
Chapter 6

Similar Formation in
Two-Dimensional Space

In this chapter, we introduce a formation control problem of multi-agent systems in two-dimensional
(2D) space. The consensus problem studied in Chapter 4 can be viewed as to achieve a special ‘point
formation’, i.e. all the agents reach consensus on their positions in both dimensions respectively.
In this sense, the formation control problem in this chapter includes consensus and generalize it to
a set of geometric shapes in 2D.

Formation control is an interesting and fundamental topic in teams of autonomous robots, mobile
sensors, unmanned aerial vehicles, and autonomous underwater vehicles. Important applications of
formation control include source seeking and exploration, map construction, formation flying, and
ocean data retrieval. This chapter focuses on formation control in 2D, while 3D formation control
will be covered in Chapter 8.

Specifically, the problem studied in this chapter is called similar formation control: a network of
agents is required to form a geometric shape, which can be obtained from a prescribed desired shape
via planar translation, rotation, and scaling. To solve this 2D similar formation control problem,
we introduce the second type of graph Laplacian: complex Laplacian. Modeling the interacting
agents by digraphs, we show that a necessary graphical condition to achieve similar formation is
that the digraph contains a spanning 2-tree, namely there exists (at least) two agents that can reach
all the other agents through independent paths. These two root agents play the role of leaders,
which determine the translation, rotation, and scaling offsets from the prescribed shape. Under this
graphical condition, we present a distributed algorithm for the agents to achieve similar formations.

6.1 Problem Statement
Consider a network of n (> 1) agents in a plane (2D space). Each agent i (∈ [1, n]) has a state
variable xi(t) ∈ C, which is complex and denotes the position of agent i in the plane at time t. Thus
Re(xi(·)) and Im(xi(·)) are the positions of agents i on the real and imaginary axes, respectively.
The time t ≥ 0 is a (nonnegative) real number and denotes the continuous time. The motion of
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158 Chapter 6. Similar Formation in Two-Dimensional Space

each agent is governed by the following ordinary differential equation:

ẋi = ui, i ∈ [1, n] (6.1)

where ui(t) ∈ C is the (complex) control input at time t. Thus Re(ui(·)) (resp. Im(ui(·))) is the
control input along the real axis (resp. imaginary axis).

Let digraph G = (V, E) model the interconnection structure of the n agents. Each node in
V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes that agent
i can measure the relative position of agent j (namely xj − xi in agent i’s coordinate frame). The
neighbor set of agent i is Ni := {j ∈ V | (j, i) ∈ E}.

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a complex
weight aij ∈ C. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1), and Laplacian
matrix L = D −A are all complex.

Define a target configuration ξ = [ξ1 · · · ξn]! ∈ Cn to be the assignment of the n agents to points
in the plane, which specifies the formation shape that the agents are required to achieve. Given a
target configuration ξ, we say that another configuration ξ′ is similar to ξ if

(∃ω1,ω2 ∈ C)ξ′ = ω11+ ω2ξ.

Write ω2 = ρeθ, ρ ≥ 0 and θ ∈ [0, 2π). Then the above means that ξ′ is obtained from ξ via
(two-dimensional) translation ω1, rotation θ, and scaling ρ.

For example, Fig. 6.1 displays a target configuration

ξ = [1 e
π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]!

which is a regular hexagon. Also displayed is another configuration ξ′ similar to ξ, as it can
be obtained from ξ via translation ω1, rotation θ, and scaling ρ.

For a given target configuration ξ, let

S(ξ) := {ξ′ ∈ Cn | (∃ω1,ω2 ∈ C)ξ′ = ω11+ ω2ξ} (6.2)

be the family of all configurations similar to ξ. Thus S(ξ) is the (complex) span of the two vectors
1 and ξ. If ξ = c1 for some c ∈ C, then S(ξ) is degenerated and we are back to consensus in the
plane. To consider more general planar formations, we henceforth assume in this chapter that ξ is
linearly independent from 1. Towards the end of this section, we will see that another condition
(called ‘generic’) needs to be imposed on ξ. We say that the n agents with the aggregated state
vector x = [x1 · · ·xn]! ∈ Cn form a similar formation with respect to ξ if x ∈ S(ξ).
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Figure 6.1: Illustration of target configuration and similar configuration

To achieve a similar formation, consider the distributed control

ui =
∑

j∈Ni

wij(xj − xi) (6.3)

where the control gain wij ∈ C satisfies

(i)
∑

j∈Ni

wij(ξj − ξi) = 0 (6.4)

(ii) wij = εiaij , εi ∈ C \ {0}. (6.5)

This control (6.3) is in the same form as that for consensus, but the gains wij are not simply the
edge weights aij . Indeed, wij is a complex (nonzero) multiple of aij (6.5), and moreover satisfies a
linear constraint with respect to the target configuration ξ (6.4).

Substituting (6.5) into (6.4) and removing the common multiple εi yield
∑

j∈Ni

aij(ξj − ξi) = 0. (6.6)

This in matrix form is Lξ = 0; namely the target configuration lies in the kernel of the complex
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Laplacian matrix of the (complex-)weighted digraph. Since we also have L1 = 0, it follows that

kerL ⊇ S(ξ). (6.7)

Thus if the control in (6.3) satisfying (6.4) and (6.5) can be found, the kernel of the complex
Laplacian matrix at least contains the family of all configurations similar to the target ξ.

Similar Formation Control Problem:
Consider a network of agents modeled by (6.1) interconnected through a digraph, and let ξ ∈ Cn

be a target configuration (linearly independently from 1). Design a distributed control ui in (6.3)
such that

(i) kerL = S(ξ)

(ii) (∀x(0) ∈ Cn)(∃ξ′ ∈ S(ξ)) lim
t→∞

x(t) = ξ′.

The first requirement (i) strengthens (6.7) to equality; namely the kernel of the complex Lapla-
cian matrix is exactly the family of all configurations similar to ξ. The second requirement (ii)
means that every trajectory of the networked agents converges to a similar formation in S(ξ).

1

2 3

4

5 6

Figure 6.2: Illustrating example of six agents

Example 6.1 We provide an example to illustrate the similar formation control problem.
As displayed in Fig. 6.2, six agents are interconnected through a digraph. The neighbor sets
of the agents are N1 = N2 = ∅, N3 = {2, 5}, N4 = {1, 3}, N5 = {4, 6}, and N6 = {1, 2}.
Let the target configuration be ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]!, i.e. the desired formation
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shape is a regular hexagon (see Fig. 6.1). Thus the family S(ξ) contains all hexagons that
can be obtained from ξ by translation, rotation, and scaling.
The similar formation control problem is to design a distributed control ui(t) in (6.3) such
that the kernel of the complex Laplacian matrix coincides with S(ξ), and moreover the agents’
aggregated state vector asymptotically converges to a similar formation in S(ξ).

A necessary graphical condition for solving the similar formation control problem is given below.

Proposition 6.1 Suppose that there exists a distributed control ui in (6.3) that solves the
similar formation control problem. Then the digraph contains a spanning 2-tree.

Proof. Let ξ be a target configuration. Suppose that there exists a distributed control in (6.3) that
solves the similar formation control problem with respect to ξ, but that the digraph G = (V, E) does
not contain a spanning 2-tree. We will derive a contradiction that kerL ! S(ξ), thereby proving
that G must contain a spanning 2-tree.

First, by definition G containing no spanning 2-tree means the following. Let R = {vi, vj} be a
set of arbitrary two nodes. Then after removing a node vk ∈ V and all its incoming and outgoing
edges, a subset Vk " V \ {vk} is unreachable from R in the new subdigraph G′. We write this as
R *→ Vk in G′.

Now let V̄k := V \ (Vk ∪ {vk}). This set V̄k is nonempty because R ⊆ V̄k (trivially). In addition,
even after removing vk, the nodes in V̄k can still be reached from R, i.e. R → V̄k in G′; but V̄k *→ Vk

in G′.
Let m := |Vk| (≥ 1), and relabel

• nodes Vk from v1 to vm;

• node vk as vm+1;

• nodes in V̄k from vm+2 to vn.

Then the complex Laplacian matrix L of G′ after relabeling (denoted by L′) has the following
structure:

L′ =

[
L′
11 L′

12 0

L′
21 L′

22 L′
23

]
.

The 0 matrix in the (1, 3)-block is due to V̄k *→ Vk in G′.
Also reorder the components of the target configuration ξ according to the above relabeling,
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and denote the result by

ξ′ =




ξ′1
ξ′2
ξ′3



 .

By the assumption that there exists a distributed control in (6.3), we have Lξ = 0 and L1 = 0.
Substituting the relabeled L′ and ξ′ into the two equations yields

[
L′
11 L′

12

] [ξ′1
ξ′2

]
= 0,

[
L′
11 L′

12

] [1
1

]
= 0.

Since ξ′ and 1 are linearly independent (linear independence of ξ and 1 is assumed in the problem
statement), so are

[
ξ′1
ξ′2

]
and

[
1

1

]
.

Hence the rows of [L′
11 L′

12] are linearly dependent.
Now remove from L′ the two rows corresponding to R = {vi, vj} and two arbitrary columns.

We still use indices i, j after the above relabeling, but since R ⊆ V̄k, it holds that i, j ∈ [m+ 2, n].
Then the resulting matrix L′

R ∈ C(n−2)×(n−2) is

L′
R =

[
L′
R,11 L′

R,12 0

L′
R,21 L′

R,22 L′
R,23

]
.

It follows from i, j ∈ [m+ 2, n] that [L′
R,11 L′

R,12] have m rows. Since the m rows of [L′
11 L′

12] are
linearly dependent, so are the m rows of [L′

R,11 L′
R,12]. Thus L′

R has fewer than n − 2 linearly
independent rows, and det(L′

R) = 0.
Finally since the set R of two nodes is arbitrary, the original complex Laplacian matrix L

of G′ does not have any minor with size n − 2 that has nonzero determinant. This means that
rank(L) ≤ n−3, and therefore kerL ! S(ξ). This is a contradiction to the solvability of the similar
formation control problem. The proof is now complete. !

Owing to Proposition 6.1, we shall henceforth assume that the digraph contains a spanning
2-tree.

Assumption 6.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning 2-tree.

Even if Assumption 6.1 holds, not every configuration ξ (linearly independent from 1) whose
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similar configurations may be achieved by a distributed control ui in (6.3). The following is such
an example.

Example 6.2 Consider again the six-agent digraph in Fig. 6.2. This digraph G contains
a spanning 2-tree, with the 2-root subset R = {1, 2}. Now consider the following target
configuration:

ξ =





0

−3− 3j

−1− j

−0.8− 1.6j

1 + j

−6j





.

While ξ is linearly independent from 1, for every complex Laplacian matrix L of G with
Lξ = 0, it is verified that rank(L) ≤ 3. To see this, write Lξ explicitly as





0 0 0 0 0 0

0 0 0 0 0 0

0 l32 l33 0 l35 0

l41 0 l43 l44 0 0

0 0 0 l54 l55 l56

l61 l62 0 0 0 l66









ξ1

ξ2

ξ3

ξ4

ξ5

ξ6





.

For the third row (other rows are similar), it follows from L1 = 0 and Lξ = 0 that

l32 + l33 + l35 = 0

l32ξ2 + l33ξ3 + l35ξ5 = 0.

To satisfy these two equations, the entries l32, l33, l35 are such that



l32

l33

l35



 = c3




ξ5 − ξ3

ξ2 − ξ5

ξ3 − ξ2



 = c3




2 + 2j

−4− 4j

2 + 2j





for some nonzero complex number c3. Similarly, the (three) entries of rows 4,5,6 may be
determined up to nonzero complex multiples c4, c5, c6 (respectively). For simplicity, letting
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c3 = c4 = c5 = c6 = 1 we have one instance of L as follows:

L =





0 0 0 0 0 0

0 0 0 0 0 0

0 2 + 2j −4− 4j 0 2 + 2j 0

0.2− 0.6j 0 0.8 + 1.6j −1− j 0 0

0 0 0 −1− 7j −0.8 + 4.4j 1.8 + 2.6j

3− 3j 6j 0 0 0 −3− 3j





.

This L has rank 3, meaning that the last four rows are linearly dependent. Then for arbitrary
values of c3, c4, c5, c6, these four rows cannot become linearly independent. Hence rank(L) ≤ 3

for every L with Lξ = 0. This means that kerL ! S(ξ), and consequently there does not
exist a distributed control in (6.3) that solves the similar formation control problem with the
chosen target configuration ξ.

The target configuration ξ in the above example satisfies a linear algebraic equation with integer
coefficients:

[
1 1 1 0 4 0

]





0

−3− 3j

−1− j

−0.8− 1.6j

1 + j

−6j





= 0.

Such a configuration ξ is called non-generic. Geometrically, in the plane there are four components
of ξ (1st, 2nd, 3rd, and 5th) on the same line.

Since Example 6.2 shows a case where similar formations of a non-generic configuration cannot
be achievable on a digraph containing a spanning 2-tree, we henceforth require that the target
configuration be generic. A configuration ξ = [ξ1 · · · ξn]! ∈ Cn is said to be generic if ξi’s do not
satisfy any nontrivial algebraic equation with integer coefficients. Intuitively speaking, a generic
configuration has no degeneracy: in 2D, no three points on the same line and no three lines through
the same point. As a consequence, any generic configuration ξ is linearly independent from 1.

It is noted, however, that not all non-generic configurations whose similar configurations cannot
be achieved. In fact, if the digraph considered in Example 6.2 had one more edge (1, 3), the non-
generic configuration ξ’s similar configurations could be achievable. Indeed, following the same
procedure described in Example 6.2, with a new edge (1, 3) we derive an instance of the new
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Laplacian matrix below:

L′ =





0 0 0 0 0 0

0 0 0 0 0 0

1 2 + 2j −4− 4j 0 2 + 2j 0

0.2− 0.6j 0 0.8 + 1.6j −1− j 0 0

0 0 0 −1− 7j −0.8 + 4.4j 1.8 + 2.6j

3− 3j 6j 0 0 0 −3− 3j





.

The only change is the (3, 1)-entry from 0 to 1, owing to the added edge (1, 3). This L′ has rank 4;
therefore kerL′ = S(ξ). Thus one may consider imposing further digraph connectivity to deal with
non-generic configurations.

On the other hand, the set of all non-generic configurations has Lebesgue measure zero, because
random perturbations destroy integer-coefficient algebraic equations. This means that for a given
non-generic configuration ξ (e.g. the one in Example 6.2), randomly perturbing its components
generates a generic configuration. For this reason, we assume that the target configuration ξ is
generic.

Assumption 6.2 The target configuration ξ = [ξ1 · · · ξn]! ∈ Cn is generic.

Remark 6.1 (Global versus local coordinate frames) We end this section with a discussion
on the local coordinate frames of the agents with respect to the global coordinate frame. So far the
state xi and control ui of agent i that we have discussed are in the global coordinate frame Σ. In
formation control, the agents are usually robots with onboard sensors, thus having their own local
coordinate frames that are not necessarily aligned with the global Σ and time-varying. For distributed
control, knowledge of Σ is often not available and thus should not be assumed. Let the local frame
of agent i at time t be Σi(t), whose orientation is θi(t) counterclockwise from the orientation of Σ.
Also let xi,loc(t) and ui,loc(t) be (respectively) the state and control at time t of agent i in Σi(t).
Then

xi(t) = xi,loc(t)e
−jθi(t)

ui(t) = ui,loc(t)e
−jθi(t).

Recall from (6.3) that

ui(t) =
∑

j∈Ni

wij(xj(t)− xi(t)).
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Substituting the above equation of xi(t) into the right-hand side yields

ui(t) =
∑

j∈Ni

wij(xj,loc(t)e
−jθi(t) − xi,loc(t)e

−jθi(t))

=
∑

j∈Ni

wij(xj,loc(t)− xi,loc(t))e
−jθi(t).

Now equating the right-hand sides of the above two ui(t)-equations, we derive

ui,loc(t) =
∑

j∈Ni

wij(xj,loc(t)− xi,loc(t)).

This shows that the control ui,loc(t) in the local Σi(t) is unaffected by the time-varying orientation
difference from the global Σ. Hence the control ui in (6.3), though with respect to the global frame Σ,
may be implemented in agent i’s local frame Σi(t) (as ui,loc) based on the state difference xj,loc−xi,loc

in Σi(t) as well. With this justification and for simplicity, we will write ui, xi (instead of ui,loc,
xi,loc).

6.2 Distributed Algorithm

Example 6.3 Consider again Example 6.1, where the target configuration is the regular
hexagon ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]!. This ξ is generic.

To achieve a similar formation of ξ, we consider using the simplest form of the distributed
control (6.3) by setting all εi = 1:

ẋi =
∑

j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 6] (6.8)

where aij ∈ C are complex weights of edges (j, i) to be designed to satisfy (6.6):
∑

j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 6].

In Fig. 6.3, we illustrate how such complex weights may be designed. For agent 3, it has two
neighbors 2, 5. Thus we need to find weights a32, a52 such that

a32(ξ2 − ξ3) + a35(ξ5 − ξ3) = 0.

Writing a32, a52 in polar coordinates, the above equation may be satisfied through making
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proper rotations and scalings (dashed arrows in Fig. 6.3), i.e.

ρ32e
θ32j(ξ2 − ξ3) + ρ35e

θ35j(ξ5 − ξ3) = 0.

There are infinitely many choices; a simple one is ρ32 =
√
3, θ32 = 0 and ρ35 = 1, θ35 = −π

2 .
Hence w32 =

√
3, w35 = −j. Note that this weight design can be done locally by individual

agents if relative information ξj − ξi (j ∈ Ni) is available.
Similarly we design other complex weights to satisfy (6.6), and write (6.8) in vector form:





ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6





=





0 0 0 0 0 0

0 0 0 0 0 0

0
√
3 −

√
3 + j 0 −j 0

1
2 0 − 1

2 +
√
3
2 j −

√
3
2 j 0 0

0 0 0 1
2 +

√
3
2 j − 3

2 −
√
3
2 j 1

− 3
2 −

√
3
2 j 1 0 0 0 1

2 +
√
3
2 j









x1

x2

x3

x4

x5

x6





.

Inspect that the matrix above has zero row sums, and is indeed the minus of the complex
Laplacian matrix L of the (complex) weighted digraph. It is also checked that Lξ = 0, namely
the target configuration lies in the kernel of L. Moreover, there are exactly two eigenvalues 0

of L, and hence kerL = S(ξ) (the first requirement of the similar formation control problem
is satisfied).
However, the nonzero eigenvalues of matrix −L are

−1.917 + 0.8963j,−1.1283− 1.042j,−0.1867− 0.5863j, 0.5 + 0.866j

and hence −L is not stable (the last eigenvalue has positive real part). Therefore to stabilize
x(t) to the kernel of L (to satisfy the second requirement of the similar formation control
problem), the unstable eigenvalues of −L must be moved to the open left-half plane. This
shows that simply setting all εi = 1 in (6.3) does not work in general. In fact, εi need to be
properly chosen in order to stabilize −L.

In the following we redescribe the distributed control (6.3) in vector form, and will analyze its
stability in relation to the values of εi in the next section.

Similar Formation Control Algorithm (SFCA):
Every agent i has a state variable xi(t) ∈ C representing its position in 2D at time t ≥ 0;

the initial state xi(0) is an arbitrary complex number. Offline, each agent i computes weights
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ξ1

ξ2ξ3

ξ4

ξ5 ξ6

a32(ξ2 − ξ3)

a35(ξ5 − ξ3)

Figure 6.3: Illustration of design of complex weights

aij = ρijeθij by solving
∑

j∈Ni

ρije
θij (ξj − ξi) = 0 (6.9)

such that (6.6) holds. Then online, at each time t ≥ 0, every agent i updates its state xi(t) using
the following distributed control:

ui = εi
∑

j∈Ni

aij(xj − xi) (6.10)

where εi ∈ C \ {0} is a (nonzero) complex control gain.
Let x := [x1 · · ·xn]! ∈ Cn be the aggregated state vector of the networked agents, and E =

diag(ε1, . . . , εn) ∈ Cn×n the (diagonal and invertible) control gain matrix. Then the n equations
(6.10) become

ẋ = (−EL)x. (6.11)

Remark 6.2 The above SFCA requires that the following information be available for each indi-
vidual agent i:

• ξj − ξi for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online computation of control inputs).
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6.3 Convergence Result

The following is the main result of this section.

Theorem 6.1 Suppose that Assumptions 6.1 and 6.2 hold. There exists a (diagonal and
invertible) control gain matrix E = diag(ε1, . . . , εn) such that SFCA solves the similar
formation control problem.

To prove Theorem 6.1, we analyze the eigenvalues of the matrix −EL in (6.11). For this, the
following fact is useful.

Lemma 6.1 Consider an arbitrary square complex matrix M ∈ Cn×n. If all the prin-
cipal minors of M are nonzero, then there exists an invertible diagonal matrix E =

diag(ε1, . . . , εn) ∈ Cn×n such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero scalar
(as the principal minor of M is nonzero). Write m11 = ρ1ejθ1 , and let ε1 := γ1ejφ1 where γ1 *= 0

and φ1 is such that (φ1 + θ1)(mod 2π) ∈ (−π
2 ,

π
2 ). Then EM = ε1m11 = ρ1γ1ej(φ1+θ1), which has

positive real part.
For the induction step, suppose that the conclusion holds for M ∈ C(n−1)×(n−1). Now consider

M ∈ Cn×n, with all of its principal minors nonzero. Let M1 be the submatrix of M with the last row
and last column removed. Then all the principal minors of M1 are nonzero, and by the hypothesis
there exists an invertible diagonal matrix E1 = diag(ε1, . . . , εn−1) such that all the eigenvalues
λ1, . . . ,λn−1 of E1M1 have positive real parts. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M are nonzero). Also let

E =

[
E1 0

0 εn

]

for some complex εn. Thus

EM =

[
E1 0

0 εn

][
M1 M2

M3 mnn

]
=

[
E1M1 E1M2

εnM3 εnmnn

]
.
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