
Discrete Event Dyn Syst (2015) 25:203–226
DOI 10.1007/s10626-014-0194-6

New results on supervisor localization, with case studies

Kai Cai · W. M. Wonham

Received: 7 February 2013 / Accepted: 23 April 2014 / Published online: 31 May 2014
© Springer Science+Business Media New York 2014

Abstract Recently we developed supervisor localization, a top-down approach to dis-
tributed control of discrete-event systems in the Ramadge-Wonham supervisory control
framework. Its essence is the allocation of monolithic (global) control action among the
local control strategies of individual agents. In this paper, we start by presenting several
refinements of our localization theory. First, we drop the original assumption that the event
sets of component agents are pairwise disjoint. Second, we show that consistent marking
information can be enforced by just one agent, which can be selected arbitrarily. Third, the
event sets of localized controllers are explicitly defined, in general as proper subsets of the
entire event set. For these generalizations, we again prove that the collective local controlled
behavior is identical to the global optimal and nonblocking controlled behavior. Moreover,
we provide a language interpretation of localization by relating the key concept of control
cover/congruence on the supervisor’s state set to a special right congruence on the supervi-
sor’s language.W e go on to apply the extended supervisor localization to solve a multi-agent
formation problem. We introduce a suitable formulation of formation invariance as well as
shortest paths to formation. Local strategies are synthesized for a group of agents to arrive
at a pre-specified formation in shortest paths; then issues of information exchange and con-
trol logic are examined. We further demonstrate the extended localization on a large-scale

This work was supported in part by Program to Disseminate Tenure Tracking System, MEXT, Japan
(Kai Cai).

This work was supported in part by the Natural Sciences and Engineering Research Council, Canada,
Grant no. 7399 (W. M. Wonham).

K. Cai (�)
Urban Research Plaza, Osaka City University, Osaka, Japan
e-mail: kai.cai@info.eng.osaka-cu.ac.jp

W. M. Wonham
Systems Control Group, Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada
e-mail: wonham@control.utoronto.ca

mailto:kai.cai@info.eng.osaka-cu.ac.jp
mailto:wonham@control.utoronto.ca


204 Discrete Event Dyn Syst (2015) 25:203–226

Cluster Tool example. By first synthesizing a set of decentralized supervisors and coordi-
nators by an efficient heterarchical approach, our localization yields a distributed control
architecture with comprehensible local control/coordination logic.

Keywords Discrete-event systems · Supervisory control · Supervisor localization ·
Distributed control · Automata

1 Introduction

Recently we developed a top-down approach, called supervisor localization (Cai and
Wonham 2010a, b), to the distributed control of discrete-event systems in the Ramadge-
Wonham (RW) supervisory control framework (Ramadge and Wonham 1987; Wonham
2013b). We view a plant to be controlled as comprised of independent asynchronous
agents which are coupled implicitly through control specifications. To make the agents
‘smart’ and semi-autonomous, our localization algorithm allocates external supervisory
control action to individual agents as their internal control strategies, while preserving the
optimality (maximal permissiveness) and nonblocking properties of the overall monolithic
(global) controlled behavior. Under the localization scheme, each agent controls only its
own events, although it may very well need to observe events originating in other (typically
neighboring) agents. We call such a scheme distributed control architecture.

Related, though distinct, control architectures are decentralized, hierarchical, and heter-
archical (for recent developments see e.g. Feng and Wonham 2008; Schmidt and Breindl
2011; Su et al. 2012). Both the distributed and the latter modular approaches aim to achieve
efficient computation and transparent control logic, while realizing monolithic optimality
and nonblocking. With modular supervision, global control action is typically allocated
among specialized supervisors enforcing individual specifications. By contrast, with our
distributed supervision it is allocated among the individual active agents; Cai and Wonham
(2010a, b) provide further discussion of this distinction.

We note that in Seow et al. (2009) and Pham and Seow (2012) the authors proposed
a multi-agent coordination scheme in the RW framework similar in general terms to the
distributed control architecture of our supervisor localization. Their synthesis procedure is
essentially, however, a combination of the existing standard RW supervisor synthesis with
partial observation (Wonham 2013b [Chapter 6]) and supervisor reduction (Su and Wonham
2004); no approach is presented to handle large-scale systems. By contrast, our localiza-
tion approach (combined with a heterarchical framework) has been successfully applied to
benchmark large systems (Cai and Wonham 2010a, b).

In this paper and its conference precursor (Cai and Wonham 2012a), we extend our
supervisor localization theory in the following three respects. First, we drop the original
assumption that component agents have pairwise disjoint event sets. As will be seen in
Section 2, a local controller is computed for each (controllable) event; when an event is
shared by two or more agents, the implementation of its local controller will be discussed.
Second, we separate the marking issue from the control issue, and synthesize a local marker
dedicated to maintaining correct marking information. The local marker may be imple-
mented by an arbitrarily selected agent. Third, the event sets of localized controllers are
explicitly defined, in general as proper subsets of the entire event set. These event sets deter-
mine the information exchange (or communication) structure among local controllers, and
in turn among component agents. As in Cai and Wonham (2010a), the communication struc-
ture is not specified a priori, but emerges as part of the solution for localization. For these



Discrete Event Dyn Syst (2015) 25:203–226 205

extensions, we again prove that the collective local controlled behavior is identical to the
global optimal and nonblocking controlled behavior. Furthermore, we provide a language
interpretation of localization by relating the key concept of control cover/congruence on the
supervisor’s state set to a special right congruence on the supervisor’s language.

We go on to apply extended supervisor localization to solve a multi-agent formation
problem. The problem is to control a team of agents to assume certain formations, e.g. line,
triangle, or circle. This problem finds application in many multi-agent cooperative tasks,
including exploring an area or guarding a territory, and is a research topic of current vitality
in robotics and ‘standard’ control communities (for some multi-agent formation problems
see e.g. Anderson et al. 2008; Smith et al. 2012). We first introduce a suitable discrete-
event formulation of formation invariance as well as shortest paths to formation. Then by
localization we derive distributed control strategies that drive a group of agents to arrive
at an arbitrarily pre-specified formation in shortest paths. Compared to deriving a local
controller for each agent as in Cai and Wonham (2010a), deriving a local controller for
each controllable event leads to simpler logic and more flexible implementation. Moreover,
issues of information exchange and control logic are discussed.

Our second demonstration of extended supervisor localization is a large-scale Cluster
Tool, with total state size approximately 3.6 × 1011. Cluster Tool is an integrated semicon-
ductor manufacturing system used for wafer processing (e.g. Yi et al. 2007); our model is
adapted from Su et al. (2010, 2012) which consists of an array of robots routing wafers
through different processing chambers connected sequentially by buffers. Because of the
large state size, we combine localization with an efficient heterarchical approach (Feng
and Wonham 2008): first synthesize a set of decentralized supervisors and coordinators
to achieve global optimal and nonblocking supervision, and then apply localization to
decompose each decentralized supervisor/coordinator into local controllers/markers for the
relevant controllable events. As a result, each controllable event may be associated with mul-
tiple local controllers/markers. Again localization with respect to each controllable event
allows deriving simpler control logic than localization with respect to each agent in Cai and
Wonham (2010a).

Finally, this paper differs from its conference precursor (Cai and Wonham 2012a) by (1)
including proofs of all results, (2) a language interpretation of key concepts in supervisor
localization, (3) treatment of multi-agent formation control and the corresponding local-
ization results, and (4) a detailed demonstration of extended supervisor localization on a
large-scale Cluster Tool.

The rest of the paper is organized as follows. In Section 2 we formulate the distributed
control problem. Section 3 presents extended supervisor localization theory. Section 4
provides a language interpretation of key concepts in supervisor localization. Section 5
applies extended localization to solve a multi-agent formation problem. Section 6 demon-
strates extended localization on a large-scale Cluster Tool. Finally in Section 7 we state
conclusions.

2 Problem formulation

The plant to be controlled is modeled by a generator

G = (Q, �, δ, q0,Qm) (1)

where Q is the state set; q0 ∈ Q is the initial state; Qm ⊆ Q is the set of marker states;
� is the finite event set, partitioned into �c, the controllable event subset, and �u, the



206 Discrete Event Dyn Syst (2015) 25:203–226

uncontrollable subset; δ : Q × � → Q is the (partial) state transition function. In the usual
way, δ is extended to δ : Q×�∗ → Q, and we write δ(q, s)! to mean that δ(q, s) is defined.
The closed behavior of G is the language

L(G) := {s ∈ �∗|δ(q0, s)!} (2)

and the marked behavior is

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (3)

We consider the plant G consisting of n component agents Gk = (Qk, �k, δk, q0,k,Qm,k),
k ∈ [1, n].1 In terms of language, this means the following: let Lk := L(Gk) and Lm,k :=
Lm(Gk); then the closed and marked behaviors of G are respectively

L(G) = ||{Lk|k ∈ [1, n]} and Lm(G) = ||{Lm,k|k ∈ [1, n]},
where || denotes synchronous product (Wonham 2013b). We say that G is nonblocking if
Lm(G) = L(G), where · denotes prefix closure (Wonham 2013b). We note that, compared
to Cai and Wonham (2010a), here no requirement is imposed that the agents’ event sets �k

be pairwise disjoint. Consequently G need not be nonblocking in general.
The component agents Gk , k ∈ [1, n], are implicitly coupled through a specification

language E ⊆ �∗ that imposes behavioral constraints on G. Recall (Wonham 2013b) that a
language F ⊆ �∗ is controllable with respect to G if

F̄�u ∩ L(G) ⊆ F̄ . (4)

Whether or not F is controllable, we denote by C(F ) the set of all controllable sublan-
guages of F . Then C(F ) is nonempty (since the empty language ∅ belongs), and contains
a unique supremal element, denoted sup C(F ) (Wonham 2013b). Now for the plant G and
the imposed specification E, let SUP = (X,�, ξ, x0, Xm) be the corresponding mono-
lithic supervisor that is optimal (i.e. maximally permissive) and nonblocking: the marked
language of SUP is

Lm(SUP) := sup C(E ∩ Lm(G)) ⊆ �∗, (5)

and the closed language is L(SUP) = L̄m(SUP). Throughout the paper we assume that
Lm(SUP) �= ∅. For a subset �o ⊆ �, the natural projection Po : �∗ → �∗

o is defined
according to

Po(ε) = ε, ε is the empty string;

Po(σ ) =
{

ε, if σ /∈ �o,

σ, if σ ∈ �o;
Po(sσ ) = Po(s)Po(σ ), s ∈ �∗, σ ∈ �. (6)

In the usual way, Po is extended to Po : Pwr(�∗) → Pwr(�∗
o ), where Pwr(·) denotes

powerset. We write P −1
o : Pwr(�∗

o ) → Pwr(�∗) for the inverse-image function of Po.
Let α be an arbitrary controllable event, i.e. α ∈ �c. We say that a generator

LOCα = (Yα,�α, ζα, y0,α, Ym,α), �α ⊆ �, is a local controller for α if LOCα can disable
only α. Let Pα : �∗ → �∗

α be the natural projection as in Eq. 6. Then in terms of language,
the above condition means that for all s ∈ �∗ and σ ∈ �, there holds

sσ ∈ L(G) & s ∈ P −1
α L(LOCα) & sσ /∈ P −1

α L(LOCα) ⇒ σ = α.

1In this paper the notation [1, n] is used for the integer interval {1, ..., n}.



Discrete Event Dyn Syst (2015) 25:203–226 207

The event set �α of LOCα in general satisfies {α} ⊆ �α ⊆ �. In typical cases, both
subset containments are strict; in fact the events in �α \ {α} may be critical to achieve
useful synchronization with the local controllers for other controllable events. It is worth
emphasizing that �α is not fixed a priori, but will be systematically determined, as part of
our localization result, to guarantee correct local control. Below we shall precisely define
�α , which was not given explicitly in Cai and Wonham (2010a).

In addition to local controllers, we introduce a local marker LOCM =
(Z,�M, ζM, z0, Zm), �M ⊆ �, which is also a generator such that

L(SUP) ∩ (Lm(G) ∩ P −1
M Lm(LOCM)) = Lm(SUP),

where PM : �∗ → �∗
M is the natural projection as in Eq. 6. One may think of LOCM

as monitoring the closed behavior of SUP, and sounding a ‘beep’ exactly when a string in
Lm(G) ∩ P −1

M Lm(LOCM) is generated. On the other hand, LOCM exercises no control
action; namely, for all s ∈ �∗ and σ ∈ �, there holds

sσ ∈ L(G) & s ∈ P −1
M L(LOCM) ⇒ sσ ∈ P −1

M L(LOCM).

The event set �M ⊆ � of LOCM , just like �α of LOCα above, will be generated as part
of our localization result to ensure correct marking.

We are ready to formulate the Distributed Control Problem. Construct a set of local
controllers {LOCα|α ∈ �c} and a local marker LOCM , with

L(LOC) :=
⋂

α∈�c

P −1
α L(LOCα) ∩ P −1

M L(LOCM), (7)

Lm(LOC) :=
⋂

α∈�c

P −1
α Lm(LOCα) ∩ P −1

M Lm(LOCM), (8)

such that the following two properties hold:

L(G) ∩ L(LOC) = L(SUP),

Lm(G) ∩ Lm(LOC) = Lm(SUP).

For the sake of easy implementation and comprehensibility, it would be desired in practice
that the state sizes of local controllers and local marker be very much less than that of their
parent monolithic supervisor. Inasmuch as this property is neither precise to state nor always
achievable, it is omitted from the formal problem statement; in applications, nevertheless, it
should be kept in mind.

Finally, compared to the localization in Cai and Wonham (2010a), which is with respect
to individual agents Gk , the localization scheme in this paper is with respect to each con-
trollable event; and moreover the two issues, control and marking, are treated separately.
This scheme allows diverse ways of allocating the local controllers LOCα , α ∈ �c, and the
local marker LOCM among the set of component agents Gk , k ∈ [1, n]. For example, if Gk

and Gj share a controllable event α, i.e. α ∈ �c,k ∩ �c,j , then the local controller LOCα

can be allocated to either agent or to both. Also, the local marker may be implemented by
some arbitrarily chosen agent(s), whereas in Cai and Wonham (2010a) all agents need to



208 Discrete Event Dyn Syst (2015) 25:203–226

deal with marking. Among others, the following is a convenient allocation, in the sense that
every LOCα , and LOCM , is implemented by exactly one agent.

G1 : (∀α ∈ �c,1) LOCα, LOCM

G2 : (∀α ∈ �c,2 \ �c,1) LOCα

...

Gn : (∀α ∈ �c,n \ (�c,n−1 ∪ · · · ∪ �c,1)) LOCα (9)

3 Supervisor localization

We solve the Distributed Control Problem by developing a supervisor localization proce-
dure similar to Cai and Wonham (2010a), with the difference that the issues of control and
marking are dealt with separately. The main concepts were originally adapted from Su and
Wonham (2004) for supervisor reduction.

3.1 Control localization

Fix a controllable event α ∈ �c. We will establish a control cover on X (the state set of
SUP) based only on the control information pertaining to α, as captured by the following
two functions. First define Eα : X → {1, 0} according to

Eα(x) = 1 iff ξ(x, α)!. (10)

Thus Eα(x) = 1 means that α is enabled at x. Next define Dα : X → {1, 0} according to
Dα(x) = 1 iff

¬ξ(x, α)! & (∃s ∈ �∗)(ξ(x0, s) = x & δ(q0, sα)!). (11)

So Dα(x) = 1 means that α must be disabled at x (i.e. α is not defined at x, but x is reached
by a string s such that the string sα is in the closed behavior L(G)). Notice that if ¬ξ(x, α)!
but (∀s ∈ �∗) ξ(x0, s) = x ⇒ ¬δ(δ(q0, s), α)!, then Eα(x) = Dα(x) = 0; we refer to
such x as a ‘don’t care’ state. Based on this enablement and disablement information of α,
we define the following binary relation Rα on X, called ‘control consistency’.

Definition 1 A binary relation Rα ⊆ X × X is a control consistency relation with respect
to α if for every x, x′ ∈ X, (x, x′) ∈ Rα iff

Eα(x) · Dα(x′) = 0 = Eα(x′) · Dα(x).

Let Rα be a control consistency relation. Then a pair of states (x, x′) is not control con-
sistent exactly when α is enabled at x and is disabled at x′, or vice versa. Otherwise,
(x, x′) ∈ Rα . Similar to Cai and Wonham (2010a), Rα is reflexive and symmetric, but need
not be transitive, and consequently not an equivalence relation. This fact leads to the fol-
lowing definition of control cover. Recall that a cover on a set X is a family of nonempty
subsets (or cells) of X whose union is X.



Discrete Event Dyn Syst (2015) 25:203–226 209

Definition 2 Let Cα = {Xi ⊆ X|i ∈ Iα} be a cover on X, with Iα a suitable index set. We
say that Cα is a control cover with respect to α if

(i) (∀i ∈ Iα,∀x, x′ ∈ Xi) (x, x′) ∈ Rα,

(ii) (∀i ∈ Iα,∀σ ∈ �) [((∃x ∈ Xi) ξ(x, σ )!) ⇒(
(∃j ∈ Iα)(∀x′ ∈ Xi)ξ(x′, σ )! ⇒ ξ(x′, σ ) ∈ Xj

)]
.

A control cover Cα lumps states of SUP into (possibly overlapping) cells Xi , i ∈ Iα . Accord-
ing to (i) all states that reside in a cell Xi must be pairwise control consistent; and (ii) for
every event σ ∈ �, all states that can be reached from any state in Xi by a one-step transition
σ must be covered by the same cell Xj . Inductively, two states x, x′ belong to a common
cell of Cα if and only if (1) x and x′ are control consistent; and (2) two future states that can
be reached respectively from x and x′ by a given string are again control consistent. We say
that a control cover Cα is a control congruence if Cα happens to be a partition on X, namely
its cells are pairwise disjoint. To compute a local controller for event α, the localization
algorithm we proposed in Cai and Wonham (2010a) in fact searches for a control congru-
ence to achieve computational efficiency. In Section 4, below, we will further explain this
important concept in terms of equivalence relations on languages.

Having defined a control cover Cα on X, we construct a local controller LOCα =
(Yα,�α, ζα, y0,α, Ym,α) for the event α as follows.

(S1) The state set is Yα := Iα , with each state y ∈ Yα being a cell Xi of the cover Cα .
In particular, the initial state y0,α is a cell Xi0 containing x0, i.e. x0 ∈ Xi0 , and the
marker state set Ym,α := {i ∈ Iα|Xi ∩ Xm �= ∅}.

(S2) For the event set �α , define the transition function ζ ′
α : Iα × � → Iα over

the entire event set � by ζ ′
α(i, σ ) = j if (∃x ∈ Xi)ξ(x, σ ) ∈ Xj and (∀x′ ∈

Xi)
[
ξ(x′, σ )! ⇒ ξ(x′, σ ) ∈ Xj

]
. Choose �α to be the union of {α} with other events

which are not selfloop transitions of ζ ′
α , i.e.

�α := {α}∪̇{σ ∈ � \ {α}|(∃i, j ∈ Iα) i �= j&ζ ′
α(i, σ ) = j}. (12)

Clearly {α} ⊆ �α ⊆ �.
(S3) Define the transition function ζα to be the restriction of ζ ′

α to �α; namely ζα :=
ζ ′
α|Iα×�α : Iα × �α → Iα .

In the above construction, owing to the possible overlapping of cells in the cover Cα , the
choices of y0,α and ζα may not be unique, and consequently LOCα may not be unique. In
that case we pick an arbitrary instance of LOCα . If Cα happens to be a control congruence,
however, then LOCα is determined uniquely. By the same procedure as above, we generate
a set of local controllers LOCα , one for each controllable event α ∈ �c.

3.2 Marking localization

We deal now with marking information. Define M : X → {1, 0} according to

M(x) = 1 iff x ∈ Xm. (13)

Thus M(x) = 1 means that state x is marked in SUP. Also define T : X → {1, 0} according
to

T (x) = 1 iff (∃s ∈ �∗)ξ(x0, s) = x & δ(q0, s) ∈ Qm. (14)



210 Discrete Event Dyn Syst (2015) 25:203–226

So T (x) = 1 means that there is a string that reaches x and also reaches some marked state
in G. Note that for each x ∈ X, it follows from Lm(SUP) ⊆ Lm(G) that T (x) = 0 ⇒
M(x) = 0 and M(x) = 1 ⇒ T (x) = 1. Based on the above marking information, we
define the following binary relation RM on X, called ‘marking consistency’.

Definition 3 Let RM ⊆ X × X. We say that RM is a marking consistency relation if for
every x, x′ ∈ X, (x, x′) ∈ RM iff

T (x) = T (x′) ⇒ M(x) = M(x′).

Thus, a pair of states (x, x′) is marking consistent if x and x′ are both marked or both
unmarked in SUP, provided either (i) there exist strings s and s′ that reach x and x′, respec-
tively, and both reach some marked state(s) in G, or (ii) no string that reaches both x and x′,
reaches any marked state in G. Again it is verified that RM is reflexive and symmetric, but
need not be transitive, and consequently not an equivalence relation; this leads to the follow-
ing definition of marking cover, analogous to the control cover above. The difference is that
here the marking consistency relation RM is used instead of the control consistency Rα .

Definition 4 Let I be some index set, and CM = {Xi ⊆ X|i ∈ I } a cover on X. We say CM

is a marking cover if

(i) (∀i ∈ I, ∀x, x′ ∈ Xi) (x, x′) ∈ RM,

(ii) (∀i ∈ I, ∀σ ∈ �) [((∃x ∈ Xi) ξ(x, σ )!) ⇒(
(∃j ∈ I )(∀x′ ∈ Xi) ξ(x′, σ )! ⇒ ξ(x′, σ ) ∈ Xj

)]
.

Again, we say a marking cover CM is a marking congruence if CM happens to be a partition
on X.

With the marking cover CM , we construct a (nonblocking) generator LOCM =
(Z,�M, ζM, z0, Zm) by the same three steps (S1)–(S3) as in the previous subsection, except
for choosing (cf. (12))

�M := {σ ∈ �|(∃i, j ∈ I ) i �= j & ζ ′
M(i, σ ) = j}. (15)

3.3 Main result

Now we present the main result of this section.

Theorem 5 The set of local controllers {LOCα|α ∈ �c} and the local marker LOCM

constructed above solve the Distributed Control Problem; that is,

L(G) ∩ L(LOC) = L(SUP) (16)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (17)

where L(LOC) and Lm(LOC) are as defined in Eqs. 7 and 8, respectively.

Theorem 5 states that every set of control covers and every marking cover together generate
a solution to the Distributed Control Problem. In particular, a set of state-minimal local con-
trollers and a state-minimal local marker (possibly non-unique) can in principle be defined
from a set of suitable control covers and a suitable marking cover. The minimal state prob-
lem, however, is known to be NP-hard (Su and Wonham 2004); for computation in this paper
(Section 5 below), we shall resort to the polynomial-time localization algorithm designed



Discrete Event Dyn Syst (2015) 25:203–226 211

in Cai and Wonham (2010a) which generates control (resp. marking) congruences instead
of covers.

We note that Theorem 5 refines the main result of Cai and Wonham (2010a) in the fol-
lowing respects. First, the plant component agents Gk , k ∈ [1, n], may share events. Second,
the event sets �α of local controllers and the event set �M of the local marker are explic-
itly given in Eqs. 12 and 15, in general as proper subsets of �. Third, the marking issue is
separated from the control issue, and is enforced by a single local marker LOCM .

We now prove Theorem 5, first the (⊇) part of Eqs. 16 and 17, and then the (⊆) part.
Compared to the proof in Cai and Wonham (2010a) where the local event sets �α and �M

are assumed to be equal to �, here we address the general case �α ⊆ � and �M ⊆ � by
using natural projections Pα , PM , and their inverse-image functions.

Proof of Theorem 5 (⊇, Eq. 17) Since Lm(SUP) ⊆ Lm(G), it suffices to show that
Lm(SUP) ⊆ Lm(LOC), i.e. (∀α ∈ �c) Lm(SUP) ⊆ P −1

α Lm(LOCα) and Lm(SUP) ⊆
P −1

M Lm(LOCM) by Eq. 8. Let s = σ0σ1 · · · σh ∈ Lm(SUP). Then x1 := ξ(x0, σ0) ∈
X, . . . , xh := ξ(x0, σ0 · · · σh−1) ∈ X, xh+1 := ξ(x0, s) ∈ Xm. By the construction of
LOCα (α ∈ �c arbitrary), in particular the transition function ζ ′

α over �, there exist
i0, i1, . . . , ih+1 (with i0 = y0,α) such that

x0 ∈ Xi0 & ζ ′
α(i0, σ0) = i1,

x1 ∈ Xi1 & ζ ′
α(i1, σ1) = i2,

...

xh+1 ∈ Xih+1 & ζ ′
α(ih, σh) = ih+1. (18)

So ζ ′
α(i0, σ0σ1 · · · σh) = ζ ′

α(i0, s)!, and belongs to Ym,α because Xih+1 ∩ Xm �= ∅ (xh+1
belongs). Moreover since any σ /∈ �α (defined in Eq. 12) is only a selfloop transition of ζ ′

α ,
we derive ζα(i0, Pα(s)) ∈ Ym,α . Hence Pα(s) ∈ Lm(LOCα), i.e. s ∈ P −1

α Lm(LOCα). A
similar argument yields s ∈ P −1

M Lm(LOCM). (⊇, Eq. 16) This is an easy consequence of
(⊇, Eq. 17):

L(SUP) = Lm(SUP) ⊆ Lm(G) ∩ Lm(LOC)

⊆ Lm(G) ∩ Lm(LOC)

⊆ L(G) ∩ L(LOC).

(⊆, Eq. 16) We show this by induction. First, the empty string ε belongs to L(G), L(LOC),
and L(SUP), because these (closed) languages are all nonempty. Now suppose s ∈ L(G) ∩
L(LOC) ⇒ s ∈ L(SUP), and sα ∈ L(G) ∩ L(LOC), α ∈ �. It will be proved that
sα ∈ L(SUP). This is the case when α ∈ �u, since SUP is controllable. Let α ∈ �c. Then
by hypothesis and Eq. 7, s, sα ∈ P −1

α (L(LOCα)), i.e. Pα(s), Pα(s)α ∈ L(LOCα). Write
i := ζα(y0,α, Pα(s)) and j := ζα(i, α). By the definition of ζα (and ζ ′

α), there exist x ∈ Xi ,
x′ ∈ Xj such that ξ(x, α) = x′; hence Eα(x) = 1 (defined in Eq. 10). On the other hand,
by hypothesis s ∈ L(SUP), i.e. ξ(x0, s)!. Let s = σ0σ1 · · · σh; since ζα(y0,α, Pα(s)) = i,
it follows from the definition of ζ ′

α that ζ ′
α(y0,α, s) = ζ ′

α(y0,α, σ0σ1 · · · σh) = i. Hence,
performing the same construction as in Eq. 18 above and identifying i = ih+1, we derive
ξ(x0, s) ∈ Xi ; and by the control cover Definition 2, it holds that (x, ξ(x0, s)) ∈ Rα . It then
follows from Definition 1 that Dα(ξ(x0, s)) = 0. Since sα ∈ L(G), i.e. δ(δ(q0, s), α)!, we
conclude that ξ(ξ(x0, s), α)!, namely sα ∈ L(SUP).

(⊆, Eq. 17) Let s ∈ Lm(G) ∩ Lm(LOC); by Eq. 8, s ∈ P −1
M (Lm(LOCM)), i.e. PM(s) ∈

Lm(LOCM). Write im := ζM(z0, PM(s)). Then there exists x ∈ Xim ∩ Xm (here Xim is the



212 Discrete Event Dyn Syst (2015) 25:203–226

cell labeled by im); so that M(x) = 1 (defined in Eq. 13), which also implies T (x) = 1
(defined in Eq. 14). On the other hand, since Lm(G) ∩ Lm(LOC) ⊆ L(G) ∩ L(LOC) =
L(SUP) (the last equality has been shown above), we have s ∈ L(SUP). That is, ξ(x0, s)!.
Again let s = σ0σ1 · · · σh; since ζM(z0, PM(s)) = im, it follows from the definition of ζ ′

M

(similar to ζ ′
α) that ζ ′

M(z0, s) = ζ ′
M(z0, σ0σ1 · · · σh) = im. Hence, performing the same

construction as in Eq. 18 above and identifying im = ih+1, we derive ξ(x0, s) ∈ Xim ; and
by the marking cover Definition 4, it holds that (x, ξ(x0, s)) ∈ RM . Since s ∈ Lm(G), i.e.
δ(q0, s) ∈ Qm, we have T (ξ(x0, s)) = 1. Therefore by Definition 3, M(ξ(x0, s)) = 1, i.e.
s ∈ Lm(SUP).

We remark that in proving (⊆, Eq. 16) only the properties of local controllers LOCα (con-
trol information) were used, and in proving (⊆, Eq. 17) only the properties of local marker
LOCM (marking information) were used. That is, the issues of control and marking are
separated in the proof of Theorem 5. This fact also indicates that the local controllers col-
lectively guarantee correct, closed controlled behavior; while the local marker guarantees
correct, marked behavior.

4 Language interpretation of control/marking congruences

In light of the (Nerode) identification of “states” with the cells of a right congruence on a
language, it is of theoretical interest to identify a control congruence on the state set X of the
supervisor SUP with a corresponding construct on L(SUP). In this way control congruence
will be seen to arise “naturally” in the language framework of supervisory control theory.

In this section we relate control congruence on X to a special right congruence on
L(SUP). A similar relation can be established for marking congruence (Definition 4). Sev-
eral concepts to be used in this section—equivalence relation, Nerode equivalence relation,
canonical recognizer, and right congruence—are standard, and can be found in e.g. Wonham
(2013b [Chapters 1,2]).

Let SUP = (X,�, ξ, x0, Xm) be a supervisor, with closed language L(SUP) and marked
language Lm(SUP). Let ≡Lm(SUP) be the Nerode equivalence relation on L(SUP) with
respect to Lm(SUP); that is, for arbitrary strings s, t ∈ L(SUP), s and t are Nerode
equivalent, written (s, t) ∈≡Lm(SUP), if and only if

(∀u ∈ �∗) su ∈ Lm(SUP) ⇔ tu ∈ Lm(SUP).

Write | ≡Lm(SUP) | for the cardinality (number of cells) of ≡Lm(SUP). Suppose |X| =
| ≡Lm(SUP) |, i.e. SUP is the canonical recognizer of the language Lm(SUP).

Now fix α ∈ �c and let Cα = {Xi ⊆ X|i ∈ Iα} be a control congruence on X with
pairwise disjoint cells. Thus Cα corresponds to a partition Pα on L(SUP) as follows. For
each state x ∈ X let [x] := {s ∈ L(SUP)|ξ(x0, s) = x}, and for each cell Xi ⊆ X let
[Xi] := ⋃{[x]|x ∈ Xi}. Then Pα := {[Xi] ⊆ L(SUP)|i ∈ Iα} is the partition correspond-
ing to Cα . The partition Pα corresponds to an equivalence relation Eα on L(SUP) according
to (s, t) ∈ Eα if and only if

(∃i ∈ Iα) s ∈ [Xi] & t ∈ [Xi].

The equivalence relation Eα on L(SUP) thus corresponds to the control congruence Cα on
X. Our result is the following.



Discrete Event Dyn Syst (2015) 25:203–226 213

Theorem 6 The equivalence relation Eα on L(SUP) has the following properties:

(i) Eα is a right congruence on L(SUP), i.e.

(∀s, t ∈ L(SUP))(∀u ∈ �∗) su, tu ∈ L(SUP) & (s, t) ∈ Eα ⇒ (su, tu) ∈ Eα.

(19)

(ii) (∀s, t ∈ L(SUP)) (s, t) ∈≡Lm(SUP)⇒ (s, t) ∈ Eα .
(iii) (∀s, t ∈ L(SUP)) (s, t) ∈ Eα ⇒ (ξ(x0, s), ξ(x0, t)) ∈ Rα .

Proof
(i) We argue by induction on the length of string u ∈ �∗. If u = ε, then Eq. 19 holds

trivially. Suppose u = σ , an arbitrary event, and let sσ, tσ ∈ L(SUP), (s, t) ∈ Eα .
It will be shown that (sσ, tσ ) ∈ Eα . From (s, t) ∈ Eα we know that there exists
i ∈ Iα such that s, t ∈ [Xi]. It follows that (∃x, x′ ∈ Xi) ξ(x0, s) = x, ξ(x0, t) = x′.
Since sσ, tσ ∈ L(SUP), i.e. ξ(x, σ )! and ξ(x′, σ )!, by Definition 2(ii) there exists
j ∈ Iα such that ξ(x, σ ), ξ(x′, σ ) ∈ [Xj ]. That is, sσ, tσ ∈ [Xj ], and therefore
(sσ, tσ ) ∈ Eα . Inductively, Eq. 19 holds for an arbitrary string u ∈ �∗.

(ii) Let s, t ∈ L(SUP). Then

(s, t) ∈≡Lm(SUP) ⇒ (∃x ∈ X) s, t ∈ [x]
⇒ (∃i ∈ Iα) s, t ∈ [x] ⊆ [Xi]
⇒ (s, t) ∈ Eα

(iii) Let s, t ∈ L(SUP). Then

(s, t) ∈ Eα ⇒ (∃i ∈ Iα) s, t ∈ [Xi]
⇒ (∃x, x′ ∈ Xi) ξ(x0, s) = x, ξ(x0, t) = x′

⇒ (ξ(x0, s), ξ(x0, t)) ∈ Rα

We have thus established the correspondence of the control congruence Cα on X to the
special equivalence relation Eα on L(SUP): Eα is a right congruence on L(SUP) that is
‘coarser’ than the Nerode equivalence relation ≡Lm(SUP) and ‘finer’ than the control con-
sistency relation Rα (Definition 1). With Eα and L(SUP), a (finite-state) generator may be
defined (see Wonham 2013b [Section 2.3]); owing to the properties of Eα , the generator is
a valid local controller for event α.

5 Multi-agent formations

In this section, we apply extended supervisor localization to solve a multi-agent formation
problem. New features of extended localization will be illustrated. The goal of formation
control is to guide a team of agents, moving on a plane, to assume certain geometric for-
mations, e.g. line, triangle, or circle. This problem finds application in many multi-agent
cooperative tasks, including exploring an area or guarding a territory, and it is often desir-
able to design local control strategies for individual agents (e.g. Anderson et al. 2008; Smith
et al. 2012). The discrete-event formulation of the formation problem allows us to address
logical control specifications such as specific ordering and/or mutual exclusion of entering
a location, and supervisor localization will yield local controllers whose collective behavior
is identical to the global monolithic supervision.



214 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 1 Example: formations of three agents

Consider the specific example displayed in Fig. 1. Three agents are deployed from a
station to cooperatively explore and map an area of interest (e.g. a space station carrying
three mobile rovers lands on Mars and the rovers are dispatched to explore the terrain).
We first introduce a discrete-event formulation of this formation problem, and then provide
solutions by localization to (i) invariance of the desired formation and (ii) shortest paths to
the desired formation.

Suppose that owing to the terrain’s physical character, agents can traverse only clockwise
around a circular route. We discretize the route to get an (identical) generator model Ak =
(Qk,�k, δk, q0,k, Qm,k) for each agent k ∈ [1, 3], displayed on the right of Fig. 1. Here
the state set Qk = {0, ..., 9}, the event set �k = {k01, ..., k19}, the transition function δk

is clear from Fig. 1, the initial state q0,k = 0 (i.e. agent k in station), and the marker state
set Qm,k = ∅. The reason Qm,k is empty is that we will designate only desired formations,
introduced below, as marker states in our plant model.

For simplicity, all events are assumed to be controllable. We then compute2 the synchro-
nized generator A = ||3k=1Ak = (Q, �, δ, q0,Qm) for the collective behavior of Ak , i.e.
L(A) = ||3k=1L(Ak) and Lm(A) = ||3k=1Lm(Ak); we get

A = ({0, . . . , 9}3, {101, . . . , 319}, δ1 × δ2 × δ3, (0, 0, 0),∅).

Now suppose there are two alternative desired formations (dashed patterns in Fig. 1): (i) an
equilateral triangle, possibly for omnidirectional scan and mapping of the terrain; and (ii)
an alignment curve, possibly for close examination of a hot spot. To respond to the current
need, a team leader or a remote operator decides on one formation out of the two; then we
will design local control strategies for the agents to reach the target formation and hold this
formation hereafter. For formation (i), let

Q
f

1 = {(3, 6, 9), (6, 9, 3), (9, 3, 6)} ⊆ Q,

and for formation (ii), let

Q
f

2 = {(2, 3, 4), (4, 5, 6), (6, 7, 8)} ⊆ Q,

2Computation in this and next sections is by TCT software (Wonham 2013a).



Discrete Event Dyn Syst (2015) 25:203–226 215

Fig. 2 Specification (i): agents depart from station in the order first A3, then A2, and finally A1. The order
is enforced by generators (a) and (b). Generator (c) specifies that A1 must depart before A3 finishes its first
cycle. All states of the generators are marked. A marked state is denoted by a double circle � in this and all
subsequent figures

Since the two formations represent different geometric shapes, the above two sets are dis-
joint, Q

f

1 ∩ Q
f

2 = ∅. Moreover, we associate a distinct event τi /∈ �, i = 1, 2, to the

formation set Q
f
i ; execution of τi signals the leader/operator’s decision of choosing for-

mation type i. As will be seen below, event τi is used to ‘lock’ the three agents into the
formation Q

f
i , so that they reach Q

f
i and remain there from then on. We let τ1, τ2 both be

uncontrollable.
Now we define the plant G of the formation problem by revising A as follows:

G =
(
{0, . . . , 9}3, � ∪̇ {τ1, τ2}, δ ∪̇ δf, (0, 0, 0),Q

f

1 ∪̇Q
f

2

)
,

where δf := {(q, τ1) �→ q|q ∈ Q
f

1 }∪̇{(q, τ2) �→ q|q ∈ Q
f

2 } is a set of selfloop transitions

τi at each state in Q
f
i , i = 1, 2. Note that the marker state set of G is the union of the two

formation sets Q
f

1 and Q
f

2 .

5.1 Invariance of formation sets

Let E ⊆ �∗ be a specification language imposing behavioral constraints on the plant G.
Here we consider two constraints: (i) order of departure for the three agents from station;
and (ii) mutual exclusion (i.e. no more than one agent can occupy any given location on the
circular route). The generator models of these constraints are displayed in Figs. 2 and 3.

In addition to fulfilling the specification E, we require that the agents reach the subset
Qf := Q

f

1 ∪̇Q
f

2 of desired formations. For that, we introduce the generator C displayed in
Fig. 4. C specifies that all strings in �∗ may occur until an event τi , i = 1, 2, is executed;
after that execution, no event may occur except for τi . Note that in the plant G, event τi may
occur only as a selfloop transition at a state in Q

f
i , corresponding to the desired formation

type i. Thus C effectively renders each state in Qf ‘invariant’, in the sense that once a state

Fig. 3 Specification (ii): mutual exclusion at all 9 locations of the circular route



216 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 4 Specification generator: invariance of desired formation sets

in Qf is reached and an event τi executed (signaling that a desired formation is achieved),
then the system will stay in that state thereafter (i.e. the team of agents is locked in that
formation).

We compute the monolithic supervisor SUP to enforce both specifications E and Lm(C),
i.e.

Lm(SUP) = sup C(P −1
e E ∩ Lm(C) ∩ Lm(G)), (20)

where Pe : (� ∪̇ {τ1, τ2})∗ → �∗, and L(SUP) = L̄m(SUP). SUP has 304 states and 680
transitions; its state size may be reduced to 48 by the supervisor reduction algorithm in Su
and Wonham (2004).

Now we apply supervisor localization to decompose SUP into a local marker LOCM

and local controllers LOCα , one for each controllable event α ∈ �. For the example, the
local marker LOCM is simply a generator with a single marked state and all 30 local con-
trollers LOCα have state sizes between 2 and 4. Thus, localization achieves considerable

Fig. 5 Local controllers for the events of agent A1



Discrete Event Dyn Syst (2015) 25:203–226 217

further state reduction compared to Su and Wonham (2004). Moreover, the control logic
of localized controllers becomes transparent. In Fig. 5, we display the local controllers
for the events of agent A1; essentially, the logic of each controller is to ensure mutual
exclusion at a corresponding location with agent A2. Observe that each controller needs
certain event information only from agent A2 (no information is needed from A3); this
is because A1 follows A2 in the circular route and can never overtake A2 because of the
mutual exclusion constraint. We also note that when A1 travels around the route, it uses only
one local controller at each step; this is a consequence of computing a local controller for
each controllable event. This new feature leads to simpler control logic and further flexibil-
ity in controller implementation as compared to the agent-oriented localization in Cai and
Wonham (2010a).

5.2 Shortest paths to formation

Having derived the maximally permissive behavior of keeping the invariance of the desired
formations Qf (subject also to specification E), one may aim to realize the shortest paths
from the initial state to a formation. In our model, the transitions are not weighted; thus
shortest paths refer to the least number of transitions.

Fix i = 1, 2. We find the shortest paths to formation type i using the generator
Pr , r ≥ 1, displayed in Fig. 6. Pr specifies that τi is executed for the first time after
r transitions of events in �. We work up from r = 1, to find the least r such that
P −1

τi
Lm(Pr ) ∩ Lm(SUP) �= ∅, where Pτi

: (� ∪̇ {τ1, τ2})∗ → (� ∪̇ {τi})∗. For that least r ,
we compute the corresponding monolithic supervisor OPT such that

Lm(OPT) = sup C
(
P −1

τi
Lm(Pr ) ∩ Lm(SUP)

)
, (21)

and L(OPT) = L̄m(OPT). Thus every string in Lm(OPT) is one of the shortest paths from
the initial state to the formation type i.

Using the above method we find that the shortest paths to an equilateral triangle
(actually the state (3, 6, 9) ∈ Q

f

1 ) are of 18 steps (suitable combinations of events
101, 103, 105, 201, . . . , 211, 301, . . . , 317); and the shortest paths to an alignment curve
(actually the state (2, 3, 4) ∈ Q

f

2 ) are of 9 steps (suitable combinations of events 101, 103,
201, 203, 205, 301, 303, 305, 317). We then apply localization to the monolithic supervisor
OPT for shortest paths to an alignment curve; the resulting local marker LOCM and local
controllers LOCα are displayed in Fig. 7. We see that (i) the local marker LOCM is simply
a generator with a single marked state; (ii) agent A3 moves, without constraint, four steps
to location 4 in the circular route, and disables all remaining transitions; (iii) agent A2 fol-
lows agent A3, moves three steps to location 3, and disables all remaining transitions; and
(iv) agent A1 follows agent A2, moves two steps to location 2, and disables all remaining

Fig. 6 Specification for finding shortest paths to a desired type of formation



218 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 7 Local marker and local controllers decomposed from the monolithic supervisor OPT for shortest
paths to an alignment curve

transitions. Therefore, the agents reach the alignment curve (2, 3, 4) ∈ Q
f

2 after a total of 9
steps, which is the shortest path.

Finally we note that a problem called “convergence” (in shortest paths) has been studied
in Brave and Heymann (1990; 1993); Kumar et al. (1993) using concepts of attraction
and stability. Hence the supervisors SUP in Eq. 20 and OPT in Eq. 21 may be computed
using methods reported in those references. The focus of this case study is nevertheless on
localized results of these supervisors, and in particular the demonstration of several new
features of extended supervisor localization.

6 Cluster tool

In this section, we demonstrate extended supervisor localization on a large-scale system,
Cluster Tool. Cluster Tool is an integrated semiconductor manufacturing system used for
wafer processing (e.g. Yi et al. 2007); our model is adapted from Su et al. (2010, 2012),
with total state size approximately 3.6 × 1011. Owing to the large scale, we combine local-
ization with an efficient heterarchical approach (Feng and Wonham 2008) in two steps:
(1) synthesize a set of decentralized supervisors and coordinators to achieve global opti-
mal and nonblocking supervision; (2) apply localization to decompose each decentralized
supervisor/coordinator into local controllers/markers for the relevant controllable events.
This combined approach has been demonstrated successfully on benchmark examples in
Cai and Wonham (2010a, b); alternative heterarchical methods are e.g. Mohajerani et al.
(2011), Schmidt and Breindl (2011), and Su et al. (2012) with which our localization may
also be combined.

As displayed in Fig. 8, Cluster Tool consists of (i) two loading docks (Lin, Lout ) for
wafers entering and leaving the system, (ii) eleven vacuum chambers (C11, C12, . . . , C52)
where wafers are processed, (iii) four buffers (B1, . . . , B4) where wafers are temporarily



Discrete Event Dyn Syst (2015) 25:203–226 219

Fig. 8 Cluster Tool: an integrated semiconductor manufacturing system used for wafer processing

stored, and (iv) five robots (R1, . . . , R5) which transport wafers in the system according to
the following production sequence:

Lin → C51 → B4 → · · · → B2 → C21 → B1 → C11 ↓
C13

Lout ← C52 ← B4 ← · · · ← B2 ← C21 ← B1 ← C12 ↓ .

The five robots are the plant component agents; their generator models are displayed in
Fig. 9. Each robot Ri has 8 events, all assumed controllable; the robots have pairwise
disjoint alphabets. The plant is then the synchronous product of the five robot generators.

Next, we describe control specifications for Cluster Tool. (1) Figure 10(a): at each cham-
ber Cij a wafer is first dropped in by robot Ri , then processed (at state 1 of Cij ), and
finally picked up again by Ri . Thus a chamber behaves essentially like a one-slot buffer;
our first control specification is to protect each Cij against overflow and underflow. (2)
Figure 10(b): each buffer Bi has capacity one, and may be incremented by Ri from the
right (resp. Ri+1 from the left) and then decremented by Ri+1 from the left (resp. Ri from
the right). Our second control specification is to protect all buffers against overflow and
underflow. Thus far we have described specifications related to physical units–chambers
and buffers; the final requirement, denoted by Di (i ∈ [1, 3]), is purely logical, and
coordinates the operations between neighboring robots. (3) Figure 10(c): once robot Ri

Fig. 9 Plant components



220 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 10 Control specifications

(i ∈ [1, 3]) picks up a wafer from chamber Ci,2, it may not do so again until robot Ri+1
empties chamber Ci+1,2. The rationale for imposing this specification is as follows (refer
to Fig. 8): once a wafer is picked up by Ri (i ∈ [1, 3]) it needs to be transported through
Bi → Ri+1 → Ci+1,2 → Ri+1 → Bi+1; here buffers Bi , Bi+1 and robot Ri+1 can be
viewed as shared resources, and if chamber Ci+1,2 is full, then the above wafer transporta-
tion may cause blocking. For example, if a wafer gets held by robot Ri+1 while chamber
Ci+1,2 is full, then neither can the wafer be dropped to Ci+1,2 nor can Ri+1 empty Ci+1,2—a
deadlock situation. Hence a reasonable requirement to avoid system deadlock is to guaran-
tee an empty slot in Ci+1,2 before Ri initiates the wafer transportation. Note that we do not
impose the same specification between R4 and R5, because R5 can drop wafers out of the
system without capacity constraint.

On synchronizing plant components (Fig. 9) and control specifications (Fig. 10), the
uncontrolled state size is approximately 3.6 × 1011. Moveover, apart from satisfying all
imposed control specifications, the system will require nontrivial coordination to prevent
deadlocks caused by conflicts in using multiple shared buffers. Consequently, the overall
optimal and nonblocking control of Cluster Tool is a challenging design exercise.

We tackle the problem by using an efficient heterarchical approach (Feng and Wonham
2008) to synthesize a set of decentralized supervisors and coordinators which collectively
achieve global optimal and nonblocking supervision. In outline, the steps of this approach
are as follows (for details refer to Cai and Wonham 2010a, b; Feng and Wonham 2008). (1)
Synthesize an optimal nonblocking decentralized supervisor for each specification with the
relevant plant components (based on event sharing); (2) group the decentralized supervisors
into subsystems (an effective method is control-flow net (Feng and Wonham 2008) if certain
special structures are admitted), and design a coordinator for each subsystem if the latter



Discrete Event Dyn Syst (2015) 25:203–226 221

is blocking; (3) compute an abstraction for each subsystem based on natural projections
satisfying observer and output control consistency properties (Feng and Wonham 2008);
(4) group the abstractions into high-level subsystems, and design a coordinator for each
high-level subsystem if the latter is blocking; (5) repeat Steps (3) and (4) until a single
higher-level subsystem remains in Step (4).

For Cluster Tool, the above procedure yields 18 decentralized supervisors (one com-
puted for each specification in Step (1)) and 4 coordinators, as displayed in Fig. 11. In
Step (2) the 18 decentralized supervisors are grouped into 5 subsystems, and in Step (3)
one abstraction is computed for each subsystem. These five abstractions are conflicting;
in Step (4) we exploit the special structure of Cluster Tool and design four coordinators
to solve the conflict. The coordination logic will be explained below. By the heterarchical
architectural theory in Feng and Wonham (2008), the decentralized supervisors and coor-
dinators collectively achieve global optimal and nonblocking supervision. We now apply
extended supervisor localization to decompose each of the decentralized supervisors into
local controllers/markers with respect to the relevant controllable events.

Localizing decentralized supervisors SCij
For chamber specifications Cij , we obtain a set

of local controllers and (identical) local markers, as displayed in Fig. 12. For each SCij

there are two events requiring control action. We explain control logic for the case where
i ∈ [1, 5] and j = 1; the other cases are similar. One such event is pick-Cij , which must be
disabled (Ri may not pick up a wafer from chamber Cij ) if Cij is empty; this is to protect
chamber Cij against underflow. The other event requiring control action is Ri-pick-l, which
must be disabled (Ri may not pick up a wafer from left) if chamber Cij is full. This rule
prevents a deadlock situation: if Ri took a wafer and Cij were full, then Ri could neither
drop the wafer to Cij nor pick up a wafer from Cij . The rule at the same time prevents
chamber Cij from overflow. Note that controlling just event drop-Cij suffices to prevent
overflow, but cannot prevent deadlock.

Localizing decentralized supervisors SBi
For buffer specifications Bi , we obtain a set of

local controllers and (identical) local markers, as displayed in Fig. 13. For each SBi
there

are six events requiring control action. Events Ri-drop-l and Ri+1-drop-r must be disabled
(Ri or Ri+1 may not drop a wafer into buffer Bi) when Bi is full—this is to prevent buffer
overflow. On the other hand, events Ri-pick-l and Ri+1-pick-r must be disabled (Ri or
Ri+1 may not pick up a wafer from buffer Bi) when Bi is empty—this is to prevent buffer
underflow. In addition to preventing buffer overflow and underflow, event pick-Ci2 must be

Fig. 11 Heterarchical supervisor synthesis of Cluster Tool



222 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 12 Local controllers and local marker obtained by localizing decentralized supervisors SCij

disabled (Ri may not pick up a wafer from chamber Ci2) unless there is no wafer on the path
Ri −Bi −Ri+1. This logic is to prevent the deadlock situation where both Ri and Ri+1 pick
up a wafer to transport through Bi , but neither can do so because the buffer has capacity of
only one. For the same reason, event pick-Ci+1,1 must be disabled (Ri+1 may not pick up a
wafer from chamber Ci+1,1) unless there is no wafer on the path Ri − Bi − Ri+1.

Fig. 13 Local controllers and local marker obtained by localizing decentralized supervisors SBi



Discrete Event Dyn Syst (2015) 25:203–226 223

Fig. 14 Local controllers and local marker obtained by localizing decentralized supervisors SDi

Localizing decentralized supervisors SDi
For logical specifications Di , we obtain a set of

local controllers and (identical) local markers, as displayed in Fig. 14. For each SDi
only the

event pick-Ci2 requires control action: it must be disabled (Ri may not pick up a wafer from
chamber Ci2) if the neighboring chamber Ci+1,2 is full. This logic is to prevent blocking
while wafers are transported from right to left in the system, as explained above when the
specifications were imposed.

Coordinators COi The designed coordinators are displayed in Fig. 15. We designed these
four coordinators by analyzing the structure of Cluster Tool and the wafer transportation
route (Fig. 8); the coordination logic is as follows. Observe in Fig. 8 that once a wafer is
picked up from chamber Ci1 (i.e. pick-Ci1 occurs), it will be transported by robot Ri to the
right, and so all the way to R1 and then back to the left to Ri—a looping route. For example,
when R3 takes a wafer from C31, the loop is:

C31 R3−−−→B2 R2−−−→C21 R2−−−→B1 R1−−−→C11 ↓ R1

C13

C32
←−−−

R3 B2
←−−−

R2 C21
←−−−

R2 B1
←−−−

R1 C12 ↓ R1.

Since the loop has limited capacity to hold wafers, control is needed at the entrance and exit
of the loop to prevent ‘choking’ the loop with too many wafers. The logic of the coordina-
tors in Fig. 15 specifies that event pick-Ci1 must be disabled if the number of wafers input
exceeds wafers output by 2i − 1. Note that the loop capacity 2i − 1 is exactly the num-
ber of chambers in the loop; this is because robots and buffers are shared resources, and if
all the chambers are full, inputting one more wafer to the loop will clearly cause deadlock.

Fig. 15 Coordinators COi (i ∈ [2, 5]) each having 2i states



224 Discrete Event Dyn Syst (2015) 25:203–226

Fig. 16 Distributed control implementation for Cluster Tool: each robot is supervised by its own set of
local controllers, as well as interacting (e.g. through event communication) with its immediate left and right
neighbors. Robots R3 and R4 both have 18 local controllers and 1 coordinator, the same as R2

We remark that this coordination rule requires global knowledge: for example, to disable
event pick-C51, the coordinator CO5 needs to know a priori the capacity of the whole loop
on the right. By knowledge of the loop capacity, however, each coordinator may be imple-
mented locally because it suffices just to count the numbers of wafers input and output to
the corresponding loop.

By our main Theorem 5, the collective controlled behavior of the derived local controllers
and local markers in Figs. 12–14 is identical to that of the 18 decentralized supervisors;
jointly with the 4 coordinators, the collective behavior is therefore identical to the global
optimal nonblocking supervision. For control implementation, since the component robots
Ri , i ∈ [1, 5], do not share events, a natural way is to group the local controllers with the
robot that owns the corresponding controllable events. For the local marker, which is simply
one marked state in all localized results, we associate it with an arbitrary robot, say R1.
Finally, one coordinator COi is associated with one robot Ri , i ∈ [2, 5], because each COi

disables only event pick-Ci1. This grouping of local controllers/marker and coordinators
yields the distributed control architecture displayed in Fig. 16, where each robot interacts
only with its nearest neighbor(s) with the communication events identified. Compared to the
agent-oriented localization scheme in Cai and Wonham (2010a) where each robot acquires a
single local controller, our new scheme allows further modularization in control allocation,
thereby yielding more transparent control logic.

Finally, we remark that in the work of Su et al. (2010, 2012) on Cluster Tool, the primary
focus was on reducing computational complexity in achieving global optimal and non-
blocking control. There the authors proposed an efficient “distributed supervisor” synthesis,
based on abstraction and coordination techniques, which solves the Cluster Tool problem
by involving state sizes of order only 102 in the computations. It is not clear, however,
what the resulting control and coordination rules are. Engineers, on the other hand, demand
comprehensible rules for easy implementation and safe management, especially when the
plant itself has an intelligible structure; in this case, the system components are connected
in a loop. Our supervisor localization, built on an heterarchical control synthesis approach,
indeed results in transparent control/coordination rules.

7 Conclusions

We have extended supervisor localization, as developed in Cai and Wonham (2010a), to
allow that (i) component agents may share events, (ii) the marking issue is separated from
the control issue and can be enforced by an arbitrarily selected agent, and (iii) the event



Discrete Event Dyn Syst (2015) 25:203–226 225

sets of localized controllers are explicitly defined in general as proper subsets of the entire
event set. Moreover, we have demonstrated extended supervisor localization on two case
studies: multi-agent formation and Cluster Tool. Our results illustrate that the new features
of localization can yield more transparent local control logic and more flexible control
implementation.

In future research we aim to study further applications of multi-agent formation. Sev-
eral deeper problems may be posed: (i) when there are a large number of agents resulting
in a large monolithic state set, resort to smart computations, e.g. state tree structures and
binary decision diagrams (Cai and Wonham 2012b; Ma and Wonham 2005), to derive local
controllers and local marker; (ii) find (if possible) the relation between specified goal forma-
tions and the communication structure among agents; and (iii) find (if possible) the tradeoffs
between path length to formation and amount of information exchange among agents.

References

Anderson BDO, Yu C, Fidan B, Hendrickx JM (2008) Rigid graph control architectures for autonomous
formations. IEEE Control Syst Mag 28(6):48–63

Brave Y, Heymann M (1990) Stabilization of discrete-event processes. Int J Control 51(5):1101–1117
Brave Y, Heymann M (1993) On optimal attraction in discrete-event processes. Inf Sci 67(3):245–276
Cai K, Wonham WM (2010a) Supervisor localization: a top-down approach to distributed control of discrete-

event systems. IEEE Trans Autom Control 55(3):605–618
Cai K, Wonham WM (2010b) Supervisor localization for large discrete-event systems—case study produc-

tion cell. Int J Adv Manuf Technol 50(9–12):1189–1202
Cai K, Wonham WM (2012a) New results on supervisor localization, with application to multi-agent

formations. In: Proceedings of the workshop on discrete-event systems. Guadalajara, pp 233–238
Cai K, Wonham WM (2012b) Supervisor localization of discrete-event systems based on state tree structures.

In: Proceedings of the 51st IEEE conference on decision and control. Maui, pp 5822–5827
Feng L, Wonham WM (2008) Supervisory control architecture for discrete-event systems. IEEE Trans Autom

Control 53(6):1449–1461
Kumar R, Garg V, Marcus SI (1993) Language stability and stabilizability of discrete event dynamical

systems. SIAM J Control Optim 31(5):1294–1320
Ma C, Wonham WM (2005) Nonblocking supervisory control of state tree structures. Springer
Mohajerani S, Malik R, Ware S, Fabian M (2011) On the use of observation equivalence in synthesis

abstraction. In: Proceedings of the international workshop on dependable control of discrete systems.
Saarbrucken, pp 84–89

Pham MT, Seow KT (2012) Discrete-event coordination design for distributed agents. IEEE Trans Autom
Sci Eng 9(1):70–82

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control
Optim 25(1):206–230

Schmidt K, Breindl C (2011) Maximally permissive hierarchical control of decentralized discrete event
systems. IEEE Trans Autom Control 56(4):723–737

Seow KT, Pham MT, Ma C, Yokoo M (2009) Coordination planning: applying control synthesis methods for
a class of distributed agents. IEEE Trans Control Syst Technol 17(2):405–415

Smith SL, Schwager M, Rus D (2012) Persistent robotic tasks: monitoring and sweeping in changing
environments. IEEE Trans Robot 28(2):410–426

Su R, Wonham WM (2004) Supervisor reduction for discrete-event systems. Discrete Event Dyn Syst
14(1):31–53

Su R, van Schuppen JH, Rooda JE (2010) Aggregative synthesis of distributed supervisors based on
automaton abstraction. IEEE Trans Autom Control 55(7):1627–1640

Su R, van Schuppen JH, Rooda JE (2012) Maximum permissive coordinated distributed supervisory control
of nondeterministic discrete-event systems. Automatica 48(7):1237–1247

Wonham WM (2013a) Design software: TCT. Systems Control Group, ECE Dept, University of Toronto.
Available online at http://www.control.toronto.edu/DES Accessed July 1 2013

Wonham WM (2013b) Supervisory control of discrete-event systems. Systems Control Group, ECE Dept,
University of Toronto. Available online at http://www.control.toronto.edu/DES. Accessed July 1 2013

http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES


226 Discrete Event Dyn Syst (2015) 25:203–226

Yi J, Ding S, Zhang MT, van der Meulen P (2007) Throughput analysis of linear cluster tools. In: Proceedings
of the 3rd IEEE international conference on automation science and engineering. Scottsdale, pp 1063–
1068

Kai Cai received the B. Eng. degree in Electrical Engineering from Zhejiang University (China) in 2006, the
M.A.Sc. degree in Electrical and Computer Engineering from the University of Toronto (Canada) in 2008,
and the Ph.D. degree in Systems Science from Tokyo Institute of Technology (Japan) in 2011.

From 2011 to 2013 he was a postdoctoral fellow in the University of Toronto, and from 2013 to 2014
an assistant professor in the University of Tokyo. Since April 2014 he joined as an Associate Professor the
Urban Research Plaza, Osaka City University. His research interests are distributed control of multi-agent
systems, distributed control of discrete-event systems, and theory of control architecture.

W. M. Wonham received the B. Eng. degree in engineering physics from McGill University in 1956, and the
Ph.D. in control engineering from the University of Cambridge (U.K.) in 1961.

From 1961 to 1969 he was associated with several U.S. research groups in control. Since 1970 he has been
a faculty member in Systems Control, with the Department of Electrical and Computer Engineering of the
University of Toronto. Wonham’s research interests have included stochastic control and filtering, geometric
multivariable control, and discrete-event systems.

He is the author of “Linear Multivariable Control: A Geometric Approach” (Springer-Verlag: 3rd ed.
1985) and co-author (with C. Ma) of “Nonblocking Supervisory Control of State Tree Structures” (Springer-
Verlag: 2005).

Wonham is a Fellow of the Royal Society of Canada, a Life Fellow of the IEEE, and a Foreign Associate
of the (U.S.) National Academy of Engineering. In 1987 he received the IEEE Control Systems Science and
Engineering Award and in 1990 was Brouwer Medallist of the Netherlands Mathematical Society. In 1996 he
was appointed University Professor in the University of Toronto, and in 2000 University Professor Emeritus.


	New results on supervisor localization, with case studies
	Abstract
	Introduction
	Problem formulation
	Supervisor localization
	Control localization
	Marking localization
	Main result

	Language interpretation of control/marking congruences
	Multi-agent formations
	Invariance of formation sets
	Shortest paths to formation

	Cluster tool
	Localizing decentralized supervisors SCij
	Localizing decentralized supervisors SBi
	Localizing decentralized supervisors SDi
	Coordinators COi



	Conclusions
	References


