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3D Formation

e positions cannot be represented
by complex numbers

e complex Laplacian cannot be used
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Multi-agent system

a system of n interacting agents
is modeled by graph G = (V, &)

node v; € V: an agent
edge (vj,v;) € £: agent j sends
information to v;

example:




3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS




3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

target con: 1gurat10n

(1] 1] [=1] 0 0 |
f — 0 1 1 0 0




3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

3D afhine formation:

rotation
matrix

scalings

displacement
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3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

3D afhine formation:

25‘1(75) A& +a
z2(1) Al +a
x3(t)| = [A&s +a
(t) A£4 T— a
(t) _A€5 T ]

A ] _51_ a

A 52 a

= A & + |a

A 54 a

Al &5 ajl




3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

3D afhine formation:

A

A

A

A

2 2 o o o

A

=R A

15®CL

Kronecker
product
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3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

3D afhine formation:

961(75) &1
r2(t) &2
r3(t)| = (5 ®A) & +(15®a)
r4(1) &4

z5(t) &5 )

for n agents:
z(t) = ([n®A)E+1,®a
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3D formation problem

each agent v; updates its state based on
T; = Ui, T; u; € RS

3D affine formation: design input w;
s.t. (Vz;(0))(3A € R3*3,a € RY)
z(t) = (In®A)E+1,®a

op 0 0
U 0 09 0 V
_O 0 0'3_
singular
value
decomposition
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3D formation problem

singu.

A =

I 1

2 3
4 4

[ —0.2601
— | —0.5074
|—0.8215

5

3
5_

0.5945
—0.7546
0.2778

—0.7608 |

ar value decomposition e.g.

EREDY 0 0
—0.4162 0 0.6699 0
0.4979 | | O 0 0.4877

(—0.4967 —0.552 —0.6698]
0.2933 —0.8331  0.469
| 0.8169  —0.0366 —0.5757

(matlab: [U, X, V'] =svd(A))
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Linear constraint

target configuration:

AT T =T 01" ro171 !
f — 0 1 1 0 0
O_ I 0 | I 0 ] 1 —1
1 —1
§&1—& = (0],&%—-&=|1
e -
§a3—& = |1, —& = |0

example:
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Linear constraint

target configuration:

AT T =T 01" ro171 !
f — 0 1 1 0 0
0 0 0 1| |1

formation constraint:
as1(§1 —&5) +as2(&2 — &)+
as3(&3 —&s5) + asa(éa —&5) =0

example:

20



as1

1 —1] [—=1]
f p— 0 1 —1
o] (0] [o0]
formation constraint:
- - i
O +as2 | 1 | +ass

Linear constraint

target configuration:

example:
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Linear constraint

target configuration:

1 171 =11 Jo1" [o]
f — 0 1 1 0 0
o] (o] o] |1 |-1
formation constraint:
1 1 1
as1 |0 +as2 | 1 | +as3 |—1| + ass
_1_ I 1 ) I 1 )
€.2. 51 — —1
1] = 0]

as2 | 1 | +as3 [—1]| +as4 [0 =
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Linear constraint

target configuration:

1 T T T ro171 !
f — 0 1 ~1 0 0
0 0 0 1] | —1
formation constraint: )
1 —1 —1 0
as1 |0l +aso | 1 | +as3 |—1| +a54 |0] =0
_1_ I 1 ) I | ) _2_
€.2. 51 — —1
—1 —1 0 -CL52_ 1] as2 = —0.9
1 —1 0 a53 | — 0 a53 — —0.9
I 1 1 2_ as54 _1_ 5y =
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Linear constraint

target configuration:

1 1] [=1 0 0 |
f — 0 1 1 0 0
0 0 0 1) —1]

formation constraint:

ng/\[5 as; (fj —&) =0

example:

24



Linear constraint

target configuration:

AT T =T 01" ro171 !
f — 0 1 1 0 0
0 0 0 1| |1

formation constraint:
(\V/Z =1,... 7”) Zje,/\/,,; aij(ﬁj B 52) =0
(L®I3)E =0

example:
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Signed Laplacian

target configuration:

AT T =T 01" ro171 !
f — 0 1 1 0 0
ol o] |o]| |1 1
signed Laplacian:
0 0 0 0 0 |
0O O 0 0 0
L=10 0 0 0 0
0O O 0 0 0
1 05 05 —1 —1
(L®13)§ =0
1
71 —0 = rank(L) <1

rank(L) =1



Distributed algorithm

each agent v; updates its state based on
T; = Ui, T; u; € RS
distributed algorithm:
T, = U; = ZjENq; aij(xj — xi),aij c R

relative state information

T =—(L®I3)x
0 0 0 0 0 |
0 0 0 0 O | |
L—=1lo0 o o o o signed Laplacian
0O O 0 0 0
1 05 05 -1 -1
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Example

simulation: x1(0) = [0.88 0.52 0.94] "
29(0) = [0.64 0.96 0.24] T, 25(0) = [0.68 0.29 0.67] T

24(0) = [0.7 0.07 0.25] ", z5(0) = [0.22 0.67 0.84] "




Example

ZIZ':—(L(X)I:),)ZE
0 0 0 0 0]
O 0 0 0 0
L=1{0 0 0 0 0
O 0 0 0 0
1 05 05 —1 -1

eigenvalues of —L: 0,0,0,0,1

design invertible diagonal matrix E
s.t. nonzero eigenvalues of —F L
have negative real parts
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Distributed algorithm

each agent v; updates its state based on
T; = Ui, T; u; € RS
distributed algorithm:

T, = U; = ZjEN} GiCLZ‘j(CIZ‘j — Cli'i), €, Q75 € R

(ensuring stability) (encoding target
configuration)

— _(E'L X ]3)337 where F = diag(el, .- -,En)
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Example
T = ——(LZZLZ;<§§ 123)56

0 0 0 0 0
0 O 0 0 0
L=1{10 0 0 0 0
0 O 0 0 0
1 05 05 —1f —1

design E/ = €5 s.t. all eigenvalues of —E’L’ are stable
equivalently, E’L’ has positive real parts

(As)
e.g. €5 = —1

set )\5 = €5L/ =1 14



Example

0
0
L= 10
0
1
0.1
0
E=10
0
K

eigenvalues of —E'L: 0,0,0,0, —1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0.0 05 -1 —
o 0 0 O
01 0 0 O
0 01 0 O
O 0 01 O
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Example

simulation: x1(0) = [0.88 0.52 0.94] "
29(0) = [0.64 0.96 0.24] T, 25(0) = [0.68 0.29 0.67] T

24(0) = [0.7 0.07 0.25] ", z5(0) = [0.22 0.67 0.84] "
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Fact
t=—(EL® I3)x

If G contains a spanning 4-tree
and & generic

(no 3 points on the same line,
no 3 lines through the same point)

then E exists s.t. n — 4 nonzero
eigenvalues of —F' L are stable

[Friedland, 1975]

global computation (need L)
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Recap, generalization

a system of n interacting agents

is modeled by graph G = (V, &)

each agent v; updates its state based on
T = Ui, Tj,u; € RO

target configuration & = [£] ---£]" € R3™

Problem: design u; to update x;

s.t. (Vu; € V) (Vr;(0))(3A € R3*3, a € RY)

lim z(t) = ([, @A)+ 1, ®a

{— 00




Recap, generalization

a system of n interacting agents
is modeled by graph G = (V, )

each agent v; updates its state based on
T; = = Ui, T4, U € RS

target configuration & = [£] ---£]" € R3™
affine formation set

A&) =4¢ :(dA,a0)¢' = (I, ® A)E+ 1, ®a}

Problem: design u; to update x;

(Vz(0) € R*™) (3¢ € A(¢)) lim z(t) = £

{— 00




Recap, generalization

a system of n interacting agents

is modeled by graph G = (V, &)

each agent v; updates its state based on
T; = Ui, T;, u; € RS

target configuration & = [£] ---£]" € R3™

Distributed algorithm

T, = U; = € Zje./\/} CLij(QZj — LE@), €, A5 € R
where Zjef\/i a;;i(§5 — &) =0

based on x;(t) — x;(t), & — &;

from neighbor agent(s) 7 € N .



Recap, generalization

a system of n interacting agents

is modeled by graph G = (V, &)

each agent v; updates its state based on
T = Ui, Tj,u; € RO

target configuration & = [£] ---£]" € R3™

Distributed algorithm
= —(FL ® I3)x, where F = diag(eq,...,€,)

L1 =
. signed Laplacian
(L®13)§ =0

rank(L) <n —4 and ker(L ® I3) 2 A(§) (7).



Recap, generalization

a system of n interacting agents
is modeled by graph G = (V, )

each agent v; updates its state based on
T; = U;, T;,U; € RS

target configuration & = [£] ---£]" € R?™

if £ is generic and G contains

a spanning 4-tree

then rank(L) = n — 4 and ker(L ® I3) = A(§)

and there exists F s.t. n — 4 nonzero

eigenvalues of —F' L are stable

24



Theorem

a system of n interacting agents
is modeled by graph G = (V, )

each agent v; updates its state based on
T; = U;, T;,U; € RS

target configuration & = [£] ---£]" € R3™

if £ is generic and G contains

a spanning 4-tree

then there exists ¥ s.t. © = —(FL ® I3)x

solves 3D formation problem

(V2(0) € R*")(3¢" € A(E)) lim 2(t) = ¢

{— 00 25



example:

Example

weighted graph ¢

spanning 4-tree (7)

generic configuration (7)

£ =

1

0

_O_

T

1
1

_O_

T

__1_
—1

_O_

T ~ -

-
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Example

signed Laplacian matrix

0 0 0 0 0
00 0 0 0
L=10 0 0 0 0
00 0 0 0
1 05 05 -1 -1

rank(L) =1

so ker(L ® I3) = A(&)

27



Example
— —(EL X ]3)217

signed Laplacian matrix

0 0 0 0 0

0 0 0 0 0
L={0 0 0 0 0

0 0 0 0 0

1 05 05 —1 —1,

stabilizing diagonal matrix

0.1 0 0 0 0

0 01 O 0 0
E=10 0O 0.1 O 0

0 0 0 0.1 0

0 0 0 —1

s.t. eigenvalues of EL 0,0,0,0, —1
note: ker(—FL ® I3) = ker(L ® I3) =

A(€)



Example

if nonzero eigenvalues of —F L are stable
then x(t) = ker(—FL ® I3) as t — o

A(E)

this means x(t) converges to

affine formation of target &
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Theorem

a system of n interacting agents
is modeled by graph G = (V, )

each agent v; updates its state based on
T; = U;, T;,U; € RS

target configuration & = [£] ---£]" € R3™

if £ is generic and G contains

a spanning 4-tree

then there exists ¥ s.t. © = —(FL ® I3)x

solves 3D formation problem

(V2(0) € R*)(3¢" € A(E)) lim x(t) = ¢

t— 00 30



Theorem
Proof:

if £ 1s generic and G contains a spanning
4-tree, find a diagonal matrix E s.t.

t = —(FL ® I3)x solves 3D formation
(i) rank(L) =n — 4

hint: L1 =0, (L ® I3)§ =0
= rank(L) <n —4

spanning 4-tree = rank(L) > n —4

32



Theorem
Proof:

if £ 1s generic and G contains a spanning
4-tree, find a diagonal matrix E s.t.

t = —(FL ® I3)x solves 3D formation

(ii)) —FE'L has four zero eigenvalues

hint: rank(F) =n = rank(FL) = rank(L)
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Theorem
Proof:

if £ 1s generic and G contains a spanning
4-tree, find a diagonal matrix E s.t.

t = —(FL ® I3)x solves 3D formation

(iii) n — 4 nonzero eigenvalues of —F L
have negative real parts, i.e. stable

hint: ¢ contains a spanning 4-tree
and & generic =

E exists s.t. n — 4 nonzero
eigenvalues of —FE L are stable
[Friedland, 1975] 34



Theorem
Proof:

if £ 1s generic and G contains a spanning
4-tree, find a diagonal matrix E s.t.

t = —(FL ® I3)x solves 3D formation
(iv) x(t) — ker(—EL ® I3) = A(£)
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Example

8 networked agents

digraph G contains a spanning 4-tree
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Example

generic configuration:

0

3 g

4

SI111 a S111

fLE

4
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Example

8 networked agents
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