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a b s t r a c t

We study a new variant of consensus problems, termed ‘local average consensus’, in networks of agents.
We consider the task of using sensor networks to perform distributedmeasurement of a parameter which
has both spatial (in this paper 1D) and temporal variations. Our idea is tomaintain potentially useful local
information regarding spatial variation, as contrasted with reaching a single, global consensus, as well as
to mitigate the effect of measurement errors. We employ two schemes for computation of local average
consensus: exponential weighting and uniform finite window. In both schemes, we design local average
consensus algorithms to address first the case where the measured parameter has spatial variation but
is constant in time, and then the case where the measured parameter has both spatial and temporal
variations. Our designed algorithms are distributed, in that information is exchanged only among
neighbors. Moreover, we analyze both spatial and temporal frequency responses and noise propagation
associated with the algorithms. The tradeoffs of using local consensus, as compared to standard global
consensus, include higher memory requirement and degraded noise performance. Arbitrary updating
weights and random spacing between sensors are also analyzed in the proposed algorithms.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Consensus of multi-agent systems comes in many varieties
(e.g. Jadbabaie, Lin, & Morse, 2003; Olfati-Saber, Fax, & Murray,
2007; Ren, Beard, & Atkins, 2007), and in this paper, we focus on
a particular variety, namely average consensus (e.g. Cai & Ishii,
2012; Topley & Krishnamurthy, 2012; Xiao, Boyd, & Kim, 2007).
This refers to an arrangement where each of a network of agents is
associated with a value of a certain variable, and a process occurs
which ends up with all agents learning the average value of the
variable. Finding an average of a set of values is apparently concep-
tually trivial; what makes average consensus nontrivial is the fact
that an imposed graphical structure limits the nature of the steps
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that can be part of the averaging algorithm, each agent only be-
ing allowed to exchange informationwith its neighbors, as defined
by an overlaid graphical structure. Issues also arise of noise per-
formance, effect of time delay, agent/link loss, etc. (Kar & Moura,
2009; Liu, Lu, & Chen, 2010; Lovisari & Zampieri, 2010).

Finding an average also throws away much information. In
many situations, onemightwell envisage that a local averagemight
be useful, retaining the characteristics of local information mean-
whilemitigating the effect ofmeasurement error. For instance, one
thousand weather stations across a city, instead of giving a single
air pollution reading, might validly be used to identify hotspots of
pollution, i.e. localitieswith high pollution; thus, instead of a global
average, a form of local averaging, still mitigating the effects of
some noise, might be useful. We term this variant ‘local (average)
consensus’, and distinguish it from the normal sort of consensus,
termed here by way of contrast ‘global (average) consensus’.

In local average consensus, each agent i aims to compute the lin-
ear combination ai,ixi+(ai,i−1xi−1+ai,i−2xi−2+· · · )+(ai,i+1xi+1+

ai,i+2xi+2+· · · ), where xj (j = i, i±1, i±2, . . .) aremeasurements
and ai,j are weights that reflect local information around i in some
reasonable sense. Accordingly, defining a local average amounts to
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choosing appropriate weights ai,j and is by no means unique. We
consider two schemes for defining a local average, both assigning
large weights to locally measured information (precise definitions
are given in Section2). One involves theuse of exponentialweights,
to reflect ‘closeness’ of the variable measured in both topological
and geographical distance (viz. the further a neighbor is, the lesser
its value will affect the agent’s computation of its ‘local average’).
The other scheme applies uniform weights to all measurements
within a finite window centered at each agent, to reflect locality
and to reduce computation burden. In addition, these two schemes
have an appealing feature that the weights involved may be pa-
rameterized using a single parameter; this renders our algorithm
amenable for technical analysis as well as convenient for practical
use.

In both schemes, we design local consensus algorithms to first
address the case where themeasured variable has spatial variation
but is constant in time, and then the case where the measured
variable has both spatial and temporal variations. In this paper
we consider spatial variation in 1D for simplicity. Our designed
algorithms have the following properties:
• The algorithms are distributed: i.e. information exchange is

allowed only among neighboring agents.
• The algorithms will respond to time-variation of measured

variables without delay.
• The algorithms contain a single parameter (corresponding to

the one for respective weights in each scheme) which controls
the distance over which effective local averaging occurs.

• The algorithms are robust against errors in spacing, as well as
against errors in measured variables.
As we will see, these algorithms have higher memory require-

ment than that of a global consensus algorithm (the latter can be
madememoryless). Moreover, we study two generalizations of the
local consensus algorithms, one with arbitrary weights and the
other with random spacing between sensors.

We also analyze the spatial and temporal frequency responses
of the designed local consensus algorithms, and noise propaga-
tion associated with these algorithms. To obtain a fully analyti-
cal result we limit our study to a 1D sensor network, which can
find its application in power line monitoring, canal/river mon-
itoring, detection of border intrusions, structural monitoring of
railways/bridges/pipelines, and road traffic control (Arik & Akan,
2010; Chen & Hwang, 2008; Gharavi & Kumar, 2003; Huang, Yu,
& Anderson, 2012; Yoon, Ye, Heidemann, Littlefield, & Shahabi,
2007). One example of road traffic control is to monitor vehic-
ular density along a long stretch of highway, a parameter natu-
rally spatial- and temporal-varying. Suppose there are a number
of sensors spread along the highway; the vehicular density at each
measurement point is correlated and the correlation reduces with
the distance from themeasurement point. Local average consensus
may help identify congested sections of the highway and their time
shifts, whereas global consensus ismuch less useful in this context.

We note that Olfati-Saber and Shamma (2005) proposed a
‘‘consensus filter’’ which allows the nodes of sensor networks to
track the average of their time-varying noisy measurements. This
problem is called ‘‘dynamic average consensus’’, which is later
further studied in e.g. Bai, Freeman, and Lynch (2010); Freeman,
Yang, and Lynch (2006), and also in Hong, Hu, and Gao (2006), Cao,
Ren, and Li (2009) and Bai, Arcak, andWen (2009) under a different
name ‘‘coordinated average tracking’’. These works, however, deal
still with global average consensus, because all nodes are required
to track the same time-varying average value. By contrast, our
goal of local average consensus is to have each node track the
time-varying average value only within its spatial neighborhood,
thereby retaining characteristics of locally measured information.

Also related is the work on distributed estimation of (time-
varying) multi-dimensional parameter; different approaches have
been proposed, notably consensus plus Kalman filtering (Olfati-
Saber, 2007), consensus plus least-mean-square adaptation (Lopes
& Sayed, 2008), and consensus plus innovation (Kar & Moura,
2011). The first main difference between our work and the above
is the approach to reducing noise effect: In Olfati-Saber (2007),
Lopes and Sayed (2008) and Kar and Moura (2011) the filter-
ing/adaptation/innovation part serves to reduce noise; by con-
trast, our approach uses (local) averaging itself to reduce noise.
As a consequence, the algorithms designed in Olfati-Saber (2007),
Lopes and Sayed (2008) and Kar and Moura (2011) require con-
stantly making new measurements no matter the parameter is
time-varying or not. By contrast, our algorithms needs only the ini-
tial measurements in the case of time-invariant parameter, and for
time-varying parameter, new measurements are made solely for
the purpose of tracking temporal variation of the parameter, not for
reducing noise. In addition, our algorithms contain a single param-
eter which can be easily tuned for noise and tracking performance;
this feature renders our algorithmsmore convenient to use as com-
pared to those in Olfati-Saber (2007), Lopes and Sayed (2008) and
Kar and Moura (2011) having more parameters.

In the following, Section 2 presents local average consensus al-
gorithms for the casewhere themeasured variable has spatial vari-
ation but is constant in time. Sections 3 and 4 investigate spatial
frequency response and noise propagation of the designed algo-
rithms. Section 5 studies arbitrary weights and random spacing
in the proposed local averaging algorithms. Section 6 presents lo-
cal consensus algorithms for the casewhere themeasured variable
has both spatial and temporal variations. This allows the treatment
of Section 7 of the frequency response associated with time varia-
tions. Finally, Section 8 states our conclusions. The conference pre-
decessor of this paper is Cai, Anderson, Yu, and Mao (2013). This
paper differs fromCai et al. (2013) through inclusion of proofs of re-
sults, development of material on the frequency response to time-
variation in measured variables, and analysis of random spacing
and arbitrary weights in the proposed algorithms.

2. Distributed local consensus algorithms

Consider a variable whose values vary in 1D space, and/or in
addition vary in time. Suppose we have a (possibly infinite) chain
of sensors to be placed (uniformly) along the 1D space. Each sensor
i has two variables: a measurement variable xi and a consensus
variable yi. At each time k = 0, 1, 2, . . . each sensor i takes a
measurement xi(k) (potentially noisy) of the variable. Our goal
is to design distributed algorithms which update each sensor i’s
consensus variable yi(k), based on xi(k) and information only from
the two immediate neighbors i − 1 and i + 1, such that yi(k)
converges to a value which reflects spatial–temporal variations of
the variable.

In this section, we focus on the case where all local measure-
ments are time-invariant, i.e. xi(k) = xi (a constant) for all i, k. The
time-varying case will be addressed in Section 6. We consider two
types of weighting schemes: exponential weighting and uniform
finite window.

2.1. Exponential weighting

For computing a local average at sensor i, it is natural to assign
larger weights to information that is spatially closer to i. One way
of doing so is to assign an exponential weight ρ j, ρ ∈ (0, 1) and j
a nonnegative integer, to a measurement taken at distance j from
i. For this scheme, we formulate the following problem, adopting
the reasonable assumption that there is a boundM < ∞ such that
measurement variables |xi| < M for all i.

Problem 1. Let ρ ∈ (0, 1). Design a distributed algorithm to up-
date each sensor i’s consensus variable yi(k) such that

lim
k→∞

yi(k) =
1 − ρ

1 + ρ


xi +

∞
j=1

ρ j(xi−j + xi+j)


. (1)
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Thus, exponentially decayingweights, at the rate ρ, are assigned to
the information from both forward and backward directions. Note
that the limit of yi(k) exists because all xi are assumed bounded.
The scaling constant 1−ρ

1+ρ
ensures that, if all xi are the same, yi(k) is

in the limit equal to xi.
We propose the following distributed algorithm to solve Prob-

lem 1. For every i,

yi(0) =
1 − ρ

1 + ρ
xi (2a)

yi(1) = yi(0) + ρ(yi−1(0) + yi+1(0)) (2b)

yi(2) = yi(1) + ρ(yi−1(1) − yi−1(0))
+ ρ(yi+1(1) − yi+1(0)) − ρ22yi(0) (2c)

yi(k + 1) = yi(k) + ρ(yi−1(k) − yi−1(k − 1))
+ ρ(yi+1(k) − yi+1(k − 1)) − ρ2(yi(k − 1) − yi(k − 2)),

k ≥ 2. (2d)

Each sensor i needs information only from its two immediate
neighbors: yi−1(k) and yi+1(k), k = 0, 1, . . .. At each iteration
k (≥ 2), the quantities used to update yi(k) are yi−1(k)−yi−1(k−1),
yi+1(k) − yi+1(k− 1), and yi(k− 1) − yi(k− 2). Thus more memo-
ries are required in this local consensus algorithm than in a global
consensus algorithm, though the increase is obviously modest.

Theorem 1. Algorithm (2) solves Problem 1.

Proof. We will show by induction on k ≥ 1 that

yi(k) = yi(k − 1) + ρk(yi−k(0) + yi+k(0)), ∀i. (3)

This leads to

yi(k) = yi(0) +

k
j=1

ρ j(yi−j(0) + yi+j(0))

=
1 − ρ

1 + ρ


xi +

k
j=1

ρ j(xi−j + xi+j)


, ∀i.

The second equality above is due to (2a). Then taking the limit as
k → ∞ yields (1). That the limit exists follows from the fact that
|xi| < M < ∞ and ρ ∈ (0, 1).

First, it is easily verified from (2b), (2c) that (3) holds when
k = 1, 2. Now let k ≥ 2 and suppose (3) holds for all k′

∈ [1, k].
According to (2d) we derive

yi(k + 1) = yi(k) + ρ(ρk(yi−k−1(0) + yi+k−1(0)))

+ ρ(ρk(yi−k+1(0) + yi+k+1(0)))

− ρ2(ρk−1(yi−k+1(0) + yi+k−1(0)))

= yi(k) + ρk+1(yi−k−1(0) + yi+k+1(0)).

(4)

Therefore, (3) holds for all k ≥ 1. �

Note from the derivation in (4) that in the scheme (2d), yi−1(k)−
yi−1(k− 1) produces new information yi−k−1(0)+ yi+k−1(0) (resp.
yi+1(k) − yi+1(k − 1) produces yi−k+1(0) + yi+k+1(0)), and yi(k −

1) − yi(k − 2) is a correction term which cancels the redundant
information yi−k+1(0) + yi+k−1(0).

Remark 2. An extension of Algorithm (2) is immediate. Each sen-
sor i weights information from the backward direction differently
from the forward direction, using exponential weights ρb and ρf ∈

(0, 1), respectively. Here we assume that each sensor may distin-
guish backward direction from forward one, by means of e.g. using
a one-bit compass for a line graph. Then revise Algorithm (2) as
follows (omitting the similar initialization steps):

yi(k + 1) = yi(k) + ρb(yi−1(k) − yi−1(k − 1))
+ ρf (yi+1(k) − yi+1(k − 1)) − ρbρf (yi(k − 1) − yi(k − 2)),

k ≥ 2. (5)

This revised algorithm yields

lim
k→∞

yi(k) =
(1 − ρb)(1 − ρf )

1 − ρbρf


xi +

∞
j=1

(ρ
j
bxi−j + ρ

j
f xi+j)


.

The proof of this claim is similar to that of Theorem 1.

2.2. Uniform finite window

An alternative to exponential weighting is to have a finite win-
dow for each sensor such that every agent’s information within
the window is weighted uniformly, and the information outside
the window discarded. For time-invariant measurements, this is
to compute the average of measurements within the window. We
formulate the problem.

Problem 2. Let L ≥ 1 be an integer, and 2L + 1 the length of the
finite window of sensor i; i.e. sensor i uses measurement informa-
tion from L neighbors in each direction. Suppose i knows L. Design
a distributed algorithm to update each i’s consensus variable yi(k)
such that

yi(L) =
1

2L + 1


xi +

L
j=1

(xi−j + xi+j)


. (6)

Thus it is required that the average of 2L + 1 measurements be
computed in L steps.

A variation of Algorithm (2) will solve Problem 2:

yi(0) =
1

2L + 1
xi (7a)

yi(1) = yi(0) + (yi−1(0) + yi+1(0)) (7b)

yi(2) = yi(1) + (yi−1(1) − yi−1(0))
+ (yi+1(1) − yi+1(0)) − 2yi(0) (7c)

yi(k + 1) = yi(k) + (yi−1(k) − yi−1(k − 1))
+ (yi+1(k) − yi+1(k − 1)) − (yi(k − 1) − yi(k − 2)),

k ∈ [2, L − 1]. (7d)

The memory requirement of this algorithm is the same as Algo-
rithm (2): i.e. yi−1(k) − yi−1(k − 1), yi+1(k) − yi+1(k − 1), and
yi(k − 1) − yi(k − 2) are needed to update yi(k) for k ∈ [2, L − 1].
Note, however, that the present algorithm terminates after L steps
because of finite window as well as static measurements. When
measurements are time-varying (see Section 6.2), by contrast, the
corresponding algorithm will need to keep track of temporal vari-
ations.

Theorem 3. Algorithm (7) solves Problem 2.
Proof. Similar to the proof of Theorem 1, we derive for k ∈ [1, L]
that

yi(k) = yi(k − 1) + (yi−k(0) + yi+k(0)), ∀i. (8)

This leads to

yi(L) = yi(0) +

L
j=1

(yi−j(0) + yi+j(0))

=
1

2L + 1


xi +

L
j=1

(xi−j + xi+j)


, ∀i.

The second equality above is due to (7a). �



138 K. Cai et al. / Automatica 52 (2015) 135–145
(a) Exponential weighting. (b) Uniform finite window.

Fig. 1. Simulation example: performance of Algorithm (2) and (7) for difference values of ρ or L, respectively. 50 agents are aligned to measure a physical parameter having
a parabola spatial distribution (black curve). Measurements (green curve) are corrupted by (independent) noise of mean zero and variance one. Plots for 3 different values of
ρ and L are displayed, showing different tracking and noise performance of the respective algorithms. Global average smooths out noise but throws away local information.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Remark 4. Individual sensorsmay have different window lengths,
Li ≥ 1. In this case, we impose the condition that the neighboring
lengths may differ no more than one, i.e.

|Li − Li+1| ≤ 1, |Li − Li−1| ≤ 1, ∀i (9)

and replace L by Li throughout Algorithm (7). Then from (7d) and
when k = Li − 1 (the final update), we have

yi(Li) = yi(Li − 1) + (yi−1(Li − 1) − yi−1(Li − 2))
+ (yi+1(Li − 1) − yi+1(Li − 2)) − (yi(Li − 2) − yi(Li − 3)).

Condition (9) ensures that both yi−1(Li − 1) and yi+1(Li − 1) exist.
Hence the same argument as that validating Algorithm (7) proves
that the revised algorithm with Li computes

yi(Li) =
1

2Li + 1
xi +

Li
j=1


1

2Li−j + 1
xi−j +

1
2Li+j + 1

xi+j


.

We have designed local consensus algorithms using two differ-
ent schemes: exponential weighting and uniform finite window
weighting. A simulation is displayed in Fig. 1 to illustrate the per-
formance of the Algorithms (2) and (7) for different values of the
respective parameters, ρ or L. In exponential weighting, if ρ is too
small (e.g. ρ = 0.5), the algorithm has poor noise performance;
while large ρ (e.g. ρ = 0.9) substantially smooths out noise, it
lowers the algorithm’s performance of tracking local information.
Small L (e.g. L = 1) and large L (e.g. L = 15) have similar effects
on the performance of the finite window algorithm. Moreover, it
is plausible to establish a certain relation between ρ and L under
which the two algorithms have (roughly) the same tracking and
noise performance. We will study these performance issues in the
next two sections, by analyzing the algorithms’ spatial frequency
response and noise propagation.

3. Spatial frequency response

The whole concept of local consensus is based on the precept
that global consensus may suppress too much information that
might be of interest. In effect, global (average) consensus applies a
filter to spatial informationwhich leaves the DC component intact,
and completely suppresses all other frequencies. Our task in this
section is to study the extent to which local consensus in contrast
does not destroy all information regarding spatial variation, and
the tool we use to do this is to look at a spatial frequency response.
Further, there is a trade-off in using local consensus, apart from
additional computational complexity as noted in Section 2: there is
lessmitigation – obviously – of the effect of noise.We also consider
this point in the next section.

We associate with the measured variable and consensus
variable sequences {xi, −∞ < i < ∞} and {yi, −∞ < i < ∞}

their spatial Z-transforms X(Z), Y(Z) defined by

X(Z) =

∞
−∞

xiZ−i Y(Z) =

∞
−∞

yiZ−i. (10)

Spatial Z-transforms capture spatial frequency content, and are
a potentially useful tool for analyzing the relationship between
measured variables and consensus variables.

Our aim is to understand how, when the measured variable
sequence has spatially sinusoidal variation at frequency ω, the
steady state values of the consensus variables yi depend on ρ and
ω. In a practical situation, spatial variation may not necessarily be
sinusoidal. The benefit of the sinusoidal analysis is that it leads to
a transfer function and hence to a concept of bandwidth for the
average consensus algorithm, i.e. a notion of a spatial frequency
below which variations can be reasonably tracked even when the
algorithm is operating, while spatially faster variations will be
suppressed or filtered out in deriving the local average consensus.
We shall first consider local consensuswith exponentialweighting,
and then local consensus with a uniform finite window.

3.1. Exponential weighting

The calculationusing Z-transformsproceeds as follows. Starting
with the steady state equation (cf. (1))

yi =
1 − ρ

1 + ρ
(xi + ρxi−1 + ρ2xi−2 + · · · + ρxi+1 + ρ2xi+2 + · · · )

(11)

one has

Z−iyi =
1 − ρ

1 + ρ
[xiZ−i

+ Z−1ρxi−1Z−(i−1)
+ Z−2ρ2xi−2Z−(i−2)

+ · · · + Zρxi+1Z−(i+1)
+ Z2ρ2xi+2Z−(i+2)

+ · · · ]. (12)
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Summing from i = −∞ to ∞ yields

Y(Z) =
1 − ρ

1 + ρ
[1 + Z−1ρ + Z−2ρ2

+ · · ·

+ Zρ + Z2ρ2
+ · · · ]X(Z)

=
1 − ρ

1 + ρ


1 +

ρZ−1

1 − ρZ−1
+

ρZ
1 − ρZ


X(Z)

or

Y(Z) =
(1 − ρ)2

(1 − ρZ−1)(1 − ρZ)
X(Z). (13)

For future reference, define the transfer function

H(Z) =
(1 − ρ)2

(1 − ρZ−1)(1 − ρZ)
. (14)

For Z = exp(jω), H(Z) is real and positive. However, for arbitrary
Z in general its value is complex. It has two poles which are mirror
images through the unit circle of each other.

Now suppose that the measured variable sequence xi is sinu-
soidal, thus xi = exp(jiω0), where j =

√
−1. The associated

Z-transform X(Z) is formally given by


∞

i=−∞
xiZ−i. When Z =

exp(jω), there holds X(exp(jω)) =


∞

i=−∞
exp(ji(ω − ω0)) =

2πδ(ω − ω0), where we are appealing to the fact that the delta
function δ(x) is the limit of a multiple of the Dirichlet kernel

DN(x) =

N
i=−N

exp(jix) =
sin((N +

1
2 )x)

sin(x/2)
(15)

i.e. δ(x) =
1
2π limN→∞ DN(x) =

1
2π


∞

i=−∞
exp(jix). In formal

terms, it follows from (13) and (14) that the associated Z-transform
of the consensus variable, i.e. Y(Z), is given by

Y(exp(jω)) = H(exp(jω))2πδ(ω − ω0). (16)

Equivalently, the consensus variable is also sinusoidal at frequency
ω0 and with phase shift and amplitude defined by H(exp(jω0)).
The phase shift is easily checked to be zero for all ω0, and the am-
plitude is in fact the value of H itself, viz.

H(exp(jω0)) =
(1 − ρ)2

1 + ρ2 − 2ρ cosω0
. (17)

Observe that if ω0 = 0, i.e. the measured variable is a constant or
spatially invariant, then H(1) = 1 irrespective of ρ, i.e. the con-
sensus variable is the same constant (aswewould expect). Observe
further that for fixed ω0 ≠ 0, as ρ → 1, H(exp(jω0)) → 0, which
is consistent with the fact that with ρ = 1, the average value of the
measured variable, viz. 0, will propagate through to be the value
everywhere of the consensus variable.

Observe that if ρ is close to 1, i.e. 1 − ρ is small, a straightfor-
ward calculation shows that with ω0 = 1 − ρ, the value of H is
approximately 1/2. Thus crudely, ρ (for values close to 1) deter-
mines the bandwidth asO(1−ρ). More generally, we observe from
Figs. 2 and 3 (which show behavior near the origin and over [0, π],
respectively), that

(1) For any ρ, H(exp(jω0)) is monotonic decreasing inω0, from
a value of 1 at ω0 = 0 to a value of (1−ρ)2

(1+ρ)2
at ω0 = π .

(2) For values of 1 − ρ between zero and at least 0.2, H(exp
(jω0)) takes a value of about 1

2 when ω0 = 1 − ρ.
The above calculations assume that there are an infinite number

of measuring agents. When the number is finite, it is clear that the
results will undergo some variation. When the hop distance to the
array boundary, call it d, from a particular agent, is such that ρd

is very small, the error will obviously be minor. In the vicinity of
the boundary, the errors will be greater, and a kind of end effect
will be observed. The results for an infinite number of agents are
accordingly indicative of the results for a finite number.
Fig. 2. Plot of H(exp(jω0)) in (17) near origin for different values of ρ.

Fig. 3. Plot of H(exp(jω0)) in (17) over [0, π] for different values of ρ. The color
coding is as for Fig. 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3.2. Uniform finite window

From (6), the steady-state equation in this case is

yi =
1

2L + 1

L
k=−L

xi+k (18)

and it is straightforward to establish that

Y(Z) =
1

2L + 1

L
k=−L

ZkX(Z). (19)

The transfer function H(Z) is simply 1
2L+1

L
k=−L Z

k so that

H(exp(jω)) =
1

2L + 1
sin((L +

1
2 )ω)

sin(ω/2)
. (20)

The shape of the Dirichlet kernel is well known; H assumes its
maximum value of 1 atω = 0, and the bandwidth is roughly 1.7

L+1/2 ,
adjustable by L. Evidently, the bandwidths in the exponential
weighted case and the uniform finite window case are of the same
order when

1 − ρ =
1.7

L + 1/2
. (21)

Put another way, and roughly speaking, a window length of 2L+ 1
allows spatial variation of a bandwidth Ω to pass through the
averaging process when LΩ is about 1.7.
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4. Noise propagation

As mentioned already, the noise performance when local con-
sensus is used will be worse than that when global consensus is
used. To fix ideas, suppose that for each i, measurement agent i has
its measurement contaminated by additive noise ϵi of zero mean
and variance σ 2, with the noise at any two agents being indepen-
dent. Note that bias is zero.

Then if there are N agents, the error in the average will be
(1/N)

N
i=1 ϵi, which has variance σ 2

N . Obviously this goes to zero
as N → ∞. When the uniform finite window of length 2L + 1 is
used, this same thinking shows that the error variance is σ 2

2L+1 . Thus

the signal-to-noise ratio (SNR) at each i is y2i (2L+1)
σ 2 , with the signal

yi in (18).
Now suppose that exponential weighting is used. In local aver-

age consensus the error will be

1 − ρ

1 + ρ
[ϵi + ρϵi−1 + ρ2ϵi−2 + · · · + ρϵi+1 + ρ2ϵi+2 + · · · ] (22)

and the variance is given by
1 − ρ

1 + ρ

2

[1 + 2ρ2
+ 2ρ4

+ · · · ]σ 2

=


1 − ρ

1 + ρ

2  2
1 − ρ2

− 1


σ 2
= (1 − ρ)

1 + ρ2

(1 + ρ)3
σ 2. (23)

This lies in the interval ( 1
4 (1 − ρ)σ 2, (1 − ρ)σ 2), and for ρ close

to 1, the error is approximately equal to the lower bound. Indeed,
the closer ρ is to 1, the less is the error variance. Note that in this

case the SNR at each i is y2i
σ 2(1−ρ)

(1+ρ)3

1+ρ2 , with the signal yi in (11). It
is not hard to verify that a uniform finite window of length 2L + 1
and an exponential weighting of ρ =

2L−3
2L+1 yield the same vari-

ance. Equivalently, this condition is 1 − ρ =
2

L+1/2 , which means
that exponential weighting and uniform finite window weighting,
if they achieve the same bandwidth (cf. (21)), also have approxi-
mately the same noise performance. The same condition inciden-
tally says that ρL

≈ e−1, implying that the finite window width
with uniform weighting has width determined by the number of
steps over which the exponential weighting dies off by a factor of
e. These observations also mean, unsurprisingly, that when L or ρ
are adjusted, noise variance is proportional to bandwidth.

5. Generalizations

5.1. Arbitrary weighting

To this point, we have considered two special types of weights.
It is at least of academic interest to consider what might happen
with essentially arbitraryweights. These might for example reflect
known and nonuniform spacings between agents. We adopt the
following assumption.

Assumption 5. Let aij ≠ 0 for all i, j. For every i, the sum aiixi +
∞

j=1(ai,i−jxi−j + ai,i+jxi+j) is finite, and K := aii +


∞

j=1(ai,i−j +

ai,i+j).

Problem 3. Design a distributed algorithm to update each sensor
i’s consensus variable yi(k) such that

lim
k→∞

yi(k) =
1
K


aiixi +

∞
j=1

(ai,i−jxi−j + ai,i+jxi+j)


. (24)

The constant 1/K ensures again that, if all xi are the same, yi(k) is
in the limit equal to xi.
To solve Problem 3, we consider a modified approach: Let each
sensor i have two additional consensus variables, yFi (k) and yBi (k);
yFi (k) (resp. y

B
i (k)) is updated based on xi and information from the

forward neighbor i+1 (resp. the backward neighbor i−1). This ap-
proach separates the updates of consensus variables between the
forward and the backward directions. As we will see, the separa-
tion effectively avoids term cancellations needed in the algorithms
in Section 2, whichwe find difficult in the case of arbitraryweights.

Now using the two consensus variables yFi (k) and yBi (k), we
present the following distributed algorithm. For all i,

yFi (0) = yBi (0) =
1
K
aiixi (25a)

yFi (1) = yFi (0) +
ai,i+1

ai+1,i+1
yFi+1(0) (25b)

yBi (1) = yBi (0) +
ai,i−1

ai−1,i−1
yBi−1(0)

yFi (2) = yFi (1) +
ai,i+2

ai+1,i+2
(yFi+1(1) − yFi+1(0)) (25c)

yBi (2) = yBi (1) +
ai,i−2

ai−1,i−2
(yBi−1(1) − yBi−1(0))

yFi (k + 1) = yFi (k) +
ai,i+k+1

ai+1,i+k+1
(yFi+1(k) − yFi+1(k − 1)) (25d)

yBi (k + 1) = yBi (k) +
ai,i−k−1

ai−1,i−k−1
(yBi−1(k) − yBi−1(k − 1)), k ≥ 2.

In the above algorithm, each sensor i requires two consensus vari-
ables and needs to know the weights used by its two neighbors, in
addition to thememory requirement of the algorithms in Section 2.
Finally, values of yFi (k) and yBi (k) are glued together to produce yi(k)
as follows:

yi(k) = yFi (k) + yBi (k) −
1
K
aiixi, ∀k ≥ 0. (26)

The last termabove serves to correct that the initial (1/K)aiixi value
in (25a) is added twice.

Theorem 6. Let Assumption 5 hold. Then Algorithm (25)–(26) solves
Problem 3.

Proof. First, we show by induction on k ≥ 1 that for all i,

yFi (k) = yFi (k − 1) +
1
K
ai,i+kxi+k. (27)

It is easily verified from (25b), (25c) that (27) holds when k = 1, 2.
Now let k ≥ 2 and suppose (27) holds for k. According to (25d) we
derive yFi (k + 1) = yFi (k) +

1
K ai,i+k+1xi+k+1. Therefore, (27) holds

for all k ≥ 1, and leads to

yFi (k) =
1
K


aiixi +

k
j=1

ai,i+jxi+j


, ∀i.

Similarly, for yBi (k), we derive

yBi (k) =
1
K


aiixi +

k
j=1

ai,i−jxi−j


, ∀i.

Now by (26),

yi(k) =
1
K


aiixi +

k
j=1

(ai,i−jxi−j + ai,i+jxi+j)


, ∀i.

Then taking the limit as k → ∞ yields (24). That the limit exists
follows from Assumption 5. �
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5.2. Random spacing

If the arbitrary weights studied in the previous subsection re-
flect nonuniform distances between successive sensors, we may
assume that these distances are random, in accordance with some
probability law. Two different possibilities are that (a) they are
Poisson distributed, say with intensity 1 for convenience, or (b)
the inter sensor distances are uniformly distributed in an interval
[1 − η, 1 + η] where η is known. Different physical mechanisms
could typically lead to these two situations. In the first case, sensor
distances are independent. In the second case,wemake the explicit
assumption that inter sensor distances are independent random
variables.

Based on the treatment alreadyderived for the case correspond-
ing to uniform spacing in Section 2.1, where a weighting of ρd ap-
plies at a given sensor to the measurement passed to it and made
at a sensor d units away, we suggest that the relevant weighting
to apply to the measurement collected at sensor j and used at sen-
sor i < j is ρdij := ρdi,i+1+di+1,i+2+···+dj−1,j , with di,i+j denoting the
distance between sensors i and i + j.

The full expression for the average consensus variable at node i
is then

yi = K


xi +

∞
j=1

ρdi,i+jxi+j +

∞
j=1

ρdi,i−jxi−j


. (28)

Here K is a normalization constant. Next, we determine K .
In the deterministic case (Section 2.1), the normalization

constant ( 1−ρ

1+ρ
) was chosen to ensure that if all measured variables

had the same value, a say, then the average consensus variable also
took the value a. In the random case, we can seek this requirement.
But it turns out that we can only assure that E[yi] = a. It would
then be relevant to consider the question of the variance in yi. This
is also covered below.

Let us now assume a = 1 for convenience. Then

yi = K


1 +

∞
j=1

ρdi,i+j +

∞
j=1

ρdi,i−j


. (29)

Define two random variables

u =

∞
j=0

ρdi,i+j , v =

∞
j=0

ρdi,i−j . (30)

(Take di,i = 0, so that the first summand in each case is 1.) Then
u, v have the same distribution and are independent. It is obvious
that

yi = K [u + v − 1]. (31)

This equation makes clear that yi is indeed a random variable, so
that K can only be chosen to ensure that E[yi] = 1. Now observe
further that

u = 1 + ρdi,i+1
∞
j=1

ρdi+1,i+j = 1 + ρdi,i+1w (32)

where, crucially, w evidently has the same distribution as u, but
is independent of the random variable ρdi,i+1 . Hence there holds
E[u] = 1 + E[ρdi,i+1 ]E[u], whence E[u] = (1 − E[ρdi,i+1 ])−1 and
then to assure E[yi] = 1, Eq. (31) implies that we need

K =
1 − E[ρdi,i+1 ]

1 + E[ρdi,i+1 ]
. (33)

Now suppose the distribution of di,i+1 is Poisson with intensity
1, for which the probability density is e−d. The expected value of
ρdi,i+1 is then [1 − log ρ]
−1, so that

K =
− log ρ

2 − log ρ
. (34)

We remark that when 1−ρ is small, both K and the expression
applicable in the deterministic case, viz. 1−ρ

1+ρ
, are approximately

1
2 (1 − ρ).

If the distribution of di,i+1 is uniform in [1− η, 1+ η], then the
expected value of ρdi,i+1 is 1

2η log ρ
[ρ1+η

−ρ1−η
], (the limit of which

is ρ when η → 0, as expected). The value of K is:

K =
2η log ρ − (ρ1+η

− ρ1−η)

2η log ρ + ρ1+η − ρ1−η
. (35)

Once again, one can verify that when 1−ρ is small, the expression
is approximately 1

2 (1 − ρ).
Now since we can only assure in the event all xi assume the

value that E[yi] takes that value, rather than yi itself, it is of interest
to consider what the error might be. Guidance as to the error fol-
lows from the variance E(yi−E[yi])2.We canwork out the variance
also, in the followingway. From (31) and the fact that u, v are inde-
pendent but with the same distribution, there follows, in obvious
notation σ 2

y = 2K 2σ 2
u .

Now if x, y are two independent random variables with z = xy,
there holds σ 2

z = σ 2
x σ 2

y + σ 2
x E[y]2 + E[x]2σ 2

y , and using this it fol-
lows from (32) and the fact that ξ := ρdi,i+1 andw are independent,
w having the same distribution as u, that σ 2

u = σ 2
ξ σ 2

u + σ 2
ξ E[u]2 +

E[ξ ]
2σ 2

u , or

σ 2
u =

σ 2
ξ E[u]2

1 − σ 2
ξ − E[ξ ]2

=
σ 2

ξ E[u]2

1 − E[ξ 2]
. (36)

It is straightforward to check that

E[ξ 2
] =

1
1 − 2 log ρ

, σ 2
ξ =

1
1 − 2 log ρ

−
1

(1 − log ρ)2
(37)

σ 2
u = −

1
2 log ρ

, σ 2
y = 2K 2σ 2

u = −
log ρ

(2 − log ρ)2
.

Thus σ 2
y is of the order of − log ρ. When x := 1 − ρ, this is

approximately x. Comparing this variance with the error variance
arising in yi with deterministic spacing but error variance σ 2

= 1
of additive noise perturbing each measured variable, we see that
the error is of a similar magnitude.

6. Local consensus with time-varying measurements

We have so far considered time-invariant local measurements.
In practice, however, most measured variables are time-varying:
e.g. temperature, pollution, and current in power lines. In this
section, we consider that eachmeasurement variable xi(k) is time-
varying, i.e. a function of time k, and design distributed algorithms
to track temporal variations of measurements, in addition to
spatial variations.

Note that in typical studies of global average consensus, it is not
common to postulate that local variables change over time. Never-
theless, convergence rates are often considered, being identified as
exponential, and there are numerous results that seek to identify
such rates (see e.g. Olfati-Saber et al., 2007; Xiao & Boyd, 2004).
The rates themselves are indicative of the bandwidth of variation
of measured variables whose average can be tracked by the global
consensus algorithms.

In the sequel, we will again consider the two schemes: first
exponential weighting, and then uniform finite window.

6.1. Exponential weighting

Henceforth, we shall assume that there is a boundM < ∞ such
that measured variables |xi(k)| < M for all i, k.
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Problem 4. Let ρ ∈ (0, 1). Design a distributed algorithm to up-
date each sensor i’s consensus variable yi(k) such that

yi(k) =
1 − ρ

1 + ρ


xi(k) +

k
j=1

ρ j(xi−j(k − j) + xi+j(k − j))

. (38)

By the assumption made above, |yi(k)| is finite for all i, k. In (38),
an exponential weight ρ j is applied to measurements from j steps
away sensors in both directions with j time delay. In this way tem-
poral changes of xi are taken into account. Note that yi(k) in (38) is
identical to (1) in the limit if the measurements are actually con-
stant.

Extending Algorithm (2), we propose the following distributed
algorithm, which differs from Algorithm (2) by inclusion of addi-
tional terms reflecting temporal changes in localmeasurement val-
ues.

yi(0) = λxi(0), λ :=
1 − ρ

1 + ρ
(39a)

yi(1) = yi(0) + ρ(yi−1(0) + yi+1(0)) + λ(xi(1) − xi(0)) (39b)
yi(2) = yi(1) + ρ(yi−1(1) − yi−1(0))

+ ρ(yi+1(1) − yi+1(0)) − ρ22yi(0) + λ(xi(2) − xi(1)) (39c)
yi(k + 1) = yi(k) + ρ(yi−1(k) − yi−1(k − 1))

+ ρ(yi+1(k) − yi+1(k − 1)) − ρ2(yi(k − 1) − yi(k − 2))
+ λ(xi(k + 1) − xi(k)) − ρ2λ(xi(k − 1) − xi(k − 2)),
k ≥ 2. (39d)

This algorithm reduces to Algorithm (2) for time-invariant mea-
surements. Note that each sensor i needs information only from its
two immediate neighbors: yi−1(k) and yi+1(k), k = 0, 1, . . .. Note
that sensor i does not need its neighbors’ measurement variables
xi−1(k) and xi+1(k). Compared to Algorithm (2), two additional
quantities (requiring further modest increase in local memory) are
used to update yi(k): xi(k + 1) − xi(k) and xi(k − 1) − xi(k − 2);
both represent changes in local measurements at different times.
As we will see below, xi(k + 1) − xi(k) provides new information,
while xi(k − 1) − xi(k − 2) is used as a correction term.

Theorem 7. Algorithm (39) solves Problem 4.

Proof. It is easily verified from (39b) that yi(1) = λ(xi(1) +

ρ(xi−1(0) + xi+1(0))) and from (39c) that

yi(2) = yi(1) + ρ2(yi−2(0) + yi+2(0)) + λ

(xi(2) − xi(1))

+ ρ

(xi−1(1) − xi−1(0)) + (xi+1(1) − xi+1(0))


(40a)

= λ

xi(2) + ρ(xi−1(1) + xi+1(1))

+ ρ2(xi−2(0) + xi+2(0))

. (40b)

By (40a) we obtain the expressions of yi−1(2) − yi−1(1) and
yi+1(2)− yi+1(1); also by (39b) we have yi(1)− yi(0). Substituting
these three terms into (39d) yields

yi(3) = yi(2) + ρ3(yi−3(0) + yi+3(0)) + λ

(xi(3) − xi(2))

+ ρ

(xi−1(2) − xi−1(1)) + (xi+1(2) − xi+1(1))


+ ρ2(xi−2(1) − xi−2(0)) + (xi+2(1) − xi+2(0))


. (41)

In deriving the second equality above, the terms ρ3((yi−1(0) +

yi+1(0))) and 2ρ2λ(xi(1) − xi(0)) are canceled. Now substituting
the expression (40b) of yi(2) into (41), and canceling the terms
λxi(2),ρλ(xi−1(1)+xi+1(1)), and ρ2λ(xi−2(0)+xi+2(0)), we derive
yi(3) = λ


xi(3) + ρ(xi−1(2) + xi+1(2))

+ ρ2(xi−2(1) + xi+2(1)) + ρ3(xi−3(0) + xi+3(0))

.

By the same procedure, inductively we can derive yi(k) for k =

4, 5, . . . , and conclude that (38) holds for all k. �
6.2. Uniform finite window

The finite window case with time-varying measurements is
challenging, because all information outside the window has to be
discarded, and temporal variations of information within the win-
dow have to be tracked. We state the problem:

Problem 5. Let L ≥ 1 be an integer, and 2L + 1 the length of the
finite window of sensor i; i.e. sensor i uses measurement informa-
tion from L neighbors in each direction. Suppose i knows L. Design
a distributed algorithm to update each i’s consensus variable yi(k)
such that

yi(k) =
1

2L + 1


xi(k) +

k
j=1

(xi−j(k − j) + xi+j(k − j))


if k ≤ L;

yi(k) =
1

2L + 1


xi(k) +

L
j=1

(xi−j(k − j) + xi+j(k − j))


if k > L. (42)

The explanation for the time arguments associated with xi−j and
xi+j on the right of (42) is as follows. At each time step, values can
be ‘passed’ by exactly one hop. Hence, it takes j time instances for a
measured variable at sensor i− j to be perceived at sensor j. There-
fore the consensus variable yi(k) can depend on xi−j(k − j) (resp.
xi+j(k − j)) but no later value of xi−j(k − j) (resp. xi+j(k − j)). Note
that if themeasurements are actually constant, then yi(k) in (42) is
identical with (6) for all k ≥ L.

The distributed algorithm we design to solve Problem 5 has
several features. First, it needs an additional vector of variables
zi = [zi0 zi1 · · · zi(L)]T of L + 1 components for each sensor i, and
zi needs to be updated along with consensus variable yi and com-
municated to the two immediate neighbors i−1 and i+1. Second,
the scheme for each component of zi is similar to Algorithm (7). Fi-
nally, we will see that the jth component zij, j ∈ [0, L], contributes
to tracking all local measurements xl(k), l ∈ [i − L, i + L], in the
finite window for time k = j ( mod L + 1).

We first present the update scheme for vector zi (c.f. Algo-
rithm (7)). For every j ∈ [0, L], if k < j,

zij(k) = 0; (43)

if k ≥ j and k = j ( mod L + 1),

zij(k) =
1

2L + 1
xi(k), (44a)

zij(k + 1) = zij(k) + (z(i−1)j(k) + z(i+1)j(k)) (44b)
zij(k + 2) = zij(k + 1) + (z(i−1)j(k + 1) − z(i−1)j(k))

+ (z(i+1)j(k + 1) − z(i+1)j(k)) − 2zij(k) (44c)
zij(k + 3) = zij(k + 2) + (z(i−1)j(k + 2) − z(i−1)j(k + 1))

+ (z(i+1)j(k + 2) − z(i+1)j(k + 1)) − (zij(k + 1) − zij(k)) (44d)
... (44e)
zij(k + L) = zij(k + L − 1)

+ (z(i−1)j(k + L − 1) − z(i−1)j(k + L − 2))
+ (z(i+1)j(k + L − 1) − z(i+1)j(k + L − 2))
− (zij(k + L − 2) − zij(k + L − 3)) . (44f)

The update of each component zij, j ∈ [0, L], is periodic with period
L + 1 for k ≥ j. The following is the update scheme for consensus
variable yi.

yi(k) = zij(k) +

L
l=0,l≠j

(zil(k) − zil(k − 1)),

j = k (mod L + 1). (45)

We now state the main result of this subsection.
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Theorem 8. Algorithm (43)–(45) solves Problem 5.

Proof. First, at k = 0, we have from (43), (44a) that zi0(0) =

(1/(2L + 1))xi(0) and zij(0) = 0, j = 1, . . . , L. So by (45) yi(0) =

zi0(0) = (1/(2L + 1))xi(0).
Let k ≥ 1 and fix j = k ( mod L + 1). Similar to the proof of

Theorem 3, in particular Eq. (8), we derive

zij(k) =
1

2L + 1
xi(k) (again by (44a))

zi(j−1)(k) = zi(j−1)(k − 1) +
1

2L + 1
(xi−1(k − 1) + xi+1(k − 1))

zi(j−2)(k) = zi(j−2)(k − 1) +
1

2L + 1
(xi−2(k − 2) + xi+2(k − 2))

...

zi0(k) = zi0(k − 1) +
1

2L + 1
(xi−j(k − j) + xi+j(k − j)).

Now if k ≤ L (thus j = k), then by (43) zi(j+1)(k) = · · · =

zi(L)(k) = 0. Therefore by (45),

yi(k) = zij(k) +

j−1
l=0

(zil(k) − zil(k − 1))

=
1

2L + 1


xi(k) +

k
j=1

(xi−j(k − j) + xi+j(k − j))


.

This is the first part of (42).
If k > L, then again similar to Eq. (8) we derive

zi(L)(k) = zi(L)(k − 1) +
1

2L + 1
(xi−j−1(k − j − 1)

+ xi+j+1(k − j − 1))
...

zi(j+1)(k) = zi(j+1)(k − 1) +
1

2L + 1
(xi−L(k − L) + xi+L(k − L)).

Therefore by (45),

yi(k) = zij(k) +

L
l=0,l≠j

(zil(k) − zil(k − 1))

=
1

2L + 1


xi(k) +

L
j=1

(xi−j(k − j) + xi+j(k − j))


.

This is the second part of (42), and the proof is complete. �

We have designed exponential weighting and uniform finite
window local consensus algorithms for time-varying measured
variables. A simulation is displayed in Fig. 4 to illustrate the per-
formance of the algorithms (39) and (43)–(45) for different values
of the respective parameters, ρ or L. In exponential weighting, if
ρ is too small (e.g. ρ = 0.3), the algorithm has poor noise per-
formance; while large ρ (e.g. ρ = 0.9) substantially smooths out
noise, it causes time lag for the algorithm to track local information.
Small L (e.g. L = 1) and large L (e.g. L = 15) have similar effects
on the performance of the finite window algorithm. In the next
section, we study these performance issues by analyzing the fre-
quency response for these two local consensus algorithms, with
respect to both spatial and temporal variations.

7. Temporal frequency response

In this section, we consider the question of how changes in the
measured variables propagate to become changes in the consen-
sus variables. Specifically, we consider how sinusoidal variations
in measured variables reflects through, as a function of frequency,
to time-variation of the local consensus variables. As with the case
of spatial variation, we are interested in understandingwhat speed
of variations might be trackable by the local consensus algorithm,
through the identification of a transfer function and associated
bandwidth. This question is rather understudied for global consen-
sus.

We shall first consider a special situation, viz. onewhere there is
no spatial variation, butmerely sinusoidal time-variation, i.e. for all
i, there holds xi(k) = ejω0k. Recall that in studying spatial variation,
we considered the special case where there was no time-variation.
Studying these special situations allow clearer examination of the
separate effects of time-variation and spatial variation.

Now when values are independent of the spatial index i,
Eq. (39d) yields

yi(k + 1) = (1 + 2ρ)yi(k) − (2ρ + ρ2)yi(k − 1) + ρ2yi(k − 2)

+
1 − ρ

1 + ρ
[xi(k + 1) − xi(k) + −ρ2(xi(k − 1) − xi(k − 2))].

The transfer function linking the measured to consensus variables
is then

K(ejω) =

1−ρ

1+ρ
[1 − e−jω

− ρ2(e2jω − e3jω)]

1 − (1 + 2ρ)e−jω + (2ρ + ρ2)e−2jω − ρ2e−3jω

=

1−ρ

1+ρ
[1 − ρ2e−2jω

]

(1 − ρe−jω)2
. (46)

Evidently, the transfer functions K(ejω) and H(ejω) in (17) are
not that different in terms of the way their magnitude depends on
ω and ρ. Indeed, once again one can verify that if 1 − ρ is small
and ω = 1 − ρ, then K is approximately 1/2. So the spatial and
temporal bandwidths are about the same. This appears consistent
with the assumption that a spatial progression of one hop occurs
in each time update, i.e. values propagate with effectively unit
velocity. Of course, the poles and zeros for the spatial transfer
function lie symmetrically inside and outside the unit circle, in
contrast to the time-based frequency response.

The treatment of time variation when the uniform finite win-
dow approach is being used is also simple. Analogously to (46), we
can obtain for

K ′(ejω) =
1

2L + 1
[1 + 2(e−jω

+ · · · + e−Ljω)]. (47)

When 2
L+1/2 is small (this corresponds to the condition 1 − ρ is

small for the exponential weighting case), we derive that the fre-
quency at which |K ′(ejω)| assumes the value 1/2 is approximately

4
L+1/2 .

We remark that the considerations applicable to spatial varia-
tion without temporal variation or to temporal variation without
spatial variation will apply (because of the linearity of the whole
system) to a situation where both types of variation are present
in the measured variables. Thus if the measured variable variation
places them in the spatial bandwidth and outside temporal band-
width, or the reverse, the averaging process will attenuate or sup-
press the variation.

8. Conclusions

We have studied local average consensus in distributed mea-
surement of a variable using 1D sensor networks. Distributed local
consensus algorithms have been designed to address first the case
where the measured variable has spatial variation but is constant
in time, and then the case where the measured variable has both
spatial and temporal variations. In Table 1we summarize themem-
ory requirements of designed algorithms. Two schemes for local
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(a) Exponential weighting. (b) Uniform finite window.

Fig. 4. Simulation example: performance of Algorithm (39) and (43)–(45) for difference values of ρ or L, respectively. A physical parameter to be measured has a parabola
temporal variation (black curve), assuming no spatial variation. Time-varying measurements (green curve) are corrupted by (independent) noise of mean zero and variance
one. Plots for 3 different values of ρ and L are displayed, showing different tracking and noise performance of the respective algorithms. Global average smooths out noise
but throws away local information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Memory requirements of local consensus algorithms.

Time-invariant measurements Time-varying measurements
Exponential weighting Uniform finite window Arbitrary weights Exponential weighting Uniform finite window

4 4 5 6 4(L + 1) + L
average computation have been employed: exponential weighting
and uniform finite window. Further, we have analyzed tempo-
ral–spatial frequency response and noise propagation associated
to the algorithms. Arbitrary updating weights and random spacing
between sensors have been analyzed in the algorithms.

In ongoing work we have studied two dimensional arrays. With
a uniform grid, results rather like those with fixed ρ and L can be
obtained, but for a general two dimensional array, a theory appears
needed and is currently under development.
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