
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010 605

Supervisor Localization: A Top-Down Approach to
Distributed Control of Discrete-Event Systems

Kai Cai, Member, IEEE, and W. M. Wonham, Life Fellow, IEEE

Abstract—We study the design of distributed control for dis-
crete-event systems (DES) in the framework of supervisory control
theory. We view a DES as comprised of a group of agents, acting
independently except for specifications on global (group) behavior.
The central problem investigated is how to synthesize local con-
trollers for individual agents such that the resultant controlled
behavior is identical with that achieved by global supervision. In
the case of small-scale DES, a supervisor localization algorithm
is developed that solves the problem in a top-down fashion: first,
compute a global supervisor, then decompose it to local controllers
while preserving the global controlled behavior. In the case of
large-scale DES where owing to state explosion a global supervisor
might not be feasibly computable, a decomposition-aggregation
solution procedure is developed that combines the supervisor
localization algorithm with an efficient modular control theory.

Index Terms—Discrete-event systems (DES), supervisor localiza-
tion, supervisory control.

I. INTRODUCTION

R APID advances in communication networks and em-
bedded computing technologies have made distributed

systems pervasive in engineering practice: examples include
multi-robot search teams, wireless sensor networks, and auto-
mated guided vehicles. By these are meant systems that consist
of multiple autonomous agents locally interacting in pursuit of
a global goal. To govern this type of system, attention has been
focused on distributed control: each agent has its own local
observation and control strategies—but with no external super-
visor, thus embodying individual autonomy. Little work has
been reported on distributed control of discrete-event systems
(DES) in the framework of supervisory control theory (SCT)
[1].

SCT was initiated by Ramadge and Wonham [2], [3], with
cornerstone results established for a monolithic architecture,
wherein all plant components are controlled by a single central-
ized supervisor. With this supervisor, the controlled behavior
can be made optimal (i.e., minimally restrictive) with respect to
imposed specifications, as well as nonblocking. Stimulated by
the twin goals of improving understandability of control logic
and reducing computational effort of the monolithic approach,

Manuscript received December 07, 2008; revised March 07, 2009. First
published January 22, 2010; current version published March 10, 2010. This
work was supported in part by the Natural Sciences and Engineering Research
Council (Canada) under Grant 7399. Recommended by Associate Editor S.
Haar.

The authors are with the Systems Control Group, Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4,
Canada (e-mail: caikai@control.utoronto.ca; wonham@control.utoronto.ca).

Digital Object Identifier 10.1109/TAC.2009.2039237

subsequent literature has witnessed the emergence of alterna-
tive modular system architectures—decentralized [4]–[10], hi-
erarchical [11], [12], and heterarchical [13]–[15]. The defining
characteristic of these architectures is a supervisor-subordinate
paradigm: a monolithic supervisor, or an organization of mod-
ular supervisors, monitors the behavior of subordinate agents
and makes all decisions on their behalf, while the controlled
agents themselves act blindly based on the commands they re-
ceive. Intuitively one could think of these supervisors as external
to, rather than built into, the subordinate agents. From this per-
spective, monolithic and modular architectures are not, in our
view, properly considered to be purely distributed. We take the
view that distributed architecture is a flat system organization
where global functions emerge through the collective actions
of individual agents and are not, at least directly, guided by
higher-level, external supervisors. With this in mind, we address
the following question: given a collection of independent agents
as the plant and some desired collective behavior as the speci-
fication, what should individual agents do (in terms of sensing
and decision making) so as to enforce the specification, and re-
alize performance identical to that achieved by optimal and non-
blocking monolithic control?

Only recently has work on distributed architecture ad-
dressing similar questions begun to appear. Su and Thistle [16]
present a distributed supervisor synthesis approach: first, local
abstractions of the overall system are computed for individual
agents based on weak bisimulation, then local controllers for
each agent are synthesized from the agent and the abstraction
models. Although in the latter step a competing/cooperation
policy is defined that determines the restrictiveness of the
resulting controlled behavior, optimal control is not considered.
Mannani and Gohari [17] propose implementing monolithic
supervisors through synthesizing local guard formulas and
updating functions for individual agents modeled as extended
finite state machines. But since all languages involved are
assumed to be prefix-closed, nonblocking control is not ad-
dressed. Distributed implementation of monolithic supervisors
is also investigated in [18]; the approach is first to convert a
monolithic supervisor into a bounded and distributable Petri
net, which in turn is converted into a set of automata as local
controllers for individual agents. The former conversion can
be applied, however, only to a strict subclass of monolithic
supervisors. Finally we note that a recent paper [19] as well as
its conference precursor [20], which had been unknown to us,
proposed a scheme in the SCT setting similar in general terms
to our own, but provided a control synthesis equivalent only to
one of our simple boundary cases. The technical differences are
explained in footnote 5, Section III, below.

0018-9286/$26.00 © 2010 IEEE

606 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

Fig. 1. Supervisor localization.

In this paper and its conference antecedent [21], we consider
controlled behavior achieved by an arbitrary monolithic super-
visor, and deal with both optimal and nonblocking control. Fur-
ther, our approach can in principle handle large-scale systems,
as will be demonstrated on a benchmark application, whereas
only small-sized examples are given in the cited previous work.

We note that the term “distributed architecture” along with
“distributed control” and “agent” has been used in the litera-
ture with different meanings. For instance, [22] formulates the
distributed control problem as follows: “Consider a distributed
networked DES modeled by automaton . There are agents
observing the behavior of using their own sets of sensors. The
agents may be supervisors or diagnosers. The agents are able
to communicate among each other In this formulation, “dis-
tributed architecture” actually refers to decentralized architec-
ture with communicating modular supervisors (or diagnosers).
With decentralized supervision, the global control action is typ-
ically allocated among specialized supervisors enforcing indi-
vidual specifications. By contrast, with distributed supervision
(in our usage) it is allocated among the individual active agents.

Our investigation is carried out for both small- and large-scale
DES. In the small-scale case, we assume that the monolithic su-
pervisor of a given control problem can be computed. Given this
assumption we propose a top-down approach: first, compute the
monolithic supervisor, then decompose it into local controllers
for individual agents. We call this approach supervisor localiza-
tion, as displayed in Fig. 1.

The goal of supervisor localization is first of all to preserve
the optimality and nonblockingness of the monolithic super-
visor, namely to realize performance identical to that achieved
by monolithic control. It is also desired that each localized
controller be as simple as possible, so that individual strategies
are more readily comprehensible; among diverse criteria of
simplicity, we focus on state size. Both goals are achieved by
a suitable extension of supervisor reduction [23], of which
the essence is to project the plant model out of the supervisor
model while preserving the controlled behavior. To localize
the monolithic supervisor to a local controller for an individual
agent, we carry the reduction idea one step further: in addition
to projecting the plant model out of the supervisor, we also
project out those transitions corresponding to the controls
enforced by other agents. Namely, the localization procedure is
conducted based solely on control information directly relevant

to the target agent; we proceed this way for each agent in the
plant, taken individually. The result is that each agent acquires
its own local controller (see Fig. 1).

In large-scale systems, owing to state space explosion the
monolithic supervisor might not be feasibly computable.
Indeed, Gohari and Wonham [24] proved that monolithic
supervisor synthesis is NP-hard, inasmuch as the state space
size grows exponentially in the number of individual plant
components and specifications. To manage such complexity,
we propose combining supervisor localization with an efficient
modular control theory [15]. This combination leads to a de-
composition-aggregation procedure that systematically solves
large-system problems in an alternative top-down manner: first,
design an organization of modular supervisors that achieves
optimal and nonblocking control, then decompose each of
these modular supervisors into local controllers for the relevant
agents.

The rest of the paper is organized as follows. Section II for-
mulates the distributed control problem, for which solutions for
small- and large-scale DES are presented in Sections III and IV,
respectively. Section V states our conclusion.

II. PROBLEM FORMULATION

The plant to be controlled is modeled by a (nonempty) gen-
erator

where is the state set; is the initial state; is
the set of marker states; is the finite event set, partitioned into

, the controllable event subset, and , the uncontrollable
subset; is the (partial) state transition function.
In the usual way, is extended to (pfn), and
we write to mean that is defined, where
and . The closed behavior of is the language

and the marked behavior is

We focus on the case where consists of compo-
nent agents defined over pairwise disjoint alphabets

. So . Let
and ; then the closed and

marked behaviors of are

where denotes synchronous product [1]. For simplicity
we assume that for every , is nonblocking (i.e.,

)1. Then is necessarily nonblocking (i.e.,
).

With we assign control structure to each agent

1
�� denotes the (prefix) closure [1] of � .

CAI AND WONHAM: SUPERVISOR LOCALIZATION 607

Let . We say that a generator (over) is a local
controller for agent if can disable only events in .
Precisely, for all and , there holds

The observation scope of is, however, neither confined
within nor fixed beforehand. In fact, it will be systemati-
cally determined to guarantee correct local control. Thus, while
a local controller’s control authority is strictly local, its observa-
tion scope need not, and generally will not, be. Whether or not
the required capability of event observation on the part of an
agent is feasible in practice will evidently be case-dependent,
but need not be burdensome in many applications. An instance
could be nearest-neighbor observation, as for motorists maneu-
vering through a congested intersection. With local controllers
embedded, each agent acquires strictly local control and gen-
erally non-local observation strategies; the latter are critical to
achieve useful synchronization with other agents, thereby en-
suring correct local decisions2.

The component agents are implicitly coupled through an im-
posed specification language that imposes a behavioral con-
straint on . As in [4, Section 4] and subsequent literature (e.g.,
[5]), assume that is decomposable into component specifica-
tions (, an index set), where the
need not be pairwise disjoint; namely

Thus is defined over the alphabet . Let
be the corresponding natural projection, defined

according to

if
if

In the usual way, is extended to .
We write for the inverse-image
function of , where denotes powerset.

Let , and recall that is controllable (with respect
to) if

Whether or not is controllable, we denote by the set of
all controllable sublanguages of . is nonempty because
the empty language is trivially controllable, hence always be-
longs to . Further, contains a (unique) supremal ele-
ment, denoted [3].

For the plant and the specification described above, let
be the corresponding monolithic su-

pervisor that is optimal and nonblocking. Throughout the paper

2For simplicity we assume in this paper that observation of an event is simul-
taneous with its occurrence.

we assume that SUP is nonempty. The marked language of SUP
can be expressed algebraically as

and may or may not be feasibly computable.
Now we formulate the Optimal Nonblocking Distributed

Control Problem :
Construct a set of local controllers
, one for each agent, with
and , such that the

following two properties hold:

(1a)

(1b)

We say that , satisfying (1a) and (1b), is control equiv-
alent to SUP with respect to .

For the sake of easy implementation and comprehensibility,
it would be desired in practice that the state sizes of local super-
visors be very much less than that of their “parent” monolithic
supervisor

where denotes state size of the argument. Inasmuch as this
property is neither precise to state nor always achievable, it must
needs be omitted from the formal problem statement; in appli-
cations, nevertheless, it should be kept in mind.

III. SOLUTION FOR SMALL-SCALE SYSTEMS

A. Supervisor Localization

We solve the distributed control problem for small-scale
systems by developing a supervisor localization approach.

It follows from that the set
forms a partition on . Fix an element

. Following [23], we first establish a control cover on
, the (nonempty) state space of SUP, based only on control

information pertaining to , as captured by the following four
functions. First define according to

Thus denotes the set of events that are enabled at . Next
define according to

So is the set of controllable events in that must be
disabled at . Notice that if an event is not in ,
then either or is not defined at any state in that
corresponds to . Define according to

608 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

Thus is a predicate on that determines if a state is marked
in SUP. Finally define according to

So is a predicate on that determines if some corresponding
state is marked in . Note that for each , we have by
that and .

Definition 1: We define a binary relation on as follows.
For we say that and are control consistent (with
respect to) (cf [23, Section 2.2]), and write , if

(i)
(ii) .

Informally, a pair of states is in if (i) there is no
event in that is enabled at but is disabled at , or vice
versa (consistent disablement information); and (ii) and are
both marked or unmarked in SUP provided that they are both
marked or unmarked in (consistent marking information).
While is reflexive and symmetric, it need not be transitive,
and consequently not an equivalence relation. This fact leads to
the following definition of control cover. Recall that a cover on
a set is a family of nonempty subsets (or cells) of whose
union is .

Definition 2: Let be some index set, and
a cover on . is a control cover

(cf [23, Definition 2.1]) on (with respect to) if
(i) ;

(ii)

.

A control cover lumps states of SUP into (possibly over-
lapping) cells . According to (i) all states that re-
side in a cell must be pairwise control consistent; and (ii)
for every event , all states that can be reached from any
state in by a one-step transition must be covered by the
same cell . Recursively, two states , belong to a common
cell in if and only if (1) and are control consistent; and
(2) two future states that can be reached respectively from and

by the same string are again control consistent. We say that a
control cover is a control congruence if happens to be a
partition on , namely its cells are pairwise disjoint.

Having established a control cover on based only on
the control information of , we can then obtain an induced
generator by the following construc-
tion (cf [23, Section 2.2]):

(i) such that ;

(ii) ;
(iii) (pfn) with

if &

.

Note that, owing to overlapping, the choices of and may
not be unique, and consequently may not be unique. In that
case we pick an arbitrary instance of . Clearly if happens
to be a control congruence, then is unique.

Returning to the partition on ,
we can thus obtain a set of induced generators

. Let and
. Our first result states that

is a solution to the distributed control problem .
Proposition 1: is control equivalent to SUP with respect to
, i.e.

Proof: An argument applicable to
and can be found in

[23, Appendix P-1]. Here we need only show
, and proceed by induction. For the base case, first note

that none of , , and is empty; thus the empty
string belongs to all of them. For the inductive step, we sup-
pose that . Let
and assume ; we must show that

. By hypothesis we have . If ,
then because is controllable. Other-
wise , and there must exist such that .
It follows from that and .
So and . Let . By defi-
nition of we have ,
which then entails . Since , we have

. Hence , which implies
that either or

But the latter case does not arise, because letting
we have . Therefore we conclude ,

i.e., .
Next we investigate if the converse is true: can a set of gener-

ators that is control equivalent to SUP always be induced from
a set of suitable control covers on ? For this we bring in the
following two definitions.

Definition 3: A generator is
normal (with respect to SUP) [23, Definition 2.2] if

(i) ;
(ii)

;
(iii) .

Informally, a generator is normal (with respect to SUP) if (i)
each of its states is reachable by at least one string in ;
(ii) a one-step transition is defined at a state only if is
reached by a string in such that membership of
in) is preserved; and (iii) each of its marked states is
reachable by at least one string in .

Definition 4: Given two generators
and , we say

that and are DES-isomorphic with isomorphism [23,
Definition 2.3] if there exists a map such that

(i) is a bijection;
(ii) & ;

(iii)
;

(iv)
.

CAI AND WONHAM: SUPERVISOR LOCALIZATION 609

Under normality and DES-isomorphism, we have the fol-
lowing result.

Theorem 1: Let
be a set of

normal generators that is control equivalent to SUP with
respect to . Then there exists a set of control covers

on with a corresponding set of induced
generators such that for every ,
and are DES-isomorphic.

Proof: Let . We must show that there exists a control
cover such that the induced generator is DES-isomorphic
to . Let , and define

Letting , we claim that is a control
cover on with respect to . An argument proving this claim
can be found in [23, Appendix P-2], except for the following:

Let and assume ; it will be shown that
. If , then by definition .

Otherwise , and it follows from that
& . So .

Since is control equivalent to SUP, we obtain that
, i.e., . It then follows from

that . Further, by we have
& , which entails

. If , then trivially ; for
the case , since only has control authority
on , we have that

and thus . Hence
and , i.e., . Last, an argument proving the
DES-isomorphism between and can be found in [23,
Appendix P-2].

To summarize, every set of control covers generates a solution
to the distributed control problem (Proposition 1); and every
normal solution to must be induced from some set of con-
trol covers under the condition of DES-isomorphism (Theorem
1). In particular, a set of state-minimal normal generators can be
induced from a set of suitable control covers. However, such a
set is in general not unique, even up to DES-isomorphism. This
conclusion accords with that for a state-minimal supervisor in
supervisor reduction [23]. Notice that, while Theorem 1 is not
required for the subsequent computation of control-equivalent
generators, it provides important theoretical perspective (just as
its precursor did in [23, Theorem 2.1]). Namely, it points to the
universality of control covers as the mechanism of supervisor
reduction/localization. And this underlines the fact that for com-
putational tractability, as explained below, (general) covers are
traded off for (simpler) congruences.

B. Localization Algorithm

It would be desirable to have an efficient algorithm that al-
ways computes a set of state-minimal normal generators, despite
its non-uniqueness. Unfortunately, this minimal state problem is
NP-hard [23, Section 3], and consequently we cannot expect a
polynomial-time algorithm for it.

Nevertheless, a polynomial-time algorithm for supervisor re-
duction is known [23, Section 4.1]. The algorithm generates a
control congruence, rather than a control cover, and empirical
evidence was given to show that significant state size reduction
can often be achieved. Therefore we employ this algorithm, suit-
ably modified to work for supervisor localization, and call the
altered version a localization algorithm (LA).

We sketch the idea of LA as follows. Given
with and ,

LA generates a control congruence on (with respect to
). LA initializes to be the singleton partition on , i.e.,

where denotes the cell in to which belongs. Then LA
merges two cells and into one if for every
and , and , as well as all their corresponding fu-
ture states reachable by identical strings, are control consistent.
This mergibility condition is checked by lines 13 and 18 in the
pseudocode below: line 13 checks control consistency for the
current state pair and line 18 recursively checks con-
sistency for all their related future states. Throughout, in order
to generate a control congruence, it is crucial to prevent states
from being shared by more than one cell. This is achieved by
inserting in LA three filters—at lines 3, 5, and 17—to eliminate
redundant mergibility tests as well as element overlapping in .
LA loops until all the states in are checked.

1: procedure MAIN()

2: for to do

3: if then continue;

4: for to do

5: if then continue;

6: wait ;

7: if then

8:
;

9: function

10: for each do

11: for each do

12: if then continue;

13: if then return false;

14: ;

15: for each with ,

610 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

Fig. 2. Example: localization algorithm.

16: if or
then

continue;

17: if or
then return false;

18: if
then return false;

19: return true;

Remark 1: LA preserves all computational properties of the
reduction algorithm in [23]. Namely, LA terminates, generates
a control congruence, and has time complexity , where
is the state size of SUP.

Example 1: This example, displayed in Fig. 2, is a simple
illustration of LA.

Notation: denotes the initial control cover with respect
to , and the resulting control cover of the th
iteration of main().

(1) Initially,
(2) cannot be merged: they pass line 13 be-

cause , but they fail at line 18 for
; can be merged:

they pass line 13 because , and they
trivially pass line 18 since there is no common event
defined on them, so that no further control consistency
needs to be verified; cannot be merged: they
fail at line 13, for .
So, .

(3) cannot be merged: they cannot pass line 5, be-
cause and are now in the same cell and ;

cannot be merged: they failed at line 13, since
.

Thus, .
(4) cannot be merged: they failed at line 3 for,

again, and are now in the same cell and .
Finally, , and the induced
generator (unique in this case) is displayed on
the right of Fig. 2.

Fig. 3. Transfer line: system configuration.

Fig. 4. Transfer line: local controllers.

C. Example: Distributed Control of Transfer Line

The transfer line system [1, Section 4.6], displayed in Fig.
33, consists of two machines M1, M2 followed by a test unit
TU; these agents are linked by two buffers with capacities of
three slots and one slot, respectively. We model M1, M2, and
TU as the plant to be controlled; the (safety) specification is
to protect the two buffers against overflow and underflow. The
distributed control objective is to design for each agent a local
controller—but with no external supervisor.

We first build the monolithic optimal nonblocking super-
visor, which has 28 states. Then we employ the localization
algorithm to compute for each agent a local controller from
the monolithic supervisor. The resultant controllers are dis-
played in Fig. 4 (for clarity extraneous selfloops are omitted),
having 4, 6, and 2 states, respectively. The desired control
equivalence between these local controllers and the mono-
lithic supervisor is verified in TCT [25], by confirming

.4 With these individual controllers, we can account for
the local strategies of each agent. Machine M1 with ,
controlling event 1, ensures that no more than three workpieces
can be processed simultaneously in the system, i.e., prevents
choking in the material feedback loop; but to achieve this goal,
an external event 6 from TU has to be observed. Machine M2
with , controlling event 3, guarantees the safety of both
buffers at the same time; again, external events 2, 5, and 8
have to be observed. Notice that the observed event 5, being
a controllable event of TU, cannot be disabled by M2. Lastly,
TU with , controlling event 5 and observing an external
event 4, is responsible only for the safety of buffer2.

D. Boundary Cases

We identify two boundary cases of supervisor localization
which indicate, as a property of the localization problem itself,
an extreme degree of easiness or hardness, respectively.

3Throughout this paper we label controllable events by odd numbers, and
uncontrollable by even.

4For TCT procedures meet and isomorph, see [1, p. xii and p. xv respec-
tively]. Essentially meet computes the reachable product of DES, and isomorph
tests the identity of two DES under suitable recoding of states.

CAI AND WONHAM: SUPERVISOR LOCALIZATION 611

Fig. 5. Example: non-localizable.

1) Fully-Localizable: This case is the easy situation where
component agents are completely decoupled: each agent works
independently without any interaction through shared events.

Given a plant (over) composed of agents over disjoint
alphabets , define natural projections

. For an imposed specification let SUP
be the corresponding monolithic supervisor.

Definition 5: is fully-localizable if there exists a set of
local controllers which is control equivalent
to SUP such that for every , for
some .

A sufficient condition that ensures full-localizability is the
following.

Proposition 2: If for all there is such that
, then SUP is fully-localizable.

Proof: Follows from the assumption that are
pairwise disjoint and Definition 5.

The assumption of Proposition 2 says that every component
specification is imposed exclusively on some component agent.
In that case, local controllers can be obtained locally without
going through the top-down localization procedure. Similar re-
sults in the modular control context can be found in the literature
(e.g., [5]).

2) Non-Localizable: The other extreme of the localization
problem is the hard case where component agents are coupled
so tightly that each one has to be globally aware.

Example 2: In Fig. 5, two agents share a
common resource that is not allowed to be occupied simulta-
neously. It is easy to see that is a monolithic supervisor
which enforces the mutual exclusion specification. Then by ap-
plying the localization algorithm to , we generate for agent

a local controller . However, both local controllers are
nothing but the same as ; namely, our supervisor localiza-
tion accomplished nothing useful.

In general, we aim to find conditions that can identify the
situation where localization fails to achieve a truly local result.
In that case we need only make copies of for the relevant
agents.

Definition 6: Let be a state-minimal local con-
troller for agent (defined over). is non-lo-
calizable (with respect to) if .

First note that implies that
. This is because if SUP is already state-minimal, then

no more pairs of states in SUP can be merged, which in turn
implies that the transition structure will remain the same.

By Theorem 1, is induced from some control cover,
denoted . We proceed to determine the number of cells in .

Given , by the definition of control
cover two states that belong to an identical cell must
satisfy both conditions

(1) ;
(2) &

.
Negating (1) and (2), we get

(1) ;
(2) & &

.
Hence, two states , belong to different cells of if and only
if either (3) or (4) holds. Let

The above discussion has proved the following fact.
Proposition 3: .
Now a necessary and sufficient condition for non-localiz-

ability is immediate.
Proposition 4: SUP is non-localizable (with respect to

) if and only if .
Proof: Follows directly from Definition 6 and Proposi-

tion 3.
In fact the above condition is hardly more than a restatement

of the definition of non-localizability. We have still said nothing
about how to check whether or not the condition holds. Never-
theless, a slight modification of will lead to a computation-
ally verifiable sufficient condition for non-localizability.

Consider

That is, we disregard those cases where control inconsistency is
caused by related future states. It should be obvious that

. More importantly, if we construct an undirected graph
with and , then

calculating amounts to finding the maximum clique in . Al-
though the maximum clique problem is a well-known NP-com-
plete problem, there exist efficient algorithms that compute sub-
optimal solutions [26]. In particular, the implemented polyno-
mial-time algorithm that computes lower bound estimate (lbe))
in [23, Section 4.2] can be directly employed for our purpose.
Let us denote by the outcome of the suboptimal algorithm
with respect to . Thus we have ,
which gives rise to the following result.

Proposition 5: If = , then SUP is non-localizable
(with respect to).

Proof: implies that , and
consequently by Proposition 3.

This condition is not necessary for non-localizability. If we
obtain , tells us little about localizability
and can only serve as a conservative lower bound estimate indi-
cating how much localization might (conceivably) be achieved.
If, however, does hold, then the problem instance
admits no useful solution, and we can avoid wasting further
computational effort. Continuing Example 2, and applying the

612 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

adopted algorithm from [23], we obtain
. Hence SUP is non-localizable for either of the two agents,

and we then simply assign the agents with copies of SUP as their
local controllers.5

IV. SOLUTION FOR LARGE-SCALE SYSTEMS

We move on to solve the distributed control problem for
large-scale systems; our approach combines supervisor local-
ization with an efficient modular control theory [15], [27].

A. Preliminaries

We introduce two concepts that are essential to guarantee op-
timality and nonblockingness of the modular control design we
adopt. Consider a generator defined over , and a natural pro-
jection for some observable event subset .
We say is output control consistent (OCC) [15] for if
for every string of the form

where is either the empty string or terminates with an event
in , the following holds:

Informally, whenever is observable and uncontrollable, its
immediately preceding unobservable events must all be uncon-
trollable. By this definition, ensuring that is OCC amounts to
ensuring that for each uncontrollable event in , ’s nearest
upstream controllable events are also in .

The second concept is that of natural observer: is called an
-observer [15] if

Informally, whenever can be extended to by an
observable string , the underlying string can be extended to

by a string with . In case does not enjoy
the observer property, we consider adding a minimal number of
events to so that the augmented observable subset does de-
fine an -observer. This is the minimal extension problem
addressed in [27, Chapter 5], [28]. There, it was proved that a
unique extension through adding a minimal number of events
generally does not exist for -observers, and even finding
some minimal extension is in fact NP-hard. Nevertheless, a
polynomial-time algorithm is presented which accomplishes

5Recently the paper [19] came to our attention, addressing “multi-agent co-
ordination planning” in the SCT framework; the objective is to synthesize “co-
ordination modules” for individual agents. The proposed synthesis procedure,
however, amounts simply to making copies of the (reduced) monolithic super-
visor for each agent, with some corresponding, extraneous selfloops removed.
By contrast, we do so only when the supervisor is identified as non-localizable;
otherwise, our localization procedure exploits supervisor reduction and achieves
a truly local result. Furthermore, [19] does not present an effective approach to
large systems, while we propose in Section IV a solution procedure that com-
bines localization with modular control theories.

a reasonable extension that achieves the observer property; of
course this extension need not always be minimal. Henceforth
we refer to this algorithm as the minimal extension (MX)
algorithm.

B. Decomposition-Aggregation Procedure

We present a decomposition-aggregation procedure (DAP) as
a solution to the distributed control problem () for large-scale
systems. Recall that we start with the following:

• A plant (defined over) consisting of agents defined
over disjoint ; the closed and marked behaviors
of are and , respectively.

• A specification decomposable into .
So is defined over , with the
corresponding natural projection

1) Plant Model Abstraction: Part of the plant dynamics that
is unrelated to the imposed specification may be concealed. By
hiding irrelevant transitions, we can simplify the models of com-
ponent agents. The procedure is as follows [27, Ch. 4].

(i) For every , check if
is OCC for ; if not, for each

add its nearest upstream controllable events to . Denote
the augmented alphabet by , and let .

(ii) For every , check if
is an -observer. If yes, go to (iii); other-

wise, employ the MX algorithm to compute a reasonable
extension of that does define an -observer.
Denote the extended alphabet again by , and the cor-
responding natural projection again by . Return to (i).

(iii) Compute model abstractions for each agent, denoted by
, with closed and marked languages

Note that abstractions are defined over disjoint al-
phabets .

2) Decentralized Supervisor Synthesis: The system now con-
sists of agent model abstractions and component
specifications . Since each specification
may impose constraints on only a subset of agent abstractions, a
decentralized supervisor with respect to , denoted by ,
can be obtained with only those relevant abstractions. Specifi-
cally, we associate with each its event-coupled agent abstrac-
tions: those sharing events with (i.e.,); and
then, we synthesize a corresponding optimal and nonblocking
decentralized supervisor based on [15, Theorem 2], [27,
Theorem 4.2].

3) Subsystem Decomposition and Coordination: After syn-
thesizing decentralized supervisors, we view the whole system
as comprised of a set of modules , each
consisting of a decentralized supervisor with associated
agent model abstractions. In this step, we decompose the overall
system into small-scale subsystems, through grouping these
modules based on their interconnection dependencies (e.g.,
event-coupling). If the modules admit certain special structures,
control-flow net [29] and process communication graph [30]
are two effective approaches for subsystem decomposition.

CAI AND WONHAM: SUPERVISOR LOCALIZATION 613

Fig. 6. AGV: system configuration.

Having obtained a group of small subsystems, we verify the
nonblocking property for each of them6. If a subsystem happens
to be blocking, we design a coordinator7 to resolve the conflict
by employing a method proposed in [15, Proposition 7 and The-
orem 4], [27, Proposition 4.7 and Theorem 4.4].

4) Subsystem Model Abstraction: After ensuring non-
blockingness within each subsystem, we need to verify the
nonconflicting property among these subsystems. Directly veri-
fying this property requires expensive computation; instead, we
again bring in the model abstraction technique to simplify every
subsystem, and check the nonconflictingness on the abstracted
level. The procedure is analogous to that of Step 1) Plant Model
Abstraction, above.

(i) Determine the shared event set, denoted by , of these
subsystems. Let be the corre-
sponding natural projection.

(ii) For every subsystem check if the corresponding restric-
tion of is OCC; if not, for each add
its nearest upstream controllable events to . Denote
the augmented alphabet by , and let

.
(iii) For every subsystem check if the corresponding restric-

tion of is an observer. If yes, go to (iv); otherwise,
employ the MX algorithm to compute a reasonable exten-
sion of that does define an observer for every sub-
system. Denote the extended alphabet again by , and
the corresponding natural projection again by . Re-
turn to (ii).

(iv) Compute model abstractions for each subsystem with
.

5) Abstracted Subsystem Decomposition and Coordina-
tion: This step is analogous to Step 3, but for subsystem
model abstractions instead of modules. Concretely, we or-
ganize subsystem abstractions into groups according to their
interconnection dependencies (e.g., event-coupling). Again,
control-flow net and process communication graph may be
effective tools if certain special structure is present. Then for

6We use TCT [25] procedure nonconflicting for this verification.
7A coordinator is an automaton that does not directly enforce a safety spec-

ification, but only resolves conflict among decentralized supervisors. In other
words, a coordinator enforces only a nonblocking specification.

each group, we check if the included subsystem abstractions
are nonconflicting; and if not, design a coordinator to resolve
the conflict.

6) Higher-Level Abstraction: Repeat Steps 4 and 5 until
there remains a single group of subsystem abstractions in Step
5.

The modular supervisory control design terminates at Step 6;
we have obtained a hierarchy of decentralized supervisors and
coordinators. Specifically, Step 2 gives a set of decentralized su-
pervisors ; and Steps 3 to 6 iteratively generate
a set of coordinators, denoted by (an index
set).

7) Decentralized Supervisors and Coordinators Localiza-
tion: We now apply the supervisor localization algorithm to
localize each of these decentralized supervisors
and coordinators to local controllers for their
relevant agents. To this end, we bring in a criterion to determine
if an agent is related to or . For

recall that the function associates
each state with the subset of controllable events of
that must be disabled at . We say is control-coupled to

if

In other words, disables some controllable events of
8. Thus the set of agents that are control-coupled to

is ; and we localize
to local controllers only for this set. Similarly, we lo-

calize to local controllers only for the set
.

Theorem 2: DAP solves the distributed control problem .
Proof: The first six steps of DAP generate a hierarchy of

decentralized supervisors and coordinators
. It follows from [15, Theorem 4], [27, Theorem

4.4] that

In Step 7, each decentralized supervisor
is decom-

posed into a set of local controllers, one for each
agent in .
We denote this set of local controllers by

. Let

8The control coupling relation can be determined by inspecting the control
data table generated by the TCT procedure condat [25].

614 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

Fig. 7. Generators of plant components and specifications.

Then by Proposition 1 we have

Thus

Also for each coordinator , we have by the same
derivation above

Finally, letting

we conclude

C. Example: Distributed Control of an AGV System

We apply the decomposition-aggregation procedure to solve
the distributed control problem of automated guided vehicles

(AGVs) serving a manufacturing workcell, in the version of [1,
Section 4.7], originally adapted from [31].

As displayed in Fig. 6, the workcell consists of two input parts
stations IPS1, IPS2 for parts of types 1, 2; three workstations
WS1, WS2, WS3; and one completed parts station CPS. A team
of five independent —travel in
fixed criss-crossing routes, loading/unloading and transporting
parts in the cell. We model the AGV system as the plant to be
controlled, on which three types of control specifications are im-
posed: the mutual exclusion (i.e., single occupancy) of shared
zones, the capacity limit of workstations, and the mutual exclu-
sion of the shared loading area of the input stations. The gen-
erator models of plant components and specifications are dis-
played in Fig. 7; readers are referred to [1, Section 4.7] for the
detailed interpretation of events. While the centralized approach
generates a monolithic optimal nonblocking supervisor of 4406
states [1], our distributed control objective is to design for each
AGV a set of local strategies which as a whole realize perfor-
mance identical to that achieved by the monolithic supervisor.

1) Plant Model Abstraction: Let and denote the alpha-
bets on which the overall plant and the overall specification are
defined. One can verify that in this example. Namely,
all of the plant dynamics are related to the subsequent synthesis,
and therefore no plant model can be simplified in this step9.

2) Decentralized Supervisor Synthesis: We group for
each specification its event-coupled AGVs. The grouping
is displayed on the left of Fig. 8, with solid lines denoting
event-coupling. Then we synthesize a decentralized supervisor
with respect to each specification, as shown on the right of
Fig. 8. The state sizes of these supervisors are listed in Table I,
where State # and Reduced State # are the results of TCT
procedures supcon and supreduce [25], respectively.

3) Subsystem Decomposition and Coordination: We have
nine decentralized supervisors, thus nine modules. The inter-
connection structure of these modules can be simplified by ap-
plying control-flow net. Specifically, the decentralized supervi-
sors for the four zones— —are harmless

9See [32] for an example where � � and part of the plant dynamics is
concealed.

CAI AND WONHAM: SUPERVISOR LOCALIZATION 615

Fig. 8. Decentralized supervisor synthesis (ovals denote linking specifications).

TABLE I
STATE SIZES OF DECENTRALIZED SUPERVISORS

Fig. 9. Subsystem decomposition and coordination.

to the overall nonblocking property, and hence can be safely re-
moved from the interconnection structure [29], [32].

The simplified interconnection structure is displayed in Fig.
9. There are two paths—AGV1, WS2SUP, AGV3, WS13SUP
on the right and AGV2, WS3SUP, AGV4, WS14SUP on the
left—that process workpieces of types 1 and 2, respectively.
Thus the overall system is naturally decomposed into two sub-
systems, as shown by dotted ovals in Fig. 9. It is further verified
that both subsystems are nonblocking on their own.

4) Subsystem Model Abstraction: We must now verify the
nonconflicting property among the two subsystems ,

, and the decentralized supervisor . First, we
determine their shared event set, denoted by . Subsystems

Fig. 10. Reduced generator model of decentralized supervisor �����.

TABLE II
STATE SIZES OF MODEL ABSTRACTIONS

and share all of the events in : 50, 51,
52, and 53. For the decentralized supervisor , we
consider its reduced generator model (i.e., the result of the
supreduce procedure), as displayed in Fig. 10. By inspection,

shares events 11, 13 with , and 21, 23 with
. Thus we set . It

can then be verified that the corresponding natural projection
does enjoy both the OCC and observer

properties. So with , we can compute the subsystem model
abstractions, denoted by and , with state sizes
listed in Table II.

5) Abstracted Subsystem Decomposition and Coordination:
As displayed in Fig. 11, we treat , , and
as a single group, and directly check the nonblocking property.
This group turns out to be blocking; a coordinator CO is then
designed to resolve the conflict, with its state size shown in
Table III.

6) Higher-Level Abstraction: The modular supervisory con-
trol design terminates with the previous Step 5.

7) Decentralized Supervisors and Coordinators Localiza-
tion: So far we have obtained a hierarchy of nine decentralized
supervisors and one coordinator; their synchronized behavior
is identical to the controlled behavior achieved by the mono-
lithic supervisor [27]. In this last step we first determine the
control-coupling relation between supervisors/coordinator
and AGV agents; we do this by inspecting the corresponding
condat tables. The result is displayed in Fig. 12, with dashed
lines denoting the control-coupling. Notice that the coordinator
CO is control-coupled only to and . Along the

616 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

Fig. 11. Abstracted subsystem decomposition and coordination.

TABLE III
STATE SIZE OF COORDINATOR

Fig. 12. Control-coupling relation between supervisors/coordinator and AGV
agents.

dashed lines, we apply the supervisor localization algorithm.
The state sizes of the resultant local controllers are listed in
Table IV, and the generator models of each controller displayed
in Figs. 13–17 (for clarity extraneous selfloops are omitted),
grouped with respect to individual AGVs. Thus we have estab-
lished a purely distributed control architecture, wherein each
of the AGV robots pursues its independent lifestyle, while
being coordinated implicitly with its fellows through their local
shared observable events.

V. CONCLUSION

This paper has studied distributed control design for DES in
the SCT framework. The central problem investigated is how to

Fig. 13. Local controllers for AGV1.

Fig. 14. Local controllers for AGV2.

Fig. 15. Local controllers for AGV3.

synthesize local controllers for individual agents such that these
local controllers collectively realize controlled behavior iden-
tical to that achieved by optimal and nonblocking monolithic
control. In the case of small-scale systems, a supervisor local-
ization algorithm has been established that directly decomposes
a monolithic supervisor into local controllers while preserving
optimality and nonblockingness. For large systems a decompo-
sition-aggregation procedure has been developed that first de-
signs modular supervisors to achieve optimal nonblocking con-
trol, and then decomposes each modular supervisor into local
controllers for the relevant agents.

CAI AND WONHAM: SUPERVISOR LOCALIZATION 617

TABLE IV
STATE SIZES OF LOCAL CONTROLLERS

Fig. 16. Local controllers for AGV4.

Fig. 17. Local controllers for AGV5.

Our investigation of distributed control design for DES has
added “purely distributed” architecture to the family consisting
of “monolithic” and “modular” architectures. This result gives
rise to an interesting question: Given a specific system with
a particular task, how to analyze quantitatively the tradeoffs
among these three architectures, in such a way that one could
decide which architecture was best suited to the task at hand?
We consider such a “theory of architecture” to be an ultimate
objective of SCT.

REFERENCES

[1] W. M. Wonham, “Supervisory Control of Discrete-Event Systems,”
Syst. Control Group, ECE Dept, Univ. Toronto, Toronto, ON, Canada,
2009 [Online]. Available: http://www.control.toronto.edu/DES

[2] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, 1987.

[3] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sub-
language of a given language,” SIAM J. Control Optim., vol. 25, no. 3,
pp. 637–659, 1987.

[4] F. Lin and W. M. Wonham, “Decentralized supervisory control of dis-
crete-event systems,” Inform. Sci., vol. 44, pp. 199–224, 1988.

[5] Y. Willner and M. Heymann, “Supervisory control of concurrent dis-
crete-event systems,” Int. J. Control, vol. 54, no. 5, pp. 1143–1169,
1991.

[6] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Trans. Autom. Control, vol. 37, no. 11,
pp. 1692–1708, Nov. 1992.

[7] T. S. Yoo and S. Lafortune, “A general architecture for decentralized
supervisory control of discrete-event systems,” Discrete Event Dyna.
Syst.: Theory Appl., vol. 12, no. 3, pp. 335–377, 2002.

[8] K. C. Wong and S. Lee, “Structural decentralized control of concurrent
discrete-event systems,” Eur. J. Control, vol. 8, pp. 477–491, 2002.

[9] K. Rudie, S. Lafortune, and F. Lin, “Minimal communication in a dis-
tributed discrete-event system,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 957–975, Jun. 2003.

[10] J. Komenda and J. H. van Schuppen, “Modular control of discrete-event
systems with coalgebra,” IEEE Trans. Autom. Control, vol. 53, no. 2,
pp. 447–460, Mar. 2008.

[11] H. Zhong and W. M. Wonham, “On the consistency of hierarchical
supervision in discrete-event systems,” IEEE Trans. Autom. Control,
vol. 35, no. 10, pp. 1125–1134, Oct. 1990.

[12] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,” Discrete Event Dyna. Syst.: Theory Appl., vol. 6, no. 3,
pp. 241–273, 1996.

[13] K. C. Wong and W. M. Wonham, “Modular control and coordination
of discrete-event systems,” Discrete Event Dyna. Syst.: Theory Appl.,
vol. 8, no. 3, pp. 247–297, 1998.

[14] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control
of decentralized discrete event systems,” IEEE Trans. Autom. Control,
vol. 53, no. 10, pp. 2252–2265, Nov. 2008.

[15] L. Feng and W. M. Wonham, “Supervisory control architecture for dis-
crete-event systems,” IEEE Trans. Autom. Control, vol. 53, no. 6, pp.
1449–1461, Jul. 2008.

[16] R. Su and J. G. Thistle, “A distributed supervisor synthesis approach
based on weak bisimulation,” in Proc. Int. Workshop Discrete Event
Syst. (WODES06), Ann Arbor, MI, Jul. 2006, pp. 64–69.

[17] A. Mannani and P. Gohari, “Decentralized supervisory control of
discrete-event systems over communication networks,” IEEE Trans.
Autom. Control, vol. 53, no. 2, pp. 547–559, Mar. 2008.

[18] P. Darondeau, “Distributed implementation of Ramadge-Wonham su-
pervisory control with Petri nets,” in Proc. 44th IEEE Conf. Decision
Control, Seville, Spain, Dec. 2005, pp. 2107–2112.

[19] K. T. Seow, M. T. Pham, C. Ma, and M. Yokoo, “Coordination plan-
ning: Applying control synthesis methods for a class of distributed
agents,” IEEE Trans. Control Syst. Technol., vol. 17, no. 2, pp. 405–415,
Mar. 2009.

[20] K. T. Seow, C. Ma, and M. Yokoo, “Multiagent planning as control
synthesis,” in Proc. 3rd Int. Joint Conf. AAMAS, New York, NY, Jul.
2004, pp. 972–979.

[21] K. Cai and W. M. Wonham, “Supervisor localization: A top-down ap-
proach to distributed control of discrete-event systems,” in Proc. 2nd
Med. Conf. Intelligent Syst. Autom. (CISA’09), Zarzis, Tunisia, Mar.
2009, pp. 302–308.

[22] S. Lafortune, “On decentralized and distributed control of partially-ob-
served discrete event systems,” in Advances in Control Theory and Ap-
plications. Berlin, Germany: Springer, 2007, vol. 353, pp. 171–184.

[23] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31–53, Jan.
2004.

618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

[24] P. Gohari and W. M. Wonham, “On the complexity of supervisory con-
trol design in the RW framework,” IEEE Trans. Syst., Man, Cybern.,
Special Issue DES, vol. 30, no. 5, pp. 643–652, Oct. 2000.

[25] W. M. Wonham, Design Software: XPTCT Systems Control Group,
ECE Dept, Univ. Toronto, Tech. Rep., 2008 [Online]. Available: http://
www.control.toronto.edu/DES

[26] P. M. Pardalos and J. Xue, “The maximum clique problem,” Global
Optim., vol. 4, no. 3, pp. 301–328, Apr. 1994.

[27] L. Feng, “Computationally Efficient Supervisory Design for Discrete-
Event Systems” Ph.D. dissertation, ECE Dept., Univ. Toronto, Toronto,
ON, Canada, 2007.

[28] L. Feng and W. Wonham, “On the computation of natural observers in
discrete-event systems,” Discrete Event Dyn. Syst. [Online]. Available:
www.springerlink.com

[29] L. Feng and W. M. Wonham, “Computationally efficient supervisory
design: Control flow decomposition,” in Proc. Int. Workshop Discrete
Event Syst. (WODES’06), Ann Arbor, MI, Jul. 2006, pp. 9–14.

[30] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory
synthesis of large systems,” Control Eng. Prac., vol. 14, no. 10, pp.
1157–1167, 2006.

[31] L. E. Holloway and B. H. Krogh, “Synthesis of feedback logic control
for a class of controlled Petri nets,” IEEE Trans. Autom. Control, vol.
35, no. 5, pp. 514–523, May 1990.

[32] L. Feng, K. Cai, and W. M. Wonham, “A structural approach to the
nonblocking supervisory control of discrete-event systems,” Int. J. Adv.
Manufact. Technol., vol. 41, no. 11–12, pp. 1152–1168, Apr. 2009.

Kai Cai (S’08–M’08) received the B.Eng. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2006, the M.A.Sc. degree
in electrical and computer engineering from the
University of Toronto, Toronto, ON, Canada, in
2008, and is currently pursuing the Ph.D. degree at
the Tokyo Institute of Technology, Tokyo, Japan.

His research interest is distributed control of multi-
agent systems.

W. M. Wonham (M’64–SM’76–F’77–LF’00)
received the B.Eng. degree in engineering physics
from McGill University, Montreal, QC, Canada, in
1956, and the Ph.D. in control engineering from the
University of Cambridge, Cambridge, U.K., in 1961.

From 1961 to 1969, he was associated with several
U.S. research groups in control. Since 1970, he has
been a faculty member in Systems Control, with the
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada. He is
the author of Linear Multivariable Control: A Geo-

metric Approach (Berlin, Germany: Springer-Verlag, 1985, 3rd ed) and co-au-
thor of Nonblocking Supervisory Control of State Tree Structures (Berlin, Ger-
many: Springer-Verlag, 2005). His research interests have included stochastic
control and filtering, geometric multivariable control, and discrete-event sys-
tems.

Dr. Wonham is a Fellow of the Royal Society of Canada and a Foreign As-
sociate of the (U.S.) National Academy of Engineering. He received the IEEE
Control Systems Science and Engineering Award in 1987 and was the Brouwer
Medallist of the Netherlands Mathematical Society in 1990. In 1996, he was
appointed University Professor in the University of Toronto, and in 2000 Uni-
versity Professor Emeritus.

