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a b s t r a c t

We study the average consensus problem of multi-agent systems for general network topologies with
unidirectional information flow. We propose two linear distributed algorithms, deterministic and gossip,
respectively for the caseswhere the inter-agent communication is synchronous and asynchronous. In both
cases, the developed algorithms guarantee state averaging on arbitrary strongly connected digraphs; in
particular, this graphical condition does not require that the network be balanced or symmetric, thereby
extending previous results in the literature. The key novelty of our approach is to augment an additional
variable for each agent, called ‘‘surplus’’, whose function is to locally record individual state updates.
For convergence analysis, we employ graph-theoretic and nonnegative matrix tools, plus the eigenvalue
perturbation theory playing a crucial role.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a new approach to the design of distributed
algorithms for average consensus: that is, a system of networked
agents reaches an agreement on the average value of their
initial states, through merely local interaction among peers.
The approach enables multi-agent systems to achieve average
consensus on arbitrary strongly connected network topologies
with unidirectional information flow, where the state sum of the
agents need not stay put as time evolves.

There has been an extensive literature addressing multi-agent
consensus problems. Many fundamental distributed algorithms
(developed in, e.g., Bertsekas & Tsitsiklis, 1989; Jadbabaie, Lin, &
Morse, 2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2008;
Xiao & Boyd, 2004) are of the synchronous type: At an arbitrary
time, individual agents are assumed to sense and/or communicate
with all the neighbors, and then simultaneously execute their local
updating protocols. In particular, Olfati-Saber and Murray (2004)
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studied algorithms of such type to achieve average consensus on
static (i.e., time-invariant) digraphs, and justified that a balanced
and strongly connected topology is necessary and sufficient to
guarantee convergence. More recently Boyd, Ghosh, Prabhakar,
and Shah (2006) proposed a compelling ‘‘gossip’’ algorithm, which
provides an asynchronous approach to treat average consensus.
Specifically, the algorithm assumes that at each time instant,
exactly one agent wakes up, contacts only one of its neighbors
selected at random, and then both agents average out their states.
The graph model that the algorithm is based on is undirected
(or symmetric), and average consensus is ensured as long as the
topology is connected. Since then, the gossip approach has been
widely adopted (Carli, Fagnani, Frasca, & Zampieri, 2010; Kashyap,
Başar, & Srikant, 2007; Lavaei & Murray, 2012) in tackling average
consensus on undirected graphs, with additional constraints on
quantized information flow; see also Ishii and Tempo (2010) for
related distributed computation problems in search engines.

In this paper, and its conference precursor (Cai & Ishii,
2011b), we study the average consensus problem under both
synchronous and asynchronous setups, as in Boyd et al. (2006)
and Olfati-Saber and Murray (2004). In each case, we propose a
novel type of linear distributed algorithms, which can be seen
as extensions of the corresponding algorithms in Boyd et al.
(2006) and Olfati-Saber and Murray (2004); and we prove that
these new algorithms guarantee state averaging on arbitrary
strongly connected digraphs, therefore generalizing the graphical
conditions derived in Boyd et al. (2006) and Olfati-Saber and
Murray (2004). We note that digraph models have been studied
extensively in the consensus literature (Olfati-Saber & Murray,
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2004; Ren & Beard, 2008; Xiao & Boyd, 2004), and considered
to be generally more economical for information exchange than
their undirected counterpart (refer to Olfati-Saber & Murray, 2004
for a more detailed motivation of using digraphs). Our underlying
theoretic interest in this paper is to generalize the connectivity
conditions on digraphs for average consensus.

The primary challenge of average consensus on arbitrary
strongly connected digraphs lies in that the state sum of
agents need not be preserved, thereby causing shifts in the
average. We note that there are a few efforts in the literature
having addressed this issue. In Franceschelli, Giua, and Seatzu
(2009), an auxiliary variable is associated to each agent and a
linear ‘‘broadcast gossip’’ algorithm is proposed; however, the
convergence of that algorithm is not proved, and remarked to be
difficult. Benezit, Blondel, Thiran, Tsitsiklis, and Vetterli (2010)
and Kempe, Dobra, and Gehrke (2003) also use extra variables,
and a nonlinear (division involved) algorithm is designed and
proved to achieve state averaging on non-balanced digraphs.
The idea is based on computing the stationary distribution for
the Markov chain characterized by the agent network, and is
thus different from consensus-type algorithms (Boyd et al., 2006;
Olfati-Saber & Murray, 2004). In Bertsekas and Tsitsiklis (1989,
Section 7.4), the load balancing problem is tackled in which inter-
processor communication is asynchronous and with bounded
delay. The underlying topology is assumed undirected; owing
to asynchronism and delay, however, the total amount of loads
at processors is not invariant. A switched linear algorithm is
proposed to achieve load balancing in this scenario, the rules of
which rely on, however, bidirectional communication. In addition,
a different and interesting approach is presented in Gharesifard
and Cortés (2011): Given a general strongly connected digraph,
find a corresponding doubly stochastic matrix (which, when used
as a distributed updating scheme, guarantees state averaging (Xiao
& Boyd, 2004)). An algorithm is designed to achieve this goal
by adding selfloop edges with proper weights to balance flow-in
and -out information. Finally, time-varying state sum caused by
packet loss or communication failure is considered in Fagnani and
Zampieri (2009) and Patterson, Bamieh, and El Abbadi (2007), and
the deviation from the initial average is analyzed.

We develop a new approach to handle the problem that the
state sum of agents need not be preserved. Similar to Franceschelli
et al. (2009), we also augment an additional variable for each agent,
which we call ‘‘surplus’’; different from Benezit et al. (2010) and
Kempe et al. (2003), the function of surplus variables is to record
the state change of the associated agent at each time. Thus, in
effect, these variables collectively maintain the information of the
average shift amount.2 Using this novel idea, ourmain contribution
is the design of linear algorithms (without switching) to achieve
average consensus on general strongly connected digraphs, in
contrast with the types of algorithms designed in Benezit et al.
(2010), Bertsekas and Tsitsiklis (1989, Section 7.4) and Kempe et al.
(2003). Also, linearity allows us to employ certain matrix tools
in analysis, which are different from the proof methods used in
Benezit et al. (2010), Bertsekas and Tsitsiklis (1989, Section 7.4)
and Kempe et al. (2003). Moreover, our technical contribution
in this paper is the demonstration of matrix perturbation tools
(including eigenvalue perturbation, optimal matching distance,
and the Bauer–Fike Theorem (Bhatia, 1996; Seyranian&Mailybaev,
2004; Stewart & Sun, 1990)) in analyzing convergence properties,
which seems unexplored in the consensus literature.

2 The method of augmenting auxiliary variables is also found in Aysal, Oreshkin,
and Coates (2009) and Liu, Anderson, Cao, and Morse (2009), as predictors
estimating future states and shift registers storing past states respectively, in order
to accelerate consensus speed. How the predictors or registers are used in these
references is, however, different from our usage of surpluses.
Our idea of adding surplus variables is indeed a continuation
of our own previous work in Cai and Ishii (2011a), where the
original surplus-based approach is proposed to tackle quantized
average consensus on general digraphs. There we developed
a quantized (thus nonlinear) averaging algorithm, and the
convergence analysis is based on finite Markov chains. By contrast,
the algorithms designed in the present paper are linear, and hence
the convergence can be characterized by the spectral properties
of the associated matrices. On the other hand, our averaging
algorithms differ also from those standard ones (Boyd et al., 2006;
Olfati-Saber & Murray, 2004) in that the associated matrices of
our algorithms contain negative entries. Consequently for our
analysis tools, besides the usual nonnegative matrix theory and
algebraic graph theory, the matrix perturbation theory is found
instrumental.

The paper is organized as follows. Section 2 formulates dis-
tributed average consensus problems in both synchronous and
asynchronous setups. Sections 3 and 4 present the respective so-
lution algorithms, which are rigorously proved to guarantee state
averaging on general strongly connected digraphs. Further, Sec-
tion 5 explores certain special topologies that lead us to special-
ized results, and Section 6 provides a set of numerical examples
for demonstration. Finally, Section 7 states our conclusions.
Notation. Let 1 := [1 · · · 1]T ∈ Rn be the vector of all ones. For
a complex number λ, denote its real part by Re(λ), imaginary
part by Im(λ), conjugate by λ̄, and modulus by |λ|. For a set S,
denote its cardinality by card(S). Given amatrixM, |M| denotes its
determinant; the spectrum σ(M) is the set of its eigenvalues; the
spectral radius ρ(M) is the maximum modulus of its eigenvalues.
In addition, ∥ · ∥2 and ∥ · ∥∞ denote the 2-norm and infinity norm
of a vector/matrix.

2. Problem formulation

Given a network of n (>1) agents, wemodel its interconnection
structure by a digraph G = (V, E): Each node in V = {1, . . . , n}
stands for an agent, and each directed edge (j, i) in E ⊆ V ×

V denotes that agent j communicates to agent i (namely, the
information flow is from j to i). Selfloop edges are not allowed,
i.e., (i, i) ∉ E . In G a node i is reachable from a node j if there exists
a path from j to i which respects the direction of the edges. We
say G is strongly connected if every node is reachable from every
other node. A closed strong component ofG is amaximal set of nodes
whose corresponding subdigraph is strongly connected and closed
(i.e., no node inside the subdigraph is reachable from any node
outside). Also a node i is called globally reachable if every other node
is reachable from i.

At time k ∈ Z+ (nonnegative integers) each node i ∈ V has
a scalar state xi(k) ∈ R; the aggregate state is denoted by x(k)
= [x1(k) · · · xn(k)]T ∈ Rn. The average consensus problem aims at
designing distributed algorithms, where individual nodes update
their states using only the local information of their neighboring
nodes in the digraph G such that all xi(k) eventually converge to
the initial average xa := 1T x(0)/n. To achieve state averaging on
general digraphs, the main difficulty is that the state sum 1T x need
not remain invariant, which can result in losing track of the initial
average xa. To deal with this problem, we propose associating
to each node i an additional variable si(k) ∈ R, called surplus;
write s(k) = [s1(k) · · · sn(k)]T ∈ Rn and set s(0) = 0. The function
of surplus is to locally record the state changes of individual nodes
such that 1T (x(k) + s(k)) = 1T x(0) for all time k; in other words,
surplus keeps the quantity 1T (x + s) constant over time.

In the first part of this paper, we consider synchronous
networks as in Olfati-Saber andMurray (2004): At each time, every
node communicates with all of its neighbors simultaneously, and
then makes a corresponding update.



2752 K. Cai, H. Ishii / Automatica 48 (2012) 2750–2761
Definition 1. A network of agents is said to achieve average
consensus if for every initial condition (x(0), s(0) = 0), it holds
that (x(k), s(k)) → (xa1, 0) as k → ∞.

Problem 1. Design a distributed algorithm such that agents
achieve average consensus on general digraphs.

To solve this problem, we will propose in Section 3 a surplus-
based distributed algorithm, under which we justify that average
consensus is achieved for general strongly connected digraphs.

In the second part, we consider the setup of asynchronous
networks as in Boyd et al. (2006). Specifically, communication
among nodes is by means of gossip: At each time, exactly one edge
(j, i) ∈ E is activated at random, independently from all earlier
instants and with a time-invariant, strictly positive probability
pij ∈ (0, 1) such that


(j,i)∈E pij = 1. Along this activated edge,

node j sends its state and surplus to node i, while i receives the
information and makes a corresponding update.

Definition 2. A network of agents is said to achieve

(i) mean-square average consensus if for every initial condition
(x(0), s(0) = 0), it holds that E


∥x(k) − xa1∥2

2


→ 0 and

E

∥s(k)∥2

2


→ 0 as k → ∞;

(ii) almost sure average consensus if for every initial condition
(x(0), s(0) = 0), it holds that (x(k), s(k)) → (xa1, 0) as
k → ∞ with probability one.

As defined, the mean-square convergence is concerned with the
second moments of the state and surplus processes, whereas the
almost sure convergence iswith respect to the corresponding sam-
ple paths. It should be noted that in general there is no implication
between these two convergence notions (e.g., Grimmett & Stirza-
ker, 2001, Section 7.2).

Problem 2. Design a distributed algorithm such that agents
achieve mean-square and/or almost sure average consensus on
general digraphs.

For this problem, we will propose in Section 4 a surplus-based
gossip algorithm, under which we justify that both mean-square
and almost sure average consensus can be achieved for general
strongly connected digraphs.

3. Averaging in synchronous networks

This section solves Problem 1. First we present a (discrete-time)
distributed algorithm based on surplus, which may be seen as an
extension of the standard consensus algorithms in the literature
(Bertsekas & Tsitsiklis, 1989; Jadbabaie et al., 2003; Olfati-Saber
& Murray, 2004; Ren & Beard, 2008; Xiao & Boyd, 2004). Then
we prove convergence to average consensus for general strongly
connected digraphs.

3.1. Algorithm description

Consider a system of n agents represented by a digraph G =

(V, E). For each node i ∈ V , let N +

i := {j ∈ V : (j, i) ∈ E} denote
the set of its ‘‘in-neighbors’’, and N −

i := {h ∈ V : (i, h) ∈ E}

the set of its ‘‘out-neighbors’’. Note that N +

i ≠ N −

i in general; and
i ∉ N +

i or N −

i , for selfloop edges do not exist. There are three
operations that every node i performs at time k ∈ Z+. First, node
i sends its state information xi(k) and weighted surplus bihsi(k) to
each out-neighbor h ∈ N −

i ; here the sending weight bih is assumed
to satisfy that bih ∈ (0, 1) if h ∈ N −

i , bih = 0 if h ∈ V − N −

i , and

h∈N −

i
bih < 1. Second, node i receives3 state information xj(k)

andweighted surplus bjisj(k) from each in-neighbor j ∈ N +

i . Third,
node i updates its own state xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +


j∈N +

i

aij(xj(k) − xi(k)) + ϵsi(k), (1)

si(k + 1) =

1 −


h∈N −

i

bih

 si(k) +


j∈N +

i

bjisj(k)

−


xi(k + 1) − xi(k)


, (2)

where the updating weight aij is assumed to satisfy that aij ∈ (0, 1)
if j ∈ N +

i , aij = 0 if j ∈ V − N +

i , and


j∈N +

i
aij < 1; in addition,

the parameter ϵ is a positive number which specifies the amount
of surplus used to update the state.

We discuss the implementation of the above protocol in appli-
cations of sensor networks. Let G = (V, E) represent a network of
sensor nodes. Our protocol deals particularly with scenarios where
(i) sensors have different communication ranges owing possibly to
distinct types or power supplies; (ii) communication is by means
of broadcasting (e.g., Franceschelli et al., 2009) which again might
have different ranges; and (iii) strategy of randomgeographic rout-
ing is used for efficient and robust node value aggregation in one
direction (Benezit et al., 2010; Kempe et al., 2003). In these scenar-
ios, information flow among sensors is typically directed. A con-
crete example is using sensor networks for monitoring geological
areas (e.g., volcanic activities), where sensors are fixed at certain
locations. At the time of setting them up, the sensors may be given
different transmission power for saving energy (such sensors must
run for a long time) or owing to geological reasons. Once the power
is fixed, the neighbors (and their IDs) can be known to each sensor.
Thus, digraphs can arise in static sensor networkswhere the neigh-
bors can be fixed and known. To implement states and surpluses,
we see from (1), (2) that they are ordinary variables locally stored,
updated, and exchanged; thus they may be implemented by allo-
catingmemories in sensors. For the parameter ϵ, wewill see that it
plays a crucial role in the convergence of our algorithm; however,
ϵ must be chosen sufficiently small, and a valid bound for its value
involves non-local information of the digraph. The latter constraint
(in bounding a parameter) is often found in consensus algorithms
involving more than one variable (Li, Duan, Chen, & Huang, 2010;
Li, Fu, Xie, & Zhang, 2011; Ren & Beard, 2008). One may overcome
this by computing a valid bound offline, and notifying that ϵ value
to every node.

Now let the adjacency matrix A of the digraph G be given by
A := [aij] ∈ Rn×n, where the entries are the updating weights.
Then the Laplacian matrix L is defined as L := D − A, where D =

diag(d1, . . . , dn) with di =
n

j=1 aij. Thus L has nonnegative
diagonal entries, nonpositive off-diagonal entries, and zero row
sums. Then the matrix I − L is nonnegative


by


j∈N +

i
aij < 1


,

and every row sums up to one; namely I − L is row stochastic.
Also let B := [bih]T ∈ Rn×n, where the entries are the sending
weights (note that the transpose in the notation is needed because
h ∈ N −

i for bih). Define the matrix S := (I − D̃) + B, where
D̃ = diag(d̃1, . . . , d̃n) with d̃i =

n
h=1 bih. Then S is nonnegative

by


h∈N −

i
bih < 1


, and every column sums up to one; i.e., S

is column stochastic. As can be observed from (2), the matrix S

3 We assume throughout the paper that the state and surplus information can be
transmitted without loss.
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Fig. 1. Illustrating example of four agents: communication topology and neighbor
sets.

captures the part of update induced by sending and receiving
surplus.

With the above matrices, the iterations (1) and (2) can be
written in a matrix form as
x(k + 1)
s(k + 1)


= M


x(k)
s(k)


, where M :=


I − L ϵI
L S − ϵI


. (3)

Notice that (i) the matrix M has negative entries due to the
presence of the Laplacian matrix L in the (2, 1)-block; (ii) the
column sums ofM are equal to one,which implies that the quantity
1T (x(k) + s(k)) is a constant for all k ≥ 0; and (iii) the state
evolution specified by the (1, 1)-block of M , i.e.,

x(k + 1) = (I − L)x(k), (4)

is that of the standard consensus algorithm studied in the literature
(e.g., Bertsekas&Tsitsiklis, 1989;Olfati-Saber&Murray, 2004; Xiao
& Boyd, 2004). We will henceforth refer to (3) as the deterministic
algorithm, and analyze its convergence properties in the next
subsection.

Example 3. For an illustration of the algorithm (3), consider a
network of four nodes with neighbor sets shown in Fig. 1. Fixing
i ∈ [1, 4], let aij = 1/


card(N +

i ) + 1

for every j ∈ N +

i and bih =

1/

card(N −

i ) + 1

for every h ∈ N −

i . Then the matrix M of this
example is given by

M =



1
2 0 0 1

2 ϵ 0 0 0
1
4

1
4

1
4

1
4 0 ϵ 0 0

1
3 0 1

3
1
3 0 0 ϵ 0

0 1
3

1
3

1
3 0 0 0 ϵ

1
2 0 0 −

1
2

1
3 − ϵ 0 0 1

4
−

1
4

3
4 −

1
4 −

1
4

1
3

1
2 − ϵ 1

3
1
4

−
1
3 0 2

3 −
1
3

1
3 0 1

3 − ϵ 1
4

0 −
1
3 −

1
3

2
3 0 1

2
1
3

1
4 − ϵ


.

We see that M has negative entries, and every column sums up to
one.

3.2. Convergence result

The following is a graphical characterization for the determin-
istic algorithm (3) to achieve average consensus. The proof is de-
ferred to Section 3.3.

Theorem 4. Using the deterministic algorithm (3) with the parame-
ter ϵ > 0 sufficiently small, the agents achieve average consensus if
and only if the digraph G is strongly connected.

Without augmenting surplus variables, it is well known (Olfati-
Saber & Murray, 2004) that a necessary and sufficient graphical
condition for state averaging is that the digraph G is both strongly
connected and balanced.4 A balanced structure can be restrictive

4 A digraph G with its adjacency matrix A = [aij] is balanced if
n

j=1 aij =n
j=1 aji for all i. Equivalently, the system matrix I − L of the standard consensus

algorithm (4) is both row and column stochastic (Olfati-Saber &Murray, 2004; Xiao
& Boyd, 2004).
because when all the weights aij are identical, it requires the
number of incoming and outgoing edges at each node in the
digraph to be the same. By contrast, our algorithm (3) ensures
average consensus for arbitrary strongly connected digraphs
(including those non-balanced).

A surplus-based averaging algorithm was initially proposed
in Cai and Ishii (2011a) for a quantized consensus problem. It
guarantees that the integer-valued states converge to either ⌊xa⌋
(the largest integer smaller than or equal to xa) or ⌈xa⌉ (the smallest
integer larger than or equal to xa). There, the steady-state surpluses
are nonzero in general; in addition, the set of states and surpluses
is finite, and thus arguments of finite Markov chain type are
employed in the proof. Distinct from Cai and Ishii (2011a), with the
algorithm (3) the states converge to the exact average xa and the
steady-state surpluses are zero. Moreover, since the algorithm (3)
is linear, its convergence can be analyzed using tools from matrix
theory, as detailed below. This last linearity point is also in contrast
with the division involved algorithm designed in Benezit et al.
(2010) and Kempe et al. (2003).

The choice of the parameter ϵ depends on the graph structure
and the number of agents. In the following, we present an upper
bound on ϵ for general networks.

Proposition 5. Suppose that the digraph G is strongly connected.
The deterministic algorithm (3) achieves average consensus if the
parameter ϵ satisfies ϵ ∈ (0, ϵ̄(d)), where

ϵ̄(d)
:=

1
(20 + 8n)n

(1 − |λ3|)
n, (5)

where λ3 is the third largest eigenvalue of M in (3) by setting ϵ = 0.

The proof of Proposition 5 is presented in Section 3.4, which
employs a fact from matrix perturbation theory relating ϵ to
the distance between perturbed and unperturbed eigenvalues
(e.g., Bhatia, 1996; Stewart & Sun, 1990). Also, we will stress
that this proof is based on that of Theorem 4. The above
bound ϵ̄(d) ensures average consensus for arbitrary strongly
connected topologies. Due to the power n, however, the bound
is rather conservative. This power is indeed unavoidable for any
perturbation bound result with respect to general matrices, as
is well known in matrix perturbation literature (Bhatia, 1996;
Stewart & Sun, 1990). In Section 5, we will exploit structures
of some special topologies, which yield less conservative bounds
on ϵ. Also, we see that the bound in (5) involves λ3, the
second largest eigenvalue of either I − L or S (matrix M is block-
diagonal when ϵ = 0). This infers that, in order to bound ϵ,
we need to know the structure of the agent network. Such
a requirement when bounding some parameters in consensus
algorithms, unfortunately, does not seem to be unusual (Li et al.,
2010, 2011; Ren & Beard, 2008).

3.3. Proof of Theorem 4

We present the proof of Theorem 4. First, we state a necessary
and sufficient condition for average consensus in terms of the
spectrum of the matrixM .

Proposition 6. The deterministic algorithm (3) achieves average
consensus if and only if 1 is a simple eigenvalue of M, and all other
eigenvalues have moduli smaller than one.

Proof. The sufficiency part is standard, and we refer it to
Cai and Ishii (2011b). For necessity, first we claim that the
eigenvalue 1 of M is always simple. Suppose on the contrary
that the algebraic multiplicity of 1 equals two. The corresponding
geometric multiplicity, however, equals one; this is checked by
verifying rank(M − I) = 2n − 1. Thus there exists a generalized
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right eigenvector u = [uT
1 uT

2]
T

∈ R2n such that (M − I)2u = 0,
and (M − I)u is a right eigenvector with respect to the eigenvalue
1. Since [1T 0]T is also a right eigenvector corresponding to the
eigenvalue 1, it must hold:

(M − I)u = c[1T 0]T , for some scalar c ≠ 0

⇒


−L ϵI
L S − I − ϵI

 
u1
u2


= c


1
0


⇒


−Lu1 + ϵu2 = c1
Lu1 + (S − I)u2 − ϵu2 = 0

⇒ (S − I)u2 = c1.

Onemay verify that rank(S− I) = n−1 but rank ([S − I c1]) = n.
Hence there is no solution for u2, which in turn implies that the
generalized right eigenvector u cannot exist. This proves our claim.

Now suppose that there is an eigenvalue λ ofM such that λ ≠ 1
and |λ| ≥ 1. But this immediately implies that limk→∞ Mk does not
exist (Xiao & Boyd, 2004). Therefore, average consensus cannot be
achieved. �

Next, we introduce an important result from matrix perturbation
theory (e.g., Seyranian & Mailybaev, 2004, Chapter 2), which is
found crucial in analyzing the spectral properties of the matrix
M in (3). The proof of this result can be found in Seyranian and
Mailybaev (2004, Sections 2.8 and 2.10). An eigenvalue of a matrix
is said to be semi-simple if its algebraic multiplicity is equal to its
geometric multiplicity.

Lemma 7. Consider an n × n matrix W (ϵ) which depends smoothly
on a real parameter ϵ ≥ 0. Fix l ∈ [1, n]; let λ1 = · · · = λl be
a semi-simple eigenvalue of W (0), with (linearly independent) right
eigenvectors y1, . . . , yl and (linearly independent) left eigenvectors
z1, . . . , zl such thatzT1

...

zTl

y1 · · · yl


= I.

Consider a small ϵ > 0, and denote by λi(ϵ) the eigenvalues of W (ϵ)
corresponding to λi, i ∈ [1, l]. Then the derivatives dλi(ϵ)/dϵ|ϵ=0
exist, and they are the eigenvalues of the following l × l matrix:zT1 Ẇy1 · · · zT1 Ẇyl

...
...

zTl Ẇy1 · · · zTl Ẇyl

 , where Ẇ := dW (ϵ)/dϵ|ϵ=0. (6)

Now we are ready to prove Theorem 4. The necessity argument
follows from the one for Cai and Ishii (2011a, Theorem 2);
indeed, the class of strongly connected digraphs characterizes
the existence of a distributed algorithm that can solve average
consensus. For the sufficiency part, let

M0 :=


I − L 0
L S


and F :=


0 I
0 −I


. (7)

Then M = M0 + ϵF , and we view M as being obtained by
‘‘perturbing’’ M0 via the term ϵF . Also, it is clear that M depends
smoothly on ϵ. Concretely, we will first show that the eigenvalues
λi of the unperturbed matrixM0 satisfy
1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2n|. (8)
Then using Lemma 7 we will establish that after a small
perturbation ϵF , the obtained matrix M has only a simple
eigenvalue 1 and all other eigenvalues have moduli smaller than
one. This is the characteristic part of our proof. Finally, it follows
from Proposition 6 that average consensus is achieved. It should
be pointed out that, unlike the standard consensus algorithm (4),
the tools in nonnegative matrix theory cannot be used to analyze
the spectrum ofM directly due to the existence of negative entries.
Proof of Theorem 4. (Necessity) Suppose that G is not strongly
connected. Then at least one node of G is not globally reachable.
Let V∗

g denote the set of non-globally reachable nodes, and write
its cardinality card(V∗

g ) = r, r ∈ [1, n]. If r = n, i.e. G does not
have a globally reachable node, then G has at least two distinct
closed strong components (Lin, 2008, Theorem 2.1). In this case,
if the nodes in different components have different initial states,
then average consensus cannot be achieved. It is left to consider
r < n. Let Vg := V − V∗

g denote the set of all globally reachable
nodes; thus Vg is the unique closed strong component in G (Lin,
2008, Theorem 2.1). Consider an initial condition (x(0), 0) such
that all nodes in Vg have the same state c ∈ R, and not all the
states of the nodes in V∗

g equal c. Hence xa ≠ c. But no state or
surplus update is possible for the nodes in Vg because it is closed,
and therefore average consensus cannot be achieved.

(Sufficiency) First, we prove the assertion (8). Since M0 is
block (lower) triangular, its spectrum is σ(M0) = σ(I − L) ∪ σ(S).
Recall that the matrices I − L and S are row and column
stochastic, respectively; so their spectral radii satisfy ρ(I − L) =

ρ(S) = 1. Now owing to that G is strongly connected, I − L
and S are both irreducible; thus by the Perron–Frobenius Theorem
(see, e.g., Horn & Johnson, 1990, Chapter 8) ρ(I − L) (resp. ρ(S)) is
a simple eigenvalue of I − L (resp. S). This implies (8). Moreover,
for λ1 = λ2 = 1, one derives that the corresponding geometric
multiplicity equals two by verifying rank(M0 − I) = 2n − 2.
Hence the eigenvalue 1 is semi-simple.

Next, wewill qualify the changes of the semi-simple eigenvalue
λ1 = λ2 = 1 of M0 under a small perturbation ϵF . We do this
by computing the derivatives dλ1(ϵ)/dϵ and dλ2(ϵ)/dϵ using
Lemma 7; here λ1(ϵ) and λ2(ϵ) are the eigenvalues of M
corresponding respectively to λ1 and λ2. To that end, choose the
right eigenvectors y1, y2 and left eigenvectors z1, z2 of the semi-
simple eigenvalue 1 as follows:

Y :=

y1 y2


=


0 1
v2 −nv2


, Z :=


zT1
zT2


=


1T 1T

vT
1 0


.

Here v1 ∈ Rn is a left eigenvector of I − L with respect to
ρ(I − L) such that it is positive and scaled to satisfy vT

11 = 1;
and v2 ∈ Rn is a right eigenvector of S corresponding to ρ(S)
such that it is positive and scaled to satisfy 1Tv2 = 1. The fact
that positive eigenvectors v1 and v2 exist follows again from the
Perron–Frobenius Theorem. With this choice, one readily checks
ZY = I . Now since dM/dϵ|ϵ=0 = F , the matrix (6) in the present
case is
zT1 Fy1 zT1 Fy2
zT2 Fy1 zT2 Fy2


=


0 0

vT
1v2 −nvT

1v2


.

It follows from Lemma 7 that for small ϵ > 0, the derivatives
dλ1(ϵ)/dϵ, dλ2(ϵ)/dϵ exist and are the eigenvalues of the above
matrix. Hence dλ1(ϵ)/dϵ = 0, and dλ2(ϵ)/dϵ = −nvT

1v2 < 0.
This implies that when ϵ is small, λ1(ϵ) stays put while λ2(ϵ)
moves to the left along the real axis. Then by continuity, theremust
exist a positive δ1 such that λ1(δ1) = 1 and λ2(δ1) < 1. On the
other hand, since eigenvalues are continuous functions of matrix
entries (e.g., Bhatia, 1996; Stewart & Sun, 1990), there must exist
a positive δ2 such that |λi(δ2)| < 1 for all i ∈ [3, 2n]. Thus for any
sufficiently small ϵ ∈ (0,min{δ1, δ2}), the matrix M has a simple
eigenvalue 1 and all other eigenvalues have moduli smaller than
one. Therefore, from Proposition 6, the conclusion that average
consensus is achieved follows. �

Remark 8. Assuming that the deterministic algorithm (3) con-
verges to the average, the speed of its convergence is governed by
the second largest (in modulus) eigenvalue of the matrix M . We
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denote this particular eigenvalue by λ
(d)
2 , and refer to it as the con-

vergence factor of algorithm (3). Note that λ(d)
2 depends not only on

the graph topology but also on the parameter ϵ, and λ
(d)
2 < 1 is

equivalent to average consensus (by Proposition 6).

Remark 9. Because of adding surpluses, the matrix M in (3) is
double in size and is not nonnegative. Hence standard nonnegative
matrix tools cannot be directly applied; this point was also
discussed in Franceschelli et al. (2009). In Liu et al. (2009) a
system matrix containing negative entries was analyzed, which
depends however on symmetry of network structures. By contrast,
we deal with general network topologies and have demonstrated
that certain matrix perturbation tools are useful in proving
convergence.

3.4. Proof of Proposition 5

Some preliminaries will be presented first, based on which
Proposition 5 follows. Henceforth in this subsection, the digraph
G is assumed to be strongly connected. We begin by introducing
a metric for the distance between the spectrums of M0 and M;
here M = M0 + ϵF , with M0 and F in (7). Let σ(M0) := {λ1, . . . ,
λ2n} (where the numbering is the same as that in (8)) and
σ(M) := {λ1(ϵ), . . . , λ2n(ϵ)}. The optimal matching distance
d (σ (M0), σ (M)) (Bhatia, 1996; Stewart & Sun, 1990) is defined by

d (σ (M0), σ (M)) := min
π

max
i∈[1,2n]

|λi − λπ(i)(ϵ)|, (9)

where π is taken over all permutations of {1, . . . , 2n}. Thus if
we draw 2n identical circles centered respectively at λ1, . . . , λ2n,
then d (σ (M0), σ (M)) is the smallest radius such that these circles
include all λ1(ϵ), . . . , λ2n(ϵ). Here is an upper bound result for the
optimal matching distance (Bhatia, 1996, Theorem VIII.1.5).

Lemma 10. An upper bound on d (σ (M0), σ (M)) is

d (σ (M0), σ (M)) ≤ 4 (∥M0∥∞ + ∥M∥∞)1−
1
n ∥ϵF∥

1
n
∞.

Next, we are concerned with the eigenvalues λ3(ϵ), . . . , λ2n(ϵ) of
M , whose corresponding unperturbed counterparts λ3, . . . , λ2n of
M0 lie strictly inside the unit circle (see the proof of Theorem 4).

Lemma 11. If the parameter ϵ ∈ (0, ϵ̄(d)) with ϵ̄(d) in (5), then
|λ3(ϵ)|, . . . , |λ2n(ϵ)| < 1.

Proof. Since L = D − A and S = (I − D̃) + B, one can compute
∥L∥∞ = 2maxi∈[1,n] di < 2 and ∥S∥∞ < n. Then ∥M0∥∞ ≤

∥L∥∞ + ∥S∥∞ < 2 + n and ∥F∥∞ ≤ 1. By Lemma 10,

d (σ (M0), σ (M)) ≤ 4 (2∥M0∥∞ + ϵ∥F∥∞)1−
1
n (ϵ∥F∥∞)

1
n

< 4 (4 + 2n + ϵ)1−
1
n ϵ

1
n

< 4 (4 + 2n + ϵ) ϵ
1
n < 1 − |λ3|.

The last inequality is due to ϵ < ϵ̄(d). Now recall from the proof
of Theorem 4 that the unperturbed eigenvalues λ3, . . . , λ2n of M0
lie strictly inside the unit circle; in particular, (8) holds. Therefore,
perturbing the eigenvalues λ3, . . . , λ2n by an amount less than ϵ̄,
the resulting eigenvalues λ3(ϵ), . . . , λ2n(ϵ) will remain inside the
unit circle. �

It is left to consider the eigenvalues λ1(ϵ) and λ2(ϵ) of M . Since
every column sum of M equals one for an arbitrary ϵ, we obtain
that 1 is always an eigenvalue of M . Hence λ1(ϵ) must be equal to
1 for any ϵ. On the other hand, for λ2(ϵ) the following is true.

Lemma 12. If the parameter ϵ ∈ (0, ϵ̄(d)) with ϵ̄(d) in (5), then
|λ2(ϵ)| < 1.
Proof. First recall from the proof of Theorem 4 that λ2 = 1 and
dλ2(ϵ)/dϵ < 0; so for sufficiently small ϵ > 0, it holds that |λ2(ϵ)|
< 1. Now suppose that there exists δ ∈ (0, ϵ̄(d)) such that |λ2(δ)|
≥ 1. Owing to the continuity of eigenvalues, it suffices to consider
|λ2(δ)| = 1. There are three such possibilities, for each of which
we derive a contradiction.
Case 1: λ2(δ) is a complex number with nonzero imaginary part
and |λ2(δ)| = 1. SinceM is a real matrix, there must exist another
eigenvalue λi(δ), for some i ∈ [3, 2n], such that λi(δ) is a complex
conjugate of λ2(δ). Then |λi(δ)| = |λ2(δ)| = 1, which contradicts
that all the eigenvalues λ3(δ), . . . , λ2n(δ) stay inside the unit circle
as δ ∈ (0, ϵ̄(d)) by Lemma 11.
Case 2: λ2(δ) = −1. This implies at least d (σ (M0), σ (M)) = 2,
which contradicts d (σ (M0), σ (M)) < 1−|λ3| < 1when δ < ϵ̄(d).
Case 3: λ2(δ) = 1. This case is impossible because the eigenvalue
1 ofM is always simple, as we have justified in the necessity proof
of Proposition 6. �

Summarizing Lemmas 11 and 12, we obtain that if the parameter
ϵ ∈ (0, ϵ̄(d)) with ϵ̄(d) in (5), then λ1(ϵ) = 1 and |λ2(ϵ)|, |λ3(ϵ)|,
. . . , |λ2n(ϵ)| < 1. Therefore, by Proposition 6 the deterministic
algorithm (3) achieves average consensus; this establishes Propo-
sition 5.

4. Averaging in asynchronous networks

We move on to solve Problem 2. First, a surplus-based
gossip algorithm is designed for digraphs, which extends those
algorithms (Boyd et al., 2006; Carli et al., 2010; Kashyap et al.,
2007; Lavaei & Murray, 2012) only for undirected graphs. Then,
mean-square and almost sure convergence to average consensus
is justified for arbitrary strongly connected topologies.

4.1. Algorithm description

Consider again a network of n agents modeled by a digraph
G = (V, E). Suppose that at each time, exactly one edge in E is
activated at random, independently from all earlier instants. Say
edge (j, i) is activated at time k ∈ Z+, with a constant probability
pij ∈ (0, 1). Along the edge, the state information xj(k) and surplus
sj(k) are transmitted from node j to i. The induced updates are
described as follows:

(i) Let wij ∈ (0, 1) be the updating weight, and ϵ > 0 be a
parameter. For node i:

xi(k + 1) = xi(k) + wij(xj(k) − xi(k)) + ϵwijsi(k), (10)

si(k + 1) = si(k) + sj(k) − (xi(k + 1) − xi(k)). (11)

(ii) For node j: xj(k + 1) = xj(k) and sj(k + 1) = 0.
(iii) For other nodes l ∈ V −{i, j}: xl(k+1) = xl(k) and sl(k+1) =

sl(k).

We discuss potential applications of this protocol in sensor
networks. Our focus is again on the situations of directed
information flow, like asynchronous communication with variable
ranges or unidirectional geographic routing (Benezit et al., 2010;
Kempe et al., 2003). First, the states and surpluses can be
implemented as ordinary variables in sensors, since their exchange
and updating rules are fairly simple and purely local. Also, we
will see that the parameter ϵ, as in the algorithm (3), affects
the convergence of the algorithm, and must be chosen to be
sufficiently small. A valid upper bound for ϵ again involves non-
local information of the network; thus computing a bound offline
and then notifying that value to every node is one possible way to
deal with this restriction.
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Now let Aji be the adjacency matrix of the digraph Gji =

(V, {(j, i)}) given by Aji = wijfif Tj , where fi, fj are unit vectors of
the standard basis of Rn. Then the Laplacian matrix Lji is given by
Lji := Dji − Aji, where Dji = wijfif Ti . Thus Lji has zero row sums, and
the matrix I − Lji is row stochastic. Also define Sji := I − (fj − fi)f Tj ;
it is clear that Sji is column stochastic. With these matrices, the
iteration of states and surpluseswhen edge (j, i) is activated at time
k can be written in a matrix form as
x(k + 1)
s(k + 1)


= M(k)


x(k)
s(k)


,

whereM(k) = Mji :=


I − Lji ϵDji
Lji Sji − ϵDji


. (12)

We have several remarks regarding this algorithm. (i) The matrix
M(k) has negative entries due to the Laplacian matrix Lji in the
(2, 1)-block. (ii) The column sums ofM(k) are equal to one, which
implies that the quantity 1T (x(k) + s(k)) is constant for all k. (iii)
By the assumption on the probability distribution of activating
edges, the sequence M(k), k = 0, 1, . . . , is independent and
identically distributed (i.i.d.). Henceforth we refer to (12) as the
gossip algorithm, and establish its mean-square and almost sure
convergence in the sequel.

Example 13. Consider again the network of four nodes in Fig. 1.
We give one instance of the matrix M(k) when the edge (3, 2) is
activated, with the weight w23 = 1/2.

M32 =



1 0 0 0 0 0 0 0
0 1/2 1/2 0 0 ϵ/2 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1/2 −1/2 0 0 1 − ϵ/2 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


.

We see thatM(k) has negative entries, and every column sums up
to one.

4.2. Convergence result

We present our main result in this section.

Theorem 14. Using the gossip algorithm (12) with the parameter
ϵ > 0 sufficiently small, the agents achieve mean-square average
consensus if and only if the digraph G is strongly connected.

We remark that Theorem 14 generalizes the convergence result
in Boyd et al. (2006) from undirected to directed graphs. The
problem of achieving average consensus on gossip digraphs is,
however, more difficult in that the state sum of the nodes need
not be invariant at each iteration. The key in our extension is to
augment surplus variables which keep track of individual state
updates, thereby ensuring average consensus for general strongly
connected digraphs. This approach was previously exploited in
Franceschelli et al. (2009) for a ‘‘broadcast gossip’’ algorithm,
however without a convergence proof. We remark that our
technique to prove Theorem 14, based on matrix perturbation
theory, can be applied to Franceschelli et al. (2009) and justify the
algorithm convergence.

We note that in the literature, many works for agents with
non-scalar dynamics deal only with static networks (e.g., Cao &
Ren, 2010; Li et al., 2010). Some exceptions include Liu et al.
(2009) which relies heavily on graph symmetry and Ren and Beard
(2008) which is based on dwell-time switching. By contrast, we
study general digraphs that switch at every discrete time and each
resulting update matrix is not nonnegative. The corresponding
analysis is difficult, and we will demonstrate again that matrix
perturbation tools are instrumental in proving convergence.

To prove Theorem 14, three preliminary results are to be
established in order. The first is a necessary and sufficient
condition for mean-square average consensus characterized by
the spectrum of the matrix E [M(k) ⊗ M(k)], where ⊗ stands
for the Kronecker product. This condition will be used in the
sufficiency proof of Theorem 14. Since the matrices M(k) are i.i.d.
we denote E [M(k) ⊗ M(k)] by E [M ⊗ M]. This result corresponds
to Proposition 6 for the deterministic algorithm in Section 3. The
proof is standard, and can be found in e.g. Boyd et al. (2006) and
Cai and Ishii (2011b).

Proposition 15. The gossip algorithm (12) achieves mean-square
average consensus if and only if 1 is a simple eigenvalue of
E [M ⊗ M], and all the other eigenvalues have moduli smaller than
one.

The secondpreliminary is an easy corollary of the Perron–Frobenius
Theorem.

Lemma 16 (cf. Gantmacher, 1959, Chapter XIII). Let W be a
nonnegative and irreducible matrix, and λ be an eigenvalue of W. If
there is a positive vector v such that Wv = λv, then λ = ρ(W ).

Proof. Since W is nonnegative and irreducible, the
Perron–Frobenius Theorem implies that ρ(W ) is a simple eigen-
value ofW and there is a positive left eigenvectorw corresponding
to ρ(W ), i.e., wTW = wTρ(W ). Then

ρ(W )(vTw) = vT (ρ(W )w) = vT (W Tw)

= (Wv)Tw = (λv)Tw = λ(vTw),

which yields (λ − ρ(W ))(vTw) = 0. Since both v and w are
positive, we conclude that λ = ρ(W ). �

The final preliminary is on the spectral properties of the fol-
lowing four matrices: E [(I − L) ⊗ (I − L)] , E [(I − L) ⊗ S] , E


S ⊗

(I − L)

, and E [S ⊗ S]. For the proof, see Cai and Ishii (2011b).

Lemma 17. Suppose that the digraph G = (V, E) is strongly
connected. Then each of the four matrices E [(I − L) ⊗ (I − L)] ,
E [(I − L) ⊗ S] , E [S ⊗ (I − L)], and E [S ⊗ S] has a simple eigen-
value 1 and all other eigenvalues with moduli smaller than one.

We are now ready to provide the proof of Theorem 14. The
necessity argument is the same as Theorem 4. Below is the
sufficiency part.

Proof of Theorem 14. By Proposition 15 it suffices to show that
E [M ⊗ M] has a simple eigenvalue 1, and all other eigenvalues
with moduli smaller than one. Let

M0(k) :=


I − L(k) 0
L(k) S(k)


and F(k) :=


0 D(k)
0 −D(k)


;

from (12) we haveM(k) = M0(k) + ϵF(k). Then write

E [M ⊗ M] = E [(M0 + ϵF) ⊗ (M0 + ϵF)]
= E [M0 ⊗ M0] + ϵE [M0 ⊗ F + F ⊗ M0 + F ⊗ ϵF ] .

Let p ∈ [1, 4n], and pn := {(p − 1)n + 1, . . . , pn}. Consider the
following permutation:

{n, 3n, . . . , (2n − 1)n; 2n, 4n, . . . , 2nn;

(2n + 1)n, (2n + 3)n, . . . , (4n − 1)n;

(2n + 2)n, (2n + 4)n, . . . , 4nn}.
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Denoting by P the corresponding permutation matrix (which is
orthogonal), one derives that

PTE [M ⊗ M] P = PTE [M0 ⊗ M0] P
+ ϵPTE [M0 ⊗ F + F ⊗ M0 + F ⊗ ϵF ] P

=: M̂0 + ϵF̂ , (13)

where

M̂0 := E


(I − L) ⊗ (I − L) 0 0 0

(I − L) ⊗ L (I − L) ⊗ S 0 0
L ⊗ (I − L) 0 S ⊗ (I − L) 0

L ⊗ L L ⊗ S S ⊗ L S ⊗ S

 ,

F̂ := E


0 (I − L) ⊗ D D ⊗ (I − L) D ⊗ ϵD
0 (L − I) ⊗ D D ⊗ L D ⊗ (S − ϵD)

0 L ⊗ D D ⊗ (L − I) (S − ϵD) ⊗ D
0 −L ⊗ D −D ⊗ L D ⊗ (ϵD − S) − S ⊗ D

 .

Based on the above similarity transformation, we henceforth
analyze the spectral properties of the matrix M̂0 + ϵF̂ . For this, we
resort again to a perturbation argument, which proceeds similarly
to the one for Theorem 4. First, since the digraph G is strongly
connected, it follows from Lemma 17 that the eigenvalues of the
matrix M̂0 satisfy

1 = λ̂1 = λ̂2 = λ̂3 = λ̂4 > |λ̂5| ≥ · · · ≥ |λ̂4n2 |. (14)

For the eigenvalue 1, one derives that its geometric multiplicity
equals four by verifying rank(M̂0 − I) = 4n2

− 4. Thus 1 is a semi-
simple eigenvalue.

Next, wewill qualify the changes of the semi-simple eigenvalue
λ̂1 = λ̂2 = λ̂3 = λ̂4 = 1 of M̂0 under a small perturbation ϵF̂ . We
do this by computing the derivatives dλ̂i(ϵ)/dϵ, i ∈ [1, 4], using
Lemma 7; here λ̂i(ϵ) are the eigenvalues of M̂0 +ϵF̂ corresponding
to λ̂i. To that end, choose the right and left eigenvectors of the semi-
simple eigenvalue 1 as follows:

Y :=

y1 y2 y3 y4


=

 0 0 0 1 ⊗ 1
0 0 1 ⊗ nv2 −1 ⊗ nv2
0 nv2 ⊗ 1 0 −nv2 ⊗ 1

nv2 ⊗ nv2 −nv2 ⊗ nv2 −nv2 ⊗ nv2 nv2 ⊗ nv2

 ,

Z :=


zT1
zT2
zT3
zT4



=



1
n
1T

⊗
1
n
1T 1

n
1T

⊗
1
n
1T 1

n
1T

⊗
1
n
1T 1

n
1T

⊗
1
n
1T

1
n
1T

⊗ vT
1 0

1
n
1T

⊗ vT
1 0

vT
1 ⊗

1
n
1T vT

1 ⊗
1
n
1T 0 0

vT
1 ⊗ vT

1 0 0 0

 .

Here v1 is positive such that vT
1E [I − L] = vT

1 and vT
11 = 1, and v2

is positive such that E [S] v2 = v2 and 1Tv2 = 1. With this choice,
it is readily checked that ZY = I . Now the matrix M̂0 + ϵF̂ depends
smoothly on ϵ, and the derivative d(M̂0 + ϵF̂)/dϵ|ϵ=0 is

F̂0 :=
d(M̂0 + ϵF̂)

dϵ


ϵ=0

=


F̂ + ϵ

dF̂
dϵ

 
ϵ=0

= E


0 (I − L) ⊗ D D ⊗ (I − L) 0
0 −(I − L) ⊗ D D ⊗ L D ⊗ S
0 L ⊗ D −D ⊗ (I − L) S ⊗ D
0 −L ⊗ D −D ⊗ L −D ⊗ S − S ⊗ D

 .
Hence the matrix (6) in the present case is
zT1 F̂0y1 zT1 F̂0y2 zT1 F̂0y3 zT1 F̂0y4
zT2 F̂0y1 zT2 F̂0y2 zT2 F̂0y3 zT2 F̂0y4
zT3 F̂0y1 zT3 F̂0y2 zT3 F̂0y3 zT3 F̂0y4
zT4 F̂0y1 zT4 F̂0y2 zT4 F̂0y3 zT4 F̂0y4



=


0 0 0 0

nvT
1 E[D]v2 −nvT

1 E[D]v2 0 0
nvT

1 E[D]v2 0 −nvT
1 E[D]v2 0

0 nvT
1 E[D]v2 nvT

1 E[D]v2 −2nvT
1 E[D]v2

 .

It follows from Lemma 7 that for small ϵ > 0, the derivatives
dλ̂i(ϵ)/dϵ, i ∈ [1, 4], exist and are the eigenvalues of the above
matrix. Hence dλ̂1(ϵ)/dϵ = 0, dλ̂2(ϵ)/dϵ = dλ̂3(ϵ)/dϵ = −nvT

1

E[D]v2 < 0, and dλ̂4(ϵ)/dϵ = −2nvT
1E[D]v2 < 0. This implies

that when ϵ is small, λ̂1(ϵ) stays put, while λ̂2(ϵ), λ̂3(ϵ), and λ̂4(ϵ)
move to the left along the real axis. So by continuity, there exists a
positive δ1 such that λ1(δ1) = 1 and λ2(δ1), λ3(δ1), λ4(δ1) < 1. On
the other hand, by the eigenvalue continuity there exists a positive
δ2 such that |λi(δ2)| < 1 for all i ∈ [5, 4n2

]. Therefore for any
sufficiently small ϵ ∈ (0,min{δ1, δ2}), the matrix M̂0 + ϵF̂ has a
simple eigenvalue 1 and all other eigenvalues with moduli smaller
than one. �

Remark 18. Assuming that the gossip algorithm (12) converges
to the average in mean square, the speed of its convergence is
determined by the second largest (in modulus) eigenvalue of the
matrix E [M ⊗ M]. We denote this particular eigenvalue by λ

(g)
2 ,

and refer to it as the convergence factor of algorithm (12). Notice
that λ

(g)
2 depends not only on the graph topology but also on the

parameter ϵ, and λ
(g)
2 < 1 is equivalent to mean-square average

consensus (by Proposition 15).

Remark 19. We have established that for small enough ϵ, the
gossip algorithm (12) achieves mean-square average consensus.
Using the same notion of optimal matching distance and following
the procedures as in Section 3.4, it may be possible to derive a
general bound for ϵ by solving the inequality 4 (∥M̂0∥∞ + ∥M̂0 +

ϵF̂∥∞)1−1/n
∥ϵF̂∥

1/n
∞ < 1 − |λ̂5|, where M̂0, F̂ are from (13) and

λ̂5 from (14). The corresponding computation is however rather
long, since the involved matrices are of much larger sizes. Such a
general bound unavoidably again involves n, the number of agents
in the network, and λ̂5, the second largest eigenvalue of one of
the four matrices in Lemma 17. Consequently, the bound for ϵ is
conservative and requires knowing the structure of the network.

Finally, we consider almost sure average consensus. Note that the
gossip algorithm (12) can be viewed as a jump linear system, with
i.i.d. system matrices M(k), k ∈ Z+. For such systems, it is known
(e.g., Costa, Fragoso, & Marques, 2004, Corollary 3.46) that almost
sure convergence can be implied from mean-square convergence.
Therefore, the result on almost sure convergence is immediate.

Corollary 20. Using the gossip algorithm (12) with the parameter
ϵ > 0 sufficiently small, the agents achieve almost sure average
consensus if and only if the digraph G is strongly connected.

5. Special topologies

We turn now to a special class of topologies — strongly
connected and balanced digraphs — and investigate the required
upper bound on the parameter ϵ for the deterministic algorithm
(3). Furthermore, when these digraphs are restricted to symmetric
or cyclic respectively, we derive less conservative ϵ bounds
compared to the general one in (5).



2758 K. Cai, H. Ishii / Automatica 48 (2012) 2750–2761
Fig. 2. Upper bounds onparameter ϵ such that deterministic algorithm (3) achieves
average consensus on general strongly connected balanced digraphs (solid and
dashed curves) and cyclic digraphs (dotted curve).

Given a digraph G = (V, E), its degree d is defined by d :=

maxi∈V card(N +

i ). In the deterministic algorithm (3) choose the
updating and sending weights to be respectively aij = 1/(2dn)
and bij = 1/(dn), for every (j, i) ∈ E . This choice renders the two
matrices I − 2L and S identical, when the digraph G is balanced.
We will see that the equality I − 2L = S supports a similarity
transformation in dealing with the cyclic case below.

Proposition 21. Suppose that the parameter ϵ satisfies ϵ ∈ (0, 2),
and the zeros of the following polynomial for every µ ≠ 0 with
|µ − 1/(2n)| ≤ 1/(2n) lie strictly inside the unit circle:

p(λ) := λ2
+ α1λ + α0, (15)

where α0 := 2µ2
− 3µ − ϵ + 1, α1 := 3µ + ϵ − 2. Then the

deterministic algorithm (3) achieves average consensus on strongly
connected and balanced digraphs.

We refer to Cai and Ishii (2011b) for the proof. Nowwe investigate
the values of ϵ that ensure the zeros of the polynomial p(λ) in (15)
inside the unit circle, which in turn guarantee average consensus
on strongly connected and balanced digraphs by Proposition 21.
For this, we view the polynomial p(λ) as interval polynomials
(Barmish, 1994) by letting µ take any value in the square: 0 ≤

Re(µ) ≤ 1/n, −1/(2n) ≤ Im(µ) ≤ 1/(2n). Applying the bilinear
transformation we obtain a new family of interval polynomials:

p̃(γ ) := (γ − 1)2p


γ + 1
γ − 1


= (1 + α0 + α1)γ

2
+ (2 − 2α0)γ + (1 + α0 − α1).

Then by Kharitonov’s result for the complex-coefficient case,
the stability of p̃(γ ) (its zeros have negative real parts) is
equivalent to the stability of eight extreme polynomials (Barmish,
1994, Section 6.9), which in turn suffices to guarantee that the
zeros of p(λ) lie strictly inside the unit circle. Checking the stability
of eight extreme polynomials results in upper bounds on ϵ in terms
of n. This is displayed in Fig. 2 as the solid curve. We see that
the bounds grow linearly, which is in contrast with the general
bound ϵ̄(d) in Proposition 5 that decays exponentially and is known
to be conservative. This is due to that, from the robust control
viewpoint, the uncertainty of µ in the polynomial coefficients
becomes smaller as n increases.

Alternatively, we employ the Jury stability test (Jury, 1988) to
derive that the zeros of the polynomial p(λ) are strictly inside the
unit circle if and only if

β0 :=

 1 α0
ᾱ0 1

 > 0,

β1 :=


 1 α0
ᾱ0 1

  1 α1
ᾱ0 ᾱ1

 1 ᾱ1
α0 α1

  1 ᾱ0
α0 1


 > 0.

(16)

Hereβ0 andβ1 turn out to be polynomials in ϵ of second and fourth
order, respectively; the corresponding coefficients are functions of
µ and n. Thus selecting µ such that µ ≠ 0 and |µ − 1/(2n)| ≤

1/(2n), we can solve the inequalities in (16) for ϵ in terms of n.
Thereby we obtain the dashed curve in Fig. 2, each plotted point
being the minimum value of ϵ over 1000 random samples such
that the inequalities in (16) hold. This simulation confirms that the
true bound on ϵ for the zeros of p(λ) to be inside the unit circle is
between the solid and the dashed curves.

Here ends our discussion on ϵ bounds for arbitrary balanced
(and strongly connected) digraphs. In the sequel, we will further
specialize the balanced digraph G to be symmetric or cyclic,
respectively, and provide analytic ϵ bounds less conservative than
(5) for the general case. In particular, the exponent n is not
involved.

5.1. Connected undirected graphs

A digraphG = (V, E) is symmetric if (j, i) ∈ E implies (i, j) ∈ E .
That is, G is undirected.

Proposition 22. Consider a general connected undirected graph G.
Then the deterministic algorithm (3) achieves average consensus if the
parameter ϵ satisfies ϵ ∈ (0, (1 − (1/n))(2 − (1/n))).

Refer to Cai and Ishii (2011b) for the proof. It is noted that for
connected undirected graphs, the upper bound on ϵ ensuring
average consensus grows as n increases. This characteristic is in
agreement with that of the bounds for the more general class of
balanced digraphs as we observed in Fig. 2.

5.2. Cyclic digraphs

A digraph G = (V, E) is cyclic if V = {1, . . . , n} and E =

{(1, 2), (2, 3), . . . , (n−1, n), (n, 1)}. So a cyclic digraph is strongly
connected.

Proposition 23. Suppose that the digraph G is cyclic. Then the
deterministic algorithm (3) achieves average consensus if the
parameter ϵ satisfies

ϵ ∈


0,

√
2

3 +
√
5

(1 − |λ3|)


, with λ3 as in (8). (17)

Further, in this case

|λ3| =


1 − (1/n) + (1/(2n2)) + (1/n)(1 − 1/(2n)) cos 2π/n.

The proof can be found in Cai and Ishii (2011b), which relies on
a perturbation result, the Bauer–Fike Theorem, for diagonalizable
matrices (e.g., Horn & Johnson, 1990, Section 6.3). In Fig. 2
we plot the upper bound on ϵ in (17) for the class of cyclic
digraphs. We see that this bound decays as the number n of nodes
increases, which contrasts with the bound characteristic of the
more general class of balanced digraphs. This may indicate the
conservativeness of our current approach based on perturbation
theory. Nevertheless, since the perturbation result used here is
specific only to diagonalizable matrices, the derived upper bound
in (17) is less conservative than the general one in (5).
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Fig. 3. Three examples of strongly connected but non-balanced digraphs.

Table 1
Convergence factorsλ

(d)
2 andλ

(g)
2 with respect to three different values of parameter

ϵ.

ϵ = 0.2 ϵ = 0.7 ϵ = 2.15

λ
(d)
2 λ

(g)
2 λ

(d)
2 λ

(g)
2 λ

(d)
2 λ

(g)
2

Ga 0.9963 0.9963 0.9993 1.0003 1.0003 1.0020
Gb 0.9951 0.9951 0.9969 0.9969 0.9985 1.0000
Gc 0.9883 0.9883 0.9930 0.9930 0.9966 0.9993

6. Numerical examples

6.1. Convergence paths

Consider the three digraphs displayed in Fig. 3, with 10 nodes
and respectively 17, 29, and 38 edges. Note that all the digraphs
are strongly connected, and in the case of uniform weights they
are non-balanced (indeed, no single node is balanced). We apply
both the deterministic algorithm (3), with uniform weights a =

1/(2card(E)) and b = 1/card(E), and the gossip algorithm (12),
with uniform weight w = 1/2 and probability p = 1/card(E).

The convergence factors λ
(d)
2 and λ

(g)
2 (see Remarks 8 and 18)

for three different values of the parameter ϵ are summarized
in Table 1. We see that small ϵ ensures convergence of both
algorithms (the gossip algorithm (12) requires smaller values of
ϵ for mean-square convergence), whereas large ϵ can lead to
instability.Moreover, in those converging cases the factorsλ

(d)
2 and

λ
(g)
2 decrease as the number of edges increases fromGa toGc , which

indicates faster convergence when there are more communication
channels available for information exchange. We also see that the
algorithms are more robust on digraphs with more edges, in the
sense that the range of allowed ϵ values expands from Ga to Gc .

For a random initial state x(0) with the average xa = 0 and the
initial surplus s(0) = 0, we display in Fig. 4 the trajectories of both
states and surpluses when the deterministic algorithm (3) is ap-
plied on digraph Ga with parameter ϵ = 0.7. Observe that asymp-
totically, state averaging is achieved and surplus vanishes. Under
the same conditions, the gossip algorithm (12), however, fails to
converge, as shown in Fig. 5. Applying algorithm (12) instead on
the digraphs Gb and Gc which havemore edges, average consensus
is again reached, and faster convergence occurs in Gc (see Fig. 5).

6.2. Convergence speed versus parameter ϵ

We have seen that a sufficiently small parameter ϵ ensures
convergence of both algorithms (3) and (12). Now we investigate
the influence of ϵ on the speed of convergence, specifically the
convergence factors λ

(d)
2 and λ

(g)
2 . To reduce the effect of network

topology in this investigation, we employ a type of random
digraphswhere an edge between every pair of nodes can existwith
probability 1/2, independent across network and invariant over
time; we take only those that are strongly connected.

For the deterministic algorithm (3), consider random digraphs
of 50 nodes and uniform weights a = b = 1/50. Fig. 6 displays
the curve of convergence factor λ

(d)
2 with respect to the parameter

ϵ, each plotted point being the mean value of λ
(d)
2 over 100

random digraphs. To account for the trend of this curve, first
Fig. 4. Convergence paths of states and surpluses: Obtained by applying the
deterministic algorithm (3) with parameter ϵ = 0.7 on digraph Ga .

Fig. 5. Sample paths of states: Obtained by applying the gossip algorithm (3) with
parameter ϵ = 0.7 on digraphs Ga, Gb , and Gc .

Fig. 6. Convergence factor λ
(d)
2 of the deterministic algorithm (3) with respect to

parameter ϵ.

recall from the perturbation argument for Theorem 4 that the
matrix M in (3) has two (maximum) eigenvalues 1 when ϵ = 0,
and small ϵ causes that one of them (denote its modulus
by λin) moves into the unit circle. Meanwhile, some other
eigenvalues of M inside the unit circle move outward; denote
the maximum modulus among these by λout . In our simulations
it is observed that when ϵ is small, λ

(d)
2 = λin (>λout) and λin

moves further inside as perturbation becomes larger; so λ
(d)
2

decreases (faster convergence) as ϵ increases in the beginning.
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Fig. 7. Convergence factor λ
(g)
2 of the gossip algorithm (12) with respect to

parameter ϵ.

Since the eigenvaluesmove continuously, there exists some ϵ such
that λin = λout , corresponding to the fastest convergence speed.
After that, λ(d)

2 = λout (>λin) and λout moves further outside as ϵ

increases; hence λ
(d)
2 increases and convergence becomes slower,

and eventually divergence occurs (i.e., λ(d)
2 ≥ 1).

An analogous experiment is conducted for the gossip algorithm
(12), with random digraphs of 30 nodes, uniform probability p =

1/card(E), and uniform weight wij = 1/2. We see in Fig. 7 a
similar trend of λ(g)

2 as the parameter ϵ increases, though it should
be noted that the changes in λ

(g)
2 are smaller than those in λ

(d)
2 .

From these observations, it would be of ample interest to exploit
the values of ϵ when the convergence factors achieve theirminima,
corresponding to the fastest convergence speed.

7. Conclusions

We have proposed surplus-based linear distributed algorithms
which enable networks of agents to achieve average consensus on
arbitrary strongly connected digraphs. Specifically, in synchronous
networks a deterministic algorithm ensures asymptotic state
averaging, and in asynchronous networks a gossip algorithm
guarantees average consensus in the mean-square sense and with
probability one. To emphasize, our derived graphical condition is
more general than those previously reported in the literature, in
the sense that it does not require a balanced network structure;
also, the matrix perturbation theory plays an important role in
the convergence analysis. Moreover, special regular digraphs are
investigated to give less conservative bounds on the parameter ϵ;
and numerical examples are provided to illustrate the convergence
results, with emphasis on convergence speed.

For future research, one direction of interest would be to
extend the deterministic algorithm (3) to the more realistic
scenario of switching digraphs G(k) = (V, E(k)) ; namely, the
network topology is time-varying. If every G(k), k ≥ 0, is strongly
connected, then it is possible to ensure convergence by introducing
slow switching (e.g., dwell time) as in Casbeer, Beard, and
Swindlehurst (2008) and Ren and Beard (2008). Under the
weaker graphical condition that digraphs G(k) are jointly strongly
connected (Jadbabaie et al., 2003; Lin, 2008), to verify if average
consensus can be achieved seems to be more challenging and
requires further investigation.

On the other hand, in the literature on gossip algorithms (Boyd
et al., 2006; Frasca & Fagnani, 2010; Kashyap et al., 2007), a
variety of practical communication issues have been discussed
such as link failure, message collision, broadcast protocol, and
synchronized node selection (i.e., multiple nodes are selected at
the same time). We thus aim at addressing these issues by making
suitable extensions of our gossip algorithm (12).
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