
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1329

Supervisor Localization of Discrete-Event
Systems Based on State Tree Structures

Kai Cai and W. M. Wonham

Abstract—Recently we developed supervisor localization, a top-down ap-
proach to distributed control of discrete-event systems in the Ramadge-
Wonham supervisory control framework. Its essence is the decomposition
of monolithic (global) control action into local control strategies for indi-
vidual agents. In this technical note, we establish a counterpart localization
theory in the framework of State Tree Structures, known to be efficient for
control design of very large systems. We prove that the collective localized
control behavior is identical to the monolithic optimal (i.e. maximally per-
missive) and nonblocking controlled behavior. Further, we propose a new
and more efficient localization algorithm which exploits BDD computation.

Index Terms—Binary decision diagram (BDD), discrete-event systems
(DES), state tree structures (STS), supervisor localization.

I. INTRODUCTION

Recently we developed a top-down approach, called supervisor
localization [1]–[3], to the distributed control of discrete-event
systems (DES) in the language-based Ramadge-Wonham (RW) su-
pervisory control framework [4]. We view a plant to be controlled as
comprised of independent asynchronous agents which are coupled
implicitly through control specifications. To make the agents “smart”
and semi-autonomous, our localization algorithm allocates external
supervisory control action to individual agents as their internal control
strategies, while preserving the optimality (maximal permissiveness)
and nonblocking properties of the overall monolithic (global) con-
trolled behavior. The resulting internal control strategies are typically
more transparent than external supervision [2].
In this technical note and its conference precursor [16], we con-

tinue our investigation of supervisor localization, but in the (dual) state-
based framework of DES. We adopt the recently developed formalism
of State Tree Structures (STS) [6], [17], adapted from Statecharts [7],
which has been demonstrated to be computationally efficient for mono-
lithic (i.e., fully centralized) supervisor synthesis in the case of large
systems (see [6], [17] for details). Our aim is to exploit the computa-
tional power of STS to solve distributed control problems in that case
as well.
STS efficiently model hierarchical and concurrent organization of

the system state set. The latter is structured as a hierarchical state tree,
equipped with modules (holons) describing system dynamics. For sym-
bolic computation, STS are encoded into predicates. A second fea-
ture contributing to computational efficiency is the use of binary de-
cision diagrams (BDD) [8], a data structure which enables a com-
pact representation of predicates that admits their logical manipula-
tion. With BDD representation of encoded STS models, the compu-
tational complexity of supervisor synthesis becomes polynomial in the

Manuscript received June 11, 2012; revised November 25, 2012 and June
28, 2013; accepted October 17, 2013. Date of publication November 06, 2013;
date of current version April 18, 2014. Recommended by Associate Editor C.
Hadjicostis.
The authors are with the Systems Control Group, Department of Electrical

and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4
Canada (e-mail: kai.cai@scg.utoronto.ca; wonham@control.utoronto.ca).
Color versions of one or more of the figures in this technical note are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2013.2289033

number of BDD nodes , rather than in the ‘flat’ system state
size . In many cases , thereby achieving
computational efficiency. In localization, we exploit both these features
of STS.
The contributions of this technical note are two-fold. First, we es-

tablish supervisor localization theory in the STS framework: formu-
late the state-based distributed control problem, define the concept of
control cover for localization, and prove control equivalence between
local controllers and the monolithic one. In particular, the state-based
control equivalence between local and monolithic supervision is a new
concept, which differs from the language-based one in [1]–[3] that re-
quires the closed andmarked languages respectively of local andmono-
lithic supervision to be identical. Our second contribution is a symbolic
localization algorithm which computes local controllers via predicates
represented by BDDs. This algorithm is proved to be more efficient
than that in [1]–[3]. A case study is presented in [5] which applies
the symbolic localization algorithm to address distributed control of
a large-scale system.
We note that [9], [10] also proposed an approach to improving trans-

parency of supervisory control by computing guards (i.e. propositional
formulae) for each controllable event. Starting from a set of (extended)
finite automata, the approach first computes a monolithic supervisor
in BDD form, then converts the BDD supervisor to guards for indi-
vidual controllable events, and finally attaches the guards to the orig-
inal (extended) finite automata. In converting the BDD supervisor to
individual guards, several symbolic heuristic minimization techniques
are used to reduce the size of guards; by contrast, our localization is
based on constructing a control cover on the state set of the supervisor,
and the localization algorithm works to minimize the number of cells
of the control cover. Another distinction between our localization and
[9], [10] is that localization determines the set of events that has to be
observed for correct local decision making, while guards for control-
lable events determine relevant state combinations. So far our localiza-
tion and the approach in [9], [10] have been applied to several different
large-scale systems; it will be of interest in future work to compare the
two approaches in the same settings.
We also note that [11], [12] presented a method based on extended

finite state machines and “polynomial dynamic systems” to implement
the monolithic supervisor by a set of distributed supervisors with
communication. The approach fixes a priori subsets of observable
events for individual agents, which may practically rule out the
existence and/or global optimality of the monolithic supervisor. By
contrast, our localization approach always guarantees existence and
global optimality, and the observation scopes of individual agents will
emerge automatically as part of the solution. In addition, the authors
in [13], [14] proposed a multi-agent coordination scheme in the RW
framework similar in general terms to our supervisor localization
scheme. Their synthesis procedure is essentially, however, a combi-
nation of the existing standard RW supervisor synthesis with partial
observation [4] and supervisor reduction [15]; and no approach is
presented to handle large systems. In this technical note we establish
our original supervisor localization in the STS framework, intended
for large complex systems (for a case study see [5]).
The rest of the technical note is organized as follows. In Section II

we provide preliminaries on STS. In Section III we formulate the dis-
tributed control problem. Section IV develops the STS supervisor lo-
calization theory and Section V presents a symbolic localization algo-
rithm for computing local controllers. Finally in Section VI we state
conclusions.

0018-9286 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1330 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

II. PRELIMINARIES ON STATE TREE STRUCTURES

This section provides relevant preliminaries on the STS-based super-
visory control theory, summarized from [6], [17]. A state tree structure
(STS) for modeling DES is a six-tuple

(1)

Here is the state tree organizing the system’s state set into a hi-
erarchy; is the set of holons (finite automata) matched to that
describe the ‘local’ behavior of ; is the finite event set, parti-
tioned into the controllable subset and the uncontrollable subset
. Let denote the set of all sub-state-trees of . Then

is the ‘global’ transition function;
is the initial state tree; and is the set

ofmarker state trees. A special type of sub-state-tree of is the basic
(state) tree, each corresponding to one ‘flat’ system state in the RW
framework. Let be the set of all basic trees of .
A predicate defined on is a function
where 0 (resp. 1) stands for logical ‘false’ (resp. ‘true’). The predicate

is identically 0 (1). Thus, can be identified by the subset
of basic trees . We shall often

write for . Also for a sub-state-tree ,
we define if and only if . Given the initial
predicate with , and
the marker predicate with

, the STS in (1) can be rewritten as

(2)

Next write for the set of all predicates on , and
introduce for the partial order defined by iff

; namely holds exactly when
for every . Important elements in are the reach-
ability and coreachability predicates. Let . The reach-
ability predicate holds on just those basic trees that can be
reached in , from some , via a path (sequence) of state
trees all satisfying . Dually, the coreachability predicate
is defined to hold on those basic trees that can reach some

in by a path of state trees all satisfying . It holds that
and . A predicate is nonblocking

(with respect to ) if , i.e. every basic tree
reachable from some initial state tree can also reach some marker state
tree in .
Another key property of a predicate is controllability (cf.

controllability of a language [4]). For define a map
by iff .

Thus identifies the largest subset of basic trees from which
there is a one-step transition into , or at which is not defined
(i.e. ). A predicate is called weakly controllable if

. Thus is weakly controllable if it is
invariant under the dynamic flow induced by uncontrollable events.
For an arbitrary predicate bring in the family

of nonblocking and weakly controllable subpredicates of ,
.

Then is nonempty (since belongs) and is closed
under arbitrary disjunctions ; in particular the supremal element

exists in .
Now define a state feedback control (SFBC) to be a function

, where . Thus assigns to
each basic tree a subset of events that always contains the uncon-
trollable events. For define a control function

according to iff . Thus the control ac-
tion of is fully represented by the set . By definition

for every uncontrollable event . The closed-loop STS
formed by and is then written as

(3)

where , , and
if and otherwise. A

SFBC is nonblocking if .
Theorem 1. [6, Theorem 3.2], [17]: Let and

. Then there exists a nonblocking SFBC such
that .
Theorem 1 is the main result for STS on synthesizing an optimal and

nonblocking supervisor. The SFBC in Theorem 1 is represented by
the control functions , , defined by

(4)

Thus for every , if and only if
.

Finally, recall [4] that a finite-state automaton is defined by

(5)

where is the state set, is the initial state, is the
subset of marker states, is the finite event set, and
is the (partial) state transition function. In the RW (language-based)
framework, a control problem is typically given in terms of a plant
automaton and a specification automaton that imposes control re-
quirements on . In setting up a control problem in STS, we can con-
vert the pair into an STS with a predicate specifying the
illegal basic trees that is prohibited from visiting. For details of this
conversion, see [6], [17]; an illustrative example is given in [5], [16].

III. PROBLEM FORMULATION

Consider a plant automaton [as defined in (5)] consisting of
component automata , , called ‘agents’. For simplicity,
assume that the agents , , are defined over pairwise
disjoint alphabets,1, i.e., for all .2 For every

let , the disjoint union of the controllable
event subset and uncontrollable event subset . Then the plant
is defined over , where and

.
Now let a specification automaton be defined over , imposing

a behavioral constraint on . As stated at the end of Section II, we
convert the pair of plant and specification into an STS

with a predicate specifying the illegal basic
trees. The supremal nonblocking and weakly controllable subpredicate
of is , and we suppose that

to exclude the trivial solution. Let

(6)

Then by Theorem 1, there exists a nonblocking SFBC such that
, with

(7)

1The case where the agents may share events follows easily from the devel-
opment in Section IV below, and is addressed in [5], [16]. In the language-based
framework, this case is addressed in [3].
2Notation , the set of integers from 1 to .



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1331

Fig. 1. Supervisor localization in STS framework.

Fig. 2. Control equivalence in STS framework.

The SFBC represented by the control functions , , can be
written explicitly as follows: for every

if or & ;
if & .

(8)

The pair is the monolithic optimal and nonblocking supervisor
for the control problem , where is the state trackerwith state
set which supports dynamic evolution of the controlled system,
and is the SFBC which issues disablement commands based on the
state where currently resides. Since can be represented by the
set of control functions , the supervisor may be
implemented as displayed on the left of Fig. 1 (cf. [6], [17]). Here the
controllable events are grouped with respect to individual agents .
In this implementation, the state tracker is a global entity, inas-

much as it reports each and every basic tree in that the system visits
to all for their decision making. For a purely distributed implemen-
tation, we propose to localize to the individual agents so that each
of them is equipped with its own local state tracker, denoted by ,

. As will be seen in Section IV, each will be con-
structed by finding a suitable cover on
; here is called a cell of , is an index set, and

. We will identify the index with the cell .
There will also be a set of marked cells . Thus a local state
tracker reports system state evolution only in terms of cells (sub-
sets) of basic trees, rather than singleton basic trees. This requires that
the associated local control functions , , take cells of basic
trees as arguments, i.e., . In this way each tracks
exactly the information sufficient for its associated to issue correct
local control. This distributed implementation is displayed on the right
of Fig. 1. The use of local state trackers and local control functions may
be viewed as a general implementation scheme for supervisor localiza-
tion; indeed, in the language-based framework, local controllers (for
individual agents in [1] and for individual controllable events in [3])
in the form of automata execute both tasks, state tracking and control
decision making.

Finally, we emphasize that in the absence of monolithic tracking, the
local state trackers must communicate3 in order to give correct re-
ports on system state evolution. The communication network topology,
namely who communicates with whom, is not given a priori but will
be generated systematically as part of our localization result.
We require this distributed implementation to preserve the optimality

and nonblocking properties of the monolithic supervisory control. Fix
an arbitrary and . Suppose that the controlled
system is currently visiting a basic tree ; then there must exist
a cell , , of the cover to which belongs. As displayed in
Fig. 2, the monolithic state tracker reports to which then makes the
control decision ; on the other hand, a local state tracker reports
(by label) the whole cell to which then makes the control decision

. We say that the two pairs and are control
equivalent if for every , there is such that (a
cell of ) and

(9)

(10)

Thus (9) requires equivalent enabling/disabling action, and (10) re-
quires equivalent marking action. This form of control equivalence is
distinct from the language-based equivalence in [1].
We now formulate the Distributed Control Problem. Given a plant

automaton [as defined in (5)] of component agents de-
fined over pairwise disjoint alphabets and a specification automaton ,
let be the corresponding STS mono-
lithic supervisor. Construct a set of local state trackers

, one for each agent, with a corresponding set of local
control functions such that

is control equivalent to : that is, for
every and every , the pairs and
are control equivalent in the sense defined in (9) and (10).

3Formally, we consider that communication is by way of event synchroniza-
tion; and for simplicity assume that events are communicated instantaneously,
i.e. with no delay.



1332 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

IV. SUPERVISOR LOCALIZATION

We solve the Distributed Control Problem by developing a super-
visor localization procedure in the STS framework. First, we need some
notation from [6], [17]. Let and . Then
is the predicate which holds on the largest set of basic trees, each of
which reaches a basic tree in by a one-step transition . Also

is the predicate which holds on the largest set of basic trees
of that is reachable by a one-step transition . Define the legal sub-
predicate of by ,
and the illegal subpredicate , where is
the supervisor predicate in (6).
Now fix an arbitrary . We develop a localization procedure

which decomposes the monolithic state tracker into a local state
tracker for agent defined over . First, we establish a control
cover on (in (6)), the state set of , based solely on the control and
marking information pertaining to , as captured by the following
four functions. Let . Define by

(11)

Thus is the characteristic function of the set of basic trees in
where is enabled. By this definition, for every , if
and only if and (with defined in (8)). Next
define by

(12)

Namely, is the characteristic function of the set of basic trees in
where must be disabled by the supervisory control action of .

Thus for every , if and only if . Also define
according to

(13)

Thus holds on the set of basic trees which are marked in (i.e. in
). Finally define according to

(14)

So holds on the set of basic trees originally marked in . Note that
for each , we have by (in (7)) that

and . Based on the
above four functions of the control and marking information of ,
we define the following key binary relation on .
Definition 1: Let . We say that is a control

consistency relation (with respect to ) if for every ,
if and only if

(i) ;
(ii) .
Informally, a pair of basic trees is in if there is no event

in that is enabled at but is disabled at , or vice versa (con-
sistent disablement information); and (ii) and are both marked or
unmarked in provided that they are both marked or unmarked in
(consistent marking information). It is easily verified that is re-

flexive and symmetric, but need not be transitive, and consequently not
an equivalence relation (similar to the situation in [1]). This fact leads
to the following definition of control cover. A cover on a set is a
family of nonempty subsets (or cells) of whose union is .
Definition 2: Let be a cover on ,

with a suitable index set. We say that is a control cover (with
respect to ) if
(i) ;
(ii)

.

A control cover groups basic trees in into (possibly overlap-
ping) cells , . According to (i), all basic trees that reside in a
cell have to be pairwise control consistent; and (ii), for each event

, all basic trees that can be reached from some basic tree in
by a one-step transition have to be covered by a certain cell (not
necessarily unique). Hence, recursively, two basic trees , belong to a
common cell in if and only if (1) and are control consistent, and
(2) two future states that can be reached from and , respectively, by
the same string are again control consistent. In the special case where
is a partition on , we call a control congruence.
Having defined a control cover on , we construct a local state

tracker

(15)

by the following procedure.
(P1) Each state of is a cell of . In particular,
the initial state is a cell where the basic tree
belongs, i.e. , and the marker state set

.
(P2) Choose the local event set . For this, first define the tran-
sition function over the entire event set by

(16)

Then choose to be the union of of agent with events
in which are not purely selfloop transitions of . Thus

, where

(17)
The set is the subset of communication events of other
agents that needs to ‘know’ for its local decision
making.4

(P3) Define the transition function to be the restriction of to
, namely .

Thus the above constructed local state tracker is an automaton,
which reports system state evolution in terms of cells (subsets) of basic
trees which are crucial for, and only for, the local control and marking
with respect to of agent . Owing to the possible overlapping
of cells in , the choices of and may not be unique, and con-
sequently may not be unique. In that case we select an arbitrary
instance of . Clearly if happens to be a control congruence, then

is unique.
Finally, we define local control functions , , to be com-

patible with . Let . Define by

(18)

So enables at state of whenever there is a basic tree in the
cell at which is enabled.
We have now completed the localization procedure for an arbitrarily

chosen agent , . The procedure is summarized and il-
lustrated in Fig. 3. Applying the same procedure for every agent, we
obtain a set of local state trackers with
a corresponding set of local control functions

. Our main result, below, states that this pair
is a solution to the Distributed Control Problem.

Theorem 2: The pair of local state
trackers and local control functions is control equivalent to the optimal

4In the language-based framework, a set of communication events similar to
is given in [3].



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1333

and nonblocking supervisor ; namely,
for every , , and , there exists such
that and
(i) ;
(ii) .
Proof: Let , , and . Then there must

exist a state of the tracker , corresponding to a cell of the
control cover , such that . For (i), suppose that ;
it will be shown that if and only if . (If) Let

, i.e. there is such that .
Since is also in , we have . It
follows from that and .
Hence , which is equivalent to by the
definition of in (12). (Only if) Let . Since
and is in , we have by the definition of in (11) that

. We then conclude from and the
definition of in (18) that .
Now we show (ii). (If) Let (i.e. ) and .

Then there is such that ; so , and
also . Since and , we have

. (Only if) Let (i.e. ). Then
, i.e. , and also by the construction of the

tracker .
In essence Theorem 2 asserts that every set of control covers gener-

ates a solution to the Distributed Control Problem. In fact, the converse
statement is true: every solution to the Distributed Control Problem is
generated by a suitable set of control covers. The latter is formulated
and proved in [5].

V. SYMBOLIC LOCALIZATION ALGORITHM

In this section we design an STS localization algorithm for com-
puting local controllers, which is more efficient than the counterpart
algorithm in [1].
It is desirable to have an efficient algorithm which computes a set

of control covers that yields a set of state-minimal local state trackers
(possibly non-unique); the latter is, by Theorem 2, a solution to the
Distributed Control Problem. The minimal state problem is, however,
known to be NP-hard [15]. Nevertheless, a polynomial-time localiza-
tion algorithm was proposed in [1] which generates a control congru-
ence (instead of a control cover), and empirical evidence [2] shows that
significant state size reduction can often be achieved. In the following,
we propose a new localization algorithm which is based on STS. The
advantage of using STS is that the efficiency of the new algorithm is
improved compared to the one in [1], as will be shown below.
We sketch the idea of the algorithm as follows. Let in (6) be

labeled as , and be the control-
lable events of agent , . Our algorithm will generate
a control congruence on (with respect to ). This is done
symbolically. First introduce the set , where

are predicates defined by if and only
if . Two elements of may be merged (by “ ”) if (i) their cor-
responding basic trees are control consistent (line 10 in the pseudocode
below, where is defined by if and
only if ); and (ii) all corresponding down-
stream basic trees reachable from by identical strings are also con-
trol consistent (line 12, where is the
predicate counterpart of in (1), the global transition function of STS).
This operator is the key to the improved efficiency of our STS-based
algorithm: since can handle one-step transitions of a predicate corre-
sponding to a subset of basic trees, in each call of the CHECK_MERGE
function we may also check control consistency by applying to this
subset; this is more efficient than the algorithm in [1] which in each call

of the CHECK_MERGE function checks control consistency only for a
pair of flat states (corresponding to basic trees). Finally, after checking
all the elements in , the algorithm at line 8 generates a control con-
gruence each cell of which consists of the basic trees whose cor-
responding predicates are merged together in .
Theorem 3: The STS localization algorithm terminates, has (worst-

case) time complexity , and the generated is a control con-
gruence on .
We remark that the STS localization algorithm realizes the same

functionality as the one in [1], and moreover improves the time com-
plexity from in [1] to . This is achieved by the fact that
the (global) transition function of STS can handle subsets of basic trees
simultaneously, which makes checking the control consistency relation
in each call of the CHECK_MERGE function more efficient.
The following is the pseudocode of the algorithm. Notation: “ ” de-

notes set subtraction; means and .

1: procedure MAIN()

2: for to do

3: for to do

4: ;

5: ;

6: if Check_Merge then

7: ;

8: return ;

9: function CHECK_MERGE

10: if then return ;

11: ;

12: for each with do

13: if for some then continue;

14: if for some then return
;

15:
;

16: if Check_Merge then return ;

17: return ;

Proof of Theorem 3: Since both at line 4 and at line
15 are the join “ ” of the predicates in , so is each element of
which is updated only at line 11. Thus, the size of , which is updated
only at line 7, is non-increasing. Because the initial size is finite, the
algorithm must terminate. In the worst case, there can be
calls (by lines 2, 3) made to the function CHECK_MERGE, which can
then make calls (by lines 12, 13) to itself. So the worst-case time
complexity is .
It is left to show that generated at line 8 is a control congruence.

First, the control consistency of every pair of basic trees in the same cell
of is guaranteed by the check at line 10; so is a control cover.
Second, the set subtraction “ ” when updating at line 11 and
at line 7 ensures that the cells of are pairwise disjoint; thus is a
partition on . Therefore, is a control congruence.
Example 1: We provide an example, displayed in Fig. 4, to illustrate

the STS localization algorithm. Initially, . The
ranges of indices and at lines 2 and 3 are and .



1334 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Fig. 3. Supervisor localization procedure.

Fig. 4. Example: STS localization algorithm.

1) cannot be merged. First, and the test at line
10 is passed since ; so . Second,
is updated at line 15 to and the test at line 10
is still passed since ; so .
Third, is updated at line 15 to but
now the test at line 10 fails since (indeed,

, , 1, 2). Note that when
the global transition function at lines 12–15 handles the
local transitions at basic trees simultaneously:

This operation is more efficient than the localization algorithm in
[1]; there, only a pair of basic trees of and the associ-
ated transitions can be processed at a single step.

2) can be merged. First, and the test at line
10 is passed since ; so . Second,
is updated at line 15 to and the test at line 10 is trivially
passed; so . Now one verifies that the condition
at line 13 is satisfied for both transitions and defined at , so
the “for”-loop from line 12 to line 16 is finished without calling
the CHECK_MERGE function. Hence is returned at line 6
and is updated at line 7 to .

3) cannot be merged because and the test at
line 10 fails.

4) cannot be merged. First, and the test at line
10 is passed since ; so . Second, is
updated at line 15 to but the test at line 10 fails
since .

5) cannot be merged because and the test at
line 10 fails.

6) cannot be merged because and the test at
line 10 fails.

Finally, and line 8 generates a control con-
gruence . The local state tracker (unique
in this case) constructed from is displayed in Fig. 4.

VI. CONCLUSION

We have developed state-based supervisor localization in the STS
framework. In this localization scheme, each agent is endowed with its
own local state trackers and local control functions, while being coordi-
nated with its fellows through event communication in such a way that
the collective local control action is identical to the global optimal and
nonblocking action. Compared to the language-based RW counterpart
[1], we have designed a more efficient symbolic localization algorithm
by exploiting BDD computation.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1335

REFERENCES
[1] K. Cai and W. M. Wonham, “Supervisor localization: A top-down ap-

proach to distributed control of discrete-event systems,” IEEE Trans.
Autom. Control, vol. 55, no. 3, pp. 605–618, Mar. 2010.

[2] K. Cai and W. M. Wonham, “Supervisor localization for large dis-
crete-event systems—Case study production cell,” Int. J. Adv. Man-
ufact. Technol., vol. 50, no. 9–12, pp. 1189–1202, 2010.

[3] K. Cai and W. M. Wonham, “New results on supervisor localization,
with application to multi-agent formations,” in Proc. Workshop Dis-
crete-Event Syst., Guadalajara, Mexico, 2012, pp. 233–238.

[4] W. M. Wonham, “Supervisory control of discrete-event systems,”
Systems Control Group, ECE Dept., Univ. Toronto, Toronto, ON,
Canada, Tech. Rep., Jul. 1, 2013 [Online]. Available: http://www.con-
trol.toronto.edu/DES.

[5] K. Cai and W. M. Wonham, “Supervisor localization of dis-
crete-event systems based on state tree structures,” Univ. Toronto,
Toronto, ON, Canada, Tech. Rep., 2013 [Online]. Available:
http://arxiv.org/abs/1306.5441

[6] C. Ma and W. M. Wonham, Nonblocking Supervisory Control of State
Tree Structures. New York: Springer-Verlag, 2005.

[7] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comp. Programming, vol. 8, no. 3, pp. 231–274, 1987.

[8] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[9] S. Miremadi, K. Akesson, and B. Lennartson, “Symbolic computation
of reduced guards in supervisory control,” IEEE Trans. Autom. Sci.
Eng., vol. 8, no. 4, pp. 754–765, 2011.

[10] S. Miremadi, B. Lennartson, and K. Akesson, “A BDD-based
approach for modeling plant and supervisor by extended finite
automata,” IEEE Trans. Control Syst. Technol., vol. 20, no. 6,
pp. 1421–1435, 2012.

[11] Y. Yang, A. Mannani, and P. Gohari, “Implementation of supervisory
control using extended finite-state machines,” Int. J. Syst. Sci., vol. 39,
no. 12, pp. 1115–1125, 2008.

[12] A. Mannani and P. Gohari, “Formal modeling and synthesis of
statetransferring (event-transferring) communication among decen-
tralized supervisors for discrete-event systems,” in Proc. IEEE
Int. Conf. Syst., Man Cybern., San Antonio, TX, 2009, pp.
3231–3242.

[13] K. T. Seow, M. T. Pham, C. Ma, and M. Yokoo, “Coordination
planning: Applying control synthesis methods for a class of distributed
agents,” IEEE Trans. Control Syst. Technol., vol. 17, no. 2, pp.
405–415, 2009.

[14] M. T. Pham and K. T. Seow, “Discrete-event coordination design for
distributed agents,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp.
70–82, 2012.

[15] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31–53, 2004.

[16] K. Cai and W. M. Wonham, “Supervisor localization of discrete-event
systems based on state tree structures,” in Proc. 51st IEEE Conf. Deci-
sion Control, Maui, HI, 2012, pp. 5822–5827.

[17] C. Ma and W. M. Wonham, “Nonblocking supervisory control of
state tree structures,” IEEE Trans. Autom. Control, vol. 51, no. 5, pp.
782–793, 2006.


