
S

Supervisory Control of
Discrete-Event Systems

Kai Cai1 and W.M. Wonham2

1Department of Electrical and Information
Engineering, Osaka City University, Osaka,
Japan
2Department of Electrical and Computer
Engineering, University of Toronto, Toronto,
ON, Canada

Abstract

We introduce background and base model for
supervisory control of discrete-event systems,
followed by discussion of optimal controller
existence, a small example, distributed control
through localization, and summary of control
under partial observations. Control architec-
ture and symbolic computation are noted as
approaches to manage state space explosion.

Keywords

Asynchronous � Control architectures �
Controllability � Discrete � Dynamics �
Finite automata � Observability �
Optimality � Regular languages � Symbolic
computation

Introduction

Discrete-event (dynamic) systems (DES or
DEDS) constitute a relatively new area of
control science and engineering, which has
taken its place in the mainstream of control
research. Recently, DES have been combined
with continuous systems in areas called hybrid or
cyber-physical systems.

Problems and methods for DES have been
investigated for some time, although not neces-
sarily with a “control” flavor. The parent domains
can be identified as operations research and soft-
ware engineering.

Operations research deals with systems of
interconnected stores and servers which operate
on processed items. For instance, manufacturing
systems employ queues, buffers, and bins (which
store workpieces). These are served by machines,
robots, and automatic guided vehicles (AGVs),
which process workpieces. The main problems
are to measure quantitative performance and
establish trade-offs, for instance, workflow vs.
cost, and to optimize design parameters such as
buffer size and maintenance frequency.

The relevant areas of software engineering
include operating systems control, concurrent
computing, and real-time (embedded or reactive)
systems, with focus on synchronization algo-
rithms that enforce mutual exclusion and resource
sharing in the presence of concurrency, as in the
classical problems of “readers and writers” and
“dining philosophers.” The main objectives are

© Springer-Verlag London Ltd., part of Springer Nature 2020
J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control,
https://doi.org/10.1007/978-1-4471-5102-9 54-2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-5102-9_54-2&domain=pdf
https://doi.org/10.1007/978-1-4471-5102-9_54-2

2 Supervisory Control of Discrete-Event Systems

(i) to guarantee safety (“nothing bad will ever
happen”), as in mutual exclusion and deadlock
prevention, and (ii) to guarantee liveness
(“something good will happen eventually”), for
instance, successful computational termination
and eventual access to a desired resource.

DES from a Control Viewpoint

With these domains in mind, we consider DES
from a control viewpoint. In general, control
deals with dynamical systems, defined as entities
consisting of an internal state space, together
with a state evolution or transition structure, and
equipped (for control purposes) with both an
input mechanism for actuation and an output
channel for observation and feedback. The objec-
tive of control is to bring together information
and dynamics in some purposeful combination:
the interplay between observation and control or
decision-making is fundamental.

In this framework, a DES is a dynamical
system that is discrete, in time and usually in
state space; is asynchronous or event driven, that
is, driven by events or instantaneous happenings
in time (which may or may not include the tick
of a clock); and is nondeterministic, namely,
embodies internal chance or other unmodeled
mechanisms of choice which govern its state
transitions. With a manufacturing system, for
example, the dynamic state might include the
status of machines (idle, working, down, under
maintenance or repair), the contents of queues
and buffers, and the locations and loads of
robots and AGVs, while transitions (discrete
events) occur when queues and buffers are
incremented or decremented, robots load or
unload, and machines start work, finish work,
or break down (the “choice” between finishing
work successfully and breaking down being
thus nondeterministic). In this example and
many others, the objectives of design and
analysis include logical correctness in the
presence of concurrency and timing constraints
and quantitative performance such as rates of
production, all of which depend crucially on
feedback control synthesis and optimization.

To this end the models will tend to be DES
or hybrid systems. Nevertheless one finds
the continuing relevance of standard control-
theoretic concepts like feedback, stability,
controllability, and observability, along with their
roles in large-system architectures embodying
hierarchical, decentralized, and distributed
functional organization.

Here we focus on models and problems from
which explicit constraints of timing are absent
and which can be considered in a framework of
finite-state machines and the corresponding reg-
ular languages. While the theory has been gener-
alized to more flexible and technically advanced
settings, our restricted framework is already rich
enough to support numerous applications and
remains challenging for large systems of indus-
trial size.

Base Model for Control of DES

The formal structure of a DES to be controlled
will resemble the simple “machine” called
MACH shown in Fig. 1. The state set of MACH
is Q D fI;W;Dg, interpreted as Idle, Working,
or Broken Down. MACH is initialized at state
qo D I , denoted by an entering arrow without
source. The transition structure is displayed in
Fig. 1 as a transition diagram, whose nodes are
the states q 2 Q and edges are the transitions,
each labeled with a symbol � in the alphabet
Σ, here fw; c; b; rg. If a transition (labeled) �
is an edge from q to q0, then “the event �
can occur at state q, and when � occurs, q
transits to state q0.” Transitions (or events) are
interpreted as instantaneous in time, while states
are thought of as locations where MACH is able
to reside for some indeterminate time interval.
The occurrence of w means “MACH enters the

Supervisory Control of
Discrete-Event Systems,
Fig. 1 MACH

I

W D

r

b

w

c

Supervisory Control of Discrete-Event Systems 3

S

Working state from Idle” and similarly for c; b; r .
These transitions determine the state-transition
function of MACH, denoted by ı W Q � Σ! Q.
Thus ı.I;w/ D W , ı.W; b/ D D, and so on.
Notice that ı is a partial function, defined at each
state q 2 Q for only a subset of event (labels)
in Σ. To denote that ı.q; �/ is defined at state
q 2 Q for the event � 2 Σ, we write ı.q; �/Š.
The function ı can be extended by iteration to
ı W Q � Σ� ! Q, where Σ� is the set of all finite
strings of elements of Σ, including the empty
string �. Thus ı.q; �/ WD q and inductively if
q0 WD ı.q; s/Š, then

ı.q; s:�/ WD ı.ı.q; s/; �/ WD ı.q0; �/

whenever ı.q0; �/Š. Graphically the strings s D
�1 : : : �k 2 Σ� for which ı.q; s/Š are precisely
those for which there exists a path in the transi-
tion diagram starting from q and having succes-
sive edges labeled �1; : : : ; �k .

We call any subset of Σ� (i.e., any set of
strings of elements from Σ) a language over Σ and
accordingly speak of sublanguages of a language
over Σ.

For MACH, the execution of a production
cycle, namely, the event sequence (or string)
w:c, or a work-breakdown-repair cycle, the string
w:b:r , can be considered successful, and the cor-
responding string is said to be marked. States
which are entered by marked strings are marked
states and identified in a transition diagram by
an outgoing arrow with no target. In Fig. 1, the
only marked state happens to be the initial state,
which is thus shown with a double arrow; in
general there could be several marked states,
which may or may not include the initial state.
The marked states comprise a subset Qm � Q,
which may be empty (at one extreme) or equal
to Q (at the other). The case Qm D Q (all
states marked) would imply that every string of
events is considered as significant or successful
as any other, while the case Qm D ; (no state
marked, so there are no successful strings) plays
a technical role in computation.

In general a DES is a tuple G D .Q;Σ; ı;

qo;Qm/ usually interpreted physically as for
MACH above, but mathematically consisting

merely of the finite state set Q; finite alphabet
Σ; marked subset Qm � Q, with initial state
qo 2 Q; and (partial) transition function
ı W Q � Σ ! Q. Additionally we bring in
the closed behavior L.G/ of G, defined as all the
strings of Σ� which G can generate starting from
the initial state, in the sense:

L.G/ WD fs 2 Σ� j ı.qo; s/Šg:

Of central importance also is the marked behavior
of G, namely, the sublanguage of L.G/ given by

Lm.G/ WD fs 2 L.G/ j ı.qo; s/ 2 Qmg:

We need several definitions. A string s0 is a
prefix of a string s 2 Σ�, written s0 � s, if s0

can be extended to s, namely, there exists a string
w in Σ� such that s0:w D s. The closure of a
language M � Σ� is the language M consisting
of all prefixes of strings in M

M WD fs0 2 Σ� j s0 � s for some s in M g

A language N over Σ is (prefix-)closed if it
contains all its prefixes, namely, N D N . In this
notation G is said to be nonblocking if L.G/ D
Lm.G/, namely, any (generated) string inL.G/ is
a prefix of, and so can be extended to, a marked
string of G.

The semantics of G (its mathematical mean-
ing) is simply the pair of languages Lm.G/,
L.G/. In general the latter may be infinite subsets
of Σ�, while G itself is a finite object, considered
to represent an algorithm for the generation of
its behaviors. Unless G is trivial (has empty state
set), it is always true that (the empty string) � 2
L.G/.

Transition labeling of G is deterministic: at
every q, at most one transition is defined for each
given event � , namely,

ı.q; �/ D q0 & ı.q; �/ D q00 implies q0 D q00:

It is quite acceptable, however, that at distinct
states q and r , both ı.q; �/Š and ı.r; �/Š (where
these evaluations may or may not be equal).

4 Supervisory Control of Discrete-Event Systems

To formulate a control problem for G, we
first adjoin a control technology or mechanism
by which G may be actuated to affect its tem-
poral behavior, namely, determine the strings it
is permitted to generate. To this end we assume
that a subset of events Σc � Σ, called the
controllable events, are capable of being enabled
or disabled by an external controller. Think of a
traffic light being turned green or red to allow
or prohibit passage (vehicle transition) through
an intersection. The complementary event subset

Σu WD Σ � Σc is uncontrollable; events � 2 Σu

cannot be externally disabled but may be con-
sidered permanently enabled. For G D MACH
one might reasonably assume Σc D fw; rg, Σu D

fc; bg. At a given state q of G, it will be true in
general that ı.q; �/Š both for some (controllable)
events � 2 Σc and for some (uncontrollable)
events � 2 Σu. Among the � 2 Σc , at a given
time, some may be externally enabled and others
disabled. So, G will nondeterministically choose
its next generated event from the subset

f� 2 Σu j ı.q; �/Šg [f� 2 Σc j ı.q; �/Š & � is externally enabledg (1)

We formalize external enablement by a supervi-
sory control function V W L.G/ ! Pwr.Σ/,

where Pwr.�/ stands for power set. For s 2
L.G/, the evaluation V.s/ is defined to be the
event subset

V.s/ WD Σu [f� 2 Σc j � is externally enabled following sg (2)

In other words, the set (1) is expressible as

V.s/ \ f� 2 Σ j s:� 2 L.G/g (3)

namely, the subset of events that, immediately
following the generation of s by G, are either
enabled by default (executable events in Σu) or
else by the external controller’s decision (a subset
of executable events in Σc).

It is now easy to visualize how the generating
action of G is restricted by the action of V.�/.
Initially (having generated the empty string) G
chooses �1 2 V.�/ \ L.G/. Proceeding induc-
tively, after G has generated s D �1:�2 : : : �k 2

L.G/, s is fed back to the controller, which
evaluates V.s/ according to (2), announcing the
result to G, which then chooses �kC1 in (3),
and the process repeats. Of course the process
would terminate any time the set (3) happened
to become empty (although it need not). In any
case, we denote the subset of L.G/ so deter-
mined as L.V=G/, called the closed behavior of
V=G, where the latter symbol (formally unde-
fined) stands for G under the supervision of V .
It is clear that supervision is a feedback process

(Fig. 2), inasmuch as the choice of �kC1 in (3)
is not, in general, known in advance, hence must
be executed before the succeeding evaluation
V.s:�kC1/ can allow the generating process to
continue. With the closed behavior of V=G now
determined, we define the marked behavior

Lm.V=G/ WD L.V=G/ \ Lm.G/ (4)

namely, those marked strings of G that survive
under supervision by V . Thus supervisory control
is nonblocking if L.V=G/ D Lm.V=G/.

Existence of Controls for DES:
Controllability

Of fundamental interest is the question: what sub-
languages ofL.G/ qualify as a languageL.V=G/
for some choice of supervisory control function
V ? In other words, what is the scope of controlled
behavior(s) for a given G? So far we know that
L.V=G/ is a sublanguage of L.G/, but it is not
usually the case that an arbitrary sublanguage
would qualify. For instance, the empty string

Supervisory Control of Discrete-Event Systems 5

S

V G s

Supervisory Control of Discrete-Event Systems, Fig. 2
Feedback loop V=G

language f�g ¤ L.V=G/ for any V as in (2)
above, in case ı.qo; �/Š for some � in Σu, for such
� cannot be disabled.

Assume G is equipped with the technology of
controllable events, hence uncontrollable events
Σu � Σ. We make the basic definition: the
language K � Σ� is controllable (with respect
to G) provided

For all s 2 K and for all � 2 Σu;

whenever s:� 2 L.G/ then s:� 2 K: (5)

Informally, a string s can never exit from K

as the result of the execution by G of an
uncontrollable event: K is invariant under the
uncontrollable flow. In terms of G DMACH,
above, the languages f�g, fw:b;w:cg are
controllable, but fwg, fw;w:c:wg are not. For
instance, H WD fw;w:c:wg has closure H D

f�;w;w:c;w:c:wg, which contains the string
s WD w, but s:b D w:b can be executed in
MACH, b is uncontrollable, and s:b has exited
from H . It is logically trivial from (5) that the
empty language ; (with no strings whatever) is
controllable.

We can now answer the fundamental question
posed above.

Given a nonempty sublanguage K � L.G/;

there exists a supervisory control function V

such that K D L.V=G/, if and only if K

is controllable. (6)

This result exhibits the L.V=G/ property in a
structured way; furthermore, both the contain-
ment K � L.G/ and the controllability property
(5) (or its absence) can be effectively (algorith-

mically) decided in case K itself is the closed or
marked behavior of some given DES over Σ.

A key fact easily provable from (5) is that the
family of all controllable languages (with respect
to a fixed G) is algebraically closed under union,
namely,

If K1 and K2 are controllable languages,

then so is K1 [K2: (7)

In fact (7) can be extended to an arbitrary finite or
infinite union of controllable languages.

Given G as above, considered as the plant to
be controlled, suppose a new (regular) language
E is specified, as the maximal set of strings
that we are prepared to tolerate for generation
by G; for instance, E could be considered the
legal language for G (irrespective of what G is
potentially capable of generating, namely,L.G/).
Let us confine attention to the sublanguage of E
that contains only marked strings of G, namely,
E \ Lm.G/. We now bring in the family C.E \
Lm.G// of all controllable sublanguages of E \
Lm.G/ (including the empty language). From
(7) and its infinite extension, there follows the
existence of the controllable language

Ksup WD [fK j K 2 C.E \ Lm.G//g (8)

We haveKsup � E\Lm.G/, and clearly ifK 0 is
controllable and K 0 � E \ Lm.G/, then K 0 �
Ksup. Ksup is therefore the supremal (largest)
controllable sublanguage of E \ Lm.G/. Fur-
thermore, if Ksup is nonempty, then by (6) there
exists a supervisory control V such that Ksup D

L.V=G/; in this sense V is optimal (maximally
permissive), allowing the generation by G of the
largest possible set of marked strings that the
designer considers legal. We have thus estab-
lished abstractly the existence and uniqueness of
an optimal control for given G andE. This simple
conceptual picture is displayed (Fig. 3) as a Hasse
diagram, in which nodes represent sublanguages
of Σ� and rising lines (edges) the relation of
sublanguage containment.

In a Hasse diagram it could be that Ksup col-
lapses to the empty language ;. This means that

6 Supervisory Control of Discrete-Event Systems

Σ∗

Lm(G)

optimization
Lm(G) ∩ E

Ksup

K K

∅

E

Supervisory Control of Discrete-Event Systems, Fig. 3
Hasse diagram

there is no supervisory control for the problem
considered, either because the specifications are
too severe and the problem is over-constrained
or because the control technology is inadequate
(more events need to be controllable).

Under the finite-state assumption, Ksup is
effectively representable by a DES KSUP, which
may serve as the optimal feedback controller, as
displayed in Fig. 4. Here a string s generated by G
drives KSUP; at each state of KSUP, the events
defined in its transition structure are exactly those
available to G for nondeterministic execution (in
its corresponding state) at the next step of the
process. In this way the feedback control process
is inductively well defined. The computational
complexity of this design (cf. (8)) isO.jEj2�jGj2/
where E is a DES with Lm.E/ D E and j � j
denotes state size. The controller state size is
jKSUPj � jEj � jGj, the product bound being of
typical order.

KSUP G s

synchronization

Supervisory Control of Discrete-Event Systems, Fig. 4
Implementation of V=G

Supervisory Control Design:
Small Factory

The following example, Small Factory (SF), is an
illustration of supervisor design. As in Fig. 5, SF
consists of two machines MACH1 and MACH2
each similar to MACH above, connected by a
buffer BUF of capacity 2. In case of break-
down the machines can be repaired by a SER-
VICE facility as shown. Transition structures
of the machines and design specifications are
also displayed in Fig. 5. Σc (Σu) are odd (even)-
numbered events. When self-looped with all irrel-
evant events to form specification BUFSPEC,
the latter declares that the machines must be
controlled in such a way that BUF is not over-
flowed (an attempt by MACH1 to deposit a
workpiece in BUF when it is full) or subject
to underflow (an attempt by MACH2 to take a
workpiece from BUF when it is empty). In addi-
tion, SERVICE must enforce priority of repair
for MACH2: when the latter is down, repair of
MACH1 (if in progress) must be interrupted and
only resumed after MACH2 has been repaired;
this logic is expressed by BRSPEC. To form the
plant model G for the DES to be controlled, we
compute the synchronous product of MACH1
and MACH2. The result, say G = FACT, is a
DES of which the components MACHi are free
to execute their events independently except for
synchronization on events that are shared (here,
none). Similarly we form the synchronous prod-
uct of BUFSPEC and BRSPEC to obtain the full
specification DES SPEC. We now execute the
optimization step in the Hasse diagram (Fig. 3);
this yields the SF controller KSUP(21,47) with
21 states and 47 transitions. Online synchroniza-

Supervisory Control of Discrete-Event Systems 7

S

13

12

11
10 10 10

21 21

23

22

21
20

MACH1 MACH2BUFSPEC

22

23

BRSPEC

13, **

MACH1 BUF MACH2

SERVICE

1011 0212

12

13

22

23

* * *

∗ = {11,12,13,20,22,23}

**

∗∗ = {10,11,12,20,21}

Supervisory Control of Discrete-Event Systems, Fig. 5 Small Factory

tion of KSUP with FACT will result in genera-
tion of the optimal controlled behavior Ksup by
the feedback loop. Since Ksup � Lm.G/ by (8),
our marking conventions ensure that KSUP is
nonblocking.

In general the languageKsup will include in its
structure not only the constraints required by con-
trol but also the physical constraints enforced by
the plant structure itself (here, FACT). The latter
are thus redundant in the online synchronization
of the plant with the controller KSUP. A more
economical controller is obtained if the plant
constraints are projected out of KSUP to obtain
a reduced controller, say KSIM. Mathematically,
projection amounts to constructing a control con-
gruence or dynamically (and control) consistent
partition on the state set of KSUP and taking
the cells of this partition, abstractly, as the new
states for KSIM. In SF KSUP(21,47) is reduced
to KSIM(5,18), which when synchronized with
FACT yields exactly KSUP but is less than one-
quarter the state size. In practice a state size
reduction factor of ten or more is not uncommon.

Distributed Control by Supervisor
Localization

The projection technique above that yields a
reduced controller can be extended further to
create local controllers for individual component
DES. In Small Factory, to create a local controller
for machine MACH1, not only the constraints
imposed by the plant structure but also those
by control of machine MACH2 are redundant
or irrelevant. Projecting these constraints out
of the monolithic controller KSUP generates a
controller dedicated solely to control of machine
MACH1 and in this sense is “local.” A symmetric
projection generates another local controller
for MACH2. This procedure of creating local
controllers by decomposing the monolithic
controller is called supervisor localization.
It can be generalized as well to the case of
multicomponent DES and guarantees that the
local controllers when synchronized with the
plant yield exactly the monolithic controller.
Hence, equipped with its own private controller,
each component DES may act autonomously
without centralized supervision; meanwhile, the
collective local controlled behavior is ensured to

8 Supervisory Control of Discrete-Event Systems

be the same as that achieved by the monolithic
controller. This arrangement with only local
controllers is called (purely) distributed control
architecture; it is useful for systems comprised
of multiple autonomous components, such as
networked robots, vehicles, or sensors.

Typically, local controllers need to commu-
nicate certain events to one another to achieve
critical synchronization. The identity between
local controlled behavior and global controlled
behavior is based on the assumption that event
communication is instantaneous. In practice,
however, communication is through physical
channels, which are subject to (greater or less)
time delay. Consequently, when a local controller
sends an event � to another local controller,
the latter can receive � only after some delay.
This communication delay may be reflected by
a channel model that treats � as sending the
event, but a distinct � 0 as receiving the event,
such that � 0 occurs after � with (variable but
unbounded) delay. With this channel model,
one may test if the local controllers are robust
to communication delay, in the sense that the
channeled behavior (including � 0) is complete
and correct with respect to the original, idealized,
zero-delay controlled behavior. Completeness
means that every zero-delay behavior is some
projected channeled behavior (where the delayed
event � 0 is projected to �), while correctness
means that every projected channeled behavior is
some zero-delay behavior.

Supervisor Architecture and
Computation

As noted earlier, the state size jKSUPj of con-
troller KSUP is on the order of the product of
state sizes of the plant, jGj, and specification, jEj.
As these in turn are the synchronous products
of individual plant components or partial spec-
ifications, jKSUPj tends to increase exponen-
tially with the numbers of plant components and
specifications, the phenomenon of exponential
state space explosion. The result is that central-
ized or monolithic controllers such as KSUP can
easily reach astronomical state sizes in realis-

tic industrial models, thereby becoming infea-
sible in terms of computer storage for practi-
cal design. This issue can be addressed in two
basic ways: by decentralized and hierarchical
architectures, possibly in heterarchical combina-
tion, and by symbolic DES representation and
computation, where what is stored are not DES
and their controller transition structures in exten-
sional (explicit) form, but instead intensional or
algorithmic recipes from which the required state
and control variable evaluations are computed
online only when actually needed.

Supervisory Control Under Partial
Observations

For a DES G over alphabet Σ, let Σo � Σ

be a subalphabet interpreted as the events that
can be viewed by some external observer. A
mapping P W Σ� ! Σ�o is called a natural
projection if its action is simply to erase from
a string s in Σ� all the events in s (if any) that
do not belong to Σo while preserving the order
of events in Σo. By use of P it is possible to
carry over to DES the control-theoretic concept
of observability. Two strings s; s0 2 Σ� are look-
alikes with respect to P if Ps D Ps0, namely,
are indistinguishable to an observer (or channel)
modeled by P . Thus, given G and P as above,
a sublanguage K � L.G/ is observable if,
roughly, look-alike strings in K have the same
one-step extensions inK that are compatible with
membership in L.G/ and also satisfy a consis-
tency condition with respect to membership in
Lm.G/. For control under observations through
P , one defines a supervisory control function
V W L.G/ ! Pwr.Σ/ to be feasible if it
assumes the same value on look-alike strings, in
other words respects the observation constraint
enforced by P . It then turns out that a language
K � Lm.G/ can be feasibly synthesized in
a feedback loop including G and the feedback
channel P if and only if K is both controllable
and observable.

Although this result is conceptually satisfy-
ing, it is computationally inconvenient because,
by contrast with controllability, the property of

Supervisory Control of Discrete-Event Systems 9

S

sublanguage observability is not in general closed
under union. A substitute for observability is
sublanguage normality, a property stronger than
observability but one that is indeed closed under
union. Since the family of controllable and nor-
mal sublanguages of a given specification lan-
guage is nonempty (the empty language belongs)
and is closed under union, a (unique) supremal
(or optimal) element exists and can be computed;
it therefore solves the problem of supervisory
control under partial observations, albeit under
the normality restriction. The latter has the fea-
ture that the resulting supervisor can disable a
controllable event only if the latter is observ-
able, i.e., belongs to Σo. In some applications
this restriction might preclude the existence of a
solution altogether; in others it could be harmless,
or even desirable as a safety property, in that if
the intended disablement of a controllable event
happened to fail, and the event occurred after
all, the fault would necessarily be observable and
thus optimistically remediable in good time.

An intermediate property is known that
is weaker than normality but stronger than
observability, called relative observability. The
family of relatively observable sublanguages of
a given specification language is closed under
union and thus does possess a supremal element,
which in the regular case can be effectively
computed. When combined with controllability,
relative observability yields a solution to the
problem of supervisory control under partial
observations which places no limitation on the
disablement of unobservable controllable events.
Examples show that a nontrivial solution of this
type may exist in cases where the normality
solution is empty.

Summary and Future Directions

Supervisory control of discrete-event systems,
while relatively new, has reached a first level
of maturity in that it is soundly based in a
standard framework of (especially) finite-state
machines and regular languages. It has effectively
incorporated its own versions of control-theoretic
concepts like stability (in the sense of nonblock-

ing), controllability, observability, and optimality
(in the sense of maximal permissiveness).
Modular architectures and, on the computational
side, symbolic approaches enable design of
both monolithic and heterarchical/distributed
controllers for DES models of industrial size.
Major challenges remain, especially to develop
criteria by which competing architectures can be
meaningfully compared and to organize control
functionality in ways that are not only tractable
but also transparent to the human user and
designer.

Cross-References

�Applications of Discrete-Event Systems
�Models for Discrete Event Systems: An

Overview

Bibliography

Cai K, Wonham WM (2016) Supervisor localization: a
top-down approach to distributed control of discrete-
event systems. Lecture notes in control and information
sciences, vol 459. Springer International Publishing

Cassandras CG, Lafortune S (2008) Introduction to dis-
crete event systems. Springer, New York

Cieslak R, Desclaux C, Fawaz A, Varaiya P (1988) Super-
visory control of discrete-event processes with partial
observations. IEEE Trans Autom Control 33:249–260

Lin F, Wonham WM (1988) On observability of discrete-
event systems. Inf Sci 44:173–198

Ma C, Wonham WM (2005) Nonblocking supervisory
control of state tree structures. Lecture notes in control
and information sciences, vol 317. Springer, Berlin

Ramadge PJ, Wonham WM (1987) Supervisory control
of a class of discrete event processes. SIAM J Control
Optim 25:206–230

Seatzu C et al (ed) (2013) Control of discrete-event sys-
tems. Springer, London/New York

Wonham WM, Cai K, Rudie K (2018) Supervisory control
of discrete-event systems: a brief history. Ann Rev
Control 45:250–256

Wonham WM, Cai K (2019) Supervisory control of
discrete-event systems. Communications and Control
Engineering, Springer International Publishing

http://link.springer.com/Applications of Discrete-Event Systems
http://link.springer.com/Models for Discrete Event Systems: An Overview

	Supervisory Control of Discrete-Event Systems
	Introduction
	DES from a Control Viewpoint
	Base Model for Control of DES
	Existence of Controls for DES: Controllability
	Supervisory Control Design: Small Factory
	Distributed Control by Supervisor Localization
	Supervisor Architecture and Computation
	Supervisory Control Under Partial Observations
	Summary and Future Directions
	Cross-References
	Bibliography
	Bibliography

