
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015 659

Relative Observability of Discrete-Event Systems
and Its Supremal Sublanguages

Kai Cai, Member, IEEE, Renyuan Zhang, Member, IEEE, and W. M. Wonham, Life Fellow, IEEE

Abstract—We identify a new observability concept, called rela-
tive observability, in supervisory control of discrete-event systems
under partial observation. A fixed, ambient language is given,
relative to which observability is tested. Relative observability
is stronger than observability, but enjoys the important prop-
erty that it is preserved under set union; hence there exists the
supremal relatively observable sublanguage of a given language.
Relative observability is weaker than normality, and thus yields,
when combined with controllability, a generally larger controlled
behavior; in particular, no constraint is imposed that only ob-
servable controllable events may be disabled. We design new
algorithms which compute the supremal relatively observable (and
controllable) sublanguage of a given language, which is generally
larger than the normal counterpart. We demonstrate the new
observability concept and algorithms with a Guideway and an
AGV example.

Index Terms—Automata, discrete-event systems, partially-
observed supervisory control, regular languages, relative observ-
ability, supremal relatively observable sublanguage.

I. INTRODUCTION

IN supervisory control of discrete-event systems, partial
observation arises when the supervisor does not observe all

events generated by the plant [1], [2]. This situation is depicted
in Fig. 1(a), where G is the plant with closed behavior L(G)
and marked behavior Lm(G), P is a natural projection that
nulls unobservable events, and V o is the supervisor under par-
tial observation. The fundamental observability concept is iden-
tified in [3], [4]: observability and controllability of a language
K ⊆ Lm(G) is necessary and sufficient for the existence of a
nonblocking supervisor V o synthesizing K. The observability
property is not, however, preserved under set union, and hence
there generally does not exist the supremal observable and
controllable sublanguage of a given language.

The normality concept studied in [3], [4] is stronger than
observability but is algebraically well-behaved: there always

Manuscript received June 14, 2013; revised November 17, 2013 and
March 26, 2014; accepted July 18, 2014. Date of publication July 22, 2014;
date of current version February 19, 2015. This work was supported in
part by the Program to Disseminate Tenure Tracking System, MEXT, Japan,
the Fundamental Research Funds for the Central Universities, China, under
Grant 3102014JCQ01069, and the Natural Sciences and Engineering Re-
search Council, Canada, under Grant 7399. Recommended by Associate Editor
D. Hristu-Varsakelis.

K. Cai is with the Urban Research Plaza, Osaka City University, Osaka 558-
8585, Japan (e-mail: kai.cai@info.eng.osaka-cu.ac.jp).

R. Zhang is with the Department of Traffic and Control Engineering, North-
western Polytechnical University, Xi’an 710072, China (e-mail: ryzhang@
nwpu.edu.cn).

W. M. Wonham is with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
wonham@control.utoronto.ca).

Digital Object Identifier 10.1109/TAC.2014.2341891

Fig. 1. Supervisory control under partial observation. L(G) is the closed
behavior of the plant, P a natural projection modeling the observation channel,
V o the supervisor under partial observation. In (b), L(V/G) is the closed-loop
controlled behavior with full observation.

exists the supremal normal and controllable sublanguage of a
given language. The supremal sublanguage may be computed
by methods in [5], [6]; also see a coalgebra-based method
in [7]. Normality, however, imposes the constraint that con-
trollable events cannot be disabled unless they are observable
[1, Sec. 6.5]. This constraint might result in overly conservative
controlled behavior.

To fill the gap between observability and normality, which is
unsolved for more than two decades, in this paper we identify
a new concept called relative observability. For a language
K ⊆ Lm(G), we fix an ambient language C such that K ⊆
C ⊆ L(G) (here · denotes prefix closure, defined in Section II).
It is relative to the ambient language C that observability of K
is tested. We prove that relative observability is stronger than
the observability in [3], [4] (strings in C −K, if any, need to
be tested), weaker than normality (unobservable controllable
events may be disabled), and preserved under set union. Hence,
there always exists the supremal relatively observable (and
controllable) sublanguage of a given language, which is gen-
erally larger than the supremal normal counterpart, and may be
synthesized by a nonblocking supervisor. This result is useful
in practical situations where there may not be enough sensors
available for all controllable events, or it might be too costly to
provide them all.

We then design new algorithms to compute the supremal
sublanguage, capable of keeping track of the ambient language.
These results are demonstrated with a Guideway and an AGV
example, providing quantitative evidence of improvements by
relative observability as compared to normality. Note that in
the special case C = K, relative observability coincides with
observability for the given K. The difference, however, is that
when a family of languages is considered, the ambient C in
relative observability is held fixed. It is this feature that renders
relative observability algebraically well-behaved.

Another special case is when the ambient C = L(G). As
suggested by Fig. 1(a), L(G) is a natural choice for the ambient

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

660 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

language because strings in L(G) are observed through the
channel P , but when control is in place, a more reasonable
choice for the ambient C is L(V/G), the optimal nonblocking
controlled behavior under full observation, since any string
in L(G)− L(V/G) is effectively prohibited by control; see
Fig. 1(b). With C = L(V/G), the supremal relatively observ-
able and controllable sublanguage is generally larger than the
supremal normal counterpart; this is illustrated by empirical
studies on a Guideway and an AGV example in Section V.

In [8], Takai and Ushio reported an observability property,
formulated in a state-based form, which is preserved under a
union operation of “strict subautomata.” This operation does
not correspond to language union. It was shown that the
(marked) language of “the supremal subautomaton” with the
proposed observability is generally larger than the supremal
normal counterpart. As will be illustrated by examples, neither
their observability property nor our relative observability gener-
ally implies the other. In the Guideway example in Section V-A,
however, we present a case where our algorithm computes a
strictly larger controlled behavior.

We note that, for prefix-closed languages, several proce-
dures are developed to compute a maximal observable and
controllable sublanguage, e.g., [9]–[13]. Those procedures are
not, however, applicable to non-closed languages, because
the resulting supervisor may be blocking. The observability
concept has been extended to coobservability in decentralized
supervisory control (e.g., [14], [15]), state-based observability
(e.g., [16], [17]), timed observability in real-time discrete-
event systems (e.g., [18], [19]), and optimal supervisory control
with costs [20]. Observability and normality have also been
used in modular, decentralized, and coordination control ar-
chitectures (e.g., [21]–[23]). In the present paper, we focus on
centralized, monolithic supervision for untimed systems in the
Ramadge–Wonham language framework [1], [24], and leave
those extensions of relative observability for future research.

The rest of this paper is organized as follows. Section II
introduces the relative observability concept, and establishes
its properties. Section III presents an algorithm to compute
the supremal relatively observable sublanguage of a given
language, while Section IV combines relative observability
and controllability to generate controlled behavior generally
larger than the normality counterpart. Section V demonstrates
the results with a Guideway and an AGV example. Finally,
Section VI states our conclusions.

II. RELATIVE OBSERVABILITY

The plant to be controlled is modeled by a generator

G = (Q,Σ, δ, q0, Qm) (1)

where Q is the finite state set; q0 ∈ Q is the initial state;
Qm ⊆ Q is the subset of marker states; Σ is the finite event
set; δ : Q× Σ → Q is the (partial) state transition function. In
the usual way, δ is extended to δ : Q× Σ∗ → Q, and we write
δ(q, s)! to mean that δ(q, s) is defined. The closed behavior of
G is the language

L(G) := {s ∈ Σ∗|δ(q0, s)!} ⊆ Σ∗ (2)

the marked behavior is

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (3)

A string s1 is a prefix of a string s, written s1 ≤ s, if there
exists s2 such that s1s2 = s. The (prefix) closure of Lm(G)
is Lm(G) := {s1 ∈ Σ∗|(∃s ∈ Lm(G))s1 ≤ s}. In this paper,
we assume Lm(G) = L(G); namely G is nonblocking.

For partial observation, let the event set Σ be partitioned into
Σo, the observable event subset, and Σuo, the unobservable
subset (i.e., Σ = Σo∪̇Σuo). Bring in the natural projection
P : Σ∗ → Σ∗

o defined according to

P (ε) = ε, ε is the empty string;

P (σ) =

{
ε, if σ 	∈ Σo,
σ, if σ ∈ Σo;

P (sσ) =P (s)P (σ), s ∈ Σ∗, σ ∈ Σ. (4)

In the usual way, P is extended to P : Pwr(Σ∗) → Pwr(Σ∗
o),

where Pwr(·) denotes powerset. Write P−1 : Pwr(Σ∗
o) →

Pwr(Σ∗) for the inverse-image function of P . Given two
languages Li ⊆ Σ∗

i , i = 1, 2, their synchronous product is
L1‖L2 := P−1

1 L1 ∩ P−1
2 L2 ⊆ (Σ1 ∪ Σ2)

∗, where Pi : (Σ1 ∪
Σ2)

∗ → Σ∗
i .

Observability of a language is a familiar concept [3], [4].
Now fixing a sublanguage C ⊆ Lm(G), we introduce relative
observability which sets C ⊆ L(G) to be the ambient language
in which observability is tested.

Definition 1: Let K ⊆ C ⊆ Lm(G). We say K is rela-
tively observable with respect to C, G, and P , or simply
C-observable, if for every pair of strings s, s′ ∈ Σ∗ that are
lookalike under P , i.e., P (s) = P (s′), the following two con-
ditions hold:

(i) (∀σ∈Σ) sσ∈K, s′ ∈C, s′σ∈L(G) ⇒ s′σ∈K (5)
(ii) s∈K, s′ ∈C ∩ Lm(G) ⇒ s′ ∈K. (6)

Note that a pair of lookalike strings (s, s′) trivially satisfies
(5) and (6) if either s or s′ does not belong to the ambient C.
For a lookalike pair (s, s′) both in C, relative observability
requires that (i) s and s′ have identical one-step continuations,1

if allowed in L(G), with respect to membership in K; and (ii) if
each string is in Lm(G) and one actually belongs to K, then so
does the other. A graphical explanation of the concept is given
in Fig. 2.

If C1 ⊆ C2 ⊆ L(G) are two ambient languages, it follows
easily from Definition 1 that C2-observability implies C1-
observability. Namely, the smaller the ambient language, the
weaker the relative observability. In the special case where the
ambient C = K, Definition 1 becomes the standard observabil-
ity [3], [4] for the given K. This immediately implies

Proposition 1: If K ⊆ C is C-observable, then K is also
observable.

1Here we consider all one-step transitions σ ∈ Σ because we wish to
separate the issue of observation from that of control. If and when control
is present, as we will discuss below in Section IV, then we need to consider
only controllable transitions in (5) inasmuch as the controllability requirement
prevents uncontrollable events from violating (5).

CAI et al.: RELATIVE OBSERVABILITY OF DISCRETE-EVENT SYSTEMS AND ITS SUPREMAL SUBLANGUAGES 661

Fig. 2. Relative observability of K requires checking conditions (5) and (6)
for all three lookalike strings s, s′, s′′ in the ambient language C. For K to be
C-observable, condition (5) requires s′′σ �∈ L(G), and condition (6) requires
s′′ �∈ Lm(G). Note that the standard observability of K [3], [4] requires
checking only s, s′ in K.

Fig. 3. Lm(K) is observable but not relatively observable. In L(K) the only
lookalike string pair is (α, αβ); it is easily verified that Lm(K) is observable.
To see that Lm(K) is not C-observable, let s = ε and s′ = β (�∈ L(K)). We
have sα ∈ L(K), s′α ∈ C = L(G), but s′α �∈ L(K). This violates (5). Also
consider s = αβ and s′ = βα (�∈ Lm(K)). We have s ∈ Lm(K), s′ ∈ C ∩
Lm(G), but s′ �∈ Lm(K). This violates (6).

The reverse statement need not be true. An example is dis-
played in Fig. 3, of an observable language that is not relatively
observable.

An important way in which relative observability differs
from observability is the exploitation of a fixed ambient C ⊆
L(G). Let Ki ⊆ C, i = 1, 2. For (standard) observability of
each Ki, one checks lookalike string pairs only in Ki, ignoring
all candidates permitted jointly by the other language: in this
sense observability of Ki is “myopic.” Consequently, both Ki

being observable need not imply that their union K1 ∪K2 is
observable, because the latter may be violated by a lookalike
string pair s1 ∈ K1 and s2 ∈ K2. The fixed ambient language
C, by contrast, provides a “global reference”: no matter which
Ki one checks for relative observability, all lookalike string
pairs in C must be considered. This more stringent requirement
renders relative observability algebraically well-behaved, as
we will see below in Section II-B. First, we shall show the
relationship between relative observability and another familiar
concept, normality [3], [4].

A. Relative Observability is Weaker than Normality

In this subsection, we show that relative observability is
weaker than normality, a property that is also preserved by set
unions [3], [4]. A sublanguage K⊆C is (Lm(G), P)-normal if

K = P−1PK ∩ Lm(G). (7)

Fig. 4. Lm(K) is relatively observable but not normal. In L(K) all three
strings are lookalike; it is easily verified that Lm(K) is C-observable. To
see that Lm(K) is not (Lm(G), P)-normal, calculate P−1PLm(K) =
P−1(ε) = Σ∗. Thus, P−1PLm(K) ∩ Lm(G) = Lm(G) � Lm(K). A
similar calculation yields that L(K) is not (L(G), P)-normal.

If, in addition, K is (L(G), P)-normal, then no string in K
may exit K via an unobservable transition [1, Sec. 6.5]. This
means, when control is present, that one cannot disable any
unobservable, controllable events. Relative observability, by
contrast, does not impose this restriction, i.e., one may exercise
control over unobservable events.

Proposition 2: If K ⊆ C is (Lm(G), P)-normal and K is
(L(G), P)-normal, then K is C-observable.

Proof: Let s, s′ ∈ Σ∗ and Ps = Ps′. We must show that
both (5) and (6) hold for K.

For (5), let σ ∈ Σ, sσ ∈ K, s′ ∈ C, and s′σ ∈ L(G); it will
be shown that s′σ ∈ K. From sσ ∈ K we have

P (sσ) ∈ PK ⇒P (s′)P (σ) ∈ PK

⇒ s′σ ∈ P−1PK

Hence, s′σ ∈ P−1PK ∩ L(G) = K by normality of K.
For (6), let s ∈ K, s′ ∈ C ∩ Lm(G); we will prove s′ ∈ K.

That s ∈ K implies Ps ∈ PK; thus, Ps′ ∈ PK, i.e., s′ ∈
P−1PK. Therefore, s′ ∈ P−1PK ∩ Lm(G) = K by normal-
ity of K. �

In the proof we note that K being (L(G), P)-normal implies
condition (i) of relative observability, and independently K
being (Lm(G), P)-normal implies condition (ii). The reverse
statement of Proposition 2 need not be true; an example is
displayed in Fig. 4.

In Section V, we will see examples where the supremal
relatively observable controlled behavior is strictly larger than
the supremal normal counterpart. This is due exactly to the
distinction as to whether or not one may disable controllable
events that are unobservable.

We note that [8] reported an observability property which
is also weaker than normality. The observability condition in
[8] is formulated in a generator form, which is preserved under
a particularly-defined union operation of “strict subautomata”
that does not correspond to language/set union. The observ-
ability condition in [8] requires checking all state pairs (q, q′)
reached by lookalike strings in the whole state set Q of G; this
corresponds to checking all lookalike string pairs in L(G). In
this sense, our relative observability is weaker with the ambient
language C ⊆ L(G) [see one example in Fig. 5(a)]. This point
is also illustrated, when combined with controllability, in the
Guideway example in Section V-A. However, the reverse case
is also possible, as displayed in Fig. 5(b).

662 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

Fig. 5. Comparison with [8]. In (a), Lm(K) is L(C)-observable; but K is
not observable in the sense of [8], because state pair (q, q′) with q in K and
q′ not in K violates the observability condition in [8]. In (b), K is observable
in the sense of [8]; but Lm(K) is not L(C)-observable, because γσ ∈ L(K),
βγ ∈ L(C), βγσ ∈ L(G), P (γ) = P (βγ), but βγσ �∈ L(K).

Fig. 6. Intersection of two relatively observable languages is not relatively
observable. It is easily verified that both K1 and K2 are C-observable.
Their intersection K, however, is not: let s = ε and s′ = α; then Ps = Ps′,
sσ ∈ K, s′ ∈ C, s′σ ∈ L(G), but s′σ �∈ K. Thus, condition (5) of relative
observability is violated.

B. Supremal Relatively Observable Sublanguage

First, an arbitrary union of relatively observable languages is
again relatively observable.

Proposition 3: Let Ki ⊆ C, i ∈ I (some index set), be C-
observable. Then K =

⋃
{Ki|i ∈ I} is also C-observable.

Proof: Let s, s′ ∈ Σ∗ and Ps = Ps′. We must show that
both (5) and (6) hold for K.

For (5), let σ ∈ Σ, sσ ∈ K, s′ ∈ C, and s′σ ∈ L(G); it will
be shown that s′σ ∈ K. Since K =

⋃
Ki =

⋃
Ki, there exists

j ∈ I such that sσ ∈ Kj , but Kj is C-observable, which yields
s′σ ∈ Kj . Hence, s′σ ∈

⋃
Ki = K.

For (6), let s ∈ K, s′ ∈ C ∩ Lm(G); we will prove s′ ∈ K.
That s ∈ K =

⋃
Ki implies that there exists j ∈ I such that

s ∈ Kj . Since Kj is C-observable, we have s′ ∈ Kj . There-
fore, s′ ∈

⋃
Ki = K. �

While relative observability is closed under arbitrary unions,
it is generally not closed under intersections. Fig. 6 provides
an example for which the intersection of two C-observable
sublanguages is not C-observable.

Whether or not K ⊆ C is C-observable, write

O(K,C) :=
{
K ′ ⊆ K|K ′ is C-observable

}
(8)

for the family of C-observable sublanguages of K. Then
O(K,C) is an upper semilattice of sublanguages of K, with
respect to the partial order (⊆).2 Note that the empty language
∅ is trivially C-observable; thus, a member of O(K,C). By

2For lattice theory refer to, e.g., [25], [1, Chap. 1].

Proposition 3 we derive that O(K,C) has a unique supremal
element supO(K,C) given by

supO(K,C) :=
⋃

{K ′|K ′ ∈ O(K,C)} . (9)

This is the supremal C-observable sublanguage of K. We state
these important facts about O(K,C) in the following.

Theorem 1: Let K ⊆ C. The set O(K,C) is nonempty, and
contains its supremal element supO(K,C) in (9).

For (9), of special interest is when the ambient language is
set to equal K:

supO(K) :=
⋃

{K ′|K ′ ∈ O(K)} (10)

where O(K) := {K ′ ⊆ K|K ′ is K-observable}.
Proposition 4: For K ⊆ C ⊆ Lm(G), it holds that

supO(K,C) ⊆ supO(K).
Proof: For each K ′ ⊆ K, it follows from Definition 1 that

if K ′ is C-observable, then K ′ is also K-observable. Hence,
O(K,C) ⊆ O(K), and supO(K,C) ⊆ supO(K). �

Proposition 4 shows that supO(K) is the largest relatively
observable sublanguage of K, for all possible choices of the
ambient language. It is therefore of particular interest to char-
acterize and compute supO(K). We do so in the next section
using a generator-based approach.

III. GENERATOR-BASED COMPUTATION OF supO(K)

In this section, we design an algorithm to compute the
supremal relatively observable sublanguage supO(K) in (10)
of a given language K. This algorithm features two new mech-
anisms that distinguish it from those computing the supremal
normal sublanguage (e.g., [5]–[7]). First, compared to [5]–
[7], the algorithm has a more “fine-grained” procedure (stated
precisely below) for processing transitions of the generators
involved, because with relative observability generally fewer
transitions need to be removed. Second, the algorithm keeps
track of strings in the ambient language K, as required by the
relative observability conditions; by contrast, this is simply not
an issue in [5]–[7] for the normality computation.

A. Setting

Consider a nonblocking generator G = (Q,Σ, δ, q0, Qm)
as in (1) with regular languages Lm(G) and L(G), and a
natural projection P : Σ∗ → Σ∗

o with Σo ⊆ Σ. Let K be an
arbitrary regular sublanguage of Lm(G). Then K can be
represented by a finite-state generator K = (Y,Σ, η, y0, Ym);
that is, Lm(K) = K and L(K) = K. For simplicity we assume
that K is nonblocking, i.e., Lm(K) = L(K). Denote by n,m,
respectively, the number of states and transitions of K, i.e.,

n := |Y |
m := |η|= |{(y, σ, η(y, σ))∈Y ×Σ×Y |η(y, σ)!}| . (11)

We introduce
Assumption 1: (∀s, t∈L(K))η(y0, s)=η(y0, t)⇒δ(q0, s)=

δ(q0, t).

CAI et al.: RELATIVE OBSERVABILITY OF DISCRETE-EVENT SYSTEMS AND ITS SUPREMAL SUBLANGUAGES 663

If the given K does not satisfy Assumption 1, form the
following synchronous product ([1], [2])

K‖G = (Y ×Q,Σ, η × δ, (y0, q0), Ym ×Qm) (12)

where η × δ : Y ×Q× Σ → Y ×Q is given by

(η × δ) ((y, q), σ) =

{
(η(y, σ), δ(q, σ)), if η(y, σ)!, δ(q, σ)!;
undefined, otherwise.

It is easily checked (e.g., [2, Sec. 2.3.3]) that L(K‖G) =
L(K) ∩ L(G) = L(K), Lm(K‖G) = Lm(K) ∩ Lm(G) =
Lm(K), and for every s, t ∈ L(K‖G) if (η × δ)((y0, q0), s) =
(η × δ)((y0, q0), t), then δ(q0, s) = δ(q0, t). Namely K‖G
satisfies Assumption 1. Therefore, replacing K by the
synchronous product K‖G always makes Assumption 1 hold.

Now if for some s ∈ L(K) a string Ps ∈ PL(K) is ob-
served, then the “uncertainty set” of states which s may reach
in K is

U(s) := {η(y0, s′)|s′ ∈ L(K), P s′ = Ps} ⊆ Y. (13)

If two strings have the same uncertainty set, then the following
is true.

Lemma 1: Let s, t ∈ L(K) be such that U(s) = U(t). If s′ ∈
L(K) looks like s, i.e., Ps′ = Ps, then there exists t′ ∈ L(K)
such that Pt′ = Pt and η(y0, t

′) = η(y0, s
′).

Proof: Since s′ ∈ L(K) and Ps′ = Ps, by (13) we have
η(y0, s

′) ∈ U(s). Then it follows from U(s) = U(t) that
η(y0, s

′) ∈ U(t), and hence there exists t′ ∈ L(K) such that
Pt′ = Pt and η(y0, t

′) = η(y0, s
′). �

We further adopt
Assumption 2:

(∀s, t ∈ L(K)) η(y0, s) = η(y0, t) ⇒ U(s) = U(t). (14)

Assumption 2 requires that any two strings reaching the same
state of K must have the same uncertainty set. This require-
ment is equivalent to the “normal automaton” condition in
[5], [8], which played a key role in their algorithms. In case
the given K does not satisfy (14), replace K by K‖PK,
where PK is a deterministic generator over Σo obtained by the
subset construction (e.g., [1, Sec. 2.5]). K‖PK always satisfies
Assumption 2, andL(K‖PK)=L(K),Lm(K‖PK)=Lm(K)
[8, App. A]; so, like Assumption 1, Assumption 2 entails no loss
of generality. The cost, however, is that the state size of K‖PK
is at worst exponential in the state size of K.

Let Assumptions 1 and 2 hold. We present an algorithm
which produces a finite sequence of generators

(K =)K0,K1, . . . ,KN (15)

with Ki = (Yi,Σ, ηi, y0, Ym,i), i ∈ [0, N], and a correspond-
ing finite descending chain of languages

(Lm(K) =)Lm(K0) ⊇ Lm(K1) ⊇ · · · ⊇ Lm(KN)

such that Lm(KN) = supO(K) in (10), with the ambient
language K. Note that if K is already observable (in the
standard sense), then N = 0.

B. Observational Consistency

Given Ki = (Yi,Σ, ηi, y0, Ym,i), i ∈ [0, N], suppose
Lm(Ki) = L(Ki), namely Ki is nonblocking. We need to
check whether or not Lm(Ki) is K-observable. To this end,
we introduce a generator-based condition, called observational
consistency. We proceed in two steps. First, let

K̃i = (Ỹi,Σ, η̃i, y0, Ym,i) (16)

where Ỹi = Yi ∪ {yd}, the dump state yd 	∈ Yi, and η̃i is an
extension of ηi which is fully defined on Ỹi × Σ, i.e.,

η̃i(y0, s) =

{
ηi(y0, s), if s ∈ L(Ki);
yd, if s ∈ Σ∗ − L(Ki).

(17)

Clearly, the closed and marked languages of K̃i satisfy
L(K̃i) = Σ∗ and Lm(K̃i) = Lm(Ki).

Second, for each s ∈ Σ∗ define a set Ti(s) of state pairs in G
and K̃i by

Ti(s) :=
{
(q, y) ∈ Q× Ỹi|(∃s′)Ps′ = Ps, q = δ(q0, s

′),

y = η̃i(y0, s
′), η(y0, s

′)!
}
. (18)

Thus, a pair (q, y) ∈ Ti(s) if q ∈ Q and y ∈ Ỹi are reached
by a common string s′ that looks like s, and this s′ is in
L(K), namely the ambient K, because η(y0, s

′)!. In (18) the
last condition η(y0, s

′)! is the key to tracking strings in the
ambient K.

Remark 1: To compute supO(K,C) in (9), instead of
supO(K) in (10), for some ambient language C satisfying
K ⊆ C ⊆ Lm(G), one should replace Ti(s) in (18) by

TC
i (s) :=

{
(q, y) ∈ Q× Ỹi|(∃s′)Ps′ = Ps, q = δ(q0, s

′),

y = η̃i(y0, s
′), ηC(y0, s

′)!
}

(19)

where ηC is the transition function of the generator C with
Lm(C) = C and L(C) = C. The rest follows similarly by
using TC

i (s).
Definition 2: We say that Ti(s) is observationally consistent

(with respect to G and K̃i) if for all (q, y), (q′, y′) ∈ Ti(s) there
holds

(∀σ ∈ Σ)η̃i(y, σ) 	=yd, δ(q
′, σ)! ⇒ η̃i(y

′, σ) 	=yd (20)

q′ ∈ Qm, y ∈ Ym,i ⇒ y′ ∈ Ym,i. (21)

Note that if Ti(s) has only one element, then it is trivially
observationally consistent. Let

Ti := {Ti(s)|s ∈ Σ∗, |Ti(s)| ≥ 2} . (22)

Then |Ti| ≤ 2|Q|·(|Ỹi|) ≤ 2|Q|·(n+1), which is finite. The follow-
ing result states that checking K-observability of Lm(Ki) is

664 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

equivalent to checking observational consistency of all state
pairs in each of the Ti occurring in Ti.

Lemma 2: Lm(Ki) is K-observable if and only if for every
T ∈ Ti, T is observationally consistent with respect to G
and K̃i.

Proof: (If) Let s, s′ ∈ Σ∗ and Ps = Ps′. We must show
that both (5) and (6) hold for Lm(Ki).

For (5), let σ ∈ Σ, sσ ∈ L(Ki), s′ ∈ K, and s′σ ∈ L(G); it
will be shown that s′σ ∈ L(Ki). According to (18) and (17),
the two state pairs (δ(q0, s), η̃i(y0, s)), (δ(q0, s

′), η̃i(y0, s
′))

belong to T (s). Now sσ ∈ L(Ki) implies η̃i(η̃i(y0, s), σ) 	=
yd (by (17)), and s′σ ∈ L(G) implies δ(δ(q0, s

′), σ)!.
Since T (s) is observationally consistent, by (20) we have
η̃i(η̃i(y0, s

′), σ) 	= yd. Then it follows from (17) that s′σ ∈
L(Ki).

For (6), let s∈Lm(Ki), s′ ∈K∩Lm(G); we will prove s′ ∈
Lm(Ki). Again (δ(q0, s), η̃i(y0, s)), (δ(q0, s

′), η̃i(y0, s
′)) ∈

T (s) according to (18) and (17). Now s ∈ Lm(Ki) = Lm(K̃i)
implies η̃i(y0, s) ∈ Ym,i, and s′ ∈ Lm(G) implies δ(q0, s

′) ∈
Qm. Since T (s) is observationally consistent, by (21) we have
η̃i(y0, s

′) ∈ Ym,i, i.e., s′ ∈ Lm(K̃i) = Lm(Ki).
(Only if) Let T ∈ Ti, and (q, y), (q′, y′) ∈ T corresponding

respectively to some s and s′ with Ps = Ps′. We must show
that both (20) and (21) hold.

For (20), let σ ∈ Σ, η̃i(y, σ) 	= yd, and δ(q′, σ)!. It will be
shown that η̃i(y′, σ) 	= yd. Now (q, y) ∈ T and η̃i(y, σ) 	= yd
imply sσ ∈ L(Ki) (by (17)); (q′, y′) ∈ T and δ(q′, σ)! imply
s′ ∈ K and s′σ ∈ L(G). Since Lm(Ki) is K-observable, by
(5) we have s′σ ∈ L(Ki), and therefore η̃i(y

′, σ) 	= yd.
Finally for (21), let y ∈ Ym,i, q′ ∈ Qm. We will show y′ ∈

Ym,i. From (q, y) ∈ T and y ∈ Ym,i, s ∈ Lm(K̃i) = Lm(Ki);
from (q′, y′) ∈ T and q′ ∈ Qm, s′ ∈ K ∩ Lm(G). Since
Lm(Ki) is K-observable, by (6) we have s′ ∈ Lm(Ki) =
Lm(K̃i), i.e., y′ ∈ Ym,i. �

If there is T ∈ Ti that fails to be observationally consistent,
then there exist state pairs (q, y), (q′, y′) ∈ T such that either
(20) or (21) or both are violated. Define two sets RT and MT

as follows:

RT :=
⋃
σ∈Σ

{(y, σ, ηi(y, σ)) |ηi(y, σ)! & (∃s)T = T (s) &

(q, y)∈T & (∃(q′, y′)∈T)(δ(q′, σ)! & η̃i(y
′,σ)=yd)}

(23)

MT := {y ∈ Ym,i|(∃s)T = T (s) & (q, y) ∈ T

& (∃(q′, y′) ∈ T)(q′ ∈ Qm & y′ 	∈ Ym,i)} . (24)

Here, T (s) is as defined in (18). Thus, RT is a collection
of transitions of Ki, each having corresponding state pairs
(q, y), (q′, y′) ∈ T that violate (20), while MT is a collection
of marker states of Ki, each having corresponding state pairs
that violate (21). To make T observationally consistent, all
transitions in RT have to be removed, and all states in MT

unmarked. These constitute the main steps of the algorithm
below.

C. Algorithm

We present an algorithm which computes supO(K) in (10).

Algorithm 1
Input G = (Q,Σ, δ, q0, Qm), K = (Y,Σ, η, y0, Ym), and

P : Σ∗ → Σ∗
o.

1. Set K0 = (Y0,Σ, η0, y0, Ym,0) = K, namely Y0 = Y ,
Ym,0 = Ym, and η0 = η.

2. For i ≥ 0, calculate Ti as in (22) and (18) based on G, K,
K̃i = (Ỹi,Σ, η̃i, y0, Ym,i) in (16), and P .

3. For each T ∈ Ti, check if T is observationally consistent
with respect to G and K̃i (i.e., check if conditions (20) and (21)
are satisfied for all (q, y), (q′, y′) ∈ T):

If every T ∈ Ti is observationally consistent with respect to
G and K̃i, then go to Step 4 below. Otherwise, let

Ri :=
⋃
T∈Ti

RT , where RT is defined in (23) (25)

Mi :=
⋃
T∈Ti

MT , where MT is defined in (24) (26)

and set3

η′i := ηi −Ri (27)

Y ′
m,i :=Ym,i −Mi. (28)

Let Ki+1 = (Yi+1,Σ, ηi+1, y0, Ym,i+1) = trim((Yi,Σ, η
′
i, y0,

Y ′
m,i)), where trim(·) removes all non-reachable and non-

coreachable states and corresponding transitions of the argu-
ment generator. Now advance i to i+ 1, and go to Step 2.

4. Output KN := Ki.

Algorithm 1 has two new mechanisms as compared to those
computing the supremal normal sublanguage (e.g., [5]–[7]).
First, recall that the mechanism of the normality algorithms in
[5]–[7] is essentially this: If a transition σ is removed from state
y of K̃i reached by some string s, then remove σ from all states
y′ reached by a lookalike string s′, i.e., Ps = Ps′. (In fact if σ is
unobservable, then all the states y and y′ as above are removed.)
This (all or nothing) mechanism generally causes “overkill” of
transitions (i.e., removes more transitions than necessary) in our
case of relative observability, because the latter is weaker than
normality and allows more permissive behavior. Indeed, some
σ transitions at states y′ as above may be preserved without
violating relative observability. Corresponding to this feature,
Algorithm 1 employs a more fine-grained mechanism: in Step
3, remove as in (27) only those transitions of K̃i that violate
the relative observability conditions. Moreover, the second new
mechanism of Algorithm 1 is that it keeps track of strings in
the ambient language L(K) at each iteration by computing Ti
in (22) with Ti in (18) in Step 2 above. It is these two new
mechanisms that enable Algorithm 1 to compute the supremal
relatively observable sublanguage supO(K) in (10).

3Here, ηi,η′i denote the corresponding sets of transition triples in Yi×Σ×Yi.

CAI et al.: RELATIVE OBSERVABILITY OF DISCRETE-EVENT SYSTEMS AND ITS SUPREMAL SUBLANGUAGES 665

Fig. 7. Generator K′ does not satisfy (14): strings αβ and γα both reach state
y1, but U(αβ) = {y1, y2, y3, y4} � U(γα) = {y1, y4}. Now T (α) is not
observationally consistent; indeed, two state pairs (q1, y1), (q2, y2) ∈ T (α)
violate both (20) (for transition σ) and (21). Applying Algorithm 1 will remove
σ at y1 and unmark y1, which unintentionally removes string γασ and unmarks
γα. These latter two strings, however, belong to the supremal K′-observable
sublanguage. This undesirable situation is avoided in K where the strings αβ
and γα are arranged to reach different states, and it is easily checked that K
satisfies (14).

On the other hand, Algorithm 1 incurs an extra computational
cost as compared to the normality algorithms in [5]–[7]. This
extra cost is precisely the computation of Ti in (22), which
in the worst case is exponential in n because |Ti| ≤ 2(n+1)|Q|.
While complexity is an important issue for practical computa-
tion, we shall leave for future research the problem of finding a
more efficient alternative to Algorithm 1. We note in passing
that if the natural projection P is an Lm(G)-observer (e.g.,
[26]), then |Ti| ≤ (n+ 1)|Q| and the extra cost of Algorithm
1 is polynomial in n [27].

Algorithm 1 terminates in finite steps: in (27), the set RT

of transitions for every (observationally inconsistent) T ∈ Ti
is removed; in (28), the set MT of marker states for every
(observationally inconsistent) T ∈ Ti is unmarked. At each
iteration of Algorithm 1, if at Step 3 there is an observationally
inconsistent T , then at least one of the two sets Ri in (25)
and Mi in (26) is nonempty. Therefore at least one transition
is removed and/or one marker state is unmarked. As initially
in K0 = K there are m transitions and |Ym|(≤ n) marker
states, Algorithm 1 terminates in at most n+m iterations. The
complexity of Algorithm 1 is O((n+m)2(n+1)|Q|), because
the search ranges Ti are such that |Ti| ≤ 2(n+1)|Q|. Note that
if K does not satisfy Assumption 2, we have to replace K by
K‖PK and then the complexity of Algorithm 1 is O((2n +
m)2(2

n+1)|Q|). This double-exponential complexity is reduced
to polynomial O(n3) when the natural projection P is an
Lm(G)-observer [27].

Now we state our main result.
Theorem 2: Let Assumptions 1 and 2 hold. Then the output

KN of Algorithm 1 satisfies Lm(KN) = supO(K), the supre-
mal K-observable sublanguage of K.

Note that condition (14) of Assumption 2 on K is important
for Algorithm 1 to generate the supremal relatively observable
sublanguage, because it avoids removing and/or unmarking a
string which is not intended. An illustration is given in Fig. 7.

Note also that removing a transition and/or unmarking a
state may destroy observational consistency of other state pairs.

Fig. 8. In K0, state pairs (q1, y1), (q2, y2) ∈ T (α) are observationally
consistent, while (q2, y2), (q4, yd) ∈ T (α) are not (yd is the dump state):
(20) is violated for transition β. Applying Algorithm 1 will remove β at y2,
and the result is K1. In K1, state pairs (q1, y1), (q2, y2) ∈ T (α) become
observationally inconsistent: again (20) is violated for transition β. Algorithm 1
needs to be applied again to remove β at y1.

Fig. 9. Example illustration of Algorithm 1. Events β1, . . . , β5 are unobserv-
able and α, γ, σ observable.

Fig. 8 displays such an example. This is why all state pairs need
to be checked for observational consistency at each iteration of
Algorithm 1.

For just checking C-observability of a given language K,
with K ⊆ C, there is a polynomial algorithm (see [2, Sec. 3.7],
[28]) for checking the standard observability which may be
adapted.

The following example illustrates in detail the operations of
Algorithm 1.

Example 1: Consider generators G and K displayed in
Fig. 9, where events β1, . . . , β5 are unobservable and α, γ, σ
observable. These events define a natural projection P . It
is easily checked that Assumption 1 holds. Also, in K, we
have U(α) = U(γ) = {y1, y7, y8, y9} and U(ασ) = U(γσ) =
{y6, y11}; thus K satisfies (14) and Assumption 2 holds.

666 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

Apply Algorithm 1 with inputs G, K, and the natural projec-
tion P . Set K0 = K, and compute T0 = {T1, T2, T3} with

T1 = {(q0, y0), (q2, y2), (q3, y3), (q4, y4), (q5, y5)} (= T (ε))
T2 = {(q1, y1), (q7, y7), (q8, y8), (q9, y9)} (= T (α) = T (γ))
T3 = {(q6, y6), (q11, y11)} (= T (ασ) = T (γσ)) .

While T1, T3 are observationally consistent with respect to
K0, T2 is not; indeed, (q7, y7), (q8, y8) violate (20) with event
β5. Thus, R0 = {(y7, β5, y9)} and M0 = ∅; the unobservable
transition (y7, β5, y9) is removed, which yields a trim generator
K1 in Fig. 9.

The above is the first iteration of Algorithm 1. Next, compute
T1 = {T1, T2, T3, T4, T5} with

T1 = {(q0, y0), (q2, y2), (q3, y3), (q4, y4), (q5, y5)} (= T (ε))
T2 = {(q1, y1), (q7, y7), (q8, y8), (q9, yd)} (= T (γ))
T3 = {(q1, y1), (q7, y7), (q8, y8), (q9, y9), (q9, yd)} (= T (α))
T4 = {(q6, yd), (q11, yd)} (T (γσ))
T5 = {(q6, yd), (q11, y11), (q11, yd)} (= T (ασ)) .

Note that T (α) 	= T (γ) and T (ασ) 	= T (γσ) in K1, although
T (α) = T (γ) and T (ασ) = T (γσ) in K0. Now T2, . . . , T5

are all observationally inconsistent with respect to K1, and
R1 = {(y1, σ, y6)}, M1 = {y11}. Thus, removing transition
(y1, σ, y6), unmarking y11, and trimming the result yield K2

in Fig. 9. This finishes the second iteration of Algorithm 1.
Compute T3 = {T1, T2} with

T1 = {(q0, y0), (q2, yd), (q3, y3), (q4, y4), (q5, y5)} (= T (ε))
T2 = {(q1, y1), (q7, y7), (q8, y8), (q9, yd)} (= T (γ)=T (α)) .

Here, T1 is not observationally consistent, and R3 =
{(y0, α, y1), (y3, α, y7), (y5, α, y8)}, M3 = ∅. Thus removing
these three transitions and trimming the result yield K3 in
Fig. 9. This is the third iteration of Algorithm 1. Now compute
T4 = {T1, T2} with

T1 = {(q0, y0), (q2, yd), (q3, yd), (q4, y4), (q5, y5)} (= T (ε))
T2 = {(q1, y1), (q7, y7), (q8, y8), (q9, yd)} (= T (γ)) .

It is easily checked that both T1 and T2 are observationally
consistent with respect to K3; by Lemma 2, Lm(K3) is L(K)-
observable. Hence Algorithm 1 terminates after four iterations,
and returns K3. By Theorem 2, Lm(K3) is in fact the supre-
mal L(K)-observable sublanguage of L(K). By contrast, the
supremal normal sublanguage of L(K) is empty.

We now prove Theorem 2. We will need this observation:
from Ki to Ki+1 in Step 3 of Algorithm 1 above, for all s, t ∈
Σ∗ if ηi+1(y0, s)!, ηi+1(y0, t)!, then ηi(y0, s)!, ηi(y0, t)!, and

ηi+1(y0, s) = ηi+1(y0, t) ⇒ ηi(y0, s) = ηi(y0, t). (29)

Proof of Theorem 2: We show Lm(KN) = supO(K). First,
it is guaranteed by Algorithm 1 that for the output KN , all the
corresponding T ∈ TN are observationally consistent; hence
Lemma 2 implies that Lm(KN) is K-observable.

It remains to prove that if K ′ ∈ O(K), then K ′ ⊆ Lm(KN).
We proceed by induction on the iterations i = 0, 1, 2, . . . of
Algorithm 1. Since K ′ ⊆ K = Lm(K), we have K ′ ⊆
Lm(K0). Suppose now K ′ ⊆ Lm(Ki); we show that K ′ ⊆

Lm(Ki+1). Let w ∈ K ′; by hypothesis w ∈ Lm(Ki). It will
be shown that w ∈ Lm(Ki+1) as well.

First, suppose on the contrary that w 	∈ L(Ki+1). Since
w ∈ L(Ki), there exist t ∈ Σ∗ and σ ∈ Σ such that tσ ≤
w, ηi(y0, t) =: y ∈ Yi, and (y, σ, ηi(y, σ)) ∈ Ri in (25). Then
there is T ∈ Ti such that (y, σ, ηi(y, σ)) ∈ RT in (23), and T
is not observationally consistent ((20) is violated). Since K ′

is K-observable and t ∈ K ′, Lemma 2 implies that T (t) is
observationally consistent, and thus T (t) 	= T .

Now let s ∈ Σ∗ be such that s 	= t, ηi(y0, s) = ηi(y0, t) =
y, and T (s) = T . Then by (23) there exists (q′, y′) ∈ T (s)
such that δ(q′, σ)! and η̃i(y

′, σ) = yd. Let s′ ∈ L(K0) = L(K)
be such that Ps = Ps′, δ(q0, s

′) = q′, and η̃i(y0, s
′) = y′.

Whether or not y′ = yd, there must exist s′1, u ∈ Σ∗ such that
s′1u = s′, η̃i(y0, s′1) 	= yd (i.e., ηi(y0, s′1)!), and the following
is true: if u = ε then η̃i(y0, s

′
1σ) = yd; otherwise, for each

u1 ∈ {u} − {ε}, η̃i(y0, s
′
1u1) = yd. We claim that u ∈ Σ∗

uo,
i.e., an unobservable string. Otherwise, if there exist u1 ≤ u and
α ∈ Σo such that u1α ≤ u, then by Ps = Ps′ there is s1 ≤ s
such that s1α ≤ s and Ps1 = P (s′1u1). Since η̃i(y0, s′1u1α) =
yd, we have (ηj(y0, s1), α, ηj(y0, s1α)) ∈ Rj for some j < i.
Hence, s 	∈ L(Ki), which contradicts our choice of s such that
ηi(y0, s) = ηi(y0, t) = y.

Now u ∈ Σ∗
uo and s′1u = s′ imply Ps′1 = Ps′ = Ps. Since

ηi(y0, s) = ηi(y0, t) = y, by repeatedly using (29) we derive
η0(y0, s) = η0(y0, t) = y. Then by Assumption 2 and Lemma
1, there exists t′ ∈ L(K0) such that Pt = Pt′ and η0(y0, t

′) =
η0(y0, s

′
1). Thus, η0(y0, t

′u) = η0(y0, s
′
1u). It then follows

from Assumption 1 and η0 = η that δ(q0, t′u) = δ(q0, s
′
1u) =

q′ and δ(δ(q0, t
′u), σ)!. On the other hand, η̃i(η̃i(y0, t′u), σ) =

η̃i(η̃i(y0, s
′
1u), σ) = yd. Since P (t′u) = Pt′ = Pt, we have

(δ(q0, t
′u), η̃i(y0, t

′u)) ∈ T (t). This implies that T (t) is not
observationally consistent, which contradicts that K ′ is K-
observable. Therefore, w ∈ L(Ki+1).

Next, suppose w ∈ L(Ki+1)− Lm(Ki+1). Since w ∈
Lm(Ki), we have ηi(y0, w) =: ym and ym ∈ Mi in (26). Then
there is T ∈ Ti such that ym ∈ MT in (24), and T is not
observationally consistent ((21) is violated). Since K ′ is K-
observable and w ∈ K ′, Lemma 2 implies that T (w) is obser-
vationally consistent, and thus T (w) 	= T .

Now let v ∈ Σ∗ be such that v 	= w, ηi(y0, v) = ηi(y0, w) =
ym, and T (v) = T . Then by (24) there exists (q′m, y′m) ∈
T (v) such that q′m ∈ Qm and y′m 	∈ Ym,i. Let v′ ∈ L(K0) =
L(K) be such that Pv = Pv′, δ(q0, v′) = q′m, and η̃i(y0, v

′) =
y′m. Whether or not y′m = yd, by a similar argument to
the one above we derive that there exists w′, with Pw =
Pw′, such that δ(y0, w

′) = δ(y0, v
′) = q′m, η0(y0, w

′) =
η0(y0, v

′), and η̃i(y0, w
′) = η̃i(y0, v

′) = y′m 	∈ Ym,i. It follows
that (δ(q0, w

′), η̃i(y0, w
′)) ∈ T (w). This implies that T (w)

is not observationally consistent, which contradicts that K ′

is K-observable. Therefore, w ∈ Lm(Ki+1), and the proof is
complete. �

IV. SUPREMAL RELATIVELY OBSERVABLE AND

CONTROLLABLE SUBLANGUAGE

Consider a plant G as in (1) with Σ = Σc∪̇Σu, where Σc is
the controllable event subset and Σu the uncontrollable subset.

CAI et al.: RELATIVE OBSERVABILITY OF DISCRETE-EVENT SYSTEMS AND ITS SUPREMAL SUBLANGUAGES 667

A language K ⊆ Lm(G) is controllable (with respect to G and
Σu) if KΣu ∩ L(G) ⊆ K. A supervisory control for G is any
map V : L(G) → Γ, where Γ := {γ ⊆ Σ|γ ⊇ Σu}. Then the
closed-loop system is V/G, with closed behavior L(V/G) and
marked behavior Lm(V/G). Let Σo ⊆ Σ and P : Σ∗ → Σ∗

o

be the natural projection. We say V is feasible if (∀s, s′ ∈
L(G)) P (s) = P (s′) ⇒ V (s) = V (s′), and V is nonblocking
if Lm(V/G) = L(V/G).

It is well known [3] that a feasible nonblocking super-
visory control V exists which synthesizes a nonempty sub-
language K ⊆ Lm(G) if and only if K is both controllable
and observable.4 When K is not observable, however, there
generally does not exist the supremal controllable and observ-
able sublanguage of K. In this case, the stronger normality
condition is often used instead of observability, so that one may
compute the supremal controllable and normal sublanguage of
K [3], [4]. With normality (K is (Lm(G), P)-normal and K
is (L(G), P)-normal), however, no unobservable controllable
event may be disabled; for some applications the resulting
controlled behavior might thus be overly conservative.

This section will present an algorithm which computes, for
a given language K ⊆ Lm(G), a controllable and relatively
observable sublanguage K∞ that is generally larger than the
supremal controllable and normal sublanguage of K. In partic-
ular, it allows disabling unobservable controllable events. Being
relatively observable, K∞ is also observable and controllable,
and thus may be synthesized by a feasible nonblocking super-
visory control.

Given a language K ⊆ Lm(G), whether controllable or
not, write C(K) := {K ′ ⊆ K|K ′ is controllable} for the
family of controllable sublanguages of K. Then C(K) is
nonempty (∅ belongs) and has a unique supremal element
sup C(K) :=

⋃
{K ′|K ′ ∈ C(K)} [1]. An algorithm is pro-

posed in [24] that computes the supremal controllable sublan-
guage sup C(K): with input generators G = (Q,Σ, δ, q0, Qm)
and K = (Y,Σ, η, y0, Ym) representing Lm(G) and K, the
algorithm returns a generator H such that Lm(H) = sup C(K).
Henceforth, we refer to this algorithm as Algorithm 2. By
[24], Algorithm 2 terminates in at most |Y | iterations and has
polynomial complexity |Q| · |Y |.

Now we design an algorithm, which iteratively applies
Algorithms 1 and 2, to compute a controllable and relatively
observable sublanguage of K. Let Assumptions 1 and 2 in
Section III hold.

Algorithm 3
Input G, K, and P : Σ∗ → Σ∗

o.
1. Set K0 = K.
2. For i ≥ 0, apply Algorithm 2 with inputs G and Ki.

Compute Hi such that Lm(Hi) = sup C(Lm(Ki)).
3. Apply Algorithm 1 with inputs G, Hi, and P : Σ∗ →

Σ∗
o. Obtain Ki+1 such that Lm(Ki+1) = supO(Lm(Hi)) =

supO(sup C(Lm(Ki))). If Ki+1 = Ki, then output K∞ =
Ki+1. Otherwise, advance i to i+ 1 and go to Step 2.

4Here we let Lm(V/G) = L(V/G) ∩K, namely marking is part of
supervisory control V ’s action. In this way we do not need to assume that K is
Lm(G)-closed, i.e., K = K ∩ Lm(G) [1, Sec. 6.3].

Note that in applying Algorithm 1 at Step 3, the ambi-
ent language successively shrinks to the supremal control-
lable sublanguage sup C(Lm(Ki)) computed by Algorithm 2
at the immediately previous Step 2 of Algorithm 3. Thus,
every Lm(Ki+1) is relatively observable with respect to
sup C(Lm(Ki)). This choice of ambient languages is based
on the intuition that at each iteration i, any behavior out-
side sup C(Lm(Ki)) may be effectively disabled by means of
control, and hence is discarded when observability is tested.
The successive shrinking of ambient languages is useful in
computing less restrictive controlled behavior, as compared to
the algorithm in [8] which is equivalent to fixing the ambient
language at L(G). An illustration is the Guideway example in
the next section.

Since Algorithms 1 and 2 both terminate in finite steps, and
there can be at most |Y | applications of the two algorithms,
Algorithm 3 also terminates in finite steps. This means that the
sequence of languages

Lm(K0)⊇Lm(H1)⊇Lm(K1)⊇Lm(H2)⊇Lm(K2)⊇· · ·

is finitely convergent to Lm(K∞). The complexity of
Algorithm 3 is exponential in |Y | because Algorithm 1 is of
this complexity.

Note that in computing the supremal relatively observable
sublanguages at Step 3, in particular for RT in (23), we may
restrict attention only to Σc because uncontrollable transitions
are dealt with by the controllability requirement.

Theorem 3: Lm(K∞) is controllable and observable, and
contains at least the supremal controllable and normal sublan-
guage of K.

Proof: For the first statement, let K∞ = Ki+1 = Ki for
some i ≥ 0. According to Steps 2 and 3 of Algorithm 3,
the latter equality implies that Lm(K∞) is controllable and
sup C(Lm(Ki))-observable. Therefore, Lm(K∞) is control-
lable and observable by Proposition 1.

For the second statement, set up a similar algorithm to
Algorithm 3 but replace Step 3 by a known procedure to com-
pute the supremal normal sublanguage ([5], [6]). Denote the
resulting generators by K′

i. Then by Proposition 2, Lm(Ki) =
supO(sup C(Lm(Ki−1))) ⊇ Lm(K′

i), for all i ≥ 1. Now sup-
pose the new algorithm terminates at the jth iteration. Then
Algorithm 3 must terminate at the jth iteration or earlier,
because normality implies relative observability. Therefore,
Lm(K′

j) ⊆ Lm(Kj), i.e., Lm(K∞) contains the supremal con-
trollable and normal sublanguage of K. �

Algorithm 3 has been implemented as a procedure in [29].
To empirically demonstrate Theorem 3, the next section applies
Algorithm 3 to study two examples, Guideway and AGV.

V. EXAMPLES

Our first example, Guideway, illustrates that Algorithm 3 re-
turns an observable and controllable language that is invariably
no smaller than and may actually be larger than the one based
on normality. The second example, the AGV system, provides
computational results to demonstrate Algorithm 3 as well as to
compare relative observability with normality.

668 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

Fig. 10. Guideway: stations A and B are connected by a single one-way
track from A to B. The track consists of four sections, with stoplights (∗) and
detectors (!) installed at various section junctions as displayed.

Fig. 11. Vehicle generator model.

A. Control of a Guideway Under Partial Observation

We demonstrate relative observability and Algorithm 3 with
a Guideway example, adapted from [1, Sec. 6.6]. As displayed
in Fig. 10, stations A and B on a Guideway are connected
by a single one-way track from A to B. The track consists
of four sections, with stoplights (∗) and detectors (!) installed
at various section junctions. Two vehicles, V1 and V2, use
the Guideway simultaneously. Their generator models are dis-
played in Fig. 11; Vi, i = 1, 2, is at state 0 (station A), state j
(while traveling in section j = 1, . . . , 4), or state 5 (station B).
The plant G to be controlled is G = V1‖V2.

To prevent collision, control of the stoplights must ensure
that V1 and V2 never travel on the same section of track
simultaneously: i.e., ensure mutual exclusion of the state pairs
(j, j), j = 1, . . . , 4. Let K be a generator enforcing this spec-
ification. Here according to the locations of stoplights (∗) and
detectors (!) displayed in Fig. 10, we choose controllable events
to be i1, i3, i5, and unobservable events i3, i5, i = 1, 2. The
latter define a natural projection P .

First, applying Algorithm 2, with inputs G, K, and Σc,
we obtain the full-observation monolithic supervisor, with 30
states, 40 transitions, and marked language sup C(Lm(G‖K)).
Now applying Algorithm 3 we obtain the generator displayed
in Fig. 12; Algorithm 3 terminates after just one iteration. The
resulting controlled behavior is verified to be controllable and
observable (as asserted by Theorem 3). Moreover, it is strictly
larger than the supremal normal and controllable sublanguage
represented by the generator displayed in Fig. 13. The reason
is as follows. After string 11.13.10, V1 is at state 3 (section 3)
and V2 at 0 (station A). With relative observability, either V1

executes event 15 (moving to state 4) or V2 executes 21 (mov-
ing to state 1); in the latter case, the controller disables event
23 after execution of 21 to ensure mutual exclusion at (3,3)
because event 20 is uncontrollable. With normality, however,
event 23 cannot be disabled because it is unobservable; thus 21
is disabled after string 11.13.10, and the only possibility is that
V1 executes 15. In fact, 21 is kept disabled until the observable
event 12 occurs, i.e., V1 arrives at station B.

For this example, the algorithm in [8] yields the same gen-
erator as the one in Fig. 13; indeed, states 12 and 13 of the
generator in Fig. 12 must be removed in order to meet the
observability definition in [8]. Thus, this example illustrates

Fig. 12. Supremal relatively observable and controllable sublanguage.

Fig. 13. Supremal normal and controllable sublanguage.

Fig. 14. AGV: system configuration.

that our algorithm can obtain a larger controlled behavior
compared to [8].

B. Control of an AGV System Under Partial Observation

We now apply Algorithm 3 to study a larger example, a
system of five automated guided vehicles (AGVs) serving a
manufacturing workcell, in the version of [1, Sec. 4.7], origi-
nally adapted from [30].

As displayed in Fig. 14, the workcell consists of two input
parts stations IPS1, IPS2 for parts of types 1 and 2, three
workstations WS1, WS2, WS3, and one completed parts station
CPS. Five independent AGVs—AGV1, . . ., AGV5—travel in
fixed criss-crossing routes, loading/unloading and transporting
parts in the cell. We model the synchronous product of the five
AGVs as the plant to be controlled, on which three types of
control specifications are imposed: the mutual exclusion (i.e.,
single occupancy) of shared zones (dashed squares in Fig. 14),
the capacity limit of workstations, and the mutual exclusion
of the shared loading area of the input stations. The generator
models of plant components and specifications are displayed
in Fig. 15; here odd numbered events are controllable, and
there are ten such events, i1, i3, i = 1, . . . , 5. For observable
events, we will consider different subsets of events below. The
reader is referred to [1, Sec. 4.7] for the detailed interpretation
of events.

Under full observation, we obtain by Algorithm 2 the mono-
lithic supervisor of 4406 states and 11 338 transitions. Then

CAI et al.: RELATIVE OBSERVABILITY OF DISCRETE-EVENT SYSTEMS AND ITS SUPREMAL SUBLANGUAGES 669

Fig. 15. Generators of plant components and specifications.

TABLE I
TEST RESULTS OF ALGORITHM 3 FOR DIFFERENT SUBSETS OF UNOBSERVABLE EVENTS IN THE AGV SYSTEM

we select different subsets of controllable events to be unob-
servable, and apply Algorithm 3 to compute the corresponding
supervisors which are relatively observable and controllable.
The computational results are displayed in Table I; the su-
pervisors are state minimal, and controllability, observability,
and normality are independently verified. All computations and
verifications are done by procedures implemented in [29].

The cases in Table I show considerable differences in state
size between relatively observable and controllable supervisors
and the normal counterparts. In the case Σuo = {13}, the
monolithic supervisor is in fact observable in the standard
sense; thus, Algorithms 1 and 3 both terminate after 1 itera-
tion, and no transition removal or state unmarking was done.
Therefore the controlled behavior of the resulting relatively
observable supervisor is identical to that of the full-observation
supervisor. By contrast, the normal supervisor loses 890 states,
and its controlled behavior can only be less permissive.

The contrast in state size is more significant in the case
Σuo = {21}: the normal supervisor is empty (i.e., no controlled
behavior is allowed at all); while the relatively observable su-
pervisor loses merely 58 states compared to the full-observation
supervisor, and hence has more permissive controlled behavior
than the normal supervisor. The last row of Table I shows a
case where only two out of ten controllable events, 11 and 21,
are observable. Still, relative observability produces a 579-state
supervisor, which has more permissive controlled behavior than
the normal supervisor that is empty and allows no controlled
behavior. Indeed, the normal supervisor allows no controlled

behavior when only events 41 and 51 are unobservable (the
third case in Table I).

Note from the state sizes of relatively observable supervisors
in Table I that no state increase occurs compared to the full-
observation supervisor. In addition, the last two columns of
Table I suggest that Algorithm 3 with Algorithm 1 embedded
terminates reasonably fast.

VI. CONCLUSION

We have identified the new concept of relative observability,
and proved that it is stronger than observability, weaker than
normality, and preserved under set union. Hence, there exists
the supremal relatively observable sublanguage of a given lan-
guage. In addition we have provided an algorithm to effectively
compute the supremal sublanguage. This result thereby solved a
longstanding open problem in supervisory control under partial
observation.

Combined with controllability, moreover, relative observ-
ability generates generally larger controlled behavior than the
normality counterpart. This has been demonstrated empirically
with a Guideway example and an AGV example.

Newly identified, the algebraically well-behaved concept of
relative observability may be expected to impact several closely
related topics such as coobservability, decentralized supervi-
sory control, stated-based observability, and observability of
timed discrete-event systems. In future work we aim to explore
these directions.

670 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

REFERENCES

[1] W.M.Wonham,“SupervisoryControlofDiscrete-EventSystems,”Systems
Control Group, Elect. and Comput. Eng. Dept., Univ. of Toronto, updated
Jul. 1, 2014. [Online]. Available: http://www.control.toronto.edu/DES

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd ed. New York, NY, USA: Springer, 2007.

[3] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inf. Sci., vol. 44, pp. 173–198, 1988.

[4] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 249–260, Mar. 1988.

[5] H. Cho and S. I. Marcus, “On supremal languages of classes of sublan-
guages that arise in supervisor synthesis problems with partial observa-
tion,” Math. Control, Signals, Syst., vol. 2, no. 1, pp. 47–69, 1989.

[6] R. D. Brandt et al., “Formulas for calculating supremal controllable and
normal sublanguages,” Syst. Control Lett., vol. 15, no. 2, pp. 111–117,
1990.

[7] J. Komenda and J. van Schuppen, “Control of discrete-event systems with
partial observations using coalgebra and coinduction,” Discrete Event
Dynamic Syst., vol. 15, no. 3, pp. 257–315, 2005.

[8] S. Takai and T. Ushio, “Effective computation of an Lm(G)-closed, con-
trollable, observable sublanguage arising in supervisory control,” Syst.
Control Lett., vol. 49, no. 3, pp. 191–200, 2003.

[9] H. Cho and S. I. Marcus, “Supremal and maximal sublanguages arising
in supervisor synthesis problems with partial observations,” Math. Syst.
Theory, vol. 22, no. 3, pp. 177–211, 1989.

[10] J. Fa, X. Yang, and Y. Zheng, “Formulas for a class of controllable and
observable sublanguages larger than the supremal controllable and normal
sublanguages,” Syst. Control Lett., vol. 20, no. 1, pp. 11–18, 1993.

[11] M. Heymann and F. Lin, “On-line control of partially observed discrete
event systems,” Discrete Event Dynamic Syst., vol. 4, no. 3, pp. 221–236,
1994.

[12] N. B. Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and distributed
algorithms for on-line synthesis of maximal control policies under partial
observation,” Discrete Event Dynamic Syst., vol. 6, no. 4, pp. 379–427,
1996.

[13] T. Ushio, “On-line control of discrete event systems with a maximally
controllable and observable sublanguage,” IEICE Trans. Fundamentals,
vol. E82-A, no. 9, pp. 1965–1970, 1999.

[14] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Trans. Autom. Control, vol. 37, no. 11,
pp. 1692–1708, Nov. 1992.

[15] T. S. Yoo and S. Lafortune, “A general architecture for decentralized
supervisory control of discrete-event systems,” Discrete Event Dynamic
Syst., vol. 12, no. 3, pp. 335–377, 2002.

[16] Y. Li and W. M. Wonham, “Controllability and observability in the state-
feedback control of discrete-event systems,” in Proc. 27th IEEE Conf.
Decision Control, Austin, TX, USA, 1988, pp. 203–208.

[17] R. Kumar, V. K. Garg, and S. I. Marcus, “Predicates and predicate trans-
formers for supervisory control of discrete event dynamical systems,”
IEEE Trans. Autom. Control, vol. 38, no. 2, pp. 232–247, Feb. 1993.

[18] F. Lin and W. M. Wonham, “Supervisory control of timed discrete-event
systems under partial observation,” IEEE Trans. Autom. Control, vol. 40,
no. 3, pp. 558–562, Mar. 1995.

[19] S. Takai and T. Ushio, “A new class of supervisors for timed discrete event
systems under partial observation,” Discrete Event Dynamic Syst., vol. 16,
no. 2, pp. 257–278, 2006.

[20] H. Marchand, O. Boivineau, and S. Lafortune, “Optimal control of dis-
crete event systems under partial observation,” in Proc. 40th IEEE Conf.
Decision Control, Orlando, FL, USA, 2001, pp. 2335–2340.

[21] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,” IEEE Trans. Autom.
Control, vol. 35, no. 12, pp. 1330–1337, Dec. 1990.

[22] R. Su, J. H. van Schuppen, and J. E. Rooda, “Aggregative synthesis of
distributed supervisors based on automaton abstraction,” IEEE Trans.
Autom. Control, vol. 55, no. 7, pp. 1627–1640, Jul. 2010.

[23] J. Komenda, T. Masopust, and J. van Schuppen, “Synthesis of controllable
and normal sublanguages for discrete-event systems using a coordinator,”
Syst. Control Lett., vol. 55, no. 7, pp. 1627–1640, Jul. 2011.

[24] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sub-
language of a given language,” SIAM J. Control Optimiz., vol. 25, no. 3,
pp. 637–659, 1987.

[25] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge, U.K.: Cambridge Univ. Press, 1990.

[26] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,” IEEE Trans. Autom. Control, vol. 53, no. 6,
pp. 1449–1461, 2008.

[27] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” 2013, Tech. Rep. [Online].
Available: http://arxiv.org/abs/1306.2422

[28] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Math. Control, Signals, Syst., vol. 2, no. 2, pp. 95–107, 1989.

[29] W. M. Wonham, “Design Software: XPTCT,” Systems Control Group,
Elect. Comput. Eng. Dept., Univ. of Toronto, updated Jul. 1, 2014.
[Online]. Available: http://www.control.toronto.edu/DES

[30] L. E. Holloway and B. H. Krogh, “Synthesis of feedback logic control
for a class of controlled petri nets,” IEEE Trans. Autom. Control, vol. 35,
no. 5, pp. 514–523, May 1990.

Kai Cai (M’12) received the B. Eng. degree in
electrical engineering from Zhejiang University,
Hangzhou, China, in 2006, the M.A.Sc. degree in
electrical and computer engineering from the Uni-
versity of Toronto, Toronto, ON, Canada, in 2008,
and the Ph.D. degree in systems science from Tokyo
Institute of Technology, Tokyo, Japan, in 2011.

He is currently an Associate Professor at Osaka
City University, Osaka, Japan; preceding this posi-
tion he was an Assistant Professor in the University
of Tokyo from 2013 to 2014, and a Postdoctoral

Fellow in the University of Toronto from 2011 to 2013. His research inter-
ests include distributed control of multi-agent systems, distributed control of
discrete-event systems, and control architecture of complex networked systems.

Dr. Cai received the Best Paper Award at SICE in 2013, the Best Student
Paper Award at the IEEE Multi-Conference on Systems and Control in 2010,
and Young Author’s Award of SICE in 2010.

Renyuan Zhang (M’12) received the B.Eng. degree
and the Ph.D degree in electrical engineering from
Xi’an Jiaotong University, Xi’an, China, in 2007 and
2013, respectively.

He is currently a Lecturer in the School of
Automation, Northwestern Polytechnical University,
Xi’an, China. From September 2011 to December
2012, he studied in the Department of Electrical
and Computer Engineering, University of Toronto.
His research interest is investigating delay-robust
property in distributed control of untimed discrete-

event systems and timed discrete-event systems.

W. M. Wonham (M’64–SM’76–F’77–LF’00) re-
ceived the B.Eng. degree in engineering physics from
McGill University, Montreal, QC, Canada, in 1956,
and the Ph.D. degree in control engineering from the
University of Cambridge, Cambridge, U.K., in 1961.

From 1961 to 1969, he was associated with several
U.S. research groups in control. Since 1970, he has
been a faculty member in systems control, with the
Department of Electrical and Computer Engineering,
University of Toronto. His research interests have
included stochastic control and filtering, geometric

multivariable control, and discrete-event systems. He is the author of Linear
Multivariable Control: A Geometric Approach (Springer-Verlag, 3rd ed., 1985)
and coauthor (with C. Ma) of Nonblocking Supervisory Control of State Tree
Structures (Springer-Verlag, 2005).

Dr. Wonham is a Fellow of the Royal Society of Canada, a Life Fellow of the
IEEE, and a Foreign Associate of the (U.S.) National Academy of Engineering.
In 1987 he received the IEEE Control Systems Science and Engineering Award
and in 1990 was Brouwer Medallist of the Netherlands Mathematical Society.
In 1996 he was appointed University Professor in the University of Toronto,
and in 2000 University Professor Emeritus.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

