Multi-Agent Systems

Kai Cai

cai@omu.ac.jp

Graph theory: basic concepts

Graph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node set $\mathcal{V} = \{v_1, \dots, v_n\}$
edge set $\mathcal{E} = \{(v_i, v_j), \dots\}$

Directed, undirected

generally $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is directed (directed graph, or digraph)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is undirected if $(\forall v_i, v_j \in \mathcal{V})(v_i, v_j) \in \mathcal{E} \Rightarrow (v_j, v_i) \in \mathcal{E}$

Directed, undirected

generally $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is directed (directed graph, or digraph)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is undirected if $(\forall v_i, v_j \in \mathcal{V})(v_i, v_j) \in \mathcal{E} \Rightarrow (v_j, v_i) \in \mathcal{E}$

Subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

graph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is a subgraph of \mathcal{G}
if $\mathcal{V}' \subseteq \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Spanning subgraph

subgraph
$$\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$$
 of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $\mathcal{V}' = \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Spanning subgraph

subgraph
$$\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$$
 of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $\mathcal{V}' = \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Induced subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph by \mathcal{V}' is $\mathcal{G}' = (\mathcal{V}', \mathcal{E}'), \mathcal{E}' = \mathcal{E} \cap (\mathcal{V}' \times \mathcal{V}')$

example: $V' = \{1, 2, 3, 4\}$

 \mathcal{G}^{\prime}

Induced subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph by \mathcal{V}' is $\mathcal{G}' = (\mathcal{V}', \mathcal{E}'), \mathcal{E}' = \mathcal{E} \cap (\mathcal{V}' \times \mathcal{V}')$

example: $V' = \{1, 2, 3, 4\}$

Neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ neighbor set of v is

$$\mathcal{N}_v = \{ u \in \mathcal{V} \mid (u, v) \in \mathcal{E} \}$$

Neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ out-neighbor set of v is

$$\mathcal{N}_{v}^{o} = \{ u \in \mathcal{V} \mid (v, u) \in \mathcal{E} \}$$

Degree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ degree of v is $d_v = |\mathcal{N}_v|$ $(|\cdot|: number of elements in the set)$

Degree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ out-degree of v is $d_v^o = |\mathcal{N}_v^o|$

Balanced graphs

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node $v \in \mathcal{V}$ is balanced if $d_v = d_v^o$

Balanced graphs

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ node $v \in \mathcal{V}$ is balanced if $d_v = d_v^o$ \mathcal{G} is balanced if every v is balanced (all undirected graphs are balanced) example:

Graph theory: connectivity

Path

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a path in \mathcal{G} is a sequence of nodes $v_1 v_2 \cdots v_k \quad (k \geq 1)$ s.t. $(v_i, v_{i+1}) \in \mathcal{E}$ for $i \in [1, k-1]$ example:

Path

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 a path in \mathcal{G}

$$v_1v_2\cdots v_k \quad (k\geq 1)$$

has length k-1

Path

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

 $v_1 v_2 \cdots v_k$ is a path from v_1 to v_k
if $v_1 = v_k, v_1 v_2 \cdots v_k$ is a cycle

Reachability

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, two nodes $v_i, v_j \in \mathcal{V}$ v_i is reachable from v_j if there is a path from v_j to v_i

Reachability

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, two nodes $v_i, v_j \in \mathcal{V}$

every node is reachable from itself

Strongly connected

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is strongly connected if $(\forall v_i, v_j \in \mathcal{V})$ v_i is reachable from v_j

Strongly connected

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is strongly connected if $(\forall v_i, v_j \in \mathcal{V})$ v_i is reachable from v_j

Root

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

node $v \in \mathcal{V}$ is a root if every node is reachable from v

Root

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

 \mathcal{G} is strongly connected iff all nodes are roots

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and root $r \in \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning tree with root r if

- 1) r has no neighbor, i.e. $\mathcal{N}_r = \emptyset$
- 2) every $v \in \mathcal{V} \setminus \{r\}$ has one neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and root $r \in \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning tree with root r if

- 1) r has no neighbor, i.e. $\mathcal{N}_r = \emptyset$
- 2) every $v \in \mathcal{V} \setminus \{r\}$ has one neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning tree if there exists a subgraph of \mathcal{G} that is a spanning tree

 $graph \mathcal{G} = (\mathcal{V}, \mathcal{E})$ \mathcal{G} is strongly connected

 \mathcal{G} contains a spanning tree

 $graph \mathcal{G} = (\mathcal{V}, \mathcal{E})$ \mathcal{G} is strongly connected $\downarrow \downarrow$

 \mathcal{G} contains a spanning tree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is a strong component of \mathcal{G} if \mathcal{G}' is a maximally strongly connected induced subgraph of \mathcal{G}

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is a strong component of \mathcal{G} if \mathcal{G}' is a maximally strongly connected induced subgraph of \mathcal{G}

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is a strong component of \mathcal{G} if \mathcal{G}' is a maximally strongly connected induced subgraph of \mathcal{G}

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ may have multiple strong components

Let
$$\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1), \mathcal{G}_2 = (\mathcal{V}_2, \mathcal{E}_2)$$

be two strong components of \mathcal{G}

either
$$\mathcal{V}_1 = \mathcal{V}_2, \mathcal{E}_1 = \mathcal{E}_2$$

or $\mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset, \mathcal{E}_1 \cap \mathcal{E}_2 = \emptyset$

Closed strong component

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strong component $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$

 \mathcal{G}' is closed if every node in \mathcal{V}' is not reachable from any node in $\mathcal{V} \setminus \mathcal{V}'$

Fact

graph G = (V, E)

 \mathcal{G} contains a spanning tree iff \mathcal{G} contains a unique closed strong component

Fact

 $\operatorname{graph} \overline{\mathcal{G}} = \overline{(\mathcal{V}, \mathcal{E})}$

 \mathcal{G} contains a spanning tree iff \mathcal{G} contains a unique closed strong component

Fact

 $graph \mathcal{G} = (\mathcal{V}, \mathcal{E})$

 \mathcal{G} contains a spanning tree iff \mathcal{G} contains a unique closed strong component

2-reachability

 $graph \mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $\mathcal{R} = \{r_1, r_2\} \subseteq \mathcal{V}$ is a subset of 2 nodes node $v \in \mathcal{V} \setminus \mathcal{R}$ is 2-reachable from \mathcal{R} if v is still reachable from a node in \mathcal{R} after removing an arbitrary node (not v)

2-reachability

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $\mathcal{R} = \{r_1, r_2\} \subseteq \mathcal{V}$ is a subset of 2 nodes node $v \in \mathcal{V} \setminus \mathcal{R}$ is 2-reachable from \mathcal{R} if v is still reachable from a node in \mathcal{R} after removing an arbitrary node (not v)

k-reachability

 $\operatorname{graph}\,\mathcal{G} = (\mathcal{V},\mathcal{E})$

 $\mathcal{R} \subseteq \mathcal{V}$ is a subset of k nodes $(k \geq 2)$ node $v \in \mathcal{V} \setminus \mathcal{R}$ is k-reachable from \mathcal{R} if v is still reachable from a node in \mathcal{R} after removing arbitrary k-1 nodes

k-reachability

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $\mathcal{R} \subseteq \mathcal{V}$ is a subset of k nodes $(k \geq 2)$ node $v \in \mathcal{V} \setminus \mathcal{R}$ is k-reachable from \mathcal{R} if v is still reachable from a node in \mathcal{R} after removing arbitrary k-1 nodes

2-root set

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $\mathcal{R} = \{r_1, r_2\} \subseteq \mathcal{V} \text{ is a 2-root set}$ if every node $v \in \mathcal{V} \setminus \mathcal{R}$ is
2-reachable from \mathcal{R}

k-root set

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

$$\mathcal{R} = \{r_1, \dots, r_k\} \subseteq \mathcal{V} \text{ is a } k\text{-root set}$$
if every node $v \in \mathcal{V} \setminus \mathcal{R}$ is $k\text{-reachable from } \mathcal{R}$

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and 2-root set $\mathcal{R} \subseteq \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning 2-tree with \mathcal{R} if

- 1) every $r_i \in \mathcal{R}$ has no neighbor
- 2) every $v \in \mathcal{V} \setminus \mathcal{R}$ has 2 neighbors

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and 2-root set $\mathcal{R} \subseteq \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning 2-tree with \mathcal{R} if

- 1) every $r_i \in \mathcal{R}$ has no neighbor
- 2) every $v \in \mathcal{V} \setminus \mathcal{R}$ has 2 neighbors

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning 2-tree if there exists a subdigraph of \mathcal{G} that is a spanning 2-tree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning with 2-root set $\mathcal{R} = \{r_1, r_2\}$ Remove one node $r_i \in \mathcal{R}$ from \mathcal{G} induced subgraph of \mathcal{G} by $\mathcal{V} \setminus \{r_i\}$ contains a spanning tree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning with 2-root set $\mathcal{R} = \{r_1, r_2\}$ Remove one node $r_i \in \mathcal{R}$ from \mathcal{G} induced subgraph of \mathcal{G} by $\mathcal{V} \setminus \{r_i\}$ contains a spanning tree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and k-root set $\mathcal{R} \subseteq \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning k-tree with \mathcal{R} if

- 1) every $r_i \in \mathcal{R}$ has no neighbor
- 2) every $v \in \mathcal{V} \setminus \mathcal{R}$ has k neighbors

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and k-root set $\mathcal{R} \subseteq \mathcal{V}$ a spanning subgraph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ is a spanning k-tree with \mathcal{R} if

- 1) every $r_i \in \mathcal{R}$ has no neighbor
- 2) every $v \in \mathcal{V} \setminus \mathcal{R}$ has k neighbors

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning k-tree if there exists a subdigraph of \mathcal{G} that is a spanning k-tree

example: \mathcal{G}_1

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning with k-root set $\mathcal{R} = \{r_1, \dots, r_k\}$ Remove one node $r_i \in \mathcal{R}$ from \mathcal{G} induced subgraph of \mathcal{G} by $\mathcal{V} \setminus \{r_i\}$ contains a spanning (k-1)-tree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ contains a spanning with k-root set $\mathcal{R} = \{r_1, \dots, r_k\}$ Remove one node $r_i \in \mathcal{R}$ from \mathcal{G} induced subgraph of \mathcal{G} by $\mathcal{V} \setminus \{r_i\}$ contains a spanning (k-1)-tree

Graph theory: matrices

Weighted graph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node set $\mathcal{V} = \{v_1, \dots, v_n\}$
edge set $\mathcal{E} = \{(v_i, v_j), \dots\}$
edge (v_i, v_j) has weight a_{ji}

Weighted graph

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

convention:

- \bullet $(\forall i \in [1, n])(v_i, v_i) \notin \overline{\mathcal{V}}$
- weight $a_{ji} = 0$ iff edge $(v_i, v_j) \notin \mathcal{V}$

Weighted degree

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
weighted degree of v_j is $d_{v_j} = \sum_{i \in \mathcal{N}_i} a_{ji}$

Weighted degree

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
weighted out-degree of v_j is
$$d_{v_j}^o = \sum_{i \in \mathcal{N}_i^o} a_{ij}$$

Balanced weighted graph

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
node v_j is weight-balanced if $d_{v_j} = d_{v_j}^o$

Balanced weighted graph

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ edge (v_i, v_j) has weight a_{ji}

 \mathcal{G} is weight-balanced if every v is weight-balanced

Adjacency matrix

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ edge (v_i, v_j) has weight a_{ji} adjacency matrix $A = [a_{ij}]$

Degree matrix

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$$

edge (v_i, v_j) has weight a_{ji}
degree matrix $D = \text{diag}(d_{v_1}, \dots, d_{v_n})$
('diag' means diagonalization)

Adjacency & degree matrix

$$egin{bmatrix} 0 & 0 & 2 \ 0.5 & 0 & 0.5 \ 0 & 1 & 0 \ \end{bmatrix} egin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{bmatrix} \ A \ D \ egin{bmatrix} D \ \end{array}$$

$$\operatorname{diag}(A\mathbf{1}) = D, \ \mathbf{1} = egin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Laplacian matrix

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ $\text{edge } (v_i, v_j) \text{ has weight } a_{ji}$ Laplacian matrix L = D - A

Laplacian matrix

$$L = \begin{bmatrix} 2 & 0 & -2 \\ -0.5 & 1 & -0.5 \\ 0 & -1 & 1 \end{bmatrix}$$

Every row sums up to zero

$$L\mathbf{1} = (D - A)\mathbf{1}$$

Eigenvalue & eigenvector

```
weighted graph \mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n
Laplacian matrix L = D - A
```

L has an eigenvalue 0, with eigenvector $\mathbf{1}$ (?)

Rank

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$$

Laplacian matrix $L = D - A$

$$\operatorname{rank}(L) \le n - 1$$

if \mathcal{G} contains a spanning tree $\operatorname{rank}(L) \geq n-1$

if \mathcal{G} contains a spanning 2-tree $\operatorname{rank}(L) \geq n-2$

if \mathcal{G} contains a spanning k-tree $\operatorname{rank}(L) \geq n - k$

Rank vs. spanning tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning tree $\operatorname{rank}(L) = n - 1$

Rank vs. spanning 2-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning 2-tree $n-2 \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning 2-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning 2-tree $n-2 \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

Nonnegative matrix

matrix A is nonnegative, $A \ge 0$ if every entry $a_{ij} \ge 0$

example:

adjacency matrix

$$A = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \ge 0$$

Positive matrix

matrix A is positive, A > 0if every entry $a_{ij} > 0$

$$A = \begin{bmatrix} 1 & 1 & 2 & \frac{1}{2} \\ \frac{1}{2} & 2 & 1 & 1 \\ 1 & \frac{1}{2} & 2 & 2 \\ 3 & \frac{1}{5} & \frac{1}{2} & 1 \end{bmatrix} > 0$$

Irreducible matrix

 $A \ge 0$ is an irreducible matrix

if
$$I + A + \cdots + A^{n-1} > 0$$

$$(n \text{ is size of } A)$$

$$A = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \ge 0$$

$$I + A + A^{2} + A^{3} =$$

$$\begin{bmatrix} \frac{15}{8} & \frac{1}{8} & \frac{5}{8} & \frac{11}{8} \\ \frac{11}{8} & \frac{15}{8} & \frac{1}{8} & \frac{15}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{15}{8} & \frac{15}{8} \end{bmatrix} > 0$$

$$\begin{bmatrix} \frac{15}{8} & \frac{1}{8} & \frac{15}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{8} & \frac{11}{8} & \frac{15}{8} \end{bmatrix}$$

Irreducible matrix

Fact: $A \geq 0$ is adjacency matrix of \mathcal{G} .

A is an irreducible matrix iff \mathcal{G} is strongly connected

trongly connected
$$A = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \ge 0$$

$$I + A + A^{2} + A^{3} = \begin{bmatrix} \frac{15}{8} & \frac{1}{8} & \frac{5}{8} & \frac{11}{8} \\ \frac{11}{8} & \frac{15}{8} & \frac{15}{8} & \frac{15}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{15}{8} & \frac{15}{8} \end{bmatrix} > 0$$

Primitive matrix

 $A \ge 0$ is a primitive matrix

if
$$(\exists k > 0)A^k > 0$$

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \ge 0$$

$$A^{3} = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{1}{8} \end{bmatrix} > 0$$

Primitive matrix

Fact: $A \ge 0$ is adjacency matrix of \mathcal{G} (every node has a selfloop edge). A is a primitive matrix iff \mathcal{G} is strongly connected

example: 3|83|84|84|8 $3|\infty+|\infty+|\infty\infty|$

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$

Laplacian matrix L = D - A

$$a_{ij} \ge 0 \Rightarrow A \text{ nonnegative}$$

 $\Rightarrow L \text{ ordinary}$

$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 2 & 0 & -2 \\ -0.5 & 1 & -0.5 \\ 0 & -1 & 1 \end{bmatrix}$$

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A $a_{ij} \in \mathbb{R} \Rightarrow A \text{ real}$ $\Rightarrow L \text{ signed}$

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$

Laplacian matrix L = D - A

$$a_{ij} \in \mathbb{C} \Rightarrow A \text{ complex}$$

 $\Rightarrow L \text{ complex}$

example:
$$A = \begin{bmatrix} 0 & 0 & 2 - j \\ 0.5 + j & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

$$1 = \begin{bmatrix} 2 - j & 0 & j - 2 \\ -0.5 - j & 1 + j & -0.5 \end{bmatrix}$$

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

 $a_{ij} \ge 0 \Rightarrow A$ nonnegative $\Rightarrow L$ ordinary averaging, optimization, consensus

 $a_{ij} \in \mathbb{C} \Rightarrow A \text{ complex } \Rightarrow L \text{ complex}$ 2D formation control

 $a_{ij} \in \mathbb{R} \Rightarrow A \text{ real } \Rightarrow L \text{ signed}$ 3D formation control