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ABSTRACT

In the field of systems and control, many cooperative control problems of multi-agent
systems have been actively studied in the past two decades. This article aims to or-
ganize extensive existing work on different cooperative control problems into three
categories, based on three different types of graph Laplacian matrices involved. A
Laplaican matrix is an important representation of graph topology, and depending
on the field of its entries, there are three types: ordinary Laplacian (nonnegative di-
agonal entries and nonpositive off-diagonal entries), signed Laplacian (arbitrary real
entries), and complex Laplacian (arbitrary complex entries). Each type of graph
Laplacian is useful in modeling and solving a different set of cooperative control
problems. In particular, their algebraic properties are fundamental in characterizing
stability and performance of the respective solution algorithms. To our best knowl-
edge, organizing the literature on multi-agent cooperative control through the lens
of different graph Laplacians is new.
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1. Introduction

Cooperative control of multi-agent systems has been actively studied in the field of sys-
tems and control in the past two decades. Such systems typically consist of a large num-
ber of distributed agents, which locally interact with one another such that they jointly
pursue a global goal. Research results on cooperative control of multi-agent systems
have found wide applications in robotics (swarms of vehicles/drones) [10,34,44], engi-
neering (sensor/power networks) [6,13,38], physics (systems of oscillators) [15,40,45],
epidemics (spreading processes) [25,36,49], and social/political science (opinion dy-
namics) [1,17,50]. The literature has grown in near-intractable volumes, but excellent
textbooks (e.g. [3,5,16,33,42]) and surveys (e.g. [9,14,18,35,39]) have kept the content
in organized manners.

This article aims to add to the existing surveys a new perspective of organizing an
important subset of work on multi-agent systems. This perspective is based on different
types of graph Laplacian matrices. The conventional Laplacian matrix is defined based
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on a nonnegative adjacency matriz [4,19], which describes the interaction (graph)
topology of the multi-agent system. This type of Laplacian matrix is fundamental
in describing the dynamics of a number of multi-agent cooperative control problems
including consensus, averaging, synchronization, regulation, flocking, and optimization
[7,8,22-24,32,37,41,46,48,51]. The algebraic properties of this type of Laplacian matrix
has been found to characterize the stability and performance of the corresponding
cooperative control algorithms. These algebraic properties are also closely related to
the connectivity properties of the interaction graph.

More recently, two other types of Laplacian matrices have been proposed in de-
signing cooperative control algorithms. One type is defined from a complex-valued
(entry-wise) adjacency matrix, and is called complex Laplacian. A complex Laplacian
matrix has been found useful in solving a class of formation control and localiza-
tion in the 2D plane [26-28,30,31]. The other type of Laplacian matrix is defined
from a general real adjacency matrix which need not be nonnegative. This type of
Laplacian matrix is called signed Lapalcian, and has been found effective in design-
ing cooperative control algorithms to solve formation control and localization in 3D
and higher-dimensional space [11,12,21,29,52]. For both types — complex and signed
Laplacian matrices — their algebraic properties are again essential in characterizing
the stability and performance of the corresponding cooperative control algorithms. In
addition, these algebraic properties are also related to certain connectivity properties
of the interaction graph.

The above works based on different types of Laplacian matrices thus provide us with
a new angle to overview the relevant literature on multi-agent cooperative control. Al-
though there are many different cooperative control problems in their appearances,
they have a few basic points in common. The interaction topology of the agents can
be described by graphs, the dynamics of multi-agent systems is hence underlied by
Laplacian matrices, and the algebraic properties of these Laplacian matrices dictate
stability /performance of the corresponding cooperative control algorithms. These com-
mon points therefore allow us to interlink and organize different cooperative control
problems and their solutions by different types of Laplacian matrices and the corre-
sponding algebraic properties. To the best of our knowledge, this way of organizing
the literature on multi-agent cooperative control is new.

We note that although this new perspective based on different types of Laplacian
matrices can effectively organize much existing work on multi-agent cooperative con-
trol, it also has a number of limitations. First, dynamics of multi-agent systems that
can be described using Laplacian matrices is linear; thus works on systems with non-
linear, discrete, or hybrid dynamics do not fall under this umbrella. Second, since our
focus is on the algebraic properties of different Laplacian matrices, only time-invariant
cases are considered. This means that the interaction topology of the agents does not
vary over time. Third, works on the effect of various communication/sensing issues
such as time delay, packet loss, link failure, and quantization are also not considered.
Besides the above, this article makes a further simplification that the dynamic models
of agents are single integrators. This choice is deliberately made inasmuch as it conve-
niently allows us to emphasize the role of Laplacian matrices without being distracting
by other technical details (related but insignificant for the interest of this article).



Notation

We denote by I; the identity matrix of size d x d, and 1 the vector of all ones, that is,
1=1--- 1. A matrix A with (4, j)-th entry a;; is simply denoted by A = [a;;]. For
two matrices A = [a;;] of size m x n and B of any size, A ® B denotes the Kronecker
product defined by

auB tee alnB
AwBi=| . 1)
amlB tee amnB
For a vector v = [v; --- v,]", we denote by diag(v) the n x n diagonal matrix with
diagonal entries vy, ..., v,. Finally we write [1,n] for the set {1,...,n}.

2. Definition and Categorization of Laplacian Matrices

Consider a system of interconnected agents modeled by the following differential equa-
tion (continuous time t) or difference equation (discrete time k):

zi(t) = ui(t), i€[l,n], t>0 (2)
zi(k+1) =xi(k) +ui(k), i€[l,n], k=0,1,... (3)

Here z; is the state of agent i, and w; is its control input. In this article, state x; and
control wu; are either real vectors (in R? d > 1) or complex scalars (in C).! In (2)
the agents’ states change continuously, like the change of positions/velocities of robots
moving in the 2D /3D space. On the other hand, in (3) the agents’ states are updated
in discrete steps, like the iterative updates of estimated parameters in sensor networks.

The interconnection of the agents is modeled by a graph. A graph G = (V,€)
consists of a node set V = {v1,...,v,} and an edge set £ CV x V (e.g. [4,19]). Each
node represents an agent, and an edge between two nodes denotes the interaction
between the two corresponding agents. More precisely, an edge (v;, v;) € £ means that
agent ¢ can obtain information from agent j (through sensing or communication). It
is assumed (as a convention) that (v;,v;) ¢ £, namely there is no selfloop edges. In
general a graph G is directed (called digraph). If (vj,v;) € € implies (v;, v;) € € for all
i, 7, then the graph is undirected (or bidirectional).

The local pattern of a graph can be described by neighbor sets. For a node v;, the
set of its in-neighbors is N; = {v; | (vj,v;) € £}, while the set of out-neighbors is
NP ={vj | (vi,v;) € E}. If the graph is undirected, then N; = N? for all i.

If for every agent ¢ its control u; uses information only from N;, we say that the
control is distributed. In this article, we consider the distributed control

U = ¢ Z ayj(r; — ;). (4)

JEN;

Here ¢; is the control gain and a;; the weight of interaction that agent ¢ places on
the information received from j. Both ¢; and a;; are either real or complex non-zero

1We consider z;,u; € C only for the cases of planar formation and localization where these scalar complex
variable can provide more compact modeling than treating them as two-dimensional real vectors, i.e. x;, u; € R2.



scalars.

With weight a;; associated to edge (vj,v;) € £, graph G is called a weighted graph
[5]. Note that a;; # 0 if and only if (v;,v;) € €. The adjacency matriz [4,19] of a
weighted graph G is an n x n matrix A = [a;;]. Since (v;, v;) ¢ & for all 4, the diagonal
entries of A are 0. If A is symmetric (i.e. A = AT), then G is said to be weight balanced
[5]. In this article, we consider three types of adjacency matrices depending on the
field of their entries.

e If a;; > 0, A is a nonnegative matrix.
o If a;; € R, Ais an arbitrary real matrix.
o If a;; € C, Ais an arbitrary complex matrix.

Let A be the adjacent matrix of G. Then D := diag(A1) is the degree matrix, where
1 is the vector of all ones. The Laplacian matriz [4,5,19] of a weighted digraph G is
L := D — A. In general L is not symmetric; it is symmetric if and only if G is weight
balanced. The rationale of naming this matrix L “Laplacian” is due to its relation to
the Laplace differential operator [2,43], explained in the Appendix.

By definition L1 = 0; namely each row of L sums to zero. Thus 0 is an eigenvalue
of L, with a corresponding eigenvector 1. This is a basic algebraic property shared by
all types of graph Laplacians introduced below.

According to the three types of adjacency matrices, we distinguish three types of
Laplacian matrices. Each type is useful for a set of cooperative control problems.

e If A is nonnegative, then L has nonnegative diagonal entries and nonpositive
off-diagonal entries. This L is the conventional Laplacian matrix, and in this
article we refer to it as ordinary Laplacian (OL).?

e If A is (arbitrary) real, then L is called signed Laplacian (SL).

e If A is (arbitrary) complex, then L is called complex Laplacian (CL).

With a Laplacian matrix L and letting z := [z{ --- )], C = diag(cy,...,cn),
equations (2)—(4) can be written in a vector-matrix form in continuous time

&(t) = (—=(CL) ® Ia)x(t) (5)

where ® is the Kronecker product. In particular, for a scalar case (i.e., x1,..., T, are

real or complex scalars), it is simply written as
z(t) = —CLx(t). (6)
Similarly, in discrete time, we have
z(k+1)= (I, —CL) ® I3)x(k) (7)
for the d-dimensional case, and
z(k+1)= (I, — CL)x(k) (8)

for a scalar case.

2The term “ordinary Laplacian” is not standard in the literature, but convenient for us to distinguish with
the other two types of Laplacian matrices in this article.



Figure 1. Example 2.1: graphs
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Figure 2. Example 2.1: simulations (x denotes initial state while o final state)

Example 2.1. We provide an example to illustrate that different types of Laplacian
matrices can generate different cooperative behaviors. Consider a system of five agents
whose interconnection is represented by three different graphs in Figure 1. For G,
consider the following OL (nonnegative diagonal entries and nonpositive off-diagonal

entries):

With L, C' = I, d = 2, a simulation of equation (5)

&= (—(CLy) ® Iy)x

0 0 O
1 -1 0
0 1 -1
0 0 1
0 0 O

is shown in Figure 2(a). Observe that in the 2D plane, the five agents achieve consensus

(i.e. reaching the same point).



Next for Gy, consider the following CL (complex entries):

0 0 0 0 0
0 0 0 0 0

Ly= | -1 1.309—0.95115 —0.309 + 0.9511] 0 0
0 0 ~1 1.309 — 0.9511j —0.309 + 0.9511;
~1  0.5—0.3633] 0 0 0.5 + 0.3633;

With Ly, C = diag(0,0,—0.309 — 0.9511j, 0.4045 + 0.2939j, 0.4045 — 0.2939j), a simu-
lation of equation (8)

z(k+1) = (Is — CLy)z(k)
is shown in Figure 2(b). In 2D, agents 3,4,5 achieve localization (i.e. determining their

positions in the global reference frame) given the positions of (anchor) agents 1,2.
Finally for G. consider the following SL (real entries):

0 0 0 00
0 0 0 00
L.=|10 0 0 00
0 0 0 00
-1 -2 -1 2 2

With L., C' = diag(0,0,0,0,0.2), d = 3, a simulation of equation (5)
= (—(CL.) ® I3)x

is shown in Figure 2(c). In 3D, the five agents achieve a hexahedron formation.

The above examples showcase the possibilities of using different types of Lapla-
cian matrices to generate different cooperative behaviors. In the subsequent sections,
we examine each type of Laplacian matrices in order. For each type, among multiple
cooperative control problems that may be solved using that type of Laplacian, we
present 1 ~ 2 representative problems. Then we introduce key algebraic properties
of the respective Laplacian matrices that guarantee achieving the desired cooperative
behaviors. Note that we choose the representative problems with the purpose of em-
phasizing the differences between different types of Laplacians; we do not, however,
intend to exhaust all problems that can be resolved by each type of Laplacian.

3. Ordinary Laplacian

OL is first and most widely used in cooperative control of multi-agent systems (con-
sensus, averaging, synchronization, regulation, flocking, and optimization [7,8,22—
24,32,37,41,46,48,51]). The basic problems are consensus (or agreement, rendezvous)
and averaging, which are later extended to consensus-based estimation, synchroniza-
tion, regulation, and averaging-based optimization. In this section, we choose to present
these two basic problems — consensus and averaging — and both the algebraic and the
graphical conditions that characterize their solutions.



Problem 3.1 (Continuous-time consensus). Consider a system of n agents as in
(2) with x;,u; € RY, which are interconnected through a graph G. Design a distributed
control (4) such that for every i € [1,n] and every x;(0) € R? there exists x* € RY
such that

li (1) = z*.

g i) =2
In terms of vectors/matrices and the differential equation (t) = (—(CL) ® Ig)x(t) in
(5), this means that for any initial state x(0) € R™ there exists z* € R? such that

lim z(t) =1 ® z*.

t—o0

Problem 3.2 (Discrete-time averaging). Consider a system of n agents as in (3)
with x;,u; € RE, which are interconnected through a graph G. Design a distributed
control (4) such that for every i € [1,n] and every z;(0) € R?

lim (k) = %Z 24(0).
=1

k—o00

In terms of vectors/matrices and the difference equation x(k+1) = ((I,—CL)®1;)x(k)
in (7), this means that for any initial state x(0) € R™

Both consensus and averaging problems can be formulated in continuous-time or
discrete-time (e.g. [5,42]). The above choices are for convenience and the other versions
are similar.

Comparing consensus and averaging, both problems require all the agents’ states to
converge to a common vector (aka. consensus vector). While in consensus this vector
is not specified, in averaging it is the (element-wise) average of the initial states.
Consensus has found applications in multi-robot rendezvous and flocking [23,37,41],
while averaging is key to solution of distributed optimization problems [47,51] which
apply to multi-robot motion coordination and planning [20]. Averaging has also been
applied to distributed estimation, load balancing, and opinion dynamics [5].

The key to the solvability of these two problems is certain algebraic properties of
the OL L, in particular its eigenstructure. The latter is in turn determined by the
connectivity of the graph G.

We introduce several graph notions related to connectivity, followed by a central
result linking graph connectivity with an algebraic property of OL. Given a graph
G =(V,€), a path is a sequence of nodes

V1V - - - Uy (lZ 1)

such that (v;,v41) € € for every i = 1,2,...,1 — 1. The path is said to be from v; to
v;. Let u,v € V be two nodes of G. We say that v is reachable from w if there is a path



from u to v. Every node v is assumed trivially reachable from itself. A node r € V is
called a root if every node in V \ {r} is reachable from r. For example, consider G, in
Figure 1; node 1 is a root and the other nodes are not.

The following result is fundamental (e.g. [5,16,42]).

Proposition 3.1. Let G be a weighted graph with n nodes and L the corresponding
OL matriz. Then rank(L) =n — 1 if and only if G contains a root.

Proposition 3.1 asserts that existence of a root is necessary and sufficient for that 0 is
a simple eigenvalue of L; that is, the null space of L is exactly one-dimensional spanned
by the eigenvector 1 of the eigenvalue 0. For example, the OL L, in Example 2.1
satisfies rank(L,) = 4 and the eigenvalue 0 is simple. Moreover, by Gershgorin disc
theorem, all the other (nonzero) eigenvalues of L have positive real parts. This result
leads to the solutions to the consensus and averaging problems.

Theorem 3.1 (Solution to consensus). There exists a control gain matriz C' such
that Problem 3.1 is solvable if and only if G contains a root. Moreover, the consensus
vector z* = (1®@w) "z(0), where w is a left eigenvector of L with respect to the (simple)
eigenvalue 0.

Theorem 3.2 (Solution to averaging). Suppose that } .. x. ai; < 1 for all i €
[1,n]. There exists a control gain matriz C such that Problem 3.2 is solvable if and
only if G is weight-balanced (i.e. L = L") and every node v; € V is a root.

Several remarks on the above results are in order.

e Theorem 3.1 is adapted from e.g. [33,42], and Theorem 3.2 from e.g. [5].

e In both Theorems 3.1 and 3.2, a solution control gain matrix is C' = I,,. The
second statement in Theorem 3.1 shows that the consensus vector is a weighted
average of the initial state.

e The additional assumption in Theorem 3.2 (3_;cp, aij <1 for all i € [1,7n]) en-
sures that the matrix I,, — L is nonnegative (and thus row stochastic). Moreover,
for weight-balanced graphs, the matrix I,, — L is also column stochastic (hence
doubly stochastic).

e For undirected graphs, existence of a root is in fact equivalent to that all nodes
are roots (indeed the graph is called connected).

e For directed graphs, when all nodes are roots, the graph is said to be strongly
connected. Indeed, strongly connected and weight-balanced are necessary and
sufficient for the weight vector w = %1 in Theorem 3.1.

4. Complex Laplacian

CL is revealed to be useful in formulating and solving a class of localization and for-
mation control problems in 2D [26-28,30,31]. Both the localization and the formation
control problems bear certain similarities, and introducing both would be repetitive.
In this section we choose to introduce the 2D localization problem (and the formation
control problem in higher dimensions will be introduced in the subsequent section).
Then we present both the algebraic and the graphical conditions that characterize its
solution.

In 2D localization, a system of n agents are stationary in the plane with a global
reference frame 3. Among the n agents, two agents are called anchors whose positions



in ¥ are known, while the rest called free agents need to determine their positions
based only on their local reference frames that are generally not aligned with X. In
describing this 2D localization problem below, we denote the position of agent i at
time k by a complex number z;(k), so that the real part Re(z;(k)) and the imaginary
part Im(x;(k)) are the two perpendicular components of agent ’s position in the global
frame ¥.. Using this complex representation of agents’ positions in 2D is not only more
compact (than the real-vector counterpart), but gives rise to the use of CL (the focus
of this section) in describing the multi-agent system’s dynamics.

Problem 4.1 (Discrete-time 2D localization). Consider a system of n agents
interconnected through a graph G. The first 2 agents are anchors whose positions ), =
[z} :1;§]T € C? in the global reference frame X are known, while the rest n — 2 agents
are free whose positions Th = (2% -+ 2]" € C"2 in the global reference frame ¥ are
unknown. Consider that each agent i uses a scheme for its position estimation as in
(8) where x; € C is the estimated position and u; € C is based on its local reference
frame ¥; (which are not aligned with ¥ in general). Design a distributed control (4)
such that x(k + 1) = (I, — CL)x(k) in (8) satisfies: for any initial state z(0) € C"

lim z(k) = 2" = [%] .

k—o0 ‘T}

To solve the above 2D localization problem, a certain algebraic property of the CL
L is key. The latter is in turn determined by a graphical notion that generalizes that of
root. Let v1, vy € V and write R = {vy, v2}. For another node v € V\ R, we say that v
is 2-reachable from R if v is reachable from v or vo after removing an arbitrary node
except for v itself. Intuitively 2-reachability of v requires that there be two independent
paths (sharing no nodes) from R to v. Call R = {v1,v2} a 2-root set if every node in
V\ R is 2-reachable from R. For example, consider Gy in Figure 1; the set {1, 2} is the
only 2-root set.

Existence of a 2-root set turns out to be sufficient to ensure that the rank of CL L
is at least n —2 (in a generic sense), as asserted below (adapted from [31, Lemma 3.1].

Proposition 4.1. Let G be a weighted graph with n nodes and L the corresponding
CL matriz. If G contains a 2-root set, then rank(L) > n — 2 for L with almost all
complex entries.

Return to the 2D localization problem. Since the two anchor agents do not need to
update their states, we set x1(k) = 21(0) and x2(k) = 22(0) for all & > 0. Hence the
first two rows of the CL L are zeros. This means that rank(L) < n — 2. Together with
Proposition 4.1, we have rank(L) = n — 2, namely the null space of L are exactly two-
dimensional. One basis of this null space is 1 by definition. The other basis is in fact
ot = [(z2)" (x})T]T, the position vector in the global reference frame ¥, provided that
x* is generic (i.e. not satisfying any linear algebraic equation with rational coefficients).
For example, the CL L; in Example 2.1 satisfies rank(L,) = 3 and the two bases for
the null space are 1 and

E=[1 e 5l %l e%w']T.
The vector £ is a shape of a regular pentagon, which is generic in C.

Below we present the result of solving the 2D localization problem (adapted from
[27, Theorem 1]).



Theorem 4.1. Suppose that the global position vector x* = [z} 23 --- x}]T is generic
in C. There exists a control gain matriz C such that Problem 4.1 is solvable if G

contains a 2-root set {vi,ve} and N1 = Ny = ().

We remark that the condition N7 = Ny = ) implies that the two anchor agents do
not receive information and thereby do not update their states, i.e. z;(k) = x1(0) and
x2(k) = x2(0) for all £ > 0. This condition is, by contrast, not required in the similar
formation control problem [31], because there the two root agents, playing the role of
leaders, do not know their positions in the global frame ¥ and therefore generally can
and need to update their states.

Unlike the case of OL where the stability of the nonzero eigenvlaues is determined
by the Gershgorin disc theorem, the nonzero eigenvalues of CL are generally unstable.
Thus one needs to design a suitable control gain matrix C' to stabilize CL. Fortunately,
such a stabilizing matrix C' always exist for CL of graphs containing a 2-root set.

5. Signed Laplacian

While CL in the preceding section is instrumental for localization and formation con-
trol in 2D, it is not applicable to similar problems in higher dimensions. For a class
of localization, formation control, and formation maneuvering problems in higher di-
mensions, SL instead provides a useful approach for their formulations and solutions
[11,12,21,29,52].

Like in Section 4, these localization, formation control, and formation maneuvering
problems bear certain similarities, and thus introducing one would be representative.
In this section we choose to introduce a d-dimensional (d > 3) affine formation control
problem, and present both the algebraic and the graphical conditions that characterize
its solution.

In this formation control problem, a system of n agents move in a d-dimensional
space and is tasked to form a formation shape that is ‘affine’ to a given desired config-
uration ¢ € R™: namely the formed formation can be obtained from & by translation,
rotation, and scalings in each of the d dimensions.

Problem 5.1 (Continuous-time d-dimensional affine formation). Consider a
system of n agents as in (2) with x;,u; € RY, which are interconnected through a graph
G. Let £ € R™ be the desired formation shape (or configuration), and define the family
of all affine formations of £:

A :={¢ eR™: (AM € R Im e RYE = (I, ® M)E +1,, @ m}.

Design a distributed control (4) such that ©(t) = (—(CL) ® Iq)x(t) in (5) satisfies: for
any initial state x(0) € R there exists &' € A(€) such that

. /

tlggo o(t) = ¢
To solve the above problem, a certain algebraic property of the SL L is key. The
latter is in turn determined by a key graphical notion that generalizes that of 2-root
set. Let R C V be a subset of d + 1 nodes, i.e. |[R| = d + 1. For an arbitrary node
v € V\ R, we say that v is (d + 1)-reachable from R if v is reachable from a node
after removing arbitrary d nodes except for v itself. Intuitively (d + 1)-reachability of

10



v requires that there exist d independent paths (sharing no nodes) from R to v. Call
R a (d+ 1)-root set if every node in V \ R is (d + 1)-reachable from R. For example,
consider G, in Figure 1; {1,2,3,4} is a 4-root set.

Existence of a (d + 1)-root set turns out to be sufficient to ensure that the rank
of SL L is at least n —d — 1 (in a generic sense), as stated below (adapted from [29,
Lemma 4.1]).

Proposition 5.1. Let G be a weighted graph with n nodes and L the corresponding
SL matriz. If G contains a (d+1)-root set, then rank(L) > n—d—1 for L with almost
all real entries.

Proposition 5.1 provides a sufficient condition to ensure rank(L) > n—d—1. On the
other hand, it can be verified that ker(L®1;) O A(€), which implies rank(L) < n—d—1
(since the dimension of A(§) is d 4+ 1). Hence rank(L) = n — d — 1 after all. In fact
ker(L ® I4) = A(§). For example, the SL L. in Example 2.1 satisfies rank(L.) = 1 for
the affine formation control problem in R? (d = 3).

We are ready to present the result of solving the d-dimensional affine control problem
(adapted from [29, Theorem 4.1}).

Theorem 5.1. Suppose that the desired formation shape & is generic in R®. There
exists a control gain matriz C such that Problem 5.1 is solvable if G contains a (d+1)-
r001 set.

Note that unlike in Theorem 4.1 it is required that the roots have no neighbors,
here the roots are allowed to have neighbors. This means that the root agents in affine
formation control can receive information from their neighbors (if there are any) and
accordingly update their states (positions in the d-dimensional space).

Regarding the stability of the nonzero eigenvalues of SL, the situation is similar to
that of CL. Namely, the nonzero eigenvalues of SL are generally unstable, and one
needs to properly design a control gain matrix C' to stabilize CL. Fortunately again,
such a stabilizing matrix C' always exist for SL of graphs containing a (d 4+ 1)-root set.

6. Summary

In this article we introduced three different types of graph Laplacian matrices based
on the field of their entries. For each type of Laplacian matrix, we introduced their
use in different multi-agent cooperative control problems, as well as their characteristic
algebraic conditions that are key to solve the corresponding problems. Moreover, these
algebraic conditions have nice correspondences to conditions on graph connectivities.
The content is summarized in the following table.

Table 1. Content summary

| OL | CL | SL
Problems consensus/averaging | localization in 2D | formation in d-dimension
Algebraic conditions | rank(L) =n —1 rank(L) >n—2 | rank(L) >n—d—1
Graphical conditions | root 2-root set (d + 1)-root set

11
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Appendix: Relation to Laplace Differential Operator

In this section, we show the relation between the Laplacian matrix and the Laplace
differential operator [2,43]. We will see the graph Laplacian is a result of discretization
of Laplace differential operator. For simplicity, we consider the operator in R?:

o () ()

but the relation explained below is still true for any dimensional spaces.

First, we consider an open set  C R?, and a function ¢(z,y) in this domain. Then
we discretize 2 by dividing it into sub-domains with a square gird with step size h, as
shown in Figure 1.

Then, we approximate the value of A¢ on the grid points by the finite difference
method. For this, we name the grid points as v1,vs, ..., v,, where n is the number of
grid points. As shown in Figure 1, a point v; is connected to four grid points located at
(zi-1,%i)s (Tit1, i), (Ti,¥i-1), and (24, yi41). By the graph notation, these four points
form N;. By using the values of ¢ at these points, we discretize the Laplace differential
operator using finite difference method as

A(xiz1,yi) — 20(xi, yi) + O(wip1,yi) . (i, yio1) — 20(xi, i) + d(@i, Yit1)

(A¢) (J:i’ yz) ~ h2 + h2

= —% Z (i — ¢5),

JEN;

where ¢; denotes the value of ¢ at grid point v;. If we define 9 := [¢; --- bn) T, it is
easily shown that

(L) = Y (6 — ¢5), (3)

JEN;
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Figure 1. Space discretization with a square grid with step size h. The grid point named v; located at (z;,y;)
in  is connected to four grid points colored in black.

where (L)); is the i-th entry of vector Li). Therefore, vector —C' Ly with C' :=
diag(1/h?) gives approximated values of A¢ at grid points vy,...,v, as in (2) and

(3)-

The Laplace differential operator appears in the heat equation

oo

where ¢(z,y,t) is the temperature at position (z,y) at time ¢. Define Ay := —C'L with
C := diag(1/h?). Using this discretized operator, we can take the consensus equation

do B _
== Dap = —CLo (5)

as a discrete heat equation. The properties of the consensus discussed in Section 3 can
be also understood as the flow of heat over a network.

Define the incidence matrix B = [bjx] € R™ ™ of graph G = (V,&) with V =
{vi,...,vp} and € = {e1,...,en} as

1, if e, leaves v;,
bir = ¢ —1, if ey enters v, (6)
0, otherwise.
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It can be easily shown that for vector ¢ = [¢1 --- ¢,]" € R™,

(BY)i= > — Y. bk

k: ey leaves v; k: e, enters v;

n (7)
(B")e =) bty = ¢i — 95,
=1

and L = BB'. At the same time, if we take the finite differential method with the
square grid shown in Figure 1, the discretization V4 and V; respectively of the gradient
V and the divergence V* can be obtained as

1 1
=—-BT w=—B.
Va=—3B, Va=7 (8)

Therefore, the relation L = BB or Ay = V;Vq is a discretized version of the well-
known relation A = V*V.
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