simplyC-coobservable, with respect toG, P1, P2, Σc,1, Σc,2

if

(∀s, s′, s′′ ∈ Σ∗) P1(s) = P1(s
′) ∧ P2(s) = P2(s

′′) ⇒

(i) (∀σ ∈ Σc,1 ∩Σc,2)

(s′σ ∈ K ∧ s ∈ C ∧ sσ ∈ L(G) ⇒ sσ ∈ K)

∧ (s′′σ ∈ K ∧ s ∈ C ∧ sσ ∈ L(G) ⇒ sσ ∈ K) (9)

(ii) (∀σ ∈ Σc,1 \ Σc,2)

s′σ ∈ K ∧ s ∈ C ∧ sσ ∈ L(G) ⇒ sσ ∈ K (10)

(iii) (∀σ ∈ Σc,2 \ Σc,1)

s′′σ ∈ K ∧ s ∈ C ∧ sσ ∈ L(G) ⇒ sσ ∈ K (11)

Several remarks on the definition are in order. First, relative
coobservability is a ‘strengthened’ version of coobservability
in two respects. For one, all stringss in the ambientC are
considered, instead of just strings inK. For the other, the two
implications in (9) are connected by “and”∧, instead of “or”
∨. Namely (9) requires that the ‘observational consistency’
hold for both observation channelsP1 andP2. This require-
ment is crucial to provide closure under union for relative
coobservability; as the example in Fig. 2 shows, using∨ in
(9) would fail to guarantee closure under union.1 Hence we
have identified the two defects that cause coobservability to
fail to be closed under union: (1) lack of an ambient language,
(2) the use of disjunctive (“or”)∨ logic in connecting local
observational consistency.

1This requirement is admittedly a shortcoming of our relative coobservabil-
ity approach as it rules out any inconsistency in decentralized supervisors’
local decisions. However, in the absence of such a requirement it does not
seem possible to preserve the property of closure under union, and hence the
effective computability of a useful result. Computation ofa merely “maximal”,
as distinct from supremal, behavior (even if that could be achieved) would
be, in our view, of little practical interest.

α
σ

β

Lm(G) = C = {α, β, γ, ασ, βσ, γσ}

G

Lm(K) = Lm(K1) ∪ Lm(K2)

K1

Σc,1 = Σc,2 = {σ}

initial state

marker state

γ

σ

σ

α

β

γ

σ

K2

α

β

γ σ

K

α

β

γ

σ

σ

Σo,1 = {γ, σ}, Σo,2 = {β, σ}

Fig. 2. Suppose that∨ were used in (9). ThenLm(K1) andLm(K2) would
both beC-coobservable, but the unionLm(K) = Lm(K1) ∪ Lm(K2)
would not be. The reason is as follows. First forP1 : Σ∗ → Σ∗

o,1, let s = α

and s′ = β. ThenP1(s) = P1(s′) = ǫ, s′σ ∈ L(K), s ∈ C, sσ ∈ L(G),
but sσ /∈ L(K). Second forP2 : Σ∗ → Σ∗

o,2, let s = α ands′′ = γ. Then
P2(s) = P2(s′′) = ǫ, s′′σ ∈ L(K), s ∈ C, sσ ∈ L(G), but sσ /∈ L(K).
(Notation: we will use the same initial and marker state notation in subsequent
figures.)

The above two (strengthening) modifications lead immedi-
ately to the following.

Proposition 1. If K ⊆ C is C-coobservable, thenK is also
coobservable.

The reverse statement need not be true. For an example see
again Fig. 2:Lm(K1) (or Lm(K2)) is coobservable (since∨
is used in (6)) but not relatively coobservable (∧ used in (9)).

Second, relative coobservability is a decentralized version of
relative observability [1]. Indeed, for an unshared controllable
event, namely (ii) and (iii) in the definition, individual rela-
tive observability conditions corresponding to the respective
natural projections are applied; while for a shared control-
lable event, namely (i), both conditions must be satisfied
simultaneously. This implies that the definition of relative
coobservability is equivalent to the condition that for each
i ∈ I, K is relatively observable with respect toPi, i.e.

(∀s, s′ ∈ Σ∗)(∀σ ∈ Σc,i) Pi(s) = Pi(s
′) ∧ s′σ ∈ K

∧ s ∈ C ∧ sσ ∈ L(G) ⇒ sσ ∈ K. (12)

Thus we see that Definition 1 is easily adapted to a general
finite set I of decentralized supervisors. For this reason,
we also refer to relative coobservability asI-fold relative
observability.

Third, consider a finite setI of decentralized supervisors.
Relative coobservability ensures that if a decentralized super-
visor enables (resp. disables) an event, then no other supervisor
disables (resp. enables) that event. Namely, there is no conflict
among decentralized supervisors’ local control decisions, and
each supervisor may independently decide to enable or disable

3



an event based on its local observation.

Fourth, we note that the ambient languageC is selected
such that all the strings inC must be tested for the conditions
of relative coobservability. In addition, ifC1 ⊆ C2 ⊆ Lm(G)
are two ambient languages, it follows easily from Definition1
that C2-coobservability impliesC1-coobservability. Namely,
the smaller the ambient language, the weaker the relative
coobservability.

An alternative definition of coobservability that has ap-
peared in the literature is disjunctive coobservability [8],
defined as follows. A languageK ⊆ Lm(G) is disjunctively
coobservablewith respect toG, P1, P2, Σc,1, Σc,2 if

(∀s, s′, s′′ ∈ Σ∗) P1(s) = P1(s
′) ∧ P2(s) = P2(s

′′) ⇒

(i) (∀σ ∈ Σc,1 ∩ Σc,2) s
′σ ∈ L(G) \K ∧ s′′σ ∈ L(G) \K

∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ L(G) \K (13)

(ii) (∀σ ∈ Σc,1 \ Σc,2) s
′σ ∈ L(G) \K

∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ L(G) \K (14)

(iii) (∀σ ∈ Σc,2 \ Σc,1) s
′′σ ∈ L(G) \K

∧ s ∈ K ∧ sσ ∈ L(G) ⇒ sσ ∈ L(G) \K (15)

Disjunctive coobservability requires that for a shared control-
lable eventσ in (i) above, the decision of disablingσ after
string s be ratified by both supervisors working through their
respective observation channels. This implies thatσ will be
enabled if some supervisor decides to enable it, therefore
the name “disjunctive”. Disjunctive coobservability is different
from conjunctive coobservability, and in general neither of the
two versions implies the other [8].

Disjunctive coobservability, together with controllability
and Lm(G)-closedness, of a languageK is proved to be
necessary and sufficient for the existence of two decentralized
supervisorsdisjunctivelysynthesizingK [8]. Again, however,
it is not closed under set union, and consequently the supremal
element need not exist in general. We show next that our
relative coobservability is stronger than disjunctive coobserv-
ability.

Proposition 2. If K ⊆ C is C-coobservable, thenK is also
disjunctively coobservable.

Proof. Let s, s′, s′′ ∈ K ⊆ C, P1(s) = P1(s
′), andP2(s) =

P2(s
′′). We show that condition (i), namely (13), of disjunctive

coobservability holds. Letσ ∈ Σc,1 ∩ Σc,2, s′σ ∈ L(G) \K,
s′′σ ∈ L(G) \K, andsσ ∈ L(G). We will show thatsσ ∈
L(G) \K. From (9) we know that

(s′σ /∈ K ⇒ s′σ /∈ L(G) ∨ s′ /∈ C ∨ sσ /∈ K)

∧ (s′′σ /∈ K ⇒ s′′σ /∈ L(G) ∨ s′′ /∈ C ∨ sσ /∈ K).

We haves′σ /∈ K, s′σ ∈ L(G), s′ ∈ C; ands′′σ /∈ K, s′′σ ∈
L(G), s′′ ∈ C. It follows thatsσ /∈ K. Sincesσ ∈ L(G), we
conclude thatsσ ∈ L(G) \K.

The same reasoning proves conditions (ii) and (iii), namely

α
σ

β

Lm(G) = C = {α, β, γ, ασ, βσ, γσ}

L(G) = C = {ǫ, α, β, γ, ασ, βσ, γσ}

G

Lm(K) = {α, β, γ, ασ, γσ}

L(K) = {ǫ, α, β, γ, ασ, γσ}

K

γ, σ ∈ Σo,1, β, σ ∈ Σo,2

σ ∈ Σc,1 ∩ Σc,2

γ

σ

σ

α

β

γ

σ

σ

Fig. 3. Lm(K) is disjunctively coobservable but not relatively coobservable.
For P1, let s = β and s′ = α. ThenP1(s) = P1(s′) = ǫ, s′σ ∈ L(K),
s ∈ C, sσ ∈ L(G), but sσ /∈ L(K). This violates (9), and therefore
relative coobservability fails. ForP2, on the other hand, lets′′ = γ so that
P2(s′) = P2(s′′) = ǫ. The fact thats′′σ ∈ L(K) makes (13) true. One
may check that disjunctive coobservability ofLm(K) indeed holds.

(14) and (15), of disjunctive coobservability.2
�

The reverse statement of Proposition 2 need not be true. An
example is displayed in Fig. 3, of a disjunctively coobservable
language that is not relatively coobservable.

Remark 1. We note that in [12], “strong conjunctive” and
“strong disjunctive” coobservability are studied, the essence
being to choose strings from the ambient languageLm(G)
instead ofK. For that reason they are stronger than their
respective type of coobservability. Strong disjunctive coobserv-
ability is shown to be closed under set union (while strong
conjunctive coobservability is not), but no finitely convergent
algorithm is given to compute the supremal element. Our
relative coobservability may be shown to be stronger than
these strong versions of coobservability; nevertheless weshall
present an algorithm that computes the supremal relatively
coobservable sublanguage of a given language.

We also note in passing that since either conjunctive or dis-
junctive coobservability is stronger than the mixed coobserv-
ability [8], which is furthermore stronger than the conditional
coobservability [9], our coobservability is stronger thanall
versions of coobservability reported in the literature.

We turn now to prove that relative coobservability is weaker
than conormality (or strong decomposibility in [6]). A lan-
guageK ⊆ Lm(G) is conormalwith respect toG, P1, P2,
Σc,1, Σc,2 if

(

P−1

1 P1(K) ∪ P−1

2 P2(K)
)

∩ L(G) = K. (16)

Conormality may be overly restrictive because it requires that
for each decentralized supervisori ∈ I, only observable
(under Pi), controllable events may be disabled. Relative
coobservability, by contrast, does not impose this restriction,

2That relative coobservability (orI-fold relative observability) is stronger
than disjunctive coobservability (Proposition 2) or conjunctive coobservability
(Proposition 1) can also be proved by noting that it is stronger than a property
called local observability [12]: local observability requires that for eachi ∈ I,
K be observable with respect toPi, i.e. I-fold observability, and is proved
to be stronger than disjunctive and conjunctive coobservability.
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α
σ

β

Lm(G) = C = {α, β, γ, ασ, βσ, γσ}

L(G) = C = {ǫ, α, β, γ, ασ, βσ, γσ}

G

Lm(K) = {α, β, γ}

L(K) = {ǫ, α, β, γ}

K

γ ∈ Σo,1, β ∈ Σo,2

σ ∈ Σc,1 ∩ Σc,2

γ

σ

σ

α

β

γ

Fig. 4. Lm(K) is relatively coobservable but not conormal. A straightforward

calculation shows that
(

P−1

1
P1(K) ∪ P−1

2
P2(K)

)

∩ L(G) = L(G) %

K; henceLm(K) is not conormal. On the other hand, by noting that the
controllable eventσ is removed after stringsα, β, andγ, it is easily checked
that Lm(K) is relatively observable with respect to bothP1 and P2, and
therefore is relatively coobservable.

i.e. control may be exercised by each decentralized supervisor
over its unobservable controllable events.

Proposition 3. If K ⊆ C is conormal with respect toG, P1,
P2, Σc,1, Σc,2, thenK is C-coobservable.

Proof. Let s, s′, s′′ ∈ Σ∗, P1(s) = P1(s
′), and P2(s) =

P2(s
′′). We show that (9)-(11) all hold. First for (9), letσ ∈

Σc,1∩Σc,2, s′σ ∈ K, s ∈ C, andsσ ∈ L(G); it will be shown
that sσ ∈ K. From s′σ ∈ K we have

P1(s
′σ) ∈ P1K ⇒ P1(s)P1(σ) ∈ P1K

⇒ sσ ∈ P−1

1 P1K

⇒ sσ ∈ P−1

1
P1(K) ∪ P−1

2
P2(K)

Hence sσ ∈
(

P−1

1
P1(K) ∪ P−1

2
P2(K)

)

∩ L(G) = K by
conormality ofK. Similarly, let s′′σ ∈ K; throughP2 we
derivesσ ∈ K.

For (10), letσ ∈ Σc,1 \ Σc,2, s′σ ∈ K, s ∈ C, andsσ ∈
L(G). By the same derivation as above, we getsσ ∈ K.
Finally for (11), letσ ∈ Σc,2 \ Σc,1, s′′σ ∈ K, s ∈ C, and
sσ ∈ L(G). Again by the same derivation as above but through
P2, we getsσ ∈ K. �

The reverse statement of Proposition 3 need not be true; an
example is displayed in Fig. 4.

Remark 2. A weak conormality concept was studied in
[11], which is proved to be weaker than conormality and
also preserved under set union. However no algorithm is
given to compute the supremal element. Then in [12], weak
conormality is shown to be stronger than the “strong local
observability”. The latter is the special case of our relative
coobservability with the largest possible ambient language
C = Lm(G), hence the strongest. Therefore we conclude
that relative coobservability is generally weaker than weak
conormality.

III. SUPREMAL RELATIVELY COOBSERVABLE

SUBLANGUAGE AND ALGORITHMS

First, we show that an arbitrary union of relatively coob-
servable languages is again relatively coobservable. LetI
denote the set of decentralized supervisors, andPi the natural
projection for eachi ∈ I.

Proposition 4. Let Kα ⊆ C ⊆ Lm(G), α ∈ A (some index
set), beC-coobservable. ThenK =

⋃

{Kα | α ∈ A} is also
C-coobservable.

Proof. To prove thatK is C-coobservable, we show that
K is C-observable with respect toPi for each i ∈ I. Let
i ∈ I, s, s′ ∈ Σ∗, Pi(s) = Pi(s

′), σ ∈ Σc,i, sσ ∈ K, s′ ∈
C, and s′σ ∈ L(G); it will be shown thats′σ ∈ K. Since
K =

⋃

α∈A Kα =
⋃

α∈A Kα, there existsα ∈ A such that
sσ ∈ Kα. SinceKα isC-coobservable, it isC-observable with
respect toPj for all j ∈ I. In particular,Kα is C-observable
with respect toPi, and thereby we derive thats′σ ∈ Kα.
Finally s′σ ∈

⋃

α∈A Kα = K. �

In the proof to establish closure under union for relative
coobservability, it was essential thatKα (α ∈ A) beingC-
coobservable means thatKα is C-observable with respect to
all channelsPj , j ∈ I. This confirms the importance of using
∧ in (9) in the definition of relative coobservability.

Now let K ⊆ C ⊆ Lm(G). Whether or notK is C-
coobservable, write

O(K,C) := {K ′ ⊆ K | K ′ is C-coobservable} (17)

for the family of C-coobservable sublanguages ofK. Note
that the empty language∅ is trivially C-coobservable, thus
a member ofO(K,C). By Proposition 4 we obtain that
O(K,C) has a unique supremal element supO(K,C) given
by

supO(K,C) :=
⋃

{K ′ | K ′ ∈ O(K,C)}. (18)

This is the supremalC-coobservable sublanguage ofK. We
state these important facts aboutO(K,C) in the following

Theorem 1. Let K ⊆ C ⊆ Lm(G). The setO(K,C) is
nonempty, and contains the supremal element supO(K,C) in
(18).

Next we present an algorithm to compute supO(K,C). The
idea is to apply the algorithm in [1], iteratively for eachPi (i ∈
I), to compute the respective supremal relatively observable
sublanguage. LetG, C, andK be finite-state generators (as in
(1)) with marked languagesLm(G), C, andK, respectively.

Algorithm 1: Input G, C, K , andPi : Σ
∗ → Σ∗

o,i, i ∈ I :=
{1, ..., N}.
1. SetK0 := K.
2. For j ≥ 0, setKj,1 := Kj .
3. For i ≥ 1, apply the algorithm in [1] with inputsG, Kj,i,
andPi to obtainKj,i+1 such thatLm(Kj,i+1) is the supremal
C-observable sublanguage ofLm(Kj,i) with respect toPi.
Proceed untilKj,N is computed, and set it to beKj+1. If
Kj+1 = Kj ,3 then outputK↑ := Kj+1. Otherwise, advance
j to j + 1 and go to Step 2.

3Here= means that the two generators are isomorphic [5, Chapter 3].
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Algorithm 1 terminates in finite steps, because the algorithm
in [1] does so and removes states and/or transitions from the
finite-state generatorK. The complexity of Algorithm 1 is
exponential in the state size ofK , inasmuch as the algorithm
in [1] is of this complexity.

Theorem 2. The outputK↑ of Algorithm 1 satisfiesLm(K↑) =
supO(K,C), the supremalC-coobservable sublanguage ofK.

Proof. First, it is guaranteed by Step 3 of Algorithm 1
that Lm(K↑) is C-observable with respect toPi for each
i ∈ I. Thus Lm(K↑) ∈ O(K,C). It remains to prove
that if K ′ ∈ O(K,C), then K ′ ⊆ Lm(K↑). To see this,
consider induction on the iterationsj = 0, 1, 2, ... (Step
2) of Algorithm 1. SinceK ′ ⊆ K = Lm(K), we have
K ′ ⊆ Lm(K0). Suppose nowK ′ ⊆ Lm(K j). Since K ′

is C-observable for allPi, no change will be made in the
subsequent Step 3 by applying the algorithm in [1]. Therefore
K ′ ⊆ Lm(K j+1), and eventuallyK ′ ⊆ Lm(K↑). �

In practice we shall use Algorithm 1 as follows. Given
a (specification) languageK ⊆ Lm(G), check if K is
coobservable (polynomial algorithm available [16]). If so, we
stop. Otherwise apply Algorithm 1 to obtain the supremalK-
coobservable sublanguage ofK. Since relative coobservability
implies coobservability, the obtained supremal sublanguage is
also coobservable.

Now let us bring in control. LetK ⊆ Lm(G) be a nonempty
specification language. SinceC-coobservability, controllabil-
ity, and Lm(G)-closedness are all closed under set union,
there exists the supremal sublanguage ofK that satisfies these
three properties. Denote this supremal sublanguage byK↑;
by Proposition 1 (or Proposition 2),K↑ is conjunctively (or
disjunctively) coobservable, controllable, andLm(G)-closed.
Therefore, by [6] (resp. [8]) there exist decentralized supervi-
sors conjunctively (resp. disjunctively) synthesizingK↑.

We present an algorithm to computeK↑. Let G and K

be finite-state generators (as in (1)) with marked languages
Lm(G) andK, respectively.

Algorithm 2: Input G, K , andPi : Σ
∗ → Σ∗

o,i, i ∈ I.
1. SetK0 = K.
2. Forj ≥ 0, apply the algorithm in [17] with inputsG andKj

to obtainHj such thatLm(Hj) is the supremal controllable
andLm(G)-closed sublanguage ofLm(Kj).
3. Apply Algorithm 1 with inputsG, Hj , Hj , and Pi :
Σ∗ → Σ∗

o (i ∈ I) to obtainKj+1 such thatLm(Kj+1) is
the supremalL(Hj)-coobservable sublanguage ofLm(Hj).
If Kj+1 = Kj , then outputK↑ = Kj+1. Otherwise, advance
j to j + 1 and go to Step 2.

Algorithm 2 terminates in finite steps, inasmuch as both
algorithms used in Steps 2 and 3 do so and both remove
states and/or transitions from the finite-state generatorK. The
complexity of Algorithm 2 is exponential in the state size of
K , because Algorithm 1 is of this complexity.

Note that in applying Algorithm 1 in Step 3 above, the ambi-
ent language successively shrinks to the supremal controllable
sublanguageL(Hj) computed at the immediately previous
Step 2. Using successively smaller ambient languages helps
generate less restrictive controlled behavior by discarding any
strings outsideL(Hj) that may be effectively prohibited by

V1

11 13 10 15 12

V2

21 23 20 25 22

0 1 2 3 4 5

0 1 2 3 4 5

Fig. 5. Vehicle generator models
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Fig. 8. Decentralized supervisorSUP1. The unobservable controllable event
13 is selflooped at those states where it is enabled.

means of control.

IV. GUIDEWAY

We demonstrate relative coobservability and Algorithm 2
with a Guideway example, adapted from [5, Section 6.6].
As displayed in Fig. 5, two vehicles,V1 and V2, use the
Guideway simultaneously and travel from station A (state 0)
to B (state 5). The track between the two stations consists of
4 sections (states 1, 2, 3, 4). The plantG to be controlled
is the synchronous product (e.g. [5])G = V1||V2, and the
control specification is to ensure thatV1 andV2 never travel
on the same section of track simultaneously, i.e. ensuremutual
exclusionof the state pairs(j, j), j = 1, ..., 4. Let K be a
generator representing this specification.

We consider the following decentralized supervisory control
problem. Suppose that there are two supervisors, with unob-
servable event subsetsΣuo,1 = {13}, Σuo,2 = {23}, and
controllable event subsetsΣc,1 = {11, 13, 23, 15}, Σc,2 =
{21, 13, 23, 25}. The unobservable subsetsΣuo,i define the
corresponding natural projectionsPi, i = 1, 2, and the shared
controllable events are 13, 23.
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For comparison, we first compute the conormal, control-
lable, andLm(G)-closed sublanguage, represented by the
generator in Fig. 6. Then applying Algorithm 2, we obtain the
generator in Fig. 7, which represents the supremal relatively
coobservable, controllable, andLm(G)-closed sublanguage.
Observe that the relatively coobservable controlled behavior
is strictly more permissive than the conormal counterpart.We
next construct as in [6] the corresponding two decentralized
supervisorsSUPi, with Σuo,i andΣc,i (i = 1, 2); SUP1 is
displayed in Fig. 8 andSUP2 is similar.

We explain a representative case of the control logic of
SUP1. If SUP1 observes thatV2 arrives at track section 3
(i.e. after string 21.23.20), either it allowsV1 to enter sec-
tion 1 (i.e. SUP1 enables its private event 11), orV2 is
allowed bySUP2 to move onto section 4 (i.e.SUP2 enables
its private event 25). When the former occurs,SUP1 must
preventV1 from entering section 2 (i.e.SUP1 must disable
the unobservable event 13 at its state 8) because otherwise
V1 can thereafter uncontrollably enter section 3 (event 10)
and violate mutual exclusion at section 3. Note that since
event 13 is shared, in the above caseSUP2 must also disable
13. The above control action is not possible for conormality,
since disabling unobservable events is not allowed. This is
why relative coobservability achieves strictly more permissive
than conormality does.

V. CONCLUSIONS

We have studied the new concept of relative coobservability
in decentralized supervisory control of DES. We have proved
that relative coobservability is stronger than (any variations of)
coobservability, weaker than conormality, and closed under
set union. Moreover, we have presented an algorithm for
computing the supremal relatively coobservable (and control-
lable, Lm(G)-closed) sublanguage of a given language, and
demonstrated the result with a Guideway example. In future
work, we aim to apply relative coobservability in decentralized
control of large systems and follow the architectural approach
in [18].
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