
Chapter 3

Optimization

The second cooperative control problem we introduce is distributed optimization. Optimization is
an important subject across mathematics, science, and engineering. Motivation of performing opti-
mization over networked systems in a distributed fashion is driven by one or several combined fac-
tors including large scales, decentralized data collections, distributed computing technologies, and
privacy concerns. One example of distributed optimization is large-scale machine learning, where
big image/video data are collected and stored at different data centers, and multiple workstations
in these centers perform optimization computation for global data classification or model predic-
tion. Another example is economic dispatching in grid-connected smart buildings, where individual
buildings process data of local energy generation and consumption which may be privacy-sensitive,
and these buildings perform optimization computation for minimizing grid-wide generation costs
subject to the constraint of meeting all consumption demands. Other application domains include
power networks, smart grids, smart cities, transportation networks, and the Internet of Things
(IoT).

In this chapter, we show that a necessary graphical condition to achieve distributed optimization
is that the digraph is strongly connected. This is the same as the necessary condition for distributed
averaging in the preceding chapter. Indeed, distributed optimization requires tracking the average
value of the iteratively updated local optima, which intuitively demands that every agent possess
a direct or indirect ‘channel’ in order to receive information from every other agent.

Owing to this close relation to averaging, we design a distributed optimization algorithm based
on the surplus-based algorithm presented for achieving averaging over strongly connected digraphs
(which need not be balanced). Further, we will relate the distributed optimization problem to a
widely studied problem of distributed resource allocation. Hence the latter may also be solved by
the same distributed optimization algorithm.
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76 Chapter 3. Optimization

3.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(k) ∈ R,
and a local cost function fi : R → R.1 The goal of distributed optimization is that the agents
cooperatively solve the following problem:

min
x1,...,xn∈R

n∑

i=1

fi(xi) (3.1)

subject to x1 = · · · = xn.

Let F (ξ) :=
∑n

i=1 fi(ξ) be the global cost function for the multi-agent network. Thus prob-
lem (3.1) means that every agent minimizes the global cost function. We shall restrict our attention
to the case where F has a unique optimal solution ξ∗ ∈ R. Denote the optimal value by

F ∗ := F (ξ∗) = min
ξ∈R

F (ξ).

Under the following assumption, F indeed admits a unique optimal solution ξ∗ (see Lemma 3.8 in
Appendix) and a reasonable rate of convergence to the solution ξ∗ is ensured.

Assumption 3.1 Every local cost function fi (i ∈ [1, n])

• is continuously differentiable with gradient ∇fi (which is derivative for one-dimensional fi);

• is strongly convex with parameter mi > 0 (or simply mi-strongly convex), i.e.

(∀ξ1, ξ2 ∈ R)fi(ξ1) ≥ fi(ξ2) +∇fi(ξ2)(ξ1 − ξ2) +
mi

2
‖ξ1 − ξ2‖22; (3.2)

• has a Lipschitz-continuous gradient with parameter li > 0 (or li-smooth), i.e.

(∀ξ1, ξ2 ∈ R)‖∇fi(ξ1)−∇fi(ξ2)‖2 ≤ li‖ξ1 − ξ2‖2. (3.3)

A straightforward characterization of the latter two conditions in Assumption 3.1 in the case
that the inverse of the Hessian ∇2fi (which is the reciprocal of the second derivative for fi with
one-dimensional domain) exists is:

mi ≤ ∇2fi ≤ li.

1The choice of one-dimensional domain R of function f is made deliberately for simplicity of presentation, and
the essential ideas and techniques are the same for functions of multi-dimensional domain RN .
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Namely, strong convexity and smoothness provide respectively lower and upper bounds on ∇2fi.
As a result, mi ≤ li always holds. Let

l̄ := max
i∈[1,n]

li, l :=
n∑

i=1

li, m :=
n∑

i=1

mi. (3.4)

Then under Assumption 3.1, the global cost function F is m-strongly convex and l-smooth, with
the condition number Q := l

m ≥ 1.

Optimization Problem:

Consider a network of n agents interconnected through a digraph G. Suppose that Assump-
tion 3.1 holds and ξ∗ is the (unique) optimal solution to minξ∈R F (ξ). Design a distributed algorithm
to update the agents’ states xi(k), i = 1, . . . , n, such that

(∀i ∈ [1, n])(∀xi(0) ∈ R) lim
k→∞

xi(k) = ξ∗.

1

2 3

4

Figure 3.1: Illustrating example of optimization problem with four agents

Example 3.1 We provide an example to illustrate the optimization problem. As displayed
in Fig. 3.1, four agents are interconnected through a digraph G. The neighbor sets of the
agents are N1 = {4}, N2 = {1, 3, 4}, N3 = {1}, N4 = {2, 3}; and the out-neighbor sets are
N o

1 = {2, 3}, N o
2 = {4}, N o

3 = {2, 4}, N o
4 = {1, 2}.
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Let the local cost functions of the agents be

f1(ξ) = log(1 + e−ξ) + 2ξ2

f2(ξ) = 3 log(1 + e−ξ) + ξ2

f3(ξ) = 2 log(1 + e−ξ) + 2ξ2 + 4

f4(ξ) = log(1 + e−ξ) + ξ2 + ξ.

Compute ∇2f1(ξ) =
eξ

(eξ+1)2 + 4, which lies in the interval (4, 4.25]; thus f1 is 4.05-strongly
convex and 4.25-smooth. Similarly, f2 is 2.05-strongly convex and 2.75-smooth; f3 is 4.05-
strongly convex and 4.5-smooth; and f4 is 2.05-strongly convex and 2.25-smooth. Hence
Assumption 3.1 holds.
The global cost function F is

F (ξ) =
4∑

i=1

fi(ξ) = 7 log(1 + e−ξ) + 6ξ2 + ξ + 4

which is 12.05-strongly convex and 13.75-smooth. The unique optimal solution to
minξ∈R F (ξ) is ξ∗ = 0.1819, and the optimal value is F ∗ = 8.6247.
Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.
The optimization problem is to design a distributed algorithm such that each agent’s state
asymptotically converges to the optimal solution ξ∗ = 0.1819.

A necessary graphical condition for solving the optimization problem is that the digraph G is
strongly connected (this is the same as that for solving the averaging problem).

Proposition 3.1 Suppose that there exists a distributed algorithm that solves the optimiza-
tion problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V, E) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R )= V. We consider two cases separately: R = ∅ and R )= ∅.

If R = ∅, i.e. G does not contain a spanning tree, then it follows from Theorem 1.1 that G has
at least two (distinct) closed strong components (say) G1 = (V1, E1),G2 = (V2, E2). In this case,
consider local cost functions fi and an initial condition such that the agents in G1 have initial state
c1 ∈ R that minimizes

∑
i∈V1

fi(·), those in G2 have c2 ∈ R that minimizes
∑

i∈V2
fi(·), and c1 )= c2.

Since G1 and G2 are closed (i.e. information cannot be communicated from one to the other) and the
agents in G1 (resp. G2) have the same state value that minimizes

∑
i∈V1

fi(·) (resp.
∑

i∈V2
fi(·)),
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there does not exist any distributed algorithm that can update the states of the agents in G1 or G2.
Consequently, no distributed algorithm can solve the optimization problem.

It is left to consider R )= ∅. In this case, G contains a spanning tree, and again by Theorem 1.1
that the induced digraph by R is the unique closed strong component in G. Consider local cost
functions fi and an initial condition such that all agents in R have the same state c ∈ R, which
minimizes

∑
i∈R fi(·); but c )= ξ∗ where ξ∗ is the optimal solution for

∑
i∈V fi(·). Since R is

closed (i.e. information cannot be communicated from V \R to R) and the agents therein have the
same state value that minimizes

∑
i∈R fi(·), there does not exist any distributed algorithm that

can update the states of the agents in R. Consequently, no distributed algorithm can solve the
optimization problem. !

Owing to Proposition 3.1, we shall henceforth assume that the digraph G is strongly connected.

Assumption 3.2 The digraph G modeling the interconnection structure of the networked agents is
strongly connected.

3.2 Distributed Algorithm

Example 3.2 Consider again Example 3.1. To converge to the optimal solution ξ∗, a
natural idea is that each agent employs gradient descent with respect to its local cost function,
while iteratively computes the average of the state values received from neighbors. Namely,
for i ∈ [1, 4]

xi(k + 1) = xi(k) +
∑

j∈Ni

1

|Ni|+ 1
(xj(k)− xi(k))− ε∇fi(xi(k))

where ε > 0 is a (small or diminishing) stepsize. In vector form we have




x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)




=





1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3









x1(k)

x2(k)

x3(k)

x4(k)




−





ε 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 ε









∇f1(x1(k))

∇f2(x2(k))

∇f3(x3(k))

∇f4(x4(k))




(3.5)

Denote by L the standard Laplacian matrix of the weighted digraph G in Fig. 3.1. Note that
the first matrix above is I − L, which is row-stochastic but is not column-stochastic. The
four eigenvalues of I − L are:

1, 0.1667, 0.125± 0.2602j



80 Chapter 3. Optimization

namely there is a simple eigenvalue 1 and other eigenvalues lie within the unit circle. Thus
the spectral radius of I −L is ρ(I −L) = 1. The (normalized) left eigenvector corresponding
to the simple eigenvalue 1 is: πl := [0.4615 0.3077 0.4615 0.6923]&; thus π&

l (I − L) = π&
l .

Multiplying π&
l on both sides of (3.5) above yields:

4∑

i=1

πixi(k + 1) =
4∑

i=1

πixi(k)− ε
4∑

i=1

πi∇fi(xi(k)).

This is a gradient descent algorithm for a different global function F ′(ξ) :=
∑4

i=1 πifi(ξ),
weighted by the left eigenvector πl (for a different global state x′ :=

∑4
i=1 πlxi). Hence the

above scheme does not solve the optimization of F (ξ) =
∑4

i=1 fi(ξ), i.e. the states do not
asymptotically converge to the optimal solution of F . This is illustrated in Fig. 3.2; here
ε = 0.1 and the states converge to a vector [0.1035 0.2331 0.1599 0.0911]&, no component of
which equals the optimal solution ξ∗ = 0.1819.
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Figure 3.2: States fail to converge to the optimal solution of global cost function

Since our global function F (ξ) =
∑n

i=1 fi(ξ) is equally weighted over the local cost functions,
if the left eigenvector πl with respect to eigenvalue 1 of I − L was 1 (the vector of all ones), then
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the scheme in Example 3.2 would have worked. In general, however, πl )= 1 for strongly connected
digraphs (unless weight-balanced); instead we resort again to using surplus variables to achieve the
same effect of uniform weights. Specifically, we equip each agent i with a surplus variable si(k)

to record the changes in the gradient of the local cost function, i.e. ∇fi(xi(k)). At k = 0, we set
si(0) = ∇fi(xi(0)) for all i.

In the following, we describe a distributed algorithm that updates the state xi(k) and the surplus
si(k).

Surplus-based Optimization Algorithm (SOA):
Every agent i has a state variable xi(k) whose initial value is an arbitrary real number, and a

surplus variable si(k) whose initial value is ∇fi(xi(0)). At each time k ≥ 0, every agent i performs
three operations:

1) Agent i sends its state xi(k) and weighted surplus ajisi(k) to each out-neighbor j ∈ N o
i . The

weights aji satisfy
∑

j∈N o
i
aji < 1.

2) Agent i receives the state xj(k) and weighted surplus aijsj(k) from each (in-)neighbor j ∈ Ni.
The weights aij satisfy

∑
j∈Ni

aij < 1.
3) Agent i updates its state xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +
∑

j∈Ni

aij(xj(k)− xi(k))− εsi(k) (3.6)

si(k + 1) = (1−
∑

j∈N o
i

aji)si(k) +
∑

j∈Ni

aijsj(k) +
(
∇fi(xi(k + 1))−∇fi(xi(k))

)
. (3.7)

The parameter ε in (2.2) is a positive real number, i.e. ε > 0. The weights may be chosen as in
Remark 2.2 to satisfy the two conditions

∑
j∈N o

i
aji < 1 and

∑
j∈Ni

aij < 1.

Remark 3.1 In SOA, (3.6) is the state update equation by the gradient descent scheme as described
in Example 3.2, treating si(k) as the estimate of gradient of the local cost function. On the
other hand, (3.7) is the surplus update equation where the first two terms represent sending (resp.
receiving) surplus to out-neighbors (resp. from neighbors), and the third term records the change in
gradients. Summing up (3.7) from i = 1 to n on both sides, we derive

n∑

i=1

si(k + 1) =
n∑

i=1



(1−
∑

j∈N o
i

aji)si(k) +
∑

j∈Ni

aijsj(k)



+
n∑

i=1

(
∇fi(xi(k + 1))−∇fi(xi(k))

)

⇒
n∑

i=1

si(k + 1)−
n∑

i=1

si(k) =
n∑

i=1

∇fi(xi(k + 1))−
n∑

i=1

∇fi(xi(k)).
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Since si(0) = ∇fi(xi(0)), we conclude that for every k ≥ 0,

n∑

i=1

si(k) =
n∑

i=1

∇fi(xi(k)).

Thus the sum of surplus variables si(k) is the sum of gradients of the local cost functions at time k.

Remark 3.2 (Relation with SAA) Consider (i) the special quadratic cost function fi(xi) :=
1
2x

2
i

(thus ∇fi(xi) = xi); and (ii) change of variable ŝi := −si. Substituting these into SOA, we obtain
SAA with surplus variable ŝi. Note that si → 0 if and only if ŝi → 0. Owing to this relation, SOA
is a generalization of SAA.

Remark 3.3 Let

x :=





x1

...
xn



 ∈ Rn, s :=





s1
...
sn]



 ∈ Rn, ∇f(x) :=





∇f1(x1)
...

∇fn(xn)



 ∈ Rn

be respectively the aggregated state, surplus, and gradient of the networked agents. Then SOA is
written compactly as follows:

x(k + 1) = (I − L)x(k)− εs(k)

s(k + 1) = (I − Lo)s(k) + (∇f(x(k + 1))−∇f(x(k))) (3.8)

where I − L is row-stochastic and I − Lo column-stochastic. The initial conditions are x(0) ∈ Rn

(arbitrary) and s(0) = ∇f(x(0)).

Example 3.3 Let us revisit Example 3.2. It is checked that the weights aij satisfy the two
conditions

∑
j∈N o

i
aji < 1 and

∑
j∈Ni

aij < 1. Then SOA in vector form is:





x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)




=





1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3









x1(k)

x2(k)

x3(k)

x4(k)




−





ε 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 ε









s1(k)

s2(k)

s3(k)

s4(k)




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



s1(k + 1)

s2(k + 1)

s3(k + 1)

s4(k + 1)




=





1
4 0 0 1

2
1
4

2
3

1
4

1
4

1
2 0 5

12 0

0 1
3

1
3

1
4









s1(k)

s2(k)

s3(k)

s4(k)




+





∇f1(x1(k + 1))−∇f1(x1(k))

∇f2(x2(k + 1))−∇f2(x2(k))

∇f3(x3(k + 1))−∇f3(x3(k))

∇f4(x4(k + 1))−∇f4(x4(k))




.

Fig. 3.3 displays the case in which all states converge to the optimal solution ξ∗ = 0.1819

when the parameter ε = 0.1; while Fig. 3.4 shows that when ε = 0.2, convergence does not
occur. Hence similar to SAA for the averaging problem, the parameter ε needs to be carefully
chosen (to be small enough) so as to ensure convergence.
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Figure 3.3: Convergence to optimal solution when ε = 0.1

3.3 Convergence Result
The following is the main result of this section.

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold. If the parameter ε > 0 is
sufficiently small, then SOA solves the optimization problem.

Consider the two matrices I − L and I − Lo. Under Assumption 3.2 and by Lemma 2.1, the
spectral radius ρ(I − L) = 1 is a simple eigenvalue with a positive left-eigenvector πl such that



84 Chapter 3. Optimization

0 5 10 15 20 25 30

Time k

-100

-50

0

50

100

S
ta
te

x
i(
k
),

i
=

1,
2,
3,
4

0 5 10 15 20 25 30

Time k

-500

0

500

S
u
rp
lu
s
s i
(k
),

i
=

1,
2,
3,
4

Figure 3.4: Failure to converge when ε = 0.2

π&
l 1 = 1; and ρ(I − Lo) = 1 is also a simple eigenvalue with a positive eigenvector πr such that

π&
r 1 = 1. Write Πl := 1π&

l and Πr := πr1&. The proof of Theorem 3.1 is structured into the
following three steps. First, we construct two special vector norms ‖ · ‖Πl , ‖ · ‖Πr with which I − L

and I−Lo have a special contraction property. Second, when the parameter ε > 0 satisfies a certain
bound, we bound several relevant norms to derive the following inequality:




‖x(k + 1)−Πlx(k + 1)‖Πl

‖Πlx(k + 1)− ξ∗1‖2
‖s(k + 1)−Πrs(k + 1)‖Πr



 ≤ C




‖x(k)−Πlx(k)‖Πl

‖Πlx(k)− ξ∗1‖2
‖s(k)−Πrs(k)‖Πr



 (3.9)

where C is a nonnegative matrix. Finally, we prove for small ε > 0 that the spectral radius of C
satisfies ρ(C) < 1. Hence all three eigenvalues of C lie within the unit circle; thereby




‖x(k)−Πlx(k)‖Πl

‖Πlx(k)− ξ∗1‖2
‖s(k)−Πrs(k)‖Πr



→ 0.

In particular x(k) → ξ∗1, meaning that all the states converge to the optimal solution ξ∗ of the
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