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Average Consensus on Arbitrary Strongly Connected
Digraphs With Time-Varying Topologies

Kai Cai and Hideaki Ishii

Abstract—We have recently proposed a “surplus-based” algorithm
which solves the multi-agent average consensus problem on general
strongly connected and static digraphs. The essence of that algorithm is
to employ an additional variable to keep track of the state changes of
each agent, thereby achieving averaging even though the state sum is not
preserved. In this note, we extend this approach to the more interesting and
challenging case of time-varying topologies: An extended surplus-based
averaging algorithm is designed, under which a necessary and sufficient
graphical condition is derived that guarantees state averaging. The derived
condition requires only that the digraphs be arbitrary strongly connected
in a joint sense, and does not impose “balanced” or “symmetric” properties
on the network topology, which is therefore more general than those
previously reported in the literature.

Index Terms—Distributed consensus, jointly strongly connected di-
graphs, multi-agent systems, surplus-based averaging, time-varying net-
work topologies.

I. INTRODUCTION

The average consensus problem of multi-agent systems has attracted
much attention in the literature (e.g., [1]–[3]). The problem can be
described as follows. Consider a network of n agents whose state is
x(k) = [x1(k) · · · xn(k)]

T ∈ R
n at discrete time k = 0, 1, 2, . . ..

Every agent i ∈ [1, n] interacts locally with its neighbors for the
exchange of state information, and based on the obtained neighbors’
states it updates its own xi(k) to a new value xi(k + 1) according to a
prescribed algorithm. One aims at designing distributed algorithms by
which agents may iteratively update their states such that x(k) = xa1
asymptotically, where xa := 1Tx(0)/n is the average of the initial
states and 1 := [1 · · · 1]T ∈ R

n.
In [4], [17] we proposed a novel algorithm which provably achieves

average consensus on general strongly connected, static networks.
This result extends [2], [3] in that it does not require the “balanced”
property on the network topology which can be restrictive as every
agent needs to maintain exactly equal amounts for incoming and
outgoing information. This is realized by augmenting for each agent
an additional variable si ∈ R, which we call “surplus”. Each surplus
si(k) at time k keeps track of the state change xi(k)− xi(k − 1) of
agent i, in such a way that 1T (x(k) + s(k)) is time-invariant (here
s(k) = [s1(k) · · · sn(k)]

T ) despite that the state sum 1Tx(k) is in
general not. The idea was originated in [5] for dealing with a quantized
averaging problem.

A more interesting, yet more challenging, scenario is where the
agents’ network topology is dynamic, as opposed to static. In real
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networks, many practical factors could result in a dynamic topology.
There can be unpredictable communication issues like random packet
loss, link failure, and node malfunction. There might also exist
deterministic, supervisory switchings among different modes of the
network. A gossip-type randomized dynamic topology has been con-
sidered in [4], where we proved that an arbitrary strongly connected
topology in expectation is necessary and sufficient for our surplus-
based algorithm to achieve average consensus in mean-square and
almost surely. In this note, we focus on dynamic network topology
varying in some deterministic fashion, and design an extended surplus-
based algorithm to achieve state averaging in a uniform sense (defined
below). Parts of the results here are contained in the conference
precursor [6].

Our main contribution is that the required connectivity condition
on time-varying network topology is weakened, as compared to those
previously reported in the literature. In [2], it was shown that a
sufficient connectivity condition for average consensus is that the
network topology at every time (possibly different) should be both
strongly connected and balanced. By contrast, supported by surplus
variables, we justify that average consensus can be uniformly achieved
if and only if the dynamic network is jointly strongly connected (the
precise definition is given in Section II). Thus for one, the “balanced”
requirement at every instant is dropped; for the other, “strongly con-
nected” is needed only in a joint sense. As to the convergence proof,
we use a Lyapunov-type argument, in the spirit of [7]. Extending
the algorithm in [4], [17], we introduce a new switching mechanism,
which gives rise to a suitable Lyapunov function for state evolution.
Finally, when the derived result is specialized to the static network
case, we effectively relax a conservative requirement on a parameter
of the algorithm in [4], [17].

There are well-known results (existence of a spanning tree jointly,
e.g., [7], [8]) for achieving a general consensus over dynamic net-
works, as well as new conditions of cut-balanced in [9]. To further
achieve the special average consensus on the initial state, either the
state sum is kept invariant or there is a way of tracking the changes
of the state sum. We consider arbitrary strongly connected dynamic
topologies where the state sum is time-varying in general, and propose
additional surplus update dynamics to keep track of the state changes
of individual agents. The surplus values are used in turn to influence
the state update dynamics, thereby forcing the states to converge to,
and only to, the initial average value.

We note that [10]–[12] also addressed average consensus on general
dynamic networks by employing auxiliary variables. In [10], an auxil-
iary variable is associated to each agent and a linear “broadcast gossip”
algorithm is proposed; however, the convergence of that algorithm is
not proved. Reference [11] also uses extra variables, and a nonlinear
(division involved) algorithm is designed and proved to achieve state
averaging on non-balanced digraphs. The idea is based on computing
the stationary distribution for the Markov chain characterized by the
agent network, and is thus different from consensus-type algorithms
[1]–[3]. Moreover, the dynamic networks considered are of random-
ized type; consequently the algorithms and results are not directly
applicable to the deterministic time-varying case studied in this note.
In addition, [12] uses auxiliary variables to scale weight matrices
asymptotically to a doubly-stochastic matrix, thereby achieving av-
erage consensus. Since the weight matrices are column-stochastic at
every time instant, the state sum is time-invariant in [12]; by contrast,
the state sum is time-varying in our case, and our approach is to use an
auxiliary variable for each agent to record the change in individual
states. Finally, centralized and distributed algorithms are designed
in [13] to make a general static topology balanced. The algorithm
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may in principle be used also for dynamic networks, which would
require a complete execution at each time for different topologies. This
requirement might be strong for applications where networks vary fast.

The rest of the technical note is organized as follows. First, in
Section II we formulate the average consensus problem for determinis-
tic time-varying networks. Then an extended surplus-based algorithm
is designed in Section III, and the corresponding convergence result
presented and proved in Section IV. A numerical example is shown in
Section V, and finally in Section VI we state our conclusions.

Notation: In this note, x denotes the state variable, and x(k)
denotes the value of state variable x at time k. If the time instant is
immaterial, we also use x to denote a generic element in any subset of
Rn. In the same way we use s and s(k).

II. AVERAGE CONSENSUS PROBLEM

First, a review of graph notions relevant to this note is provided;
and then, the average consensus problem on deterministic time-varying
networks is formulated.

For a network of n agents, we model their time-varying interconnec-
tion structure at time k by a dynamic digraph G(k) = (V, E(k)): Each
node in V = {1, . . . , n} stands for an agent, and each directed edge
(j, i) in E(k) ⊆ V × V represents that agent j communicates to agent i
at time k. For each node i ∈ V , let N+

i (k) := {j ∈ V : (j, i) ∈ E(k)}
denote the set of its “in-neighbors”, and N−

i (k) := {j ∈ V : (i, j) ∈
E(k)} the set of its “out-neighbors”. Also we adopt the convention
(i, i) �∈ E(k) and i �∈ N+

i (k),N−
i (k).

For the dynamic digraph G(k), we introduce a notion of joint
connectivity over some finite time interval. In G(k) a node i is
reachable from a node j if there exists a sequence of directed edges
from j to i which respects the direction of the edges. We say G(k) is
strongly connected if every node is reachable from every other node.
For a time interval [k1, k2] define the union digraph G([k1, k2]) :=
(V,

⋃
k∈[k1,k2]

E(k)); namely, the edge set of G([k1, k2]) is the union
of those over the interval [k1, k2]. A dynamic digraph G(k) is jointly
strongly connected if there is k1 such that for every k0 the union
digraph G([k0, k0 + k1]) is strongly connected. We say k1 is a period
of G(k).

The “joint” type connectivity notions have appeared in many pre-
vious works, e.g., [7], [8], [14]. In particular, to achieve a general
consensus (where the consensus value need not be the initial average
xa), the following joint connectivity is essential. A node v ∈ V is
called a globally reachable node if every other node is reachable
from v. A dynamic digraph G(k) jointly contains a globally reachable
node (or a spanning tree) if there is k1 such that for every k0 the
union digraph G([k0, k0 + k1]) contains a globally reachable node. It
is shown in [7], [8], [14] that a general consensus can be uniformly
achieved on a dynamic digraph G(k) if and only if G(k) jointly
contains a globally reachable node. This joint connectivity notion is
weaker than the above “jointly strongly connected” notion, because
a strongly connected union digraph G([k0, k0 + k1]) is equivalent
to that every node of G([k0, k0 + k1]) is globally reachable. This
notion is, however, too weak to achieve average consensus, as we
will see in the necessity proof of our main result; there we show that
the “jointly strongly connected” notion is, indeed, a necessary and
sufficient condition for uniformly achieving average consensus.

We present several additional graph notions, which will be needed
in the necessity proof of our main result. For G(k) = (V, E(k)) and a
nonempty subset U of V , we say U is closed if every node u in U is
not reachable from any node v in V − U at time k. Also, the digraph
G(k)U = (U , E(k) ∩ (U × U)) is called the induced subdigraph by U .
Lastly, a strong component of G(k) is a maximal induced subdigraph
of G(k) which is strongly connected.

The average consensus problem on deterministic time-varying net-
works is formulated as follows.

Definition 1: A network of agents achieves uniform average con-
sensus if for all c1, c2 > 0 there exists k1 such that for every k0

‖(x(k0), s(k0))− (xa1, 0)‖∞ < c1

⇒ (∀k ≥ k0 + k1) ‖(x(k), s(k))− (xa1, 0)‖∞ < c2.

The above definition of average consensus is in a “uniform” sense
with respect to k0. For studying consensus on deterministic time-
varying networks, this uniform consensus notion is typical, e.g.,
[7], [8].

Problem: Design a distributed algorithm and find a necessary and
sufficient connectivity condition on dynamic digraphs such that the
agents achieve uniform average consensus.

III. SURPLUS-BASED AVERAGING ALGORITHM

In this section, we present a surplus-based averaging algorithm,
which is an extension of the one in [4], [17]. Implementation issues
of the algorithm are discussed, and basic properties of the algorithm
are shown.

In the algorithm, there are three operations that every agent i
performs at time k. First (sending stage), agent i sends its state xi(k)
and weighted surplus bih(k)si(k) to each out-neighbor h ∈ N−

i (k)
(weights bih(k) are specified below). Second (receiving stage), agent i
receives state xj(k) and weighted surplus bji(k)sj(k) from each in-
neighbor j ∈ N+

i (k). Third (updating stage), agent i updates its own
state xi(k) and surplus si(k) as follows:

xi(k + 1) =xi(k) + ci(k)
∑

j∈N+
i

(k)

aij(k) (xj(k)− xi(k))

+ εi(k)si(k) (1)

si(k + 1) =

⎛
⎝1−

∑
h∈N−

i
(k)

bih(k)

⎞
⎠ si(k)

+
∑

j∈N+
i

(k)

bji(k)sj(k)− (xi(k + 1)− xi(k)) (2)

where the parameters εi(k), aij(k), bih(k), ci(k) used in (1) and (2)
satisfy the following items, for every i, j, h ∈ V and every k:

(P1) The parameter εi(k) ∈ (0, 1), which specifies the amount of
surplus used for state update.

(P2) The updating weights aij(k) ∈ (0, 1) if j ∈ N+
i (k), aij(k) = 0

otherwise, and
∑

j∈N+
i

(k)
aij(k) < 1.

(P3) The sending weights bih(k) ∈ (0, 1) if h ∈ N−
i (k), bih(k) = 0

otherwise, and
∑

h∈N−
i

(k)
bih(k) < 1− εi(k). The last inequal-

ity means that the amount of surplus sent to out-neighbors should
be strictly less than the total surplus subtracted by the part used
for state update.

(P4) The switching parameters ci(k)=1 if
∑

j∈N+
i
(k)

aij(k)(xj(k)−
xi(k)) ≤ 0, and ci(k) = 0 otherwise. This means that whenever
an agent determines to make a positive state update based on the
information from in-neighbors, it may use only its surplus for that
update.

(P1)–(P4) will enable desired properties of the proposed algorithm.
In particular, (P3) and (P4) will establish that all the surpluses are
nonnegative; see Lemma 1 below. Note also that at the sending stage
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of the algorithm, each agent should know its out-neighbors at time k,
namely the members of N−

i (k).
We discuss the implementation of the above protocol in applica-

tions of sensor networks. Let G(k) = (V, E(k)) represent a dynamic
network of sensor nodes. Our protocol deals particularly with scenarios
where information flow among sensors is directed and time-varying. A
concrete example is using sensor networks for monitoring geological
areas (e.g., volcanic activities), where sensors are fixed at certain
locations. At the time of setting them up, the sensors may be given
different transmission power for saving energy (such sensors must run
for a long time) or owing to geological reasons. Once the power is
fixed, the neighbors (and their IDs) can be known to each sensor; at
time k, each sensor may choose to broadcast its information to all
neighbors, or to communicate with a random subset of neighbors, or
even not to communicate at all (saving power). Thus, a directed and
time-varying topology can arise in this sensor networks application.
To implement states and surpluses, we see from (1), (2) that they are
ordinary variables locally stored, updated, and exchanged; thus they
may be implemented by allocating memories in sensors. Similarly,
since the values of the time-varying weights aij(k), bih(k) and param-
eters ci(k), εi(k) can all be locally determined, these variables may be
implemented as sensors’ memories as well.

Now define the adjacency matrix A(k) of the digraph G(k) by
A(k) := [ci(k)aij(k)]. Then the Laplacian matrix L(k) is defined
as L(k) := D(k)−A(k), where D(k) = diag(d1(k), . . . , dn(k))
with di(k) =

∑n

j=1
ci(k)aij(k). It is easy to see that L(k) has

nonnegative diagonals, nonpositive off-diagonal entries, and zero
row sums. Consequently the matrix I − L(k) is nonnegative (by∑

j∈N+
i

(k)
aij(k) < 1 in (P2)), and every row sums up to one; namely

I − L(k) is row stochastic.
Also, let B(k) := [bih(k)]

T (note that the transpose in the notation
is needed because h ∈ N−

i (k) for bih(k)). Define the matrix S(k) :=
(I − D̃(k)) +B(k), where D̃(k) = diag(d̃1(k), . . . , d̃n(k)) with
d̃i(k)=

∑n

h=1
bih(k). Then S(k) is nonnegative (by

∑
h∈N−

i
(k)

bih <

1− εi(k) in (P3) and εi(k) ∈ (0, 1) in (P1)), and every column sums
up to one; that is, S(k) is column stochastic. As can be observed
from (2), S(k) captures the part of the update induced by sending and
receiving surpluses. Finally, let E(k) := diag(ε1(k), . . . , εn(k)).

With the above matrices defined, the iteration of states (1) and
surpluses (2) can be written in the following matrix form:

[
x(k + 1)
s(k + 1)

]
= M(k)

[
x(k)
s(k)

]
,

whereM(k) :=

[
I − L(k) E(k)
L(k) S(k)−E(k)

]
∈ R

2n×2n. (3)

Notice that the matrix M(k) has negative entries due to the presence of
the Laplacian matrix L(k) in the (2,1)-block. Note also that the column
sums of M(k) are equal to one (here S(k) being column stochastic is
crucial), which implies that the quantity 1T (x(k) + s(k)) is a constant
for all k.

Some other useful implications derived from this algorithm (3) are
collected in the following lemma. Define the minimum and maximum
states, m(x) and m(x), respectively, by

m(x) := min
i∈V

xi, m(x) := max
i∈V

xi. (4)

Lemma 1: In the algorithm (3), the following properties hold:

(i) The surplus is nonnegative, si(k) ≥ 0, for every i ∈ V and k.
(ii) The minimum state m(x(k)) is non-decreasing with respect to

k, i.e., m(x(k1)) ≤ m(x(k2)) if k1 ≤ k2.

(iii) The minimum state satisfies m(x(k)) ≤ xa for every k ∈ Z+;
and m(x(k)) = xa implies (∀i ∈ V)xi(k) = xa and si(k) =
0, i.e., average consensus.

(iv) The unique equilibrium of (3) is (xa1, 0).

Proof: (i) We show this property by induction on the time
index k. For the base case k = 0, we have si(0) = 0 for all i. Now
suppose that si(k) ≥ 0, k > 0, for all i. According to (1) and (2) we
derive

si(k+1)=

⎛
⎝1−

∑
h∈N−

i
(k)

bih(k)−εi(k)

⎞
⎠ si(k)

+
∑

j∈N+
i

(k)

bji(k)sj(k)−
∑

j∈N+
i

(k)

ci(k)aij(k) (xj(k)−xi(k)) . (5)

It then follows from (P3), (P4), and the induction hypothesis that
si(k + 1) ≥ 0 for all i. This completes the induction.

(ii) Let k be arbitrary. First consider a node i ∈ V such that xi(k) =
m(x(k)). It must hold that

∑
j∈N+

i
(k)

aij(k)(xj(k)− xi(k)) ≥ 0.

Thus by (1) and (P4), the state update of node i is xi(k + 1) =
xi(k) + εi(k)si(k) ≥ xi(k) = m(x(k)). Next consider a node i such
that xi(k) > m(x(k)); there are two cases. Case 1: ci(k) = 0. Then
xi(k+1)=xi(k)+εi(k)si(k)≥xi(k)>m(x(k)). Case 2: ci(k)=
1. Then xi(k + 1) = xi(k) +

∑
j∈N+

i
(k)

aij(k)(xj(k)− xi(k)) +

εi(k)si(k). Notice that the first two terms of the above summa-
tion consist of a convex combination of xi(k) and xj(k), j ∈
N+

i (k), and hence xi(k) +
∑

j∈N+
i

(k)
aij(k)(xj(k)− xi(k)) >

min
j∈{i}∪N+

i
(k)

xj(k) ≥ m(x(k)). In turn xi(k + 1) > m(x(k)).

Therefore, the minimum state cannot decrease.
(iii) Suppose on the contrary that m(x(k)) > xa for some k.

This implies that 1Tx(k) + 1T s(k) > nxa + 1T s(k). But since
1Tx(k) + 1T s(k) = 1Tx(0) = nxa, one obtains 1T s(k) < 0, a
contradiction to the property (i). Hence we conclude that m(x(k)) ≤
xa for all k. And when m(x(k)) = xa, we must also have m(x(k)) =
xa owing again to (i). Therefore xi(k) = xa and si(k) = 0 for all i.

(iv) For every i ∈ V , substituting xi(k) = xa and si(k) = 0
into (1) and (2) yields xi(k + 1) = xi(k) and si(k + 1) = si(k).
Hence (xa1, 0) is an equilibrium of (3). For uniqueness, suppose
(x(k), s(k)) �= (xa1, 0) is another equilibrium. Then by xi(k +
1) = xi(k) in (1) we have ci(k)

∑
j∈N+

i
(k)

aij(k)(xj(k)− xi(k)) +

εi(k)si(k) = 0 for all i. Since si(k) ≥ 0 according to (i), it must hold
that si(k) = 0 and xi(k) = xj(k), for all i, j ∈ V . So (x(k), s(k))
is of the form (xb1, 0), xb �= xa (otherwise (x, s) = (xa1, 0)). How-
ever, 1T (x(k) + s(k)) = nxb �= nxa = 1T (x(0) + s(0)); this con-
tradicts that 1T (x(k) + s(k)) is a time-invariant quantity for the
algorithm (3). �

IV. CONVERGENCE RESULT AND PROOF

In this section, we present our main result and provide its proof.
Theorem 1: Using the algorithm (3), a network of agents achieves

uniform average consensus if and only if the dynamic digraph G(k) is
jointly strongly connected.

Comparing our derived graphical condition with the one in [2], we
drop the balanced requirement at every moment on one hand, and
need strongly connected property only in a joint sense on the other
hand. Also, for the special case of static digraphs, we can use the
algorithm (3) with a fixed constant parameter ε ∈ (0, 1); there will still
be switching in the updates. However, the original algorithm in [4],
[17] may not converge because this ε value might be too large for the
algorithm to remain stable (in [4], [17], ε is required to be sufficiently
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small (conservative bounds available) to ensure convergence of the
designed algorithms). Finally, the proof techniques in [4], [17] and
here are very different: [4], [17] relied on matrix perturbation theory,
while here a Lyapunov-type argument is used, below.

We note that there have been efforts in the literature addressing time-
varying consensus/averaging problems with second order dynamics.
In [15], an “accelerated gossip” algorithm is designed which relies
heavily on symmetry of undirected graphs. The algorithm studied in
[14], on the other hand, is based on the assumption of dwell-time
switching of the time-varying topology. By contrast, we study general
dynamic digraphs that vary at every discrete time instant and each
resulting update matrix (3) is not nonnegative.

We now proceed to the proof of Theorem 1. We rely on the fol-
lowing Lyapunov result, which is a special case of [7, Theorem 4 and
Remark 5]. For any given (x(0), s(0) = 0), xa = 1Tx(0)/n, let

X (xa) :=
{
(x, s) ∈ R

2n : 1T (x+ s)/n = xa, s≥0
}
⊂R

2n. (6)

Since the dynamic system (3) satisfies that 1T (x(k) + s(k)) is invari-
ant for all k ≥ 0, (x(k), s(k)) satisfies (x(k), s(k)) ∈ X (xa) for all
k ≥ 0. Hence, the update matrix M(k) in (3) is M(k) : X (xa) →
X (xa), for the given (x(0), s(0)).

Lemma 2: Consider the algorithm (3) with the unique equilibrium
(xa1, 0). Suppose that continuous functions V : X (xa) → R+ and δ :
X (xa) → R+ satisfy the following conditions:

(i) V is bounded on bounded subsets of X (xa), and sat-
isfies V (xa1, 0) = 0 and V (x, s) > 0 if (x, s) ∈ X (xa)−
{(xa1, 0)} (i.e., V is positive definite with respect to the average
consensus point (xa1, 0));

(ii) δ satisfies δ(xa1, 0) = 0 and δ(x, s) > 0 if (x, s) ∈ X (xa)−
{(xa1, 0)} (i.e., δ is positive definite with respect to the average
consensus point (xa1, 0));

(iii) there exists a finite time κ such that for every (x(k), s(k)) ∈
X (xa),

V (x(k + κ), s(k + κ))− V (x(k), s(k)) ≤ −δ (x(k), s(k)) .

Then, the network of agents achieves uniform average consensus.
Note that the function V in Lemma 2 corresponds to a composition

μ ◦ V ′ of two functions V ′ : X (xa) ⇒ X (xa) and μ : ImV ′ → R+

in [7, Theorem 4]. Here V ′ is a set-valued function given by

V ′(x, s)={(x′, s′) ∈ X (xa) : (∀i ∈ [1, n])x′
i≥ m(x), s′i≥0}

⊂ X (xa), (x, s) ∈ X (xa). (7)

Since function m in (4) is continuous in x, V ′ is continuous in
(x, s). Also, (x, s) ∈ V ′(x, s) for every (x, s) ∈ X (xa), and by the
non-decreasing property of m(x(k)) shown in Lemma 1, there holds
V ′(M(k)(x(k), s(k))) ⊂ V ′(x(k), s(k)). In addition, it is readily
verified that V ′(xa1, 0) = {(xa1, 0)}, and V ′(x, s) is bounded for all
(x, s) ∈ X (xa) because 1T (x+ s) = nxa. With V ′ in (7), Lemma 2
is indeed a special case of [7, Theorem 4 and Remark 5], and we refer
to [7] for its proof; see also [16, Section 4.5]. In the sequel, we will
construct two functions that satisfy the conditions in Lemma 2.

First consider V (x, s), (x, s) ∈ X (xa) in (6), given by

V (x, s) :=
1T (x+ s)

n
−m(x). (8)

Clearly V depends continuously on (x, s). Take any finite (x, s) ∈
X (xa); then both 1T (x+ s)/n and m(x) are finite. Thus V is
bounded on any bounded subsets of X (xa). Since 1T (x(k) +

s(k))/n = 1Tx(0)/n = xa for all k, we obtain by (ii), (iii) of
Lemma 1 that V (x(k), s(k)) is non-increasing with respect to k
(i.e., V (x(k1), s(k1)) ≥ V (x(k2), s(k2)) if k1 ≤ k2), and positive
definite with respect to the average consensus point (xa1, 0) (i.e.,
V (xa1, 0) = 0 and V (x, s) > 0 if (x, s) ∈ X (xa)− {(xa1, 0)}).

Second, for a given κ let δκ(x, s), (x, s) ∈ X (xa) in (6), be

δκ(x, s) := inf
ζ0,ζ1,...,ζκ

V (ζ0)− V (ζκ), (9)

where the infimum is taken over all sequences ζ0, ζ1, . . . , ζκ ∈ X (xa)
satisfying

ζ0 = (x, s), ζ1 = M(k)ζ0, · · · ζκ = M(k + κ− 1)ζκ−1

for a given k. Thus ζi, i ∈ [1, κ], are the pairs of states and surpluses
possibly reachable from (x, s) in i time steps.

Lemma 3: The function δκ : X (xa) → R+ in (9) is continuous in
(x, s) ∈ X (xa).

Proof: For given k, κ, consider an arbitrary sequence
ζ0, ζ1, . . . , ζκ satisfying

ζ0 = (x, s), ζ1 = M(k)ζ0, · · · , ζκ = M(k + κ− 1)ζκ−1.

First, we show that each M(l), l = k, . . . , k + κ− 1, is a continuous
function of (x, s). According to (1) and (2), it suffices to show that
each of the functions xi : R

2n → R and si : R
2n → R, i ∈ V , is

continuous in (x, s). For this, let yi :=
∑

j∈N+
i
aij(xj − xi) and

f(yi) := ciyi. By (P4)

f(yi) =
{
yi, yi ≤ 0;
0, yi > 0.

Clearly f is continuous in yi. Since yi is a linear function of x, function
f is continuous in x. Now substituting the term (xi(k + 1)− xi(k))
from (1) into (2), we derive that si is continuous in (x, s). It then
follows from (1) that xi is also continuous in (x, s).

Second, the sequence ζ0, ζ1, . . . , ζκ depends continuously on (x, s).
This is because each function M(l), l = k, . . . , k + κ− 1, is continu-
ous, and there is only a finite number of possible switching sequences
of κ− 1 digraphs. Thus, it follows from (8) that the expression
V (ζ0)− V (ζκ) depends continuously on (x, s). Finally, by the in-
fimum definition of (9), we conclude that the function δκ(x, s) is
continuous in (x, s). �

Now from (9), one may easily see that the function δκ(x, s) = 0
if V (x, s) = 0; so δκ(xa1, 0) = 0. The following result will be vital,
which asserts that there always exists a finite κ such that the function
δκ(x, s) is positive definite with respect to the average consensus point
(xa1, 0), provided that the digraph is jointly strongly connected.

Lemma 4: Suppose that the dynamic digraph G(k) is jointly
strongly connected with period K. There exists a finite κ such that
if V (x, s) is strictly positive, then δκ(x, s) is also strictly positive.
Moreover, such a κ no greater than (n− 1)(n+ 1)K always exists.

Lemma 4 indicates that the function satisfies δκ(x, s) > 0 for
(x, s) ∈ X (xa)− {(xa1, 0)}. We postpone the proof of Lemma 4,
and provide now the proof of Theorem 1.

Proof of Theorem 1: (Sufficiency) Suppose that G(k) is jointly
strongly connected. Then it follows from Lemmas 3 and 4 that the
function δκ defined in (9) and the function V defined in (8) satisfy
the conditions in Lemma 2. Therefore uniform average consensus is
achieved.

(Necessity) Suppose that G(k) is not jointly strongly connected.
Namely for every K there exists k0 such that the union digraph
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G([k0, k0 +K]) is not strongly connected. Thus during this interval
[k0, k0 +K], there are some nodes not globally reachable; denote
the number by r ∈ [1, n]. Case 1: r = n (i.e., there is no globally
reachable node). Then G([k0, k0 +K]) has at least two distinct
closed strong components, say V1 with n1 nodes and V2 with n2

nodes such that n1 + n2 = n (by [8, Theorem 2.1]). Consider a
state-surplus pair (x(k0), s(k0)) such that the nodes in V1 have
states a, those in V2 have states b, and a �= b; all surpluses are zero,
s(k0) = 0. In this case, no update of state or surplus will occur.
One computes that ‖(x(k0), s(k0))− (xa1, 0)‖∞ =max{|(a−
b)n2/n|, |(b− a)n1/n|}; let c2 = ‖(x(k0), s(k0))− (xa1, 0)‖∞
and c1 = c2 + λ, λ > 0. Then ‖(x(k0), s(k0))− (xa1, 0)‖∞ < c1
but ‖(x(k0 +K), s(k0 +K))− (xa1, 0)‖∞ = c2. Therefore uniform
average consensus is not achieved.

Case 2: r < n. We denote by Vg the set of all globally reach-
able nodes. Then Vg is the unique closed strong component in
G([k0, k0 +K]) (again by [8, Theorem 2.1]). Consider a state-
surplus pair (x(k0), s(k0)) such that the nodes in Vg have states
a, those in V − Vg have states b, and a �= b; all surpluses are zero,
s(k0) = 0. In this case, no update will occur for the states in Vg .
Let c1 = ‖(x(k0), s(k0))− (xa1, 0)‖∞ + λ, λ > 0, and c2 = |a−
xa| = |(a− b)(n− r)/n|. Then ‖(x(k0), s(k0))− (xa1, 0)‖∞ < c1
but ‖(x(k0 +K), s(k0 +K))− (xa1, 0)‖∞ ≥ c2. Therefore uniform
average consensus is not achieved. �

In the necessity proof above, Case 2 shows that even if G(k)
jointly contains a globally reachable node (e.g., [7], [8], [14]), uniform
average consensus cannot be achieved for certain state and surplus
conditions. In fact, state averaging requires the stronger connectivity
notion: jointly strongly connected G(k).

Finally we prove Lemma 4. By the definitions of δκ in (9) and V in
(8), it must be shown that there exists a finite κ such that for every time
k0 the minimum state satisfies m(x(k0)) < m(x(k0 + κ)). The proof
is organized into two steps. First we show that if some nodes have
positive surpluses, then all nodes in the network will have positive
surpluses after a finite time. Second, we show that using positive
surpluses, the nodes having the minimum state will increase their
values after a finite time. Although some other nodes may decrease
their state values, it is justified that the minimum state of the whole
network increases. The proof relies mainly on the graphical condition
of jointly strong connectedness as well as the state and surplus update
dynamics (1) and (2).

Proof of Lemma 4: Fix an arbitrary time k0, and denote by μ :=
m(x(k0)) the minimum state at this time. Assume μ < xa (i.e.,
average consensus is not yet reached); thus V (x(k0), s(k0)) is strictly
positive. It must be shown that δκ(x(k0), s(k0)) is also strictly pos-
itive, for some finite κ. This amounts to, by the definitions of δκ in
(9) and V in (8), showing that μ < m(x(k0 + κ)). We proceed in two
steps.

Step 1: We prove the following claim, which asserts that positive
surpluses can diffuse across the network under jointly strongly con-
nected topology.

Claim: Suppose that at time k ≥ k0 there are r ∈ [1, n− 1] sur-
pluses strictly positive, say s1(k), . . . , sr(k) > 0, and sr+1(k) =
· · · = sn(k) = 0. Then si(k + (n− r)K) > 0, for every i ∈ V .

To prove the claim, we introduce a set B(k), k ≥ k0, given by

B(k) := {i ∈ V : si(k) > 0} . (10)

By the assumption of the claim, B(k) is a proper subset of V
(namely, B(k) �= ∅,V). First, by (5), if si(k) > 0 then si(k + 1) > 0,
because 1−

∑
h∈N−

i
(k)

bih(k)− εi(k) > 0 (P3), the second term is

nonnegative (Lemma 1(i)), and the third term is also nonnegative (P4).

Fig. 1. Periodically time-varying topology: a b c d a b c d · · ·.

Hence, any strictly positive surplus cannot decay to zero in finite time,
which indicates B(k) ⊆ B(k + 1), k ≥ k0. Next, since G(k) is jointly
strongly connected, there is an instant k̄ in the interval [k, k +K] such
that a directed edge (h, j) exists, for some h ∈ B(k̄) and some j ∈
V − B(k̄). Then agent j receives surplus of the amount bij(k̄)si(k̄) >
0, and hence B(k) is strictly contained in B(k +K). Repeating this
argument leads to the conclusion that B(k + (n− r)K) = V , which
shows the claim.

Step 2: Applying the above claim, we establish that the minimum
state of the network increases after a finite time κ. To this end, let
another set A(k), k ≥ k0, be

A(k) := {i ∈ V : xi(k) = μ} . (11)

Then A(k) is the set of agents whose states are equal to μ at time
k ≥ k0. First, it has been proved in Lemma 1(ii) that if xj(k) > μ
then xj(k + 1) > μ; namely, any state strictly larger than μ cannot
decrease to μ in finite time. This implies A(k + 1) ⊆ A(k), k ≥ k0.
Next, we will establish that when the topology G(k) is jointly strongly
connected of period K, there exists κ̃(K) ∈ Z+ such that A(k +
κ̃(K)) is strictly contained in A(k), k ≥ k0 (that is, A(k + κ̃(K)) has
strictly less agents than A(k)).

We distinguish three cases. (i) B(k) = V . Under jointly strongly
connected topology, there is a directed edge (h, j), h ∈ V −A(k̄)
and j ∈ A(k̄), for some time k̄ ∈ [k, k +K]. Then by (1) and (P4)
we have cj(k̄) = 0 and xj(k̄ + 1) = xj(k̄) + εj(k̄)sj(k̄) > xj(k̄) ≥
xj(k). So A(k +K) is strictly contained in A(k). (ii) B(k) is a
proper subset of V . It follows from the above claim that B(k + (n−
r)K) = V . Then by the same argument as in case (i) we obtain that
A(k + (n− r + 1)K) is strictly contained in A(k). (iii) B(k) = ∅.
Owing again to jointly strongly connected topology, there is a directed
edge (h, j), with xh(k̄) < m(k) and xj(k̄) = m(k) (here m(k) is
the maximum state at time k), for some time k̄ ∈ [k, k +K]. Then
by (5) and (P4) we have cj(k̄) = 1 and sj(k̄ + 1) = −(xj(k̄ + 1)−
xj(k̄)) = −ajh(k̄)(xh(k̄)−xj(k̄)) > 0; therefore B(k +K) = {j}.
Now applying the derivation in case (ii) leads us to that A(k + (n+
1)K) is strictly contained in A(k). Summarizing the above three
cases, and letting κ̃ = (n+ 1)K, we obtain that A(k + κ̃) is strictly
contained in A(k).

Finally, since there are at most n− 1 agents in A(k0), for κ :=
(n− 1)κ̃ we have A(k0 + κ) = ∅. This implies μ < m(x(k0 + κ))
with κ = (n− 1)(n+ 1)K. �

V. NUMERICAL EXAMPLE

We provide a numerical example to illustrate the convergence result
of the algorithm (3). Consider the periodically time-varying digraph
G(k) = (V, E(k)), with period K = 4, displayed in Fig. 1. No single
digraph is strongly connected, but G(k) is jointly strongly connected.
For simplicity, we apply the algorithm (3) by choosing the parameters
and weights to be constant: εh = aij = bij = 1/4 for all agents h
and all edges (j, i). It is easily verified that this choice satisfies the
requirements (P1)–(P3).
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Fig. 2. Convergence trajectories of states and surpluses obtained by applying
the algorithm (3) for the topology in Fig. 1.

Fig. 3. Convergence time comparison between the algorithm (3) and the one
in [4], [17]. Consider digraphs Gn with n nodes derived from complete graphs
with n nodes by removing n− 2 edges (h, n), h ∈ [2, n− 1]. Thus Gn are
strongly connected, non-balanced digraphs, and we consider static Gn since
the algorithm in [4], [17] applies only to this case. For simplicity choose
aij = bij = 1/n and εi = 1/(2n). Run both algorithms on digraphs Gn with
different n, and with initial states xi(0) randomly selected from [−50, 50],
initial surpluses si(0) = 0. Find the convergence times t to be the minimum
times when ‖(x(t), s(t))− (xa1, 0)‖1 < 0.05, and each sample point on the
displayed curves is the average convergence time of 50 algorithm executions.
Comparing the two curves we see that the convergence time of algorithm (3) is
approximately twice as much as the one in [4], [17], which is due to the former’s
enforcement on nonnegative surpluses that produces undesirable switchings.

For the initial state x(0) = [−10 − 5 5 10]T and the initial surplus
s(0) = 0, the state and surplus trajectories are displayed in Fig. 2.
Observe that every state converges to the desired average 0, and every
surplus is always nonnegative and vanishes eventually. Also we see
that there are considerable switchings in both states and surpluses due
to the enforcement of nonnegative surpluses, which may undesirably
slow down the convergence speed. Indeed, in a simulation study
displayed in Fig. 3, we compare the algorithm (3) to the one in [4],
[17] (the latter poses no restriction on nonnegative surpluses), and find
that the convergence time of algorithm (3) is approximately twice as
much as the one in [4], [17] for a class of digraphs. An important future
study then would be to find appropriate (possibly time-varying) values
of the parameters and weights so as to reduce switchings and accelerate
convergence.

VI. CONCLUSION

We have proposed a new surplus-based algorithm which enables
networks of agents to achieve uniform average consensus on general
time-varying digraphs that vary in some deterministic fashion. Our
derived graphical condition does not require balanced or symmetric
network topologies, and is hence more general than those previously
reported in the literature. Future research will target convergence speed
analysis of the algorithm as well as the design of fast surplus-based
averaging algorithms.
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